1
|
Yang H, Liu Z, Tan Z, Luo H, Li Q, Liu Z, Ji F. Identification of Interleukin-Related Genes Signature for Prognosis Prediction in Head and Neck Squamous Cell Carcinoma Patients. Mol Carcinog 2025; 64:842-857. [PMID: 39917898 DOI: 10.1002/mc.23880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 04/12/2025]
Abstract
This study focused on identifying the interleukin (IL)-related genes that influence the head and neck squamous cell carcinoma (HNSCC) patients' prognosis and response to anticancer therapy in patients with HNSCC. We developed a risk model that included three gene signatures, IL Enhancer Binding Factor 2 (ILF2), IL 36 alpha (IL36A), and IL10, based on differential expression analysis, survival analysis, Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and Cox regression analysis. We found that the low-risk group was scored with higher immune cell infiltration, higher expression of human leukocyte antigen (HLA) family genes and immune checkpoint genes, higher cytolytic activity (CYT), tertiary lymphoid structures (TLS), and CD8A/PD-L1 ratio. In contrast, the high-risk group was scored with higher tumor immune dysfunction and exclusion (TIDE), which implied worse response to immunotherapy and worse prognosis. The results above indicated that the low-risk group had stronger antitumor immunity and better responsiveness to immunotherapy. We also observed a significantly enriched pattern of cancer-related pathways and immune pathways in the comparison of the high-risk and low-risk groups. Furthermore, the high-risk group had higher sensitivity to chemotherapy drugs, which suggested that they might benefit from chemotherapy treatment. Following the results above, we confirmed in HNSCC cell lines and clinical specimens that the level of ILF2 in tumors was significantly higher than that in adjacent tumor tissues. Besides, in vivo and in vitro results both showed that silencing ILF2 might depress tumor growth, invasion, and migration. This study not only provided novel perspectives into the immunological and molecular mechanisms of HNSCC and uncovered IL-related gene signatures for predicting HNSCC patients' prognosis and response to chemotherapy and immunotherapy, but also preliminarily suggested that ILF2 might be an important target in the treatment of HNSCC.
Collapse
Affiliation(s)
- Haojie Yang
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihao Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Beijing University Cancer Hospital Yunnan Hospital, Kunming, China
| | - Zicong Tan
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huimin Luo
- Department of Pharmacy, Foshan Women and Children Hospital, Foshan, China
| | - Qin Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liu
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengtao Ji
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Massaro C, Sgueglia G, Muro A, Pieragostino D, Lanuti P, Cufaro MC, Giorgio C, D'Agostino E, Torre LD, Baglio SR, Pirozzi M, De Simone M, Altucci L, Dell'Aversana C. Vorinostat impairs the cancer-driving potential of leukemia-secreted extracellular vesicles. J Transl Med 2025; 23:421. [PMID: 40211278 DOI: 10.1186/s12967-025-06361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Leukemia-secreted extracellular vesicles (EVs) carry biologically active cargo that promotes cancer-supportive mechanisms, including aberrant proliferative signaling, immune escape, and drug resistance. However, how antineoplastic drugs affect EV secretion and cargo sorting remains underexplored. METHODS Leukemia-secreted extracellular vesicles (EVs) were isolated by Differential UltraCentrifugation, and their miRNome and proteomic profiling cargo were analyzed following treatment with SAHA (Vorinostat) in Acute Myeloid Leukemia (AML) and Chronic Myeloid Leukemia (CML). The epigenetic modulation of leukemia-secreted EVs content on interesting key target molecules was validated, and their differential functional impact on cellular viability, cell cycle progression, apoptosis, and tumorigenicity was assessed. RESULTS SAHA significantly alters the cargo of Leukemia-derived EVs, including miR-194-5p and its target BCLAF1 (mRNA and protein), key regulators of Leukemia cell survival and differentiation. SAHA upregulates miR-194-5p expression while selective loading BCLAF1 into EVs, reducing the miRNA levels in the same compartment. Additionally, SAHA alters miRNA profile and proteomic composition associated with leukemic EVs, altering their tumor-supportive potential, with differential effects observed between AML and CML. Furthermore, in silico predictions suggest that these modified EVs may influence cell sensitivity to antineoplastic agents, suggesting a dual role for SAHA in impairing oncogenic signaling while enhancing therapeutic responsiveness. CONCLUSIONS In conclusion, the capacity of SAHA to modulate secretion and molecular composition of Leukemia-secreted EVs, alongside its direct cytotoxic effects, underscores its potential in combination therapies aimed to overcoming refractory phenotype by targeting EV-mediated communication.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Annamaria Muro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Maria Concetta Cufaro
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Cristina Giorgio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131, Naples, Italy
| | - Erika D'Agostino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Laura Della Torre
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Serena Rubina Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Marinella Pirozzi
- Istituto degli Endotipi in Oncologia, Metabolismo e Immunologia "G. Salvatore" (IEOMI)-National Research Council (CNR), 80131, Naples, Italy
| | - Mariacarla De Simone
- Stem Cell Transplantation Unit, Division Hematology, Cardarelli Hospital, 80131, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Istituto degli Endotipi in Oncologia, Metabolismo e Immunologia "G. Salvatore" (IEOMI)-National Research Council (CNR), 80131, Naples, Italy.
- BIOGEM, 83031, Ariano Irpino, Italy.
- Medical Epigenetics Program, Vanvitelli Hospital, Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Istituto degli Endotipi in Oncologia, Metabolismo e Immunologia "G. Salvatore" (IEOMI)-National Research Council (CNR), 80131, Naples, Italy.
- Department of Medicine and Surgery, LUM University, Casamassima, BA, Italy.
| |
Collapse
|
3
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Avigan ZM, Mitsiades CS, Laganà A. The role of 1q abnormalities in multiple myeloma: Genomic insights, clinical implications, and therapeutic challenges. Semin Hematol 2025; 62:20-30. [PMID: 39482206 DOI: 10.1053/j.seminhematol.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Chromosome 1q copy number variations, collectively termed +1q, are 1 of the most common cytogenetic abnormalities in multiple myeloma. 1q abnormalities are associated with overexpression of a high-risk gene signature promoting cell proliferation, apoptosis resistance, genomic instability, and treatment resistance, and acquisition or expansion of +1q subclones mediate disease development and relapse. While there remains significant controversy as to whether the presence of +1q is itself an independent driver of poor prognosis or is simply a marker of other high-risk features, +1q has recently been incorporated into multiple prognostic scoring models as a new high-risk cytogenetic abnormality. In this review, we present possible underlying genetic mechanisms of high-risk disease in +1q myeloma, implications for subclonal development, its role in modifying the tumor microenvironment, current evidence for clinical significance in newly-diagnosed and relapsed patients, and current controversies in +1q classification and prognostication.
Collapse
Affiliation(s)
- Zachary M Avigan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Alessandro Laganà
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
5
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
6
|
Liu Y, Liao Y, Lai S, Wu X, Liang L, Zhang Y, Wei R, Chen Y. Targeting CLK2 and serine/arginine-rich splicing factors inhibits multiple myeloma through downregulating RAE1 by nonsense-mediated mRNA decay mechanism. Cancer Sci 2025; 116:164-177. [PMID: 39526400 PMCID: PMC11711041 DOI: 10.1111/cas.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Multiple myeloma (MM) is closely related to abnormal RNA splicing in its pathogenesis. CDC2-like kinase-2 (CLK2) regulates RNA splicing by phosphorylating serine/arginine-rich splicing factors (SRSFs), but the role of CLK2 in MM remains undefined. This study was to explore the role and mechanism of CLK2 in MM. Analyzing GEO datasets of MM patients found that high CLK2 expression predicted poor prognosis. Overexpression of CLK2 promoted the cell proliferation and cell cycle progression of MM cell ARP1 and H929. Knockdown or inhibition of CLK2 suppressed cell proliferation and induced cell apoptosis and cell cycle arrest in ARP1 and H929 cells in vitro. An MM xenograft tumor experiment showed that CLK2 overexpression promoted tumor growth, while CLK2 inhibition suppressed tumor growth in vivo. Mechanistic studies revealed that interfering CLK2 inhibited SRSF phosphorylation, and induced exon 9 skipping of RAE1, resulting in nonsense-mediated mRNA decay (NMD) of RAE1. In addition, RAE1 knockdown inhibited cell proliferation in ARP1 and H929 cells. Moreover, RAE1 overexpression promoted cell proliferation and cell cycle progression of ARP1 and H929 cells, and partially reversed the antitumor effect of CLK2 knockdown. Targeting CLK2 shows antitumor effects on MM partially through inhibiting SRSF phosphorylation and inducing NMD of RAE1. Therefore, targeting the CLK2/SRSFs/RAE1 axis could be a potential therapeutic strategy for MM.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yaping Liao
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shuping Lai
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xiaoyan Wu
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Laoqi Liang
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yihao Zhang
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Rongfang Wei
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yan Chen
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
7
|
Ranganathan R, Li S, Sapozhnikov G, Wang S, Song YQ. Lower expression of BIN1's neuronal isoform in vulnerable excitatory neurons increases risk in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823241296018. [PMID: 40034505 PMCID: PMC11864243 DOI: 10.1177/25424823241296018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 03/05/2025] Open
Abstract
Background Neurons in Alzheimer's disease (AD) experience elevated DNA damage, with DNA repair sites enriched at enhancer regions of genes essential for neuronal survival. Excitatory neurons in the cortical superficial layers expressing CUX2 and RORB (Cux2+/Rorb+), are selectively vulnerable in AD, but their relationship to single nucleotide polymorphisms (SNPs) in AD genome-wide association studies (GWAS) is unclear. Objective This study aimed to identify and characterize functional AD-GWAS SNPs using single-nucleus RNA sequencing data, focusing on selectively vulnerable neurons and DNA repair hotspots. Methods Filters were applied to identify candidate SNPs based on overlap with repair hotspots, RNA expression, transcription factor binding, AD association, and epigenetic significance. In vitro assays and analyses of large datasets from bulk RNA-seq (n = 1894), proteomics (n = 400), and single-nucleus RNA-seq (n = 424, 1.6 M cells) were conducted. Results BIN1 SNP, rs78710909, met multiple criteria - located in an AD-GWAS locus, repair hotspot, and promoter region. rs78710909C exhibits 1.52× higher AD risk and 5.4× differential transcription factor binding. In vitro, rs78710909C shows greater enhancer activity and weaker p53 but stronger E2F1 binding. BIN1's neuronal isoform is neuroprotective, but its AD expression is lower (p < 0.01). Moreover, only in AD and Cux2+/Rorb + neurons, rs78710909C is associated with a lower average BIN1 neuronal isoform ratio (p < 0.01). The genes upregulated in neurons with lower neuronal isoform ratio were associated with the hallmarks of AD pathology. Conclusions In a disease-relevant mechanism, the BIN1 SNP rs78710909C is associated with a lower ratio of BIN1's neuronal isoform which increases the vulnerability of specific excitatory neurons in AD patients.
Collapse
Affiliation(s)
- Rajesh Ranganathan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Siwen Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Georgy Sapozhnikov
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shoutang Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Ram M, Fraser MR, Vieira dos Santos J, Tasakis R, Islam A, Abo-Donia JU, Parekh S, Lagana A. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Pharmgenomics Pers Med 2024; 17:573-609. [PMID: 39723112 PMCID: PMC11669356 DOI: 10.2147/pgpm.s350238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression. Methods This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles. We focused on the most comprehensive and cited studies to ensure a thorough understanding of the genetic and molecular landscapes of MM. Results We detail primary and secondary alterations such as translocations, hyperdiploidy, single nucleotide variants (SNVs), copy number alterations (CNAs), gene fusions, epigenetic modifications, non-coding RNAs, germline predisposing variants, and the influence of the tumor microenvironment (TME). Our analysis highlights the heterogeneity of MM and the challenges it poses in treatment and prognosis, emphasizing the distinction between driver mutations, which actively contribute to oncogenesis, and passenger mutations, which arise due to genomic instability and do not contribute to disease progression. Conclusion & Future Perspectives We report key controversies and challenges in defining the genetic drivers of MM, and examine their implications for future therapeutic strategies. We discuss the importance of systems biology approaches in understanding the dependencies and interactions among these alterations, particularly highlighting the impact of double and triple-hit scenarios on disease outcomes. By advancing our understanding of the molecular drivers and their interactions, this review sets the stage for novel therapeutic targets and strategies, ultimately aiming to improve clinical outcomes in MM patients.
Collapse
Affiliation(s)
- Meghana Ram
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Junia Vieira dos Santos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafail Tasakis
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Islam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jannah Usama Abo-Donia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Sun T, Li X, Zhang Y, Zou B, Zhang Y. ILF2: a multifaceted regulator in malignant tumors and its prospects as a biomarker and therapeutic target. Front Oncol 2024; 14:1513979. [PMID: 39735599 PMCID: PMC11671367 DOI: 10.3389/fonc.2024.1513979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2), formerly called nuclear factor 45 (NF45), is widely expressed in normal human tissues. ILF2 often binds to interleukin enhancer binding factor 3 (ILF3) and regulates gene expression in several ways, participating in multiple DNA and RNA metabolism pathways. Recent studies have shown that ILF2 expression is significantly upregulated in esophageal cancer, lung cancer, gastric cancer, and other malignant tumors, which can promote tumor development and tumor cell proliferation, affect the cell cycle, and induce epithelial-mesenchymal transition. ILF2 expression is closely related to tumor cell migration and invasion, neo-angiogenesis, and patient prognosis. ILF2 is expected to become a biomarker for the early diagnosis of patients with tumors and assessing their prognosis. This article reviews the role of ILF2 in malignant tumors and its related mechanisms.
Collapse
Affiliation(s)
- Tonglin Sun
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bingwen Zou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Liu SS, Wang JK, Liu MS, Guo DF, Wen Q, Liang YH, Wang T, Zhang KH. ILF2 protein is a promising serum biomarker for early detection of gastric cancer. BMC Cancer 2024; 24:1447. [PMID: 39587551 PMCID: PMC11587746 DOI: 10.1186/s12885-024-13205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Our previous small-sample study indicated that serum levels of interleukin enhancer binding factor 2 (ILF2) may have the potential for gastric cancer (GC) detection. The present study was conducted to further validate the diagnostic value of serum ILF2 protein for GC. METHODS Serum specimens and clinical data were collected from patients with GC (n = 99) or benign gastric disease (BGD) (n = 49) and healthy controls (HC) (n = 51). Serum ILF2 levels were measured using enzyme-linked immunosorbent assay. The diagnostic performance of ILF2 was evaluated using the area under the receiver operating characteristic curve (AUC). The independence and synergy of ILF2 in GC diagnosis were analyzed by modeling with conventional blood indicators. RESULTS The median serum ILF2 level was higher in the GC group (227.8ng/mL) than in the BGD group (72.0ng/mL) and the HC group (56.8ng/mL) (p < 0.001), and no significant difference across GC subgroups. The AUCs of ILF2 were 0.915 (95%CI 0.873-0.957) for GC vs. HC, 0.854 (95%CI 0.793-0.915) for GC vs. BGD, 0.885 (95%CI 0.841-0.929) for GC vs. BGD + HC, and 0.888 (95% CI 0.830-0.945) for TNM I stage GC vs. BGD + HC, outperforming conventional blood indicators (corresponding AUCs ranging from 0.641 to 0.782). ILF2 was independent of and synergistic with conventional blood indicators in GC diagnosis, and a simple diagnostic model based on ILF2 and red blood cell count improved the diagnostic performance, with positive rates of approximately 90% in various subgroups of GC. CONCLUSIONS Serum ILF2 protein is a novel and potential serum biomarker for the detection of GC, especially for early GC.
Collapse
Affiliation(s)
- Shao-Song Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Jin-Ke Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Mao-Sheng Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Ding-Fan Guo
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Qi Wen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Yun-Hui Liang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Ting Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
11
|
Bae AA, Zheng YG. Hetero-oligomeric interaction as a new regulatory mechanism for protein arginine methyltransferases. Biochem Soc Trans 2024; 52:2193-2201. [PMID: 39324605 PMCID: PMC11624628 DOI: 10.1042/bst20240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
Protein arginine methylation is a versatile post-translational protein modification that has notable cellular roles such as transcriptional activation or repression, cell signaling, cell cycle regulation, and DNA damage response. However, in spite of their extensive significance in the biological system, there is still a significant gap in understanding of the entire function of the protein arginine methyltransferases (PRMTs). It has been well-established that PRMTs form homo-oligomeric complexes to be catalytically active, but in recent years, several studies have showcased evidence that different members of PRMTs can have cross-talk with one another to form hetero-oligomeric complexes. Additionally, these heteromeric complexes have distinct roles separate from their homomeric counterparts. Here, we review and highlight the discovery of the heterodimerization of PRMTs and discuss the biological implications of these hetero-oligomeric interactions.
Collapse
Affiliation(s)
- Angela A Bae
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
12
|
Ozaki K, Kato R, Yasuhara T, Uchihara Y, Hirakawa M, Abe Y, Shibata H, Kawabata-Iwakawa R, Shakayeva A, Kot P, Miyagawa K, Suzuki K, Matsuda N, Shibata A, Yamauchi M. Involvement of the splicing factor SART1 in the BRCA1-dependent homologous recombination repair of DNA double-strand breaks. Sci Rep 2024; 14:18455. [PMID: 39117746 PMCID: PMC11310344 DOI: 10.1038/s41598-024-68926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Although previous studies have reported that pre-mRNA splicing factors (SFs) are involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), their exact role in promoting HR remains poorly understood. Here, we showed that SART1, an SF upregulated in several types of cancer, promotes DSB end resection, an essential first step of HR. The resection-promoting function of SART1 requires phosphorylation at threonine 430 and 695 by ATM/ATR. SART1 is recruited to DSB sites in a manner dependent on transcription and its RS domain. SART1 is epistatic with BRCA1, a major HR factor, in the promotion of resection, especially transcription-associated resection in the G2 phase. SART1 and BRCA1 accumulate at DSB sites in an interdependent manner, and epistatically counteract the resection blockade posed by 53BP1 and RIF1. Furthermore, chromosome analysis demonstrated that SART1 and BRCA1 epistatically suppressed genomic alterations caused by DSB misrepair in the G2 phase. Collectively, these results indicate that SART1 and BRCA1 cooperatively facilitate resection of DSBs arising in transcriptionally active genomic regions in the G2 phase, thereby promoting faithful repair by HR, and suppressing genome instability.
Collapse
Affiliation(s)
- Kie Ozaki
- Hospital Campus Laboratory, Radioisotope Center, Central Institute of Radioisotope Science and Safety Management, Kyushu University, Fukuoka, 812-8582, Japan
| | - Reona Kato
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Takaaki Yasuhara
- Laboratory of Genome Stress Response, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Yuki Uchihara
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Miyako Hirakawa
- Center for Radiation Research and Education, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yu Abe
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Aizhan Shakayeva
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Palina Kot
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- Institute of Biochemistry, FB08, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Naoki Matsuda
- Center for Radiation Research and Education, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Motohiro Yamauchi
- Hospital Campus Laboratory, Radioisotope Center, Central Institute of Radioisotope Science and Safety Management, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Bedir M, Outwin E, Colnaghi R, Bassett L, Abramowicz I, O'Driscoll M. A novel role for the peptidyl-prolyl cis-trans isomerase Cyclophilin A in DNA-repair following replication fork stalling via the MRE11-RAD50-NBS1 complex. EMBO Rep 2024; 25:3432-3455. [PMID: 38943005 PMCID: PMC11315929 DOI: 10.1038/s44319-024-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
Collapse
Affiliation(s)
- Marisa Bedir
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lydia Bassett
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
14
|
Liu Y, Li Z, Zhang J, Liu W, Guan S, Zhan Y, Fang Y, Li Y, Deng H, Shen Z. DYNLL1 accelerates cell cycle via ILF2/CDK4 axis to promote hepatocellular carcinoma development and palbociclib sensitivity. Br J Cancer 2024; 131:243-257. [PMID: 38824222 PMCID: PMC11263598 DOI: 10.1038/s41416-024-02719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Disorder of cell cycle represents as a major driver of hepatocarcinogenesis and constitutes an attractive therapeutic target. However, identifying key genes that respond to cell cycle-dependent treatments still facing critical challenges in hepatocellular carcinoma (HCC). Increasing evidence indicates that dynein light chain 1 (DYNLL1) is closely related to cell cycle progression and plays a critical role in tumorigenesis. In this study, we explored the role of DYNLL1 in the regulation of cell cycle progression in HCC. METHODS We analysed clinical specimens to assess the expression and predictive value of DYNLL1 in HCC. The oncogenic role of DYNLL1 was determined by gain or loss-of-function experiments in vitro, and xenograft tumour, liver orthotopic, and DEN/CCl4-induced mouse models in vivo. Mass spectrometry analysis, RNA sequencing, co-immunoprecipitation assays, and forward and reverse experiments were performed to clarify the mechanism by which DYNLL1 activates the interleukin-2 enhancer-binding factor 2 (ILF2)/CDK4 signalling axis. Finally, the sensitivity of HCC cells to palbociclib and sorafenib was assessed by apoptosis, cell counting kit-8, and colony formation assays in vitro, and xenograft tumour models and liver orthotopic models in vivo. RESULTS DYNLL1 was significantly higher in HCC tissues than that in normal liver tissues and closely related to the clinicopathological features and prognosis of patients with HCC. Importantly, DYNLL1 was identified as a novel hepatocarcinogenesis gene from both in vitro and in vivo evidence. Mechanistically, DYNLL1 could interact with ILF2 and facilitate the expression of ILF2, then ILF2 could interact with CDK4 mRNA and delay its degradation, which in turn activates downstream G1/S cell cycle target genes CDK4. Furthermore, palbociclib, a selective CDK4/6 inhibitor, represents as a promising therapeutic strategy for DYNLL1-overexpressed HCC, alone or particularly in combination with sorafenib. CONCLUSIONS Our work uncovers a novel function of DYNLL1 in orchestrating cell cycle to promote HCC development and suggests a potential synergy of CDK4/6 inhibitor and sorafenib for the treatment of HCC patients, especially those with increased DYNLL1.
Collapse
Affiliation(s)
- Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jinchao Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Wei Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenyuan Guan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yizhi Zhan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
15
|
Yang M, Liu J, Kim P, Zhou X. Study of prognostic splicing factors in cancer using machine learning approaches. Hum Mol Genet 2024; 33:1131-1141. [PMID: 38538560 PMCID: PMC11190612 DOI: 10.1093/hmg/ddae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Splicing factors (SFs) are the major RNA-binding proteins (RBPs) and key molecules that regulate the splicing of mRNA molecules through binding to mRNAs. The expression of splicing factors is frequently deregulated in different cancer types, causing the generation of oncogenic proteins involved in cancer hallmarks. In this study, we investigated the genes that encode RNA-binding proteins and identified potential splicing factors that contribute to the aberrant splicing applying a random forest classification model. The result suggested 56 splicing factors were related to the prognosis of 13 cancers, two SF complexes in liver hepatocellular carcinoma, and one SF complex in esophageal carcinoma. Further systematic bioinformatics studies on these cancer prognostic splicing factors and their related alternative splicing events revealed the potential regulations in a cancer-specific manner. Our analysis found high ILF2-ILF3 expression correlates with poor prognosis in LIHC through alternative splicing. These findings emphasize the importance of SFs as potential indicators for prognosis or targets for therapeutic interventions. Their roles in cancer exhibit complexity and are contingent upon the specific context in which they operate. This recognition further underscores the need for a comprehensive understanding and exploration of the role of SFs in different types of cancer, paving the way for their potential utilization in prognostic assessments and the development of targeted therapies.
Collapse
Affiliation(s)
- Mengyuan Yang
- School of Life Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jiajia Liu
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
- McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, Texas 77030, United States
- School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, Texas 77054, United States
| |
Collapse
|
16
|
Li L, Gao Y, Yu B, Zhang J, Ma G, Jin X. Role of LncRNA H19 in tumor progression and treatment. Mol Cell Probes 2024; 75:101961. [PMID: 38579914 DOI: 10.1016/j.mcp.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
As one of the earliest discovered lncRNA molecules, lncRNA H19 is usually expressed in large quantities during embryonic development and is involved in cell differentiation and tissue formation. In recent years, the role of lncRNA H19 in tumors has been gradually recognized. Increasing evidence suggests that its aberrant expression is closely related to cancer development. LncRNA H19 as an oncogene not only promotes the growth, proliferation, invasion and metastasis of many tumors, but also develops resistance to treatment, affecting patients' prognosis and survival. Therefore, in this review, we summarise the extensive research on the involvement of lncRNA H19 in tumor progression and discuss how lncRNA H19, as a key target gene, affects tumor sensitivity to radiotherapy, chemotherapy and immunotherapy by participating in multiple cellular processes and regulating multiple signaling pathways, which provides a promising prospect for further research into the treatment of cancer.
Collapse
Affiliation(s)
- Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou, 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; School of Public Health, Lanzhou University, Gansu Province, Lanzhou, 730000, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Liu N, Xie Z, Li H, Wang L. The numerous facets of 1q21 + in multiple myeloma: Pathogenesis, clinicopathological features, prognosis and clinical progress (Review). Oncol Lett 2024; 27:258. [PMID: 38646497 PMCID: PMC11027100 DOI: 10.3892/ol.2024.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm characterized by the clonal proliferation of abnormal plasma cells (PCs) in the bone marrow and recurrent cytogenetic abnormalities. The incidence of MM worldwide is on the rise. 1q21+ has been found in ~30-40% of newly diagnosed MM (NDMM) patients.1q21+ is associated with the pathophysiological mechanisms of disease progression and drug resistance in MM. In the present review, the pathogenesis and clinicopathological features of MM patients with 1q21+ were studied, the key data of 1q21+ on the prognosis of MM patients were summarized, and the clinical treatment significance of MM patients with 1q21+ was clarified, in order to provide reference for clinicians to develop treatment strategies targeting 1q21+.
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhanzhi Xie
- Sanofi China Investment Co., Ltd. Shanghai Branch, Shanghai 200000, P.R. China
| | - Hao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Luqun Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
18
|
Li J, Jia Z, Wang R, Xiao B, Cai Y, Zhu T, Wang W, Zhang X, Fan S, Fan X, Han W, Lu X. Activated interferon response from DNA damage in multiple myeloma cells contributes to the chemotherapeutic effects of anthracyclines. Front Oncol 2024; 14:1357996. [PMID: 38800411 PMCID: PMC11116600 DOI: 10.3389/fonc.2024.1357996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Multiple myeloma (MM) is a malignant plasma cell disease caused by abnormal proliferation of clonal plasma cells in bone marrow. Upfront identification of tumor subgroups with specific biological markers has the potential to improve biologically-driven therapy. Previously, we established a molecular classification by stratifying multiple myeloma into two subtypes with a different prognosis based on a gene module co-expressed with MCL-1 (MCL1-M). Methods Gene Ontology (GO) analysis with differentially expressed genes was performed to identify signal pathway. Drug sensitivity was analyzed using the OncoPredict algorithm. Drug sensitivity of different myeloma cell lines was detected by CCK8 and flow cytometry. RNA-seq was performed on drug-sensitive cell lines before and after adriamycin treatment. RT-qPCR was used to further verify the sequencing results. The expression of γ-H2AX and dsDNA in sensitive and resistant cell lines was detected by immunofluorescence method. Results In our study, we demonstrated that MCL1-M low MM were more sensitive to anthracyclines. We treated different myeloma cell lines with doxorubicin in vitro and discovered the association of drug sensitivity with IFN signaling. Herein, we demonstrate that the doxorubicin-sensitive myeloma cell line showed significant DNA damage and up-regulated expression of genes related to the IFN response, which was not observed in drug-insensitive cell lines. Discussion Our results suggest that the active IFN signaling pathway may serve as a marker for predicting chemotherapy sensitivity in patients with myeloma. With our MCL1-M molecular classification system, we can screen patients with a potentially good response to the interferon signaling pathway and provide individualized treatment for MM. We propose IFN-a as adjuvant therapy for patients with myeloma sensitive to anthracyclines to further improve the therapeutic effect and prolong the survival of patients.
Collapse
Affiliation(s)
- Jin Li
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhuxia Jia
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Rongxuan Wang
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Bitao Xiao
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Yanan Cai
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Tianshu Zhu
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Weiya Wang
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xinyue Zhang
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Shu Fan
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaolong Fan
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Wenmin Han
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xuzhang Lu
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
19
|
Testa U, Leone G, Pelosi E, Castelli G, De Stefano V. Is It Possible to Predict Tumor Progression Through Genomic Characterization of Monoclonal Gammopathy and Smoldering Multiple Myeloma? Mediterr J Hematol Infect Dis 2024; 16:e2024044. [PMID: 38882455 PMCID: PMC11178066 DOI: 10.4084/mjhid.2024.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
The study of monoclonal serum proteins has led to the generation of two major theories: one proposing that individuals who had monoclonal proteins without any symptoms or evidence of end-organ damage have a benign condition, the other one suggesting that some individuals with asymptomatic monoclonal proteins may progress to multiple myeloma and thus are affected by a monoclonal gammopathy of undetermined significance (MGUS). Longitudinal studies of subjects with MGUS have supported the second theory. Subsequent studies have characterized and defined the existence of another precursor of multiple myeloma, smoldering multiple myeloma (SMM), intermediate between MGUS and multiple myeloma. Primary molecular events, chromosome translocations, and chromosome number alterations resulting in hyperploidy, required for multiple myeloma development, are already observed in myeloma precursors. MGUS and SMM are heterogeneous conditions with the presence of tumors with distinct pathogenic phenotypes and clinical outcomes. The identification of MGUS and SMM patients with a molecularly defined high risk of progression to MM offers the unique opportunity of early intervention with a therapeutic approach on a low tumor burden.
Collapse
Affiliation(s)
- Ugo Testa
- Istituto Superiore di Sanità, Roma, Italy
| | - Giuseppe Leone
- Section of Hematology, Department of Radiological and Hematological Sciences, Catholic University, Rome, Italy
| | | | | | - Valerio De Stefano
- Section of Hematology, Department of Radiological and Hematological Sciences, Catholic University, Rome, Italy
- Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
20
|
Liu SS, Wan QS, Lv C, Wang JK, Jiang S, Cai D, Liu MS, Wang T, Zhang KH. Integrating trans-omics, cellular experiments and clinical validation to identify ILF2 as a diagnostic serum biomarker and therapeutic target in gastric cancer. BMC Cancer 2024; 24:465. [PMID: 38622522 PMCID: PMC11017608 DOI: 10.1186/s12885-024-12175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for GC diagnosis by cross-analysis of proteomics and transcriptomics datasets. METHODS A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments. RESULTS Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas under the receiver operating characteristic curve (AUROCs) of 0.629-0.950 in the TCGA dataset and 0.736-0.840 in the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly promotes the proliferation and colony formation of gastric cancer cells. CONCLUSIONS Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Shao-Song Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Cong Lv
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Jin-Ke Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Dan Cai
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Mao-Sheng Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China.
| |
Collapse
|
21
|
Chen X, Varma G, Davies F, Morgan G. Approach to High-Risk Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:497-510. [PMID: 38195306 DOI: 10.1016/j.hoc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Improving the outcome of high-risk myeloma (HRMM) is a key therapeutic aim for the next decade. To achieve this aim, it is necessary to understand in detail the genetic drivers underlying this clinical behavior and to target its biology therapeutically. Advances have already been made, with a focus on consensus guidance and the application of novel immunotherapeutic approaches. Cases of HRMM are likely to have impaired prognosis even with novel strategies. However, if disease eradication and minimal disease states are achieved, then cure may be possible.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gaurav Varma
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Faith Davies
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gareth Morgan
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
22
|
Wu PY, Van Scoyk M, McHale SS, Chou CF, Riddick G, Farouq K, Hu B, Kraskauskiene V, Koblinski J, Lyons C, Rijal A, Vudatha V, Zhang D, Trevino JG, Shah RD, Nana-Sinkam P, Huang Y, Ma SF, Noth I, Hughes-Halbert C, Seewaldt VL, Chen CY, Winn RA. Cooperation between PRMT1 and PRMT6 drives lung cancer health disparities among Black/African American men. iScience 2024; 27:108858. [PMID: 38303720 PMCID: PMC10830871 DOI: 10.1016/j.isci.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
Lung cancer is the third most common cancer with Black/AA men showing higher risk and poorer outcomes than NHW men. Lung cancer disparities are multifactorial, driven by tobacco exposure, inequities in care access, upstream health determinants, and molecular determinants including biological and genetic factors. Elevated expressions of protein arginine methyltransferases (PRMTs) correlating with poorer prognosis have been observed in many cancers. Most importantly, our study shows that PRMT6 displays higher expression in lung cancer tissues of Black/AA men compared to NHW men. In this study, we investigated the underlying mechanism of PRMT6 and its cooperation with PRMT1 to form a heteromer as a driver of lung cancer. Disrupting PRMT1/PRMT6 heteromer by a competitive peptide reduced proliferation in non-small cell lung cancer cell lines and patient-derived organoids, therefore, giving rise to a more strategic approach in the treatment of Black/AA men with lung cancer and to eliminate cancer health disparities.
Collapse
Affiliation(s)
- Pei-Ying Wu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle Van Scoyk
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie S. McHale
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Chu-Fang Chou
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gregory Riddick
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Kamran Farouq
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Hu
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Vita Kraskauskiene
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer Koblinski
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles Lyons
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Arjun Rijal
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Vignesh Vudatha
- Division of Surgical Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Dongyu Zhang
- Division of Surgical Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jose G. Trevino
- Division of Surgical Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachit D. Shah
- Division of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yong Huang
- Division of Pulmonary and Critical Care, University of Virginia, Charlottesville, VA, USA
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care, University of Virginia, Charlottesville, VA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care, University of Virginia, Charlottesville, VA, USA
| | - Chanita Hughes-Halbert
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Ching-Yi Chen
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert A. Winn
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
23
|
Thongon N, Ma F, Baran N, Lockyer P, Liu J, Jackson C, Rose A, Furudate K, Wildeman B, Marchesini M, Marchica V, Storti P, Todaro G, Ganan-Gomez I, Adema V, Rodriguez-Sevilla JJ, Qing Y, Ha MJ, Fonseca R, Stein C, Class C, Tan L, Attanasio S, Garcia-Manero G, Giuliani N, Berrios Nolasco D, Santoni A, Cerchione C, Bueso-Ramos C, Konopleva M, Lorenzi P, Takahashi K, Manasanch E, Sammarelli G, Kanagal-Shamanna R, Viale A, Chesi M, Colla S. Targeting DNA2 overcomes metabolic reprogramming in multiple myeloma. Nat Commun 2024; 15:1203. [PMID: 38331987 PMCID: PMC10853245 DOI: 10.1038/s41467-024-45350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.
Collapse
Affiliation(s)
- Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Lockyer
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jintan Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Jackson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley Rose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Marchesini
- IRCCS Instituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | | | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giannalisa Todaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yun Qing
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caleb Stein
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Caleb Class
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - David Berrios Nolasco
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Santoni
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Cerchione
- IRCCS Instituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | - Carlos Bueso-Ramos
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elisabet Manasanch
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Rashmi Kanagal-Shamanna
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Guo J, Zhang Z, Wang H, Li Q, Fan M, Zhang W, Tao Q, Wang Z, Ling C, Xiao H, Gao Z, Zhai Z. SRRM2 may be a potential biomarker and immunotherapy target for multiple myeloma: a real-world study based on flow cytometry detection. Clin Exp Med 2024; 24:28. [PMID: 38289482 PMCID: PMC10827842 DOI: 10.1007/s10238-023-01272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024]
Abstract
Serine/arginine repetitive matrix 2 (SRRM2) has been implicated in tumorigenesis, cancer development, and drug resistance through aberrant splicing; however, its correlation with multiple myeloma (MM) has not been reported. We investigated the potential of SRRM2 as a biomarker and immunotherapeutic target in MM by examining its expression in MM cells using flow cytometry. Our study included 95 patients with plasma cell disease, including 80 MM cases, and we detected SRRM2 expression on plasma cells and normal blood cells to analyze its relationship with clinical profiles. We found widespread positive expression of SRRM2 on plasma cells with little expression on normal blood cells, and its expression on abnormal plasma cells was higher than that on normal plasma cells. Comparative analysis with clinical data suggests that SRRM2 expression on plasma cells correlates with MM treatment response. MM patients with high SRRM2 expression had higher levels of serum β2-mg and LDH, ISS staging, and plasma cell infiltration, as well as high-risk mSMART 3.0 stratification and cytogenetic abnormalities, particularly 1q21 amplification. In patients with previous MM, high SRRM2 expression on plasma cells was associated with higher plasma cell infiltration, high-risk mSMART 3.0 risk stratification, cytogenetic abnormalities, more relapses, and fewer autologous stem cell transplant treatments. In summary, SRRM2 may serve as a novel biomarker and immunotherapeutic target for MM. Its expression level on plasma cells can help in risk stratification of MM and monitoring of treatment response.
Collapse
Affiliation(s)
- Jinjing Guo
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Laboratory, Fuyang People's Hospital, Fuyang, China
| | - Zhiye Zhang
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Hematology, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Huiping Wang
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qian Li
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Fan
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wanqiu Zhang
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qianshan Tao
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhitao Wang
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chun Ling
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Hematology, Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Hao Xiao
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimai Gao
- ZENO Biotechnology (Shenzhen) Co, Shenzhen, Guangzhou, China
| | - Zhimin Zhai
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
25
|
Wang F, Zhang Y. Physiology and pharmacological targeting of phase separation. J Biomed Sci 2024; 31:11. [PMID: 38245749 PMCID: PMC10800077 DOI: 10.1186/s12929-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) in biology describes a process by which proteins form membraneless condensates within a cellular compartment when conditions are met, including the concentration and posttranslational modifications of the protein components, the condition of the aqueous solution (pH, ionic strength, pressure, and temperature), and the existence of assisting factors (such as RNAs or other proteins). In these supramolecular liquid droplet-like inclusion bodies, molecules are held together through weak intermolecular and/or intramolecular interactions. With the aid of LLPS, cells can assemble functional sub-units within a given cellular compartment by enriching or excluding specific factors, modulating cellular function, and rapidly responding to environmental or physiological cues. Hence, LLPS is emerging as an important means to regulate biology and physiology. Yet, excessive inclusion body formation by, for instance, higher-than-normal concentrations or mutant forms of the protein components could result in the conversion from dynamic liquid condensates into more rigid gel- or solid-like aggregates, leading to the disruption of the organelle's function followed by the development of human disorders like neurodegenerative diseases. In summary, well-controlled formation and de-formation of LLPS is critical for normal biology and physiology from single cells to individual organisms, whereas abnormal LLPS is involved in the pathophysiology of human diseases. In turn, targeting these aggregates or their formation represents a promising approach in treating diseases driven by abnormal LLPS including those neurodegenerative diseases that lack effective therapies.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA.
| |
Collapse
|
26
|
Fujita KI, Ito M, Irie M, Harada K, Fujiwara N, Ikeda Y, Yoshioka H, Yamazaki T, Kojima M, Mikami B, Mayeda A, Masuda S. Structural differences between the closely related RNA helicases, UAP56 and URH49, fashion distinct functional apo-complexes. Nat Commun 2024; 15:455. [PMID: 38225262 PMCID: PMC10789772 DOI: 10.1038/s41467-023-44217-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
mRNA export is an essential pathway for the regulation of gene expression. In humans, closely related RNA helicases, UAP56 and URH49, shape selective mRNA export pathways through the formation of distinct complexes, known as apo-TREX and apo-AREX complexes, and their subsequent remodeling into similar ATP-bound complexes. Therefore, defining the unidentified components of the apo-AREX complex and elucidating the molecular mechanisms underlying the formation of distinct apo-complexes is key to understanding their functional divergence. In this study, we identify additional apo-AREX components physically and functionally associated with URH49. Furthermore, by comparing the structures of UAP56 and URH49 and performing an integrated analysis of their chimeric mutants, we exhibit unique structural features that would contribute to the formation of their respective complexes. This study provides insights into the specific structural and functional diversification of these two helicases that diverged from the common ancestral gene Sub2.
Collapse
Affiliation(s)
- Ken-Ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Division of Cancer Stem Cell, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Misa Ito
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Midori Irie
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kotaro Harada
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Naoko Fujiwara
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Yuya Ikeda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Hanae Yoshioka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Tomohiro Yamazaki
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, 611-0011, Japan
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
- Department of Food Science and Nutrition, Faculty of Agriculture Kindai University, Nara, Nara, 631-8505, Japan.
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Nara, 631-8505, Japan.
- Antiaging Center, Kindai University, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
27
|
Pasvolsky O, Ghanem S, Milton DR, Rauf M, Tanner MR, Bashir Q, Srour S, Saini N, Lin P, Ramdial J, Nieto Y, Tang G, Aljawai Y, Khan HN, Kebriaei P, Lee HC, Patel KK, Thomas SK, Weber DM, Orlowski RZ, Shpall EJ, Champlin RE, Qazilbash MH. Outcomes of patients with multiple myeloma and 1q gain/amplification receiving autologous hematopoietic stem cell transplant: the MD Anderson cancer center experience. Blood Cancer J 2024; 14:4. [PMID: 38199987 PMCID: PMC10781953 DOI: 10.1038/s41408-023-00973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The prognostic impact of additional copies of chromosome 1q (1q + ) on outcomes of newly-diagnosed multiple myeloma (NDMM) patients undergoing autologous transplantation (autoSCT) is unclear. We conducted a retrospective single-center analysis of NDMM patients with 1q21 gain/amplification (3 or ≥4 copies of 1q, respectively) that received autoSCT between 2008-2018. 213 patients were included (79% 1q gain; 21% 1q amplification). The most commonly used induction regimen was bortezomib, lenalidomide, and dexamethasone (41%). At day100 post-autoSCT and at best post-transplant response, 78% and 87% of patients achieved ≥VGPR, and 38% and 50% achieved MRD-negative ≥VGPR, respectively. Median PFS and OS for the entire cohort were 35.5 months and 81.4 months, respectively. On multivariable assessment for PFS, MRD negative ≥VGPR before autoSCT (HR 0.52, p = 0.013) was associated with superior PFS, whereas 1q amplification was associated with inferior PFS (2.03, p = 0.003). On multivariate analysis for OS, achieving MRD negative ≥VGPR at best post-transplant response was associated with superior survival (0.29, p < 0.001), whereas R-ISS III and concomitant del17p or t(4:14) were associated with inferior survival (6.95, p = 0.030, 2.33, p = 0.023 and 3.00, p = 0.047, respectively). In conclusion, patients with 1q+ NDMM, especially 1q amplification, have inferior survival outcomes compared to standard-risk disease after upfront autoSCT, though outcomes are better than other high-risk cytogenetic abnormalities.
Collapse
Affiliation(s)
- Oren Pasvolsky
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sassine Ghanem
- Lifespan Cancer Institute, Providence, RI, USA
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikael Rauf
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark R Tanner
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qaiser Bashir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeraj Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yosra Aljawai
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hina N Khan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krina K Patel
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donna M Weber
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muzaffar H Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Zhang S, Hu W, Lv C, Song X. Biogenesis and Function of circRNAs in Pulmonary Fibrosis. Curr Gene Ther 2024; 24:395-409. [PMID: 39005062 DOI: 10.2174/0115665232284076240207073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Wenjie Hu
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| |
Collapse
|
29
|
McGrail DJ, Li Y, Smith RS, Feng B, Dai H, Hu L, Dennehey B, Awasthi S, Mendillo ML, Sood AK, Mills GB, Lin SY, Yi SS, Sahni N. Widespread BRCA1/2-independent homologous recombination defects are caused by alterations in RNA-binding proteins. Cell Rep Med 2023; 4:101255. [PMID: 37909041 PMCID: PMC10694618 DOI: 10.1016/j.xcrm.2023.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2022] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
Defects in homologous recombination DNA repair (HRD) both predispose to cancer development and produce therapeutic vulnerabilities, making it critical to define the spectrum of genetic events that cause HRD. However, we found that mutations in BRCA1/2 and other canonical HR genes only identified 10%-20% of tumors that display genomic evidence of HRD. Using a networks-based approach, we discovered that over half of putative genes causing HRD originated outside of canonical DNA damage response genes, with a particular enrichment for RNA-binding protein (RBP)-encoding genes. These putative drivers of HRD were experimentally validated, cross-validated in an independent cohort, and enriched in cancer-associated genome-wide association study loci. Mechanistic studies indicate that some RBPs are recruited to sites of DNA damage to facilitate repair, whereas others control the expression of canonical HR genes. Overall, this study greatly expands the repertoire of known drivers of HRD, with implications for basic biology, genetic screening, and therapy stratification.
Collapse
Affiliation(s)
- Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44106, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roger S Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bin Feng
- GSK Oncology Experimental Medicine Unit, Waltham, MA 02451, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Briana Dennehey
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Xu J, Wang Y, Li P, Chen C, Jiang Z, Wang X, Liu P. PRUNE1 (located on chromosome 1q21.3) promotes multiple myeloma with 1q21 Gain by enhancing the links between purine and mitochondrion. Br J Haematol 2023; 203:599-613. [PMID: 37666675 DOI: 10.1111/bjh.19088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Patients with multiple myeloma (MM) with chromosome 1q21 Gain (1q21+) are clinically and biologically heterogeneous. 1q21+ in the real world actually reflects the prognosis for gain/amplification of the CKS1B gene. In this study, we found that the copy number of prune exopolyphosphatase 1 (PRUNE1), located on chromosome 1q21.3, could further stratify the prognosis of MM patients with 1q21+. Using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS), transmission electron microscopy (TEM), confocal fluorescence microscopy, calculation of adenosine triphosphate (ATP), intracellular reactive oxygen species (ROS) and mitochondrial oxygen consumption rates (OCRs), we demonstrated for the first time that PRUNE1 promotes the proliferation and invasion of MM cells by stimulating purine metabolism, purine synthesis enzymes and mitochondrial functions, enhancing links between purinosomes and mitochondria. SOX11 was identified as a transcription factor for PRUNE1. Through integrated analysis of the transcriptome and proteome, CD73 was determined to be the downstream target of PRUNE1. Furthermore, it has been determined that dipyridamole can effectively suppress the proliferation of MM cells with high-expression levels of PRUNE1 in vitro and in vivo. These findings provide insights into disease-causing mechanisms and new therapeutic targets for MM patients with 1q21+.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Panpan Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Jiang
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xiaona Wang
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| |
Collapse
|
31
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
32
|
Sun X, Gao C, Xu X, Li M, Zhao X, Wang Y, Wang Y, Zhang S, Yan Z, Liu X, Wu C. FBL promotes cancer cell resistance to DNA damage and BRCA1 transcription via YBX1. EMBO Rep 2023; 24:e56230. [PMID: 37489617 PMCID: PMC10481664 DOI: 10.15252/embr.202256230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Xiaorui Sun
- College of Life SciencesHebei UniversityBaodingChina
| | - Congwen Gao
- College of Life SciencesHebei UniversityBaodingChina
| | - Xin Xu
- College of Life SciencesHebei UniversityBaodingChina
| | - Mengyuan Li
- College of Life SciencesHebei UniversityBaodingChina
| | - Xinhua Zhao
- College of Life SciencesHebei UniversityBaodingChina
| | - Yanan Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Yun Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Shun Zhang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Zhenzhen Yan
- College of Life SciencesHebei UniversityBaodingChina
| | - Xiuhua Liu
- College of Life SciencesHebei UniversityBaodingChina
| | - Chen Wu
- College of Life SciencesHebei UniversityBaodingChina
- The Key Laboratory of Zoological Systematics and ApplicationHebei UniversityBaodingChina
| |
Collapse
|
33
|
Jin B, Zhu J, Pan T, Yang Y, Liang L, Zhou Y, Zhang T, Teng Y, Wang Z, Wang X, Tian Q, Guo B, Li H, Chen T. MEN1 is a regulator of alternative splicing and prevents R-loop-induced genome instability through suppression of RNA polymerase II elongation. Nucleic Acids Res 2023; 51:7951-7971. [PMID: 37395406 PMCID: PMC10450199 DOI: 10.1093/nar/gkad548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
The fidelity of alternative splicing (AS) patterns is essential for growth development and cell fate determination. However, the scope of the molecular switches that regulate AS remains largely unexplored. Here we show that MEN1 is a previously unknown splicing regulatory factor. MEN1 deletion resulted in reprogramming of AS patterns in mouse lung tissue and human lung cancer cells, suggesting that MEN1 has a general function in regulating alternative precursor mRNA splicing. MEN1 altered exon skipping and the abundance of mRNA splicing isoforms of certain genes with suboptimal splice sites. Chromatin immunoprecipitation and chromosome walking assays revealed that MEN1 favored the accumulation of RNA polymerase II (Pol II) in regions encoding variant exons. Our data suggest that MEN1 regulates AS by slowing the Pol II elongation rate and that defects in these processes trigger R-loop formation, DNA damage accumulation and genome instability. Furthermore, we identified 28 MEN1-regulated exon-skipping events in lung cancer cells that were closely correlated with survival in patients with lung adenocarcinoma, and MEN1 deficiency sensitized lung cancer cells to splicing inhibitors. Collectively, these findings led to the identification of a novel biological role for menin in maintaining AS homeostasis and link this role to the regulation of cancer cell behavior.
Collapse
Affiliation(s)
- Bangming Jin
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Jiamei Zhu
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Ting Pan
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Yunqiao Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Li Liang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Yuxia Zhou
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Tuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Yin Teng
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
| | - Ziming Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Xuyan Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Qianting Tian
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
| | - Bing Guo
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Haiyang Li
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| |
Collapse
|
34
|
Sklavenitis-Pistofidis R, Lightbody ED, Reidy M, Tsuji J, Aranha MP, Heilpern-Mallory D, Huynh D, Chong SJF, Hackett L, Haradhvala NJ, Wu T, Su NK, Berrios B, Alberge JB, Dutta A, Davids MS, Papaioannou M, Getz G, Ghobrial IM, Manier S. Systematic characterization of therapeutic vulnerabilities in Multiple Myeloma with Amp1q reveals increased sensitivity to the combination of MCL1 and PI3K inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551480. [PMID: 37577538 PMCID: PMC10418223 DOI: 10.1101/2023.08.01.551480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The development of targeted therapy for patients with Multiple Myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chr1q (Amp1q) is the most frequent arm-level copy number gain in patients with MM, and it is associated with higher risk of progression and death despite recent advances in therapeutics. Thus, developing targeted therapy for patients with MM and Amp1q stands to benefit a large portion of patients in need of more effective management. Here, we employed large-scale dependency screens and drug screens to systematically characterize the therapeutic vulnerabilities of MM with Amp1q and showed increased sensitivity to the combination of MCL1 and PI3K inhibitors. Using single-cell RNA sequencing, we compared subclones with and without Amp1q within the same patient tumors and showed that Amp1q is associated with higher levels of MCL1 and the PI3K pathway. Furthermore, by isolating isogenic clones with different copy number for part of the chr1q arm, we showed increased sensitivity to MCL1 and PI3K inhibitors with arm-level gain. Lastly, we demonstrated synergy between MCL1 and PI3K inhibitors and dissected their mechanism of action in MM with Amp1q.
Collapse
Affiliation(s)
- Romanos Sklavenitis-Pistofidis
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elizabeth D. Lightbody
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mairead Reidy
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Junko Tsuji
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Michelle P. Aranha
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Daniel Heilpern-Mallory
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephen J. F. Chong
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liam Hackett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas J. Haradhvala
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ting Wu
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nang K. Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brianna Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean-Baptiste Alberge
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ankit Dutta
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Matthew S. Davids
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Papaioannou
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Hematology Unit, 1st Internal Medicine Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Gad Getz
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Irene M. Ghobrial
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Salomon Manier
- INSERM UMRS1277, CNRS UMR9020, Lille University, 59000, France
- Department of Hematology, CHU Lille, Lille University, 59000, France
| |
Collapse
|
35
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S, Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, Tai YT, Patel J, Pal J, Mashimo H, Samur MK, Munshi NC, Shammas MA. Elevated APE1 Dysregulates Homologous Recombination and Cell Cycle Driving Genomic Evolution, Tumorigenesis, and Chemoresistance in Esophageal Adenocarcinoma. Gastroenterology 2023; 165:357-373. [PMID: 37178737 PMCID: PMC10524563 DOI: 10.1053/j.gastro.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND & AIMS The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jiangning Zhao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Leutz Buon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shidai Mu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Lakshmi B Potluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Chengcheng Liao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jialan Shi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Gabriel B Gonzalez
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jaymin Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jagannath Pal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Hiroshi Mashimo
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts.
| |
Collapse
|
36
|
Zhao J, Xu J, Wu M, Wang W, Wang M, Yang L, Cai H, Xu Q, Chen C, Lobie PE, Zhu T, Han X. LncRNA H19 Regulates Breast Cancer DNA Damage Response and Sensitivity to PARP Inhibitors via Binding to ILF2. Int J Mol Sci 2023; 24:ijms24119157. [PMID: 37298108 DOI: 10.3390/ijms24119157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Although DNA damage repair plays a critical role in cancer chemotherapy, the function of lncRNAs in this process remains largely unclear. In this study, in silico screening identified H19 as an lncRNA that potentially plays a role in DNA damage response and sensitivity to PARP inhibitors. Increased expression of H19 is correlated with disease progression and with a poor prognosis in breast cancer. In breast cancer cells, forced expression of H19 promotes DNA damage repair and resistance to PARP inhibition, whereas H19 depletion diminishes DNA damage repair and increases sensitivity to PARP inhibitors. H19 exerted its functional roles via direct interaction with ILF2 in the cell nucleus. H19 and ILF2 increased BRCA1 stability via the ubiquitin-proteasome proteolytic pathway via the H19- and ILF2-regulated BRCA1 ubiquitin ligases HUWE1 and UBE2T. In summary, this study has identified a novel mechanism to promote BRCA1-deficiency in breast cancer cells. Therefore, targeting the H19/ILF2/BRCA1 axis might modulate therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
- Junsong Zhao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Junchao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mingming Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Miaomiao Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Leiyan Yang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huayong Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
37
|
Xiao Y, Cai G, Feng X, Li Y, Guo W, Guo Q, Huang Y, Su T, Li C, Luo X, Zheng Y, Yang M. Splicing factor YBX1 regulates bone marrow stromal cell fate during aging. EMBO J 2023; 42:e111762. [PMID: 36943004 PMCID: PMC10152142 DOI: 10.15252/embj.2022111762] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.
Collapse
Affiliation(s)
- Ye Xiao
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Guang‐Ping Cai
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Yu‐Jue Li
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Wan‐Hui Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Tian Su
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Chang‐Jun Li
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Xiang‐Hang Luo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaChina
| | - Yong‐Jun Zheng
- Department of Burn SurgeryThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaChina
| |
Collapse
|
38
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
39
|
Zhang X, Ma D, Xuan B, Shi D, He J, Yu M, Xiong H, Ma Y, Shen C, Guo F, Cao Y, Yan Y, Gao Z, Tong T, Zhu X, Fang JY, Chen H, Hong J. LncRNA CACClnc promotes chemoresistance of colorectal cancer by modulating alternative splicing of RAD51. Oncogene 2023; 42:1374-1391. [PMID: 36906654 DOI: 10.1038/s41388-023-02657-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in carcinogenesis. However, the effect of lncRNA on chemoresistance and RNA alternative splicing remains largely unknown. In this study, we identified a novel lncRNA, CACClnc, which was upregulated and associated with chemoresistance and poor prognosis in colorectal cancer (CRC). CACClnc promoted CRC resistance to chemotherapy via promoting DNA repair and enhancing homologous recombination in vitro and in vivo. Mechanistically, CACClnc specifically bound to Y-box binding protein 1 (YB1, a splicing factor) and U2AF65 (a subunit of U2AF splicing factor), promoting the interaction between YB1 and U2AF65, and then modulated alternative splicing (AS) of RAD51 mRNA, and consequently altered CRC cell biology. In addition, expression of exosomal CACClnc in peripheral plasma of CRC patients can effectively predict the chemotherapy effect of patients before treatment. Thus, measuring and targeting CACClnc and its associated pathway could yield valuable insight into clinical management and might ameliorate CRC patients' outcomes.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Ma
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie He
- Guangzhou Key Laboratory of Digestive Disease, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, Guangzhou, China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanru Ma
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqin Shen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Guo
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Cao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyun Gao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
40
|
Deacetylation induced nuclear condensation of HP1γ promotes multiple myeloma drug resistance. Nat Commun 2023; 14:1290. [PMID: 36894562 PMCID: PMC9998874 DOI: 10.1038/s41467-023-37013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Acquired chemoresistance to proteasome inhibitors is a major obstacle in managing multiple myeloma but key regulators and underlying mechanisms still remain to be explored. We find that high level of HP1γ is associated with low acetylation modification in the bortezomib-resistant myeloma cells using SILAC-based acetyl-proteomics assay, and higher HP1γ level is positively correlated with poorer outcomes in the clinic. Mechanistically, elevated HDAC1 in the bortezomib-resistant myeloma cells deacetylates HP1γ at lysine 5 and consequently alleviates the ubiquitin-mediated protein degradation, as well as the aberrant DNA repair capacity. HP1γ interacts with the MDC1 to induce DNA repair, and simultaneously the deacetylation modification and the interaction with MDC1 enhance the nuclear condensation of HP1γ protein and the chromatin accessibility of its target genes governing sensitivity to proteasome inhibitors, such as CD40, FOS and JUN. Thus, targeting HP1γ stability by using HDAC1 inhibitor re-sensitizes bortezomib-resistant myeloma cells to proteasome inhibitors treatment in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in inducing drug resistance to proteasome inhibitors of myeloma cells and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in refractory or relapsed multiple myeloma patients.
Collapse
|
41
|
Thongon N, Ma F, Lockyer P, Baran N, Liu J, Jackson C, Rose A, Wildeman B, Marchesini M, Marchica V, Storti P, Giuliani N, Ganan-Gomez I, Adema V, Qing Y, Ha M, Fonseca R, Class C, Tan L, Kanagal-Shamanna R, Nolasco DB, Cerchione C, Montalban-Bravo G, Santoni A, Bueso-Ramos C, Konopleva M, Lorenzi P, Garcia-Manero G, Manasanch E, Viale A, Chesi M, Colla S. Targeting DNA2 Overcomes Metabolic Reprogramming in Multiple Myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529457. [PMID: 36865225 PMCID: PMC9980056 DOI: 10.1101/2023.02.22.529457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.
Collapse
|
42
|
Lv Z, Lv Z, Song L, Zhang Q, Zhu S. Role of lncRNAs in the pathogenic mechanism of human decreased ovarian reserve. Front Genet 2023; 14:1056061. [PMID: 36845376 PMCID: PMC9944763 DOI: 10.3389/fgene.2023.1056061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Decreased ovarian reserve (DOR) is defined as a decrease in the quality and quantity of oocytes, which reduces ovarian endocrine function and female fertility. The impaired follicular development and accelerated follicle atresia lead to a decrease in the number of follicles, while the decline of oocyte quality is related to the disorder of DNA damage-repair, oxidative stress, and the dysfunction of mitochondria. Although the mechanism of DOR is still unclear, recent studies have found that long non-coding RNA (lncRNA) as a group of functional RNA molecules participate in the regulation of ovarian function, especially in the differentiation, proliferation and apoptosis of granulosa cells in the ovary. LncRNAs participate in the occurrence of DOR by affecting follicular development and atresia, the synthesis and secretion of ovarian hormones. This review summarizes current research on lncRNAs associated with DOR and reveals the potential underlying mechanisms. The present study suggests that lncRNAs could be considered as prognostic markers and treatment targets for DOR.
Collapse
Affiliation(s)
- Zhexi Lv
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zekai Lv
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Shaomi Zhu,
| |
Collapse
|
43
|
Lu JT, Yan ZY, Xu TX, Zhao F, Liu L, Li F, Guo W. Reciprocal regulation of LINC00941 and SOX2 promotes progression of esophageal squamous cell carcinoma. Cell Death Dis 2023; 14:72. [PMID: 36717549 PMCID: PMC9886991 DOI: 10.1038/s41419-023-05605-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
LINC00941 is a novel long noncoding RNA (lncRNA) and emerging as an important factor in cancer development. However, the exact function and relative regulatory mechanism of LINC00941 in carcinogenesis of esophageal squamous cell carcinoma (ESCC) remain to be further clarified. The present study was to investigate the expression level, functions, and mechanisms of LINC00941 in ESCC tumorigenesis. LINC00941 was significantly upregulated in ESCC, and upregulated LINC00941 was correlated with dismal patient outcomes. LINC00941 functioned as an oncogene by promoting cells proliferation, stemness, migration, and invasion in ESCC. In terms of mechanisms, SOX2 could bind directly to the promoter region of LINC00941 and activate its transcription. In turn, LINC00941 upregulated SOX2 through interacting with interleukin enhancer binding factor 2 (ILF2) and Y-box binding protein 1 (YBX1) at the transcriptional and post-transcriptional levels. LINC00941 recruited ILF2 and YBX1 to the promoter region of SOX2, leading to upregulation of the transcription of SOX2. Moreover, LINC00941 could promote the binding ability of ILF2 and YBX1 on mRNA of SOX2 and further stabilize SOX2 mRNA. Therefore, LINC00941 contributed to the malignant behaviors of ESCC cells via the unrestricted increase in SOX2 expression. In conclusion, our data indicate that LINC00941 exacerbates ESCC progression through forming a LINC00941-ILF2/YBX1-SOX2 positive feedback loop, and LINC00941 may be a promising prognostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jun-Tao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhao-Yang Yan
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tong-Xin Xu
- Department of CT&MRI, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fan Zhao
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
44
|
Li H, Jiang Y, Hu J, Xu J, Chen L, Zhang G, Zhao J, Zong S, Guo Z, Li X, Zhao X, Jing Z. The U2AF65/circNCAPG/RREB1 feedback loop promotes malignant phenotypes of glioma stem cells through activating the TGF-β pathway. Cell Death Dis 2023; 14:23. [PMID: 36635261 PMCID: PMC9837049 DOI: 10.1038/s41419-023-05556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Glioma is the most aggressive and common malignant neoplasms in human brain tumors. Numerous studies have showed that glioma stem cells (GSCs)drive the malignant progression of gliomas. Recent studies have revealed that circRNAs can maintain stemness and promote malignant progression of glioma stem cells. We used bioinformatics analysis to identify circRNAs and potential RNA-binding proteins (RBPs) in glioma. qRT-PCR, western blotting, RNA FISH, RNA pull-down, RNA immunoprecipitation assay, ChIP, immunohistochemistry, and immunofluorescence methods were used to quantified the expression of circNCAPG, U2AF65, RREB1 and TGF-β1, and the underlying mechanisms between them. MTS, EDU, neurosphere formation, limiting dilution neurosphere formation and transwell assays examined the proliferation and invasive capability of GSCs, respectively. We identified a novel circRNA named circNCAPG was overexpressed and indicated the poor prognosis in glioma patients. Upregulating circNCAPG promoted the malignant progression of GSCs. RNA binding protein U2AF65 could stabilize circNCAPG by direct binding. Mechanically, circNCAPG interacted with and stabilized RREB1, as well as stimulated RREB1 nuclear translocation to activate TGF-β1 signaling pathway. Furthermore, RREB1 transcriptionally upregulated U2AF65 expression to improve the stability of circNCAPG in GSCs, which established a feedback loop involving U2AF65, circNCAPG and RREB1. Since circRNA is more stable than mRNA and can execute its function continuously, targeting circNCAPG in glioma may be a novel promising therapeutic.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinkun Xu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Lian Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Guoqing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Junshuang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Shengliang Zong
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Zhengting Guo
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
45
|
Awwad SW, Darawshe MM, Machour FE, Arman I, Ayoub N. Recruitment of RBM6 to DNA Double-Strand Breaks Fosters Homologous Recombination Repair. Mol Cell Biol 2023; 43:130-142. [PMID: 36941773 PMCID: PMC10038030 DOI: 10.1080/10985549.2023.2187105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65. Here, we describe a splicing-independent function of RBM6 in promoting HR repair of DSBs. We show that RBM6 is recruited to DSB sites and PARP1 activity indirectly regulates RBM6 recruitment to DNA breakage sites. Deletion mapping analysis revealed a region containing five glycine residues within the G-patch domain that regulates RBM6 accumulation at DNA damage sites. We further ascertain that RBM6 interacts with Rad51, and this interaction is attenuated in RBM6 mutant lacking the G-patch domain (RBM6del(G-patch)). Consequently, RBM6del(G-patch) cells exhibit reduced levels of Rad51 foci after ionizing radiation. In addition, while RBM6 deletion mutant lacking the G-patch domain has no detectable effect on the expression levels of its splicing targets Fe65 and Eya2, it fails to restore the integrity of HR. Altogether, our results suggest that RBM6 recruitment to DSB promotes HR repair, irrespective of its splicing activity.HIGHLIGHTSPARP1 activity indirectly regulates RBM6 recruitment to DNA damage sites.Five glycine residues within the G-patch domain of RBM6 are critical for its recruitment to DNA damage sites, but dispensable for its splicing activity.RBM6 G-patch domain fosters its interaction with Rad51 and promotes Rad51 foci formation following irradiation.RBM6 recruitment to DSB sites underpins HR repair.
Collapse
Affiliation(s)
- Samah W. Awwad
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Malak M. Darawshe
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Feras E. Machour
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Inbar Arman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Gong W, Zhang S. YB1 participated in regulating mitochondrial activity through RNA replacement. Front Oncol 2023; 13:1145379. [PMID: 37035211 PMCID: PMC10076880 DOI: 10.3389/fonc.2023.1145379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
As a relic of ancient bacterial endosymbionts, mitochondria play a central role in cell metabolism, apoptosis, autophagy, and other processes. However, the function of mitochondria-derived nucleic acids in cellular signal transduction has not been fully elucidated. Here, our work has found that Y-box binding protein 1 (YB1) maintained cellular autophagy at a moderate level to inhibit mitochondrial oxidative phosphorylation. In addition, mitochondrial RNA was leaked into cytosol under starvation, accompanied by YB1 mitochondrial relocation, resulting in YB1-bound RNA replacement. The mRNAs encoded by oxidative phosphorylation (OXPHOS)-associated genes and oncogene HMGA1 (high-mobility group AT-hook 1) were competitively replaced by mitochondria-derived tRNAs. The increase of free OXPHOS mRNAs released from the YB1 complex enhanced mitochondrial activity through facilitating translation, but the stability of HMGA1 mRNA was impaired without the protection of YB1, both contributing to breast cancer cell apoptosis and reactive oxygen species production. Our finding not only provided a new potential target for breast cancer therapy but also shed new light on understanding the global landscape of cellular interactions between RNA-binding proteins and different RNA species.
Collapse
Affiliation(s)
- Weipeng Gong
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Song Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Song Zhang,
| |
Collapse
|
47
|
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y, Liang Y, Zhao Y, Qiao H, Liu N, Ma J, Li Y. CircIPO7 Promotes Nasopharyngeal Carcinoma Metastasis and Cisplatin Chemoresistance by Facilitating YBX1 Nuclear Localization. Clin Cancer Res 2022; 28:4521-4535. [PMID: 35917517 DOI: 10.1158/1078-0432.ccr-22-0991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Cisplatin-based chemotherapy effectively improves the distant-metastasis control in nasopharyngeal carcinoma (NPC), but approximately 30% of patients develop treatment failure due to chemoresistance. However, the underlying mechanisms remain poorly understood. EXPERIMENTAL DESIGN Circular RNA (circRNA) sequencing data were used to identify metastasis-specific circRNAs and the expression of circIPO7 was validated in NPC tissues as well as NPC cell lines by qRT-PCR. The whole transcriptional profile upon circIPO7 knockdown was applied to explore the biological function and regulatory mechanism, which were further confirmed by in vitro and in vivo metastasis/chemosensitivity assays. We also evaluated the value of circIPO7 expression in predicting NPC metastasis and cisplatin chemoresistance by analyzing a cohort of 183 NPC patients. RESULTS In this study, circIPO7, a novel circRNA, is found to be specifically overexpressed in NPC patients with distant metastasis. Knockdown of circIPO7 in NPC cells suppresses their metastasis and increases sensitivity to cisplatin treatment in vitro and in vivo. Mechanistically, circIPO7 binds to Y-box binding protein-1 (YBX1) protein in the cytoplasm and facilitates its phosphorylation at serine 102 (p-YBX1S102) by the kinase AKT, which further promotes YBX1 nuclear translocation and activates FGFR1, TNC, and NTRK1 transcription. Clinically, higher circIPO7 expression indicates unfavorable distant metastasis-free survival in NPC patients given cisplatin-based chemotherapy. CONCLUSIONS Altogether, this study identifies oncogenic circIPO7 as a prognostic marker after cisplatin-based chemotherapy and as a potential therapeutic target for overcoming metastasis and chemoresistance in NPC.
Collapse
Affiliation(s)
- Xiaohong Hong
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qian Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Junyan Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Kailin Chen
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuheng Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yelin Liang
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yin Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Han Qiao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Na Liu
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
48
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
49
|
Sandmann S, Karsch K, Bartel P, Exeler R, Brix TJ, Mai EK, Varghese J, Lenz G, Khandanpour C. The Role of Clonal Evolution on Progression, Blood Parameters, and Response to Therapy in Multiple Myeloma. Front Oncol 2022; 12:919278. [PMID: 35928862 PMCID: PMC9343617 DOI: 10.3389/fonc.2022.919278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction A variety of biomarkers are considered for diagnosis (e.g., β2-microgobulin, albumin, or LDH) and prognosis [e.g., cytogenetic aberrations detected by fluorescence in situ hybridization (FISH)] of multiple myeloma (MM). More recently, clonal evolution has been established as key. Little is known on the clinical implications of clonal evolution. Methods We performed in-depth analyses of 25 patients with newly diagnosed MM with respect to detailed clinical information analyzing blood samples collected at several time points during follow-up (median follow-up: 3.26 years since first diagnosis). We split our cohort into two subgroups: with and without new FISH clones developing in the course of disease. Results Each subgroup showed a characteristic chromosomal profile. Forty-three percent of patients had evidence of appearing new clones. The patients with new clones showed an increased number of translocations affecting chromosomes 14 (78% vs. 33%; p = 0.0805) and 11, and alterations in chromosome 4 (amplifications and translocations). New clones, on the contrary, were characterized by alterations affecting chromosome 17. Subsequent to the development of the new clone, 6 out of 9 patients experienced disease progression compared to 3 out of 12 for patients without new clones. Duration of the therapy applied for the longest time was significantly shorter within the group of patients developing new clones (median: 273 vs. 406.5 days; p = 0.0465). Discussion We demonstrated that the development of new clones, carrying large-scale alterations, was associated with inferior disease course and shorter response to therapy, possibly affecting progression-free survival and overall survival as well. Further studies evaluating larger cohorts are necessary for the validation of our results.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
- *Correspondence: Sarah Sandmann, ; Cyrus Khandanpour,
| | - Katharina Karsch
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Peter Bartel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Rita Exeler
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Tobias J. Brix
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Elias K. Mai
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- University Medical Center Schleswig-Holstein Campus Lübeck, University of Lübeck, Lübeck, Germany
- *Correspondence: Sarah Sandmann, ; Cyrus Khandanpour,
| |
Collapse
|
50
|
Sklavenitis-Pistofidis R, Getz G, Ghobrial I, Papaioannou M. Multiple Myeloma With Amplification of Chr1q: Therapeutic Opportunity and Challenges. Front Oncol 2022; 12:961421. [PMID: 35912171 PMCID: PMC9331166 DOI: 10.3389/fonc.2022.961421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy with a heterogeneous genetic background. Each MM subtype may have its own therapeutic vulnerabilities, and tailored therapy could improve outcomes. However, the cumulative frequency of druggable targets across patients is very low, which has precluded the widespread adoption of precision therapy for patients with MM. Amplification of the long arm of chromosome 1 (Amp1q) is one of the most frequent genetic alterations observed in patients with MM, and its presence predicts inferior outcomes in the era of proteasome inhibitors and immunomodulatory agents. Therefore, establishing precision medicine for MM patients with Amp1q stands to benefit a large portion of patients who are otherwise at higher risk of relapse. In this article, we review the prevalence and clinical significance of Amp1q in patients with MM, its pathogenesis and therapeutic vulnerabilities, and discuss the opportunities and challenges for Amp1q-targeted therapy.
Collapse
Affiliation(s)
- Romanos Sklavenitis-Pistofidis
- Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gad Getz
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Irene Ghobrial
- Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Maria Papaioannou
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Hematology Unit, 1st Internal Medicine Department, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|