1
|
Yang M, Wang J, Zhou Z, Li W, Verkhivker G, Xiao F, Hu G. Machine Learning and Structural Dynamics-Based Approach to Reveal Molecular Mechanism of PTEN Missense Mutations Shared by Cancer and Autism Spectrum Disorder. J Chem Inf Model 2025. [PMID: 40228162 DOI: 10.1021/acs.jcim.5c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Missense mutations in oncogenic proteins that are concurrently associated with neurodevelopmental disorders have garnered significant attention. Phosphatase and tensin homologue (PTEN) serves as a paradigmatic model for mapping its mutational landscape and identifying genotypic predictors of distinct phenotypic outcomes, including cancer and autism spectrum disorder (ASD). Despite extensive research into the genotype-phenotype correlations of PTEN mutations, the mechanisms underlying the dual association of specific PTEN mutations with both cancer and ASD (PTEN-cancer/ASD mutations) remain elusive. This study introduces an integrative approach that combines machine learning (ML) with structural dynamics to elucidate the molecular effects of PTEN-cancer/ASD mutations. Analysis of biophysical and network-biology-based signatures reveals a complex energetic and functional landscape. Subsequently, an ML model and corresponding integrated score were developed to classify and predict PTEN-cancer/ASD mutations, underscoring the significance of protein dynamics in predicting cellular phenotypes. Further molecular dynamics simulations demonstrated that PTEN-cancer/ASD mutations induce dynamic alterations characterized by open conformational changes restricted to the P loop and coupled with interdomain allosteric regulation. This research aims to enhance the genotypic and phenotypic understanding of PTEN-cancer/ASD mutations through an interpretable ML model integrated with structural dynamics analysis. By identifying shared mechanisms between cancer and ASD, the findings pave the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miao Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jingran Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wentian Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-Carbon Fibers-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Mettälä T, Joutsiniemi T, Huvila J, Hietanen S. Genetic predictors of unexpected recurrence in low-risk endometrial cancer: A comprehensive genomic analysis reveals FGFR2 as a risk factor and a rare fatal POLE-mutated recurrence. Gynecol Oncol 2025; 196:129-136. [PMID: 40209441 DOI: 10.1016/j.ygyno.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVE Endometrial cancer is the most common gynecological malignancy in high-income countries. While early-stage endometrial cancer generally has a favorable prognosis, a small proportion of low-risk patients experience unexpected recurrence. This study aimed to identify molecular factors contributing to recurrence in stage 1 A grade 1-2 low-risk endometrioid endometrial cancer. METHODS We performed next-generation sequencing (NGS) on tumor samples from 19 patients who experienced recurrence despite favorable clinicopathological features and compared them with six control patients without recurrence. Results were also compared to a matched cohort of low-risk endometrial cancers from The Cancer Genome Atlas (TCGA) database. RESULTS Mutations in PTEN, PIK3CA, ARID1A, and FGFR2 were the most frequent in the recurrence group. FGFR2 mutations were exclusive to the recurrence group (9/19, 47.4 %) and absent in the non-recurrent group (0/6), a difference approaching statistical significance (p = 0.0571). FGFR2 mutations were also significantly more prevalent in the recurrence cohort compared to the TCGA low-risk cohort (p = 0.0039). Prominent FGFR2 missense mutations included S252W, K659E, and N549K, which may drive oncogenesis and tumor progression. Among the recurrence group, a rare POLE-mutated tumor recurred unexpectedly and proved fatal, highlighting the potential for poor outcomes even in typically favorable molecular subtypes. CONCLUSION FGFR2 mutations may play a role in tumor recurrence in a subset of low-risk endometrial cancers, underscoring the importance of molecular profiling in identifying patients at risk. FGFR2 represents a potential therapeutic target, warranting further validation in larger cohorts to establish its clinical utility.
Collapse
Affiliation(s)
- Tuukka Mettälä
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Titta Joutsiniemi
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Jutta Huvila
- Department of Pathology, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, 20520 Turku, Finland; Fican West, 20520 Turku, Finland.
| |
Collapse
|
3
|
Song Z, Cui Y, Xin L, Xiao R, Feng J, Li C, Yin Z, Wang H, Li Q, Wang M, Lin B, Zhang Y, Zhou Y, Huang L, He Y, Li X, Liu X, Liu S, Zhou F, Liu Z, Zhou HB, Fang P, Liang K. Mechano-oncogenic cytoskeletal remodeling drives leukemic transformation with mitochondrial vesicle-mediated STING activation. Cell Stem Cell 2025; 32:581-597.e11. [PMID: 39986274 DOI: 10.1016/j.stem.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 01/25/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria are integrated within the cytoskeleton for structural integrity and functional regulation, yet the pathological exploitation of these interactions in cell fate decisions remains largely unexplored. Here, we identify a cytoskeleton-mitochondria remodeling mechanism underlying leukemic transformation by the core-binding factor subunit beta and smooth muscle myosin heavy-chain fusion (CBFβ-SMMHC). This chimera reconstructs a cytosolic filamentous cytoskeleton, inducing NMIIA phosphorylation and INF2-dependent filamentous actin (F-actin) assembly, which enhance cellular stiffness and tension, leading to calcium-mediated mitochondrial constriction, termed cytoskeletal co-option of mitochondrial constriction (CCMC). CCMC can also be triggered through diverse approaches independent of CBFβ-SMMHC, reconstructing a similar cytoskeleton and recapitulating acute myeloid leukemia (AML) with consistent immunophenotypes and inflammatory signatures. Notably, CCMC generates TOM20-PDH+mtDNA+ mitochondrial-derived vesicles that activate cGAS-STING signaling, with Sting knockout abrogating CCMC-induced leukemogenesis. Targeted inhibition of CCMC or STING suppresses AML propagation while sparing normal hematopoiesis. These findings establish CCMC as an intrinsic mechano-oncogenic process linking genetic mutations with cytoskeletal remodeling to oncogenic transformation, highlighting its promise as a therapeutic target.
Collapse
Affiliation(s)
- Zemin Song
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yali Cui
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lilan Xin
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruijing Xiao
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jingjing Feng
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Conghui Li
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honghong Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuzi Li
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxuan Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Baoyi Lin
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yiming Zhang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Zhou
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Huang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yanli He
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Li
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoyan Liu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangqin Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Pingping Fang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kaiwei Liang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Alam R, Reva A, Edwards DG, Lege BM, Munoz-Arcos LS, Reduzzi C, Singh S, Hao X, Wu YH, Tian Z, Natalee LM, Damle G, Demircioglu D, Wang Y, Wu L, Molteni E, Hasson D, Lim B, Gugala Z, Chipuk JE, Lang JE, Sparano JA, Cheng C, Cristofanilli M, Xiao H, Zhang XHF, Bado IL. Bone-Induced HER2 Promotes Secondary Metastasis in HR+/HER2- Breast Cancer. Cancer Discov 2025; 15:818-837. [PMID: 39835789 PMCID: PMC11964846 DOI: 10.1158/2159-8290.cd-23-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
SIGNIFICANCE Given the urgent need for alternative strategies to block metastasis progression, we demonstrate that blocking HER2-mediated secondary metastasis improves clinical outcome and establish HER2 as a biomarker for bone metastasis in patients with initial HR+/HER2- breast cancer, which represents ∼70% of all cases.
Collapse
Affiliation(s)
- Rahat Alam
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Anna Reva
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - David G. Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bree M. Lege
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura S. Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Swarnima Singh
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Laura M. Natalee
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gargi Damle
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
| | - Deniz Demircioglu
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elisabetta Molteni
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dan Hasson
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
| | - Bora Lim
- Department of Breast Medical Oncology, Division of Cancer Medicine, MD Anderson, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Jerry E. Chipuk
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Julie E. Lang
- Department of Cancer Biology, Division of Breast Cancer, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Joseph A. Sparano
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor L. Bado
- Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Mount Sinai, New York, NY 10029, USA
- Lead contact
| |
Collapse
|
5
|
Zhang S, Hong HI, Mak VCY, Zhou Y, Lu Y, Zhuang G, Cheung LWT. Vertical inhibition of p110α/AKT and N-cadherin enhances treatment efficacy in PIK3CA-aberrated ovarian cancer cells. Mol Oncol 2025; 19:1132-1154. [PMID: 39543937 PMCID: PMC11977650 DOI: 10.1002/1878-0261.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha [PIK3CA, encoding PI3Kalpha (also known as p110α)] is one of the most commonly aberrated genes in human cancers. In serous ovarian cancer, PIK3CA amplification is highly frequent but PIK3CA point mutation is rare. However, whether PIK3CA amplification and PIK3CA driver mutations have the same functional impact in the disease is unclear. Here, we report that both PIK3CA amplification and E545K mutation are tumorigenic. While the protein kinase B (AKT) signaling axis was activated in both E545K knock-in cells and PIK3CA-overexpressing cells, the mitogen-activated protein kinase 3/1 (ERK1/2) pathway was induced selectively by E545K mutation but not PIK3CA amplification. Intriguingly, AKT signaling in these PIK3CA-aberrated cells increased transcriptional coactivator YAP1 (YAP) Ser127 phosphorylation and thereby cytoplasmic YAP levels, which in turn increased cell migration through Ras-related C3 botulinum toxin substrate 1 (RAC1) activation. In addition to the altered YAP signaling, AKT upregulated N-cadherin expression, which also contributed to cell migration. Pharmacological inhibition of N-cadherin reduced cell migratory potential. Importantly, co-targeting N-cadherin and p110α/AKT caused additive reduction in cell migration in vitro and metastases formation in vivo. Together, this study reveals the molecular pathways driven by the PIK3CA aberrations and the exploitable vulnerabilities in PIK3CA-aberrated serous ovarian cancer cells.
Collapse
Affiliation(s)
- Shibo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhouChina
| | - Hei Ip Hong
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Victor C. Y. Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Yiling Lu
- Division of Cancer Medicine, Department of Genomic MedicineUT MD Anderson Cancer CentreHoustonTXUSA
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineChina
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji HospitalShanghai Jiao Tong University School of MedicineChina
| | - Lydia W. T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| |
Collapse
|
6
|
Tandon V, Fistrovich A, Nogales J, Ferro F, Rokey SN, Cabel C, Miller AD, Yagel M, Duncan C, Atmasidha A, Sharma I, Wilms G, Williams K, Elliott R, Chavez T, Shaw Y, McMahon A, Ginn S, Basantes LE, Bedard N, Gokhale V, Ellis N, Prescott AR, Smith SJ, Rahman R, Becker W, Read KD, Chalmers AJ, Carragher N, Masson GR, Montfort W, Thorne C, Hulme C, Banerjee S. Dyr726, a brain-penetrant inhibitor of PI3Kα, Type III receptor tyrosine kinases, and WNT signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645490. [PMID: 40196701 PMCID: PMC11974928 DOI: 10.1101/2025.03.26.645490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The vast majority of clinical small molecule multi-kinase inhibitors (mKI) report abject failures in targeting cancers with high stem cell contents like high-grade glioma and colorectal cancers. The FDA-approved mKIs to date ablate receptor tyrosine kinase signaling but do not target the paradoxical WNT signaling which is a key survival driver for the self-renewing cancer stem cells. The WNT pathway enhances cancer plasticity and triggers relapse of highly heterogenous tumours. Using de novo synthesis and structure-activity-relationship (SAR) studies with blood-brain-barrier (BBB) penetrant mKI scaffolds, we designed a highly potent and selective small molecule inhibitor of PI3Kα, PDGFR/KIT, and the WNT pathway denoted Dyr726. Dyr726 is superior to clinical mKIs and inhibits PI3K-AKT-mTOR and WNT-pathway signaling at multiple nodes thereby impeding proliferation, invasion, and tumour growth. Phospho-proteomic, structural, and target engagement analyses, combined with in vitro , in vivo efficacy, and pharmacokinetic studies reveal that Dyr726 is a brain-penetrant small molecule which effectively reduces tumour volume and extends survival of murine orthotopic models. Our current work establishes a first-in-class brain penetrant small molecule mKI which simultaneously antagonize the PI3K-AKT-mTOR and WNT pathways in preclinical cancer stem cell cultures, adult and pediatric primary organoids, and orthotopic murine models with positive efficacy in combination with clinical standard of care.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Alessandra Fistrovich
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery Development, Department of Pharmacology & Toxicology, The College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Joaquina Nogales
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Febe Ferro
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Samantha N Rokey
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery Development, Department of Pharmacology & Toxicology, The College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Carly Cabel
- University of Arizona Cancer Center, Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Amy Dunne Miller
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Mary Yagel
- University of Arizona Cancer Center, Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Christina Duncan
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Aditi Atmasidha
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ira Sharma
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karin Williams
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Richard Elliott
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Timothy Chavez
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Yeng Shaw
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Aidan McMahon
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Sean Ginn
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - L. Emilia Basantes
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Nathan Bedard
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Vijay Gokhale
- Division of Drug Discovery Development, Department of Pharmacology & Toxicology, The College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Nathan Ellis
- University of Arizona Cancer Center, Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stuart J Smith
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, 52074 Aachen, Germany
| | - Kevin D Read
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Neil Carragher
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Glenn R Masson
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - William Montfort
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Curtis Thorne
- University of Arizona Cancer Center, Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Christopher Hulme
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery Development, Department of Pharmacology & Toxicology, The College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
7
|
Kuzuoglu-Ozturk D, Nguyen HG, Xue L, Figueredo E, Subramanyam V, Liu I, Bonitto K, Noronha A, Dabrowska A, Cowan JE, Oses-Prieto JA, Burlingame AL, Worland ST, Carroll PR, Ruggero D. Small-molecule RNA therapeutics to target prostate cancer. Cancer Cell 2025:S1535-6108(25)00079-0. [PMID: 40118049 DOI: 10.1016/j.ccell.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/20/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Tuning protein expression by targeting RNA structure using small molecules is an unexplored avenue for cancer treatment. To understand whether this vulnerability could be therapeutically targeted in the most lethal form of prostate cancer, castration-resistant prostate cancer (CRPC), we use a clinical small molecule, zotatifin, that targets the RNA helicase and translation factor eukaryotic initiation factor 4A (eIF4A). Zotatifin represses tumorigenesis in patient-derived and xenograft models and prolonged survival in vivo alongside hormone therapy. Genome-wide transcriptome, translatome, and proteomic analysis reveals two important translational targets: androgen receptor (AR), a key oncogene in CRPC, and hypoxia-inducible factor 1A (HIF1A), an essential cancer modulator in hypoxia. We solve the structure of the 5' UTRs of these oncogenic mRNAs and strikingly observe complex structural remodeling of these select mRNAs by this small molecule. Remarkably, tumors treated with zotatifin become more sensitive to anti-androgen therapy and radiotherapy. Therefore, "translatome therapy" provides additional strategies to treat the deadliest cancers.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Ozturk
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hao G Nguyen
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Lingru Xue
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Emma Figueredo
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Isabelle Liu
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kenya Bonitto
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Ashish Noronha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adrianna Dabrowska
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Janet E Cowan
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Peter R Carroll
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Vicario R, Fragkogianni S, Weber L, Lazarov T, Hu Y, Hayashi SY, Craddock B, Socci ND, Alberdi A, Baako A, Ay O, Ogishi M, Lopez-Rodrigo E, Kappagantula R, Viale A, Iacobuzio-Donahue CA, Zhou T, Ransohoff RM, Chesworth R, Abdel-Wahab O, Boisson B, Elemento O, Casanova JL, Miller WT, Geissmann F. A microglia clonal inflammatory disorder in Alzheimer's disease. eLife 2025; 13:RP96519. [PMID: 40085681 PMCID: PMC11908784 DOI: 10.7554/elife.96519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer's disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.
Collapse
Affiliation(s)
- Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Stamatina Fragkogianni
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Leslie Weber
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Yang Hu
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell New YorkNew YorkUnited States
| | - Samantha Y Hayashi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Nicholas D Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Ann Baako
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Oyku Ay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - Estibaliz Lopez-Rodrigo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Rajya Kappagantula
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Christine A Iacobuzio-Donahue
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | | | | | | | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell New YorkNew YorkUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| |
Collapse
|
9
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
10
|
D'Souza LJ, Young JN, Coffman H, Petrow EP, Bhattacharya D. A genome wide CRISPR screen reveals novel determinants of long-lived plasma cell secretory capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640639. [PMID: 40060628 PMCID: PMC11888458 DOI: 10.1101/2025.02.28.640639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Plasma cell subsets vary in their lifespans and ability to sustain humoral immunity. We conducted a genome-wide CRISPR-Cas9 screen in a myeloma cell line for factors that promote surface expression of CD98, a marker of longevity in primary mouse plasma cells. A large fraction of genes found to promote CD98 expression in this screen are involved in secretory and other vesicles, including many subunits of the V-type ATPase complex. Chemical inhibition or genetic ablation of V-type ATPases in myeloma cells reduced antibody secretion. Primary mouse and human long-lived plasma cells had greater numbers of acidified vesicles than did their short-lived counterparts, and this correlated with increased secretory capacity of IgM, IgG, and IgA. The screen also identified PI4KB, which promoted acidified vesicle numbers and secretory capacity, and DDX3X, an ATP-dependent RNA helicase, the deletion of which reduced immunoglobulin secretion independently of vesicular acidification. Finally, we report a plasma-cell intrinsic function of the signaling adapter MYD88 in both antibody secretion and plasma cell survival in vivo. These data reveal novel regulators of plasma cell secretory capacity, including those that also promote lifespan.
Collapse
Affiliation(s)
- Lucas J D'Souza
- Department of Immunobiology, University of Arizona; Tucson, AZ
| | - Jonathan N Young
- Department of Otolaryngology, University of Arizona; Tucson, AZ
- Current Address: Department of Otolaryngology, Sutter Medical Group; Sacramento, CA
| | - Heather Coffman
- Department of Otolaryngology, University of Arizona; Tucson, AZ
- Current Address: Phoenix Indian Medical Center; Phoenix, AZ
| | | | | |
Collapse
|
11
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025; 25:189-208. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Liu Y, Bao L, Li G, Kong W, Li X, Wang J, Pan X, Zhang Z, Wang J. Identification of Oncogenic Alterations in 124 Cases of Pediatric Papillary Thyroid Carcinoma: BEND7::ALK, DLG5::RET, and CCDC30::ROS1 Fusions Induce MAPK Pathway Activation. Endocr Pathol 2025; 36:5. [PMID: 39982551 DOI: 10.1007/s12022-025-09850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Pediatric papillary thyroid carcinoma (PPTC; under age 18 at the time of diagnosis) is relatively uncommon. There are few studies concerning the genetic background of PPTC in Asian countries. In this study, we reviewed 124 cases of PPTC from a single medical center in China. DNA-based next-generation sequencing (NGS) was performed to identify genetic alterations, with receptor tyrosine kinase (RTK) fusions further validated by RNA-based NGS. DICER1 mutations and TERT promoter mutations were detected by Sanger sequencing. We also explored the relationship between these genetic alterations and the clinicopathologic features, as well as the prognostic factors. Three recombinant plasmids expressing V5/HIS-tagged RTK fusion proteins (BEND7::ALK, DLG5::RET, CCDC30::ROS1) were constructed to investigate the in vitro effects. We found that the two most common subtypes were the classic subtype (77.4%) and the diffuse sclerosing subtype (17.7%). Hashimoto's thyroiditis was observed in 42.3% of cases, and regional lymph node metastasis was present in 82.9% of patients. The most frequent genetic alteration was the BRAF c.1799 T > A (p.V600E) mutation (63 patients, 50.8%), followed by RTK fusions (31 patients, 25.0%). A DICER1 mutation was detected in two cases, and TERT promoter mutations were not observed in any of the patients. RTK fusions were associated with the diffuse sclerosing subtype, Hashimoto's thyroiditis, and extrathyroidal extension. Adverse prognostic factors identified included RTK fusion, age under 14 years, and tumor size over 2 cm. Additionally, a significant proportion of these patients had actionable molecular alterations. Three rare kinase fusions, BEND7::ALK, DLG5::RET, and CCDC30::ROS1, were shown to induce phosphorylation of the MAPK pathway and promote cell proliferation in vitro. The specific RTK inhibitors could counteract the fusion-induced cell proliferation. Our data highlights the genetic landscape of Chinese PPTC patients, with RTK fusions being associated with aggressive clinicopathologic features. The rare fusions BEND7::ALK, DLG5::RET, and CCDC30::ROS1 may contribute to PPTC development with a BRAF-like effect.
Collapse
Affiliation(s)
- Yixuan Liu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Longnv Bao
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weimao Kong
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueqing Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingnan Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xingzhu Pan
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Kimura H, Lahouel K, Tomasetti C, Roberts NJ. Functional characterization of all CDKN2A missense variants and comparison to in silico models of pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.28.573507. [PMID: 38234851 PMCID: PMC10793438 DOI: 10.1101/2023.12.28.573507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Interpretation of variants identified during genetic testing is a significant clinical challenge. In this study, we developed a high-throughput CDKN2A functional assay and characterized all possible CDKN2A missense variants. We found that 17.7% of all missense variants were functionally deleterious. We also used our functional classifications to assess the performance of in silico models that predict the effect of variants, including recently reported models based on machine learning. Notably, we found that all in silico models performed similarly when compared to our functional classifications with accuracies of 39.5-85.4%. Furthermore, while we found that functionally deleterious variants were enriched within ankyrin repeats, we did not identify any residues where all missense variants were functionally deleterious. Our functional classifications are a resource to aid the interpretation of CDKN2A variants and have important implications for the application of variant interpretation guidelines, particularly the use of in silico models for clinical variant interpretation.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Department of Pathology, the Johns Hopkins University School of Medicine; Baltimore, 21287, USA
| | - Kamel Lahouel
- Division of Integrated Genomics, Translational Genomics Research Institute; Phoenix, 85004, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope; Duarte, 91010, USA
| | - Cristian Tomasetti
- Division of Integrated Genomics, Translational Genomics Research Institute; Phoenix, 85004, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope; Duarte, 91010, USA
| | - Nicholas J. Roberts
- Department of Pathology, the Johns Hopkins University School of Medicine; Baltimore, 21287, USA
- Department of Oncology, the Johns Hopkins University School of Medicine; Baltimore, 21287, USA
| |
Collapse
|
14
|
Andreoti TAA, Maiolo M, Tuleja A, Döring Y, Schaller A, Vassella E, Boon LM, Baumgartner I, Bernhard SM, Zweier C, Vikkula M, Rössler J. Non-Hotspot PIK3CA Variants Have Higher Variant Allele Frequency and are More Common in Syndromic Vascular Malformations. Am J Med Genet A 2025; 197:e63883. [PMID: 39376044 DOI: 10.1002/ajmg.a.63883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
Abstract
PIK3CA variants are known to cause vascular malformations. We were interested in studying the phenotypic spectrum, the location within the PIK3CA gene, and the variant allele frequency (VAF) of somatic PI3KCA variants in vascular malformations. Clinical data of consecutive patients with extracranial/extraspinal vascular malformations were collected in the context of the VASCOM cohort (2008-2022, n = 558). Starting October 2020, biopsy samples were tested with the TSO500 gene panel (Illumina). All consenting patients with PIK3CA variants were included in this study. Eighty-nine patients had available genetic results by June 2022. PIK3CA variants (n = 25) were found in 16 simple/combined (nonsyndromic) vascular malformations and in nine vascular malformations associated with other anomalies (syndromic). Four hotspot variants in exons 9 and 20 (c.1624G>A, c.1633G>A, c.3140A>G, c.3140A>T) were identified in 16/25 patients (VAF 0.9%-9.7%). Six non-hotspot variants (c.328_330del, c.323_337del, c.353G>A, c.1258T>C, c.3132T>A, c.3195_3203delinsT) were detected in nine patients (VAF 3.6%-31.7%). Non-hotspot variants were more frequent in syndromic than nonsyndromic vascular malformations (p = 0.0034) and exhibited a higher VAF than hotspot variants (p = 0.0253). Our study contributes to the growing body of knowledge of the genetic background in vascular malformations. Further studies will enrich the ever-growing list of pathogenic PIK3CA variants associated with vascular malformations.
Collapse
Affiliation(s)
- Themis-Areti A Andreoti
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Massimo Maiolo
- Division of Angiology, Swiss Cardiovascular Center, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Aleksandra Tuleja
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Division of Angiology, Swiss Cardiovascular Center, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - André Schaller
- Department of Human Genetics, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Erik Vassella
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Laurence M Boon
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- VASCERN (European Network of Rare Vascular Diseases) Reference Center, VASCA Working Group, Brussels, Belgium
| | - Iris Baumgartner
- Vasc Alliance AG, Bern, Switzerland
- Bern Center for Vascular Medicine and Interventions, Bern, Switzerland
| | - Sarah M Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Vascular Center, Bienna Hospital Center, Bienna, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Miikka Vikkula
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- VASCERN (European Network of Rare Vascular Diseases) Reference Center, VASCA Working Group, Brussels, Belgium
- Department of Human Genetics, Laboratory of Human Molecular Genetics, de Duve Institute, Catholic University of Louvain, Brussels, Belgium
| | - Jochen Rössler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
- Department of Vascular Medicine, National Reference Centre for Rare Lymphatic and Vascular Diseases, UA11 INSERM - UM IDESP. Campus Santé, Montpellier Cedex 5, France
| |
Collapse
|
15
|
Liu T, Wang Y, An XZ, Liu J, Wu Y, Xiang Y, Zhang YJ, Huang L, Li JC, Li YZP, Yu J. Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia. Sci Rep 2025; 15:3280. [PMID: 39863655 PMCID: PMC11763246 DOI: 10.1038/s41598-025-86865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells. Functional studies, including proliferation, cell cycle, and apoptosis assays, were conducted to assess the fusion gene's impact. In vitro assays reveal that the TOP2B::AFF2 fusion significantly enhances Ba/F3 cell proliferation and G1/S phase transition while suppressing differentiation and apoptosis. This study identifies TOP2B::AFF2 as a potential oncogenic driver. However, further validation through in vivo studies are warranted to fully elucidate the fusion gene's role in leukemogenesis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Yang Wang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xi-Zhou An
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Jiaqi Liu
- Shanghai Cinopath Medical Testing Co Ltd, Shanghai, China
| | - Yuqin Wu
- Laboratory Medicine Department, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Xiang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Yong-Jie Zhang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Lan Huang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Jia-Cheng Li
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Yu-Zhuo-Pu Li
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Jie Yu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.
| |
Collapse
|
16
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
17
|
Yang M, Wang J, Zhou Z, Li W, Verkhivker G, Xiao F, Hu G. Decoding Mechanisms of PTEN Missense Mutations in Cancer and Autism Spectrum Disorder using Interpretable Machine Learning Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633473. [PMID: 39896643 PMCID: PMC11785095 DOI: 10.1101/2025.01.16.633473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Missense mutations in oncogenic proteins that are concurrently associated with neurodevelopmental disorders have garnered significant attention. Phosphatase and tensin homolog (PTEN) serves as a paradigmatic model for mapping its mutational landscape and identifying genotypic predictors of distinct phenotypic outcomes, including cancer and autism spectrum disorder (ASD). Despite extensive research into the genotype-phenotype correlations of PTEN mutations, the mechanisms underlying the dual association of specific PTEN mutations with both cancer and ASD (PTEN-cancer/ASD mutations) remain elusive. This study introduces an integrative approach that combines machine learning (ML) with structural dynamics to elucidate the molecular effects of PTEN-cancer/ASD mutations. Analysis of biophysical and network biology-based signatures reveals a complex energetic and functional landscape. Subsequently, an ML model and corresponding integrated score were developed to classify and predict PTEN-cancer/ASD mutations, underscoring the significance of protein dynamics in predicting cellular phenotypes. Further molecular dynamics simulations demonstrated that PTEN-cancer/ASD mutations induce dynamic alterations characterized by open conformational changes restricted to the P loop and coupled with inter-domain allosteric regulation. This research aims to enhance the genotypic and phenotypic understanding of PTEN-cancer/ASD mutations through an interpretable ML model integrated with structural dynamics analysis. By identifying shared mechanisms between cancer and ASD, the findings pave the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miao Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Jingran Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Wentian Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange 92866, California, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine 92618, California, United States
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Kohler KT, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Oncogene activated human breast luminal progenitors contribute basally located myoepithelial cells. Breast Cancer Res 2024; 26:183. [PMID: 39695857 DOI: 10.1186/s13058-024-01939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Basal-like breast cancer originates in luminal progenitors, frequently with an altered PI3K pathway, and focally in close association with genetically altered myoepithelial cells at the site of tumor initiation. The exact trajectory behind this bi-lineage phenomenon remains poorly understood. METHODS AND RESULTS Here we used a breast cancer relevant transduction protocol including hTERT, shp16, shp53, and PIK3CAH1047R to immortalize FACS isolated luminal cells, and we identified a candidate multipotent progenitor. Specifically, we identified a keratin 23 (K23)+/ALDH1A3+/CALML5- ductal-like progenitor with the potential to differentiate into CALML5+ lobular-like cells. We found that the apparent luminal phenotype of these oncogene transduced progenitors was metastable giving rise to basal-like cells dependent on culture conditions. In 3D organoid culture and upon transplantation to mice the bipotent progenitor cell line organized into a bi-layered acinus-like structure reminiscent of that of the normal breast gland. CONCLUSIONS These findings provide proof of principle that progenitors within the human breast luminal epithelial compartment may serve as a source of correctly positioned myoepithelial cells. This may prove useful in assessing the role of myoepithelial cells in breast tumor progression.
Collapse
Affiliation(s)
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Balogh G, Jorge N, Dupain C, Kamal M, Servant N, Le Tourneau C, Stadler PF, Bernhart SH. TREMSUCS-TCGA - an integrated workflow for the identification of biomarkers for treatment success. J Integr Bioinform 2024; 21:jib-2024-0031. [PMID: 39654143 PMCID: PMC11698617 DOI: 10.1515/jib-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/18/2024] [Indexed: 01/06/2025] Open
Abstract
Many publicly available databases provide disease related data, that makes it possible to link genomic data to medical and meta-data. The cancer genome atlas (TCGA), for example, compiles tens of thousand of datasets covering a wide array of cancer types. Here we introduce an interactive and highly automatized TCGA-based workflow that links and analyses epigenomic and transcriptomic data with treatment and survival data in order to identify possible biomarkers that indicate treatment success. TREMSUCS-TCGA is flexible with respect to type of cancer and treatment and provides standard methods for differential expression analysis or DMR detection. Furthermore, it makes it possible to examine several cancer types together in a pan-cancer type approach. Parallelisation and reproducibility of all steps is ensured with the workflowmanagement system Snakemake. TREMSUCS-TCGA produces a comprehensive single report file which holds all relevant results in descriptive and tabular form that can be explored in an interactive manner. As a showcase application we describe a comprehensive analysis of the available data for the combination of patients with squamous cell carcinomas of head and neck, cervix and lung treated with cisplatin, carboplatin and the combination of carboplatin and paclitaxel. The best ranked biomarker candidates are discussed in the light of the existing literature, indicating plausible causal relationships to the relevant cancer entities.
Collapse
Affiliation(s)
- Gabor Balogh
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
| | - Natasha Jorge
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
| | - Célia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Inserm U900 Research Unit, Saint Cloud, France
- Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Peter F. Stadler
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Max-Planck-Institute for Mathematics in Sciences, Inselstraße 22, D-04109Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University Leipzig, Härtelstrasse 16-18, D-04107Leipzig, Germany
- Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
- Center for RNA in Technology and Health (RTH), Univ. Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
| | - Stephan H. Bernhart
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
| |
Collapse
|
20
|
Pratiwi N, Ulfah AJ, Rachmadina R, Irham LM, Afief AR, Adikusuma W, Darmawi D, Kemal RA, Rangkuti IF, Savira M. Promising candidate drug target genes for repurposing in cervical cancer: A bioinformatics-based approach. NARRA J 2024; 4:e938. [PMID: 39816079 PMCID: PMC11731801 DOI: 10.52225/narra.v4i3.938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/28/2024] [Indexed: 01/18/2025]
Abstract
Cervical cancer is the fourth most common cancer among women globally, and studies have shown that genetic variants play a significant role in its development. A variety of germline and somatic mutations are associated with cervical cancer. However, genomic data derived from these mutations have not been extensively utilized for the development of repurposed drugs for cervical cancer. The objective of this study was to identify novel potential drugs that could be repurposed for cervical cancer treatment through a bioinformatics approach. A comprehensive genomic and bioinformatics database integration strategy was employed to identify potential drug target genes for cervical cancer. Using the GWAS and PheWAS databases, a total of 232 genes associated with cervical cancer were identified. These pharmacological target genes were further refined by applying a biological threshold of six functional annotations. The drug target genes were then cross-referenced with cancer treatment candidates using the DrugBank database. Among the identified genes, LTA, TNFRSF1A, PRKCZ, PDE4B, and PARP were highlighted as promising targets for repurposed drugs. Notably, these five target genes overlapped with 12 drugs that could potentially be repurposed for cervical cancer treatment. Among these, talazoparib, a potent PARP inhibitor, emerged as a particularly promising candidate. Interestingly, talazoparib is currently being investigated for safety and tolerability in other cancers but has not yet been studied in the context of cervical cancer. Further clinical trials are necessary to validate this finding and explore its potential as a repurposed drug for cervical cancer.
Collapse
Affiliation(s)
- Nurfi Pratiwi
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Aida J. Ulfah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Rachmadina Rachmadina
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Lalu M. Irham
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Arief R. Afief
- Faculty of Pharmacy, Universitas YPIB Majalengka, Majalengka, Indonesia
| | - Wirawan Adikusuma
- Department of Pharmacy, Universitas Muhammadiyah Mataram, Mataram, Indonesia
- Research Center for Computing, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, Indonesia
| | - Darmawi Darmawi
- Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Graduate School in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Rahmat A. Kemal
- Department of Medical Biology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Ina F. Rangkuti
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Maya Savira
- Graduate School in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| |
Collapse
|
21
|
Balasan N, Kharrat F, Di Lorenzo G, Athanasakis E, Bianco AM, Conti A, Di Stazio MT, Butera G, Cicogna S, Mangogna A, Romano F, Ricci G, d’Adamo AP. Sensitive Detection of Gynecological Cancer Recurrence Using Circulating Tumor DNA and Digital PCR: A Comparative Study with Serum Biochemical Markers. Int J Mol Sci 2024; 25:11997. [PMID: 39596073 PMCID: PMC11593349 DOI: 10.3390/ijms252211997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Early detection of recurrences in gynecological cancers is crucial for women's health. Circulating tumor DNA (ctDNA) analysis through liquid biopsy offers a promising approach for monitoring disease progression and identifying relapses. This study investigated the utility of digital Polymerase Chain Reaction (dPCR) for ctDNA detection in three gynecological cancer patients with clinically confirmed relapses during a two-year post-surgical follow-up. Patient-specific tumor mutations were identified through whole-exome sequencing (WES) and confirmed via Sanger sequencing. dPCR probes targeting these mutations were used to quantify the ctDNA levels in plasma samples collected throughout the follow-up period, and the findings were compared with standard serum biochemical markers. In two patients, persistent positive dPCR signals for the selected mutations were detected after tumor removal, with ctDNA levels progressively increasing even after post-surgical chemotherapy. Notably, dPCR identified elevated ctDNA levels before an increase in the cancer antigen 125 (CA125) biochemical marker was observed. In the third patient, no ctDNA signals from the two selected mutations were detected despite clinical evidence of recurrence, suggesting the emergence of new mutations. While this study highlights the promise of dPCR for early recurrence detection in gynecological cancers, it also underscores the critical need for comprehensive mutation panels to overcome the inherent challenges posed by tumor heterogeneity and the emergence of new mutations during disease progression.
Collapse
Affiliation(s)
- Nour Balasan
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Feras Kharrat
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Emmanouil Athanasakis
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Anna Monica Bianco
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Andrea Conti
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Maria Teresa Di Stazio
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Giulia Butera
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Stefania Cicogna
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Federico Romano
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Adamo Pio d’Adamo
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (F.K.); (E.A.); (A.M.B.); (A.C.); (M.T.D.S.); (G.B.); (S.C.); (A.M.); (F.R.); (G.R.); (A.P.d.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
22
|
Smith CIE, Burger JA, Zain R. Estimating the Number of Polygenic Diseases Among Six Mutually Exclusive Entities of Non-Tumors and Cancer. Int J Mol Sci 2024; 25:11968. [PMID: 39596040 PMCID: PMC11593959 DOI: 10.3390/ijms252211968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In the era of precision medicine with increasing amounts of sequenced cancer and non-cancer genomes of different ancestries, we here enumerate the resulting polygenic disease entities. Based on the cell number status, we first identified six fundamental types of polygenic illnesses, five of which are non-cancerous. Like complex, non-tumor disorders, neoplasms normally carry alterations in multiple genes, including in 'Drivers' and 'Passengers'. However, tumors also lack certain genetic alterations/epigenetic changes, recently named 'Goners', which are toxic for the neoplasm and potentially constitute therapeutic targets. Drivers are considered essential for malignant transformation, whereas environmental influences vary considerably among both types of polygenic diseases. For each form, hyper-rare disorders, defined as affecting <1/108 individuals, likely represent the largest number of disease entities. Loss of redundant tumor-suppressor genes exemplifies such a profoundly rare mutational event. For non-tumor, polygenic diseases, pathway-centered taxonomies seem preferable. This classification is not readily feasible in cancer, but the inclusion of Drivers and possibly also of epigenetic changes to the existing nomenclature might serve as initial steps in this direction. Based on the detailed genetic alterations, the number of polygenic diseases is essentially countless, but different forms of nosologies may be used to restrict the number.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
23
|
Townley RA, Stacy KS, Cheraghi F, de la Cova CC. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. Genetics 2024; 228:iyae152. [PMID: 39288021 PMCID: PMC11538406 DOI: 10.1093/genetics/iyae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans Raf ortholog lin-45. Truncations removing the DTS strongly enhanced lin-45(S312A), a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We genetically defined three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), the mutation of each of these elements enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF within the activated heterotetramer complex. We propose the following distinct functions for the LIN-45 DTS elements: (1) the ASBS binds the kinase active site as an inhibitor; (2) phosphorylation of the KTP motif modulates the DTS-kinase domain interaction; and (3) the aromatic cluster anchors the DTS in an inhibitory conformation. Human RASopathy-associated variants in BRAF affect residues of the DTS, consistent with these predictions. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.
Collapse
Affiliation(s)
- Robert A Townley
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Kennedy S Stacy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Fatemeh Cheraghi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| |
Collapse
|
24
|
Burr R, Leshchiner I, Costantino CL, Blohmer M, Sundaresan T, Cha J, Seeger K, Guay S, Danysh BP, Gore I, Jacobs RA, Slowik K, Utro F, Rhrissorrakrai K, Levovitz C, Barth JL, Dubash T, Chirn B, Parida L, Sequist LV, Lennerz JK, Mino-Kenudson M, Maheswaran S, Naxerova K, Getz G, Haber DA. Developmental mosaicism underlying EGFR-mutant lung cancer presenting with multiple primary tumors. NATURE CANCER 2024; 5:1681-1696. [PMID: 39406916 PMCID: PMC11584400 DOI: 10.1038/s43018-024-00840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/10/2024] [Indexed: 10/30/2024]
Abstract
Although the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple tumors at presentation in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. In the present study, we identified ten patients with early stage, resectable, non-small cell lung cancer who presented with multiple, anatomically distinct, EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole-exome sequencing (WES) and hypermutable poly(guanine) (poly(G)) repeat genotyping as orthogonal methods for lineage tracing. In four patients, developmental mosaicism, assessed by WES and poly(G) lineage tracing, indicates a common non-germline cell of origin. In two other patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. Thus, in addition to germline variants, developmental mosaicism defines a distinct mechanism of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for their etiology and clinical management.
Collapse
Affiliation(s)
- Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Boston University, Boston, MA, USA
| | - Christina L Costantino
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tilak Sundaresan
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karsen Seeger
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Sara Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian P Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ira Gore
- Ascension St. Vincent's Birmingham, Birmingham, AL, USA
| | - Raquel A Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian Chirn
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | | | - Lecia V Sequist
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
25
|
Aymoz-Bressot T, Canis M, Meurisse F, Wijkhuisen A, Favier B, Mousseau G, Dupressoir A, Heidmann T, Bacquin A. Cell-Int: a cell-cell interaction assay to identify native membrane protein interactions. Life Sci Alliance 2024; 7:e202402844. [PMID: 39237366 PMCID: PMC11377309 DOI: 10.26508/lsa.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.
Collapse
Affiliation(s)
- Thibaud Aymoz-Bressot
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Canis
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne Wijkhuisen
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | | | - Anne Dupressoir
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thierry Heidmann
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | | |
Collapse
|
26
|
Harms PW, Runge M, Chan MP, Liu CJ, Qin Z, Worden F, Robinson DR, Chinnaiyan AM, Mclean SA, Harms KL, Fullen DR, Patel RM, Andea AA, Udager AM. Squamoid Eccrine Ductal Carcinoma Displays Ultraviolet Mutations and Intermediate Gene Expression Relative to Squamous Cell Carcinoma, Microcystic Adnexal Carcinoma, and Porocarcinoma. Mod Pathol 2024; 37:100592. [PMID: 39154783 PMCID: PMC11585436 DOI: 10.1016/j.modpat.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Squamoid eccrine ductal carcinoma is a rare infiltrative tumor with morphologic features intermediate between squamous cell carcinoma (SCC) and sweat gland carcinomas such as microcystic adnexal carcinoma. Although currently classified as a sweat gland carcinoma, it has been debated whether squamoid eccrine ductal carcinoma is better classified as a variant of SCC. Furthermore, therapeutic options for patients with advanced disease are lacking. Here, we describe clinicopathologic features of a cohort of 15 squamoid eccrine ductal carcinomas from 14 unique patients, with next-generation sequencing DNA profiling for 12 cases. UV signature mutations were the dominant signature in the majority of cases. TP53 mutations were the most highly recurrent specific gene alteration, followed by mutations in NOTCH genes. Recurrent mutations in driver oncogenes were not identified. By unsupervised comparison of global transcriptome profiles in squamoid eccrine ductal carcinoma (n = 7) to SCC (n = 10), porocarcinoma (n = 4), and microcystic adnexal carcinoma (n = 4), squamoid eccrine ductal carcinomas displayed an intermediate phenotype between SCC and sweat gland tumors. Squamoid eccrine ductal carcinoma displayed significantly higher expression of 364 genes (including certain eccrine markers) and significantly lower expression of 525 genes compared with other groups. Our findings support the classification of squamoid eccrine ductal carcinoma as a carcinoma with intermediate features between SCC and sweat gland carcinoma.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Mason Runge
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - May P Chan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhaoping Qin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Francis Worden
- Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dan R Robinson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan; Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Mclean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Cutaneous Pathology, WCP Laboratories, Inc, Maryland Heights, Missouri
| | - Aleodor A Andea
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Roswell Park Comprehensive Cancer Center, Buffalo, New York, New York
| | - Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
27
|
Ghosh A, Riester M, Pal J, Lainde KA, Tangermann C, Wanninger A, Dueren UK, Dhamija S, Diederichs S. Suppressive cancer nonstop extension mutations increase C-terminal hydrophobicity and disrupt evolutionarily conserved amino acid patterns. Nat Commun 2024; 15:9209. [PMID: 39448564 PMCID: PMC11502859 DOI: 10.1038/s41467-024-52779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Nonstop extension mutations, a.k.a. stop-lost or stop-loss mutations, convert a stop codon into a sense codon resulting in translation into the 3' untranslated region until the next in-frame stop codon, thereby extending the C-terminus of a protein. In cancer, only nonstop mutations in SMAD4 have been functionally characterized, while the impact of other nonstop mutations remain unknown. Here, we exploit our pan-cancer NonStopDB dataset and test all 2335 C-terminal extensions arising from somatic nonstop mutations in cancer for their impact on protein expression. In a high-throughput screen, 56.1% of the extensions effectively reduce protein abundance. Extensions of multiple tumor suppressor genes like PTEN, APC, B2M, CASP8, CDKN1B and MLH1 are effective and validated for their suppressive impact. Importantly, the effective extensions possess a higher hydrophobicity than the neutral extensions linking C-terminal hydrophobicity with protein destabilization. Analyzing the proteomes of eleven different species reveals conserved patterns of amino acid distribution in the C-terminal regions of all proteins compared to the proteomes like an enrichment of lysine and arginine and a depletion of glycine, leucine, valine and isoleucine across species and kingdoms. These evolutionary selection patterns are disrupted in the cancer-derived effective nonstop extensions.
Collapse
Affiliation(s)
- Avantika Ghosh
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Marisa Riester
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kadri-Ann Lainde
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Carla Tangermann
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Angela Wanninger
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Ursula K Dueren
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
Seale TS, Li L, Bruner JK, Chou M, Nguyen B, Seo J, Zhu R, Levis MJ, Pratilas CA, Small D. Targeting rapid TKI-induced AXL upregulation overcomes adaptive ERK reactivation and exerts antileukemic effects in FLT3/ITD acute myeloid leukemia. Mol Oncol 2024. [PMID: 39395205 DOI: 10.1002/1878-0261.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
Acute myeloid leukemia (AML) patients with the FMS-related receptor tyrosine kinase 3 internal tandem duplication (FLT3/ITD) mutation have a poorer prognosis, and treatment with FLT3 tyrosine kinase inhibitors (TKIs) has been hindered by resistance mechanisms. One such mechanism is known as adaptive resistance, in which downstream signaling pathways are reactivated after initial inhibition. Past work has shown that FLT3/ITD cells undergo adaptive resistance through the reactivation of extracellular signal-regulated kinase (ERK) signaling within 24 h of sustained FLT3 inhibition. We investigated the mechanism(s) responsible for this ERK reactivation and hypothesized that targeting tyrosine-protein kinase receptor UFO (AXL), another receptor tyrosine kinase that has been implicated in cancer resistance, may overcome the adaptive ERK reactivation. Experiments revealed that AXL is upregulated and activated in FLT3/ITD cell lines mere hours after commencing TKI treatment. AXL inhibition combined with FLT3 inhibition to decrease the ERK signal rebound and to exert greater anti-leukemia effects than with either treatment alone. Finally, we observed that TKI-induced AXL upregulation occurs in patient samples, and combined inhibition of both AXL and FLT3 increased efficacy in our in vivo models. Taken together, these data suggest that AXL plays a role in adaptive resistance in FLT3/ITD AML and that combined AXL and FLT3 inhibition might improve FLT3/ITD AML patient outcomes.
Collapse
Affiliation(s)
- Tessa S Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Kyle Bruner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melody Chou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaesung Seo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruiqi Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Knittel R, Rogers S, Wood BA. Cutaneous Seeding of Glioblastoma: A Case Report and Literature Review. Am J Dermatopathol 2024; 46:685-689. [PMID: 38842394 DOI: 10.1097/dad.0000000000002748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT We present the case of a 61-year-old male patient with a history of intracranial IDH-wildtype glioblastoma with an isolated cutaneous metastasis within the previous surgical site scar. The cytomorphology of the cutaneous deposits was reminiscent of metastatic melanoma, which is a differential diagnostic pitfall. The tumor molecular characteristics are described, as these have become essential diagnostic criteria for many central nervous system tumors, along with a discussion of the role of immunohistochemical markers and potential pitfalls in the differential diagnosis of melanoma and poorly differentiated carcinoma. We discuss the biology of metastatic glioblastoma and provide a focused literature review of previous glioblastomas with tumor cell seeding within prior surgical scars.
Collapse
Affiliation(s)
- Ronan Knittel
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia; and
| | - Sasha Rogers
- Neurosurgery Department, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Benjamin A Wood
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia; and
| |
Collapse
|
30
|
Hussain M, Mackrides N, Su S, Seth A. A Case Report of Concurrent Epidermal Growth Factor Receptor (EGFR) Exon 18 (G719A) and Exon 21 (L833_V834delinsFL) Mutations and Treatment Challenges. Cureus 2024; 16:e70896. [PMID: 39497876 PMCID: PMC11534275 DOI: 10.7759/cureus.70896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
Molecular profiling of lung tumors is crucial for guiding targeted therapeutic strategies and identifying potential resistance mechanisms to specific therapies, such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). During this profiling, mutations with uncertain treatment implications can be identified. This case study represents a 69-year-old female with a co-occurring EGFR mutation profile that presents a unique therapeutic challenge. Tumor DNA was used for next-generation sequencing (NGS) of a custom 275 cancer-related QIAseq Human Comprehensive Cancer Panel (Qiagen). Next-generation RNA sequencing was performed using the Illumina TruSight panel. FISH analysis and PD-L1 22C3 immunohistochemical testing were also performed. Microscopic analysis revealed an invasive adenocarcinoma with papillary, acinar, and focal micropapillary features with a 6 mm invasive component. The final pathology stage was determined to be pT1aN0M0. NGS for DNA variant detection identified two mutations in EGFR, an EGFR G719A and EGFR L833_V834delinsFL with a variant allele frequency (VAF) of 22.2% and 21.1%, respectively. Targeted NGS RNA fusion analysis was also performed, which came back negative. PD-L1 22C3 immunohistochemical testing showed only 1% of the tumor cells expression. FISH analysis revealed one copy of MET and D7Z1 in 27% of cells, indicating an aneuploid neoplastic clone with monosomy 7. EGFR TKIs are universally accepted as a first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with a sensitizing EGFR mutation. While mutations such as G719A are sensitive to all generations of EGFR-TKI, the effects are unknown for rare compound mutations in EGFR, such as EGFR L833_V834delinsFL. There are no reports in the literature with any mention of an algorithm of treatment for such a case. The patient had two metachronous lung primary cancers resected in 2022 and 2024. Due to the complete surgical resection, the sensitivity of this mutation of TKIs could not be established. This unique mutation profile still remains of paramount importance to understand if the patient relapses or presents with a new tumor with the same genetic profile.
Collapse
Affiliation(s)
- Muhammad Hussain
- Pathology and Laboratory Medicine, Temple University Hospital, Philadelphia, USA
| | | | - Stacey Su
- Thoracic Surgery, Fox Chase Cancer Center, Philadelphia, USA
| | - Anjali Seth
- Pathology and Laboratory Medicine, Temple University Hospital, Philadelphia, USA
| |
Collapse
|
31
|
Li J, Liu W, Mojumdar K, Kim H, Zhou Z, Ju Z, Kumar SV, Ng PKS, Chen H, Davies MA, Lu Y, Akbani R, Mills GB, Liang H. A protein expression atlas on tissue samples and cell lines from cancer patients provides insights into tumor heterogeneity and dependencies. NATURE CANCER 2024; 5:1579-1595. [PMID: 39227745 DOI: 10.1038/s43018-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE) are foundational resources in cancer research, providing extensive molecular and phenotypic data. However, large-scale proteomic data across various cancer types for these cohorts remain limited. Here, we expand upon our previous work to generate high-quality protein expression data for approximately 8,000 TCGA patient samples and around 900 CCLE cell line samples, covering 447 clinically relevant proteins, using reverse-phase protein arrays. These protein expression profiles offer profound insights into intertumor heterogeneity and cancer dependency and serve as sensitive functional readouts for somatic alterations. We develop a systematic protein-centered strategy for identifying synthetic lethality pairs and experimentally validate an interaction between protein kinase A subunit α and epidermal growth factor receptor. We also identify metastasis-related protein markers with clinical relevance. This dataset represents a valuable resource for advancing our understanding of cancer mechanisms, discovering protein biomarkers and developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Han Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Koh HYK, Lam UTF, Ban KHK, Chen ES. Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers. Sci Rep 2024; 14:22618. [PMID: 39349509 PMCID: PMC11442673 DOI: 10.1038/s41598-024-71422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/28/2024] [Indexed: 10/02/2024] Open
Abstract
The detection of cancer-driving mutations is important for understanding cancer pathology and therapeutics development. Prediction tools have been created to streamline the computation process. However, most tools available have heterogeneous sensitivity or specificity. We built a machine learning-derived algorithm, DriverDetect that combines the outputs of seven pre-existing tools to improve the prediction of candidate driver cancer mutations. The algorithm was trained with cancer gene-specific mutation datasets of cancer patients to identify cancer drivers. DriverDetect performed better than the individual tools or their combinations in the validation test. It has the potential to incorporate future novel prediction algorithms and can be retrained with new datasets, offering an expanded application to pan-cancer analysis for cross-cancer study. (115 words).
Collapse
Affiliation(s)
- Herrick Yu Kan Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth Hon-Kim Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
33
|
Basurto-Lozada P, Vázquez-Cruz ME, Molina-Aguilar C, Jiang A, Deacon DC, Cerrato-Izaguirre D, Simonin-Wilmer I, Arriaga-González FG, Contreras-Ramírez KL, Dawson ET, Wong-Ramirez JRC, Ramos-Galguera JI, Álvarez-Cano A, García-Ortega DY, García-Salinas OI, Hidalgo-Miranda A, Cisneros-Villanueva M, Martínez-Said H, Arends MJ, Ferreira I, Tullett M, Olvera-León R, van der Weyden L, del Castillo Velasco Herrera M, Roldán-Marín R, Vidaurri de la Cruz H, Tavares-de-la-Paz LA, Hinojosa-Ugarte D, Belote RL, Bishop DT, Díaz-Gay M, Alexandrov LB, Sánchez-Pérez Y, In GK, White RM, Possik PA, Judson-Torres RL, Adams DJ, Robles-Espinoza CD. Ancestry and somatic profile predict acral melanoma origin and prognosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.21.24313911. [PMID: 39399030 PMCID: PMC11469390 DOI: 10.1101/2024.09.21.24313911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Acral melanoma, which is not ultraviolet (UV)-associated, is the most common type of melanoma in several low- and middle-income countries including Mexico. Latin American samples are significantly underrepresented in global cancer genomics studies, which directly affects patients in these regions as it is known that cancer risk and incidence may be influenced by ancestry and environmental exposures. To address this, here we characterise the genome and transcriptome of 128 acral melanoma tumours from 96 Mexican patients, a population notable because of its genetic admixture. Compared with other studies of melanoma, we found fewer frequent mutations in classical driver genes such as BRAF, NRAS or NF1. While most patients had predominantly Amerindian genetic ancestry, those with higher European ancestry had increased frequency of BRAF mutations and a lower number of structural variants. These BRAF-mutated tumours have a transcriptional profile similar to cutaneous non-volar melanocytes, suggesting that acral melanomas in these patients may arise from a distinct cell of origin compared to other tumours arising in these locations. KIT mutations were found in a subset of these tumours, and transcriptional profiling defined three expression clusters; these characteristics were associated with overall survival. We highlight novel low-frequency drivers, such as SPHKAP, which correlate with a distinct genomic profile and clinical characteristics. Our study enhances knowledge of this understudied disease and underscores the importance of including samples from diverse ancestries in cancer genomics studies.
Collapse
Affiliation(s)
- Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Martha Estefania Vázquez-Cruz
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Christian Molina-Aguilar
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Amanda Jiang
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dekker C. Deacon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dennis Cerrato-Izaguirre
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Irving Simonin-Wilmer
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Fernanda G. Arriaga-González
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Kenya L. Contreras-Ramírez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | | | - J. Rene C. Wong-Ramirez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johana Itzel Ramos-Galguera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Alethia Álvarez-Cano
- Surgical Oncology, Christus Muguerza Alta Especialidad, Monterrey, Nuevo Leon, Mexico
| | - Dorian Y. García-Ortega
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Omar Isaac García-Salinas
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Héctor Martínez-Said
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ingrid Ferreira
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mark Tullett
- Department of histopathology, University Hospitals Sussex, St Richard hospital, Spitalfield lane, Chichester
| | - Rebeca Olvera-León
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | | | - Rodrigo Roldán-Marín
- Dermato-Oncology Clinic, Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Helena Vidaurri de la Cruz
- Pediatric Dermatology Service, General Hospital of Mexico Dr. Eduardo Liceaga, Ministry of Health. Mexico City, Mexico
| | | | | | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, United States
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Gino K. In
- University of Southern California, Keck School of Medicine, Norris Comprehensive Cancer Center, Division of Oncology, Los Angeles, CA, USA
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Patrícia A. Possik
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - David J. Adams
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
34
|
Delaveris CS, Kong S, Glasgow J, Loudermilk RP, Kirkemo LL, Zhao F, Salangsang F, Phojanakong P, Camara Serrano JA, Steri V, Wells JA. Chemoproteomics reveals immunogenic and tumor-associated cell surface substrates of ectokinase CK2α. Cell Chem Biol 2024; 31:1729-1739.e9. [PMID: 39178841 PMCID: PMC11482644 DOI: 10.1016/j.chembiol.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Foreign epitopes for immune recognition provide the basis of anticancer immunity. Due to the high concentration of extracellular adenosine triphosphate in the tumor microenvironment, we hypothesized that extracellular kinases (ectokinases) could have dysregulated activity and introduce aberrant phosphorylation sites on cell surface proteins. We engineered a cell-tethered version of the extracellular kinase CK2α, demonstrated it was active on cells under tumor-relevant conditions, and profiled its substrate scope using a chemoproteomic workflow. We then demonstrated that mice developed polyreactive antisera in response to syngeneic tumor cells that had been subjected to surface hyperphosphorylation with CK2α. Interestingly, these mice developed B cell and CD4+ T cell responses in response to these antigens but failed to develop a CD8+ T cell response. This work provides a workflow for probing the extracellular phosphoproteome and demonstrates that extracellular phosphoproteins are immunogenic even in a syngeneic system.
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sophie Kong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rita P Loudermilk
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Fangzhu Zhao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Fernando Salangsang
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul Phojanakong
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Juan Antonio Camara Serrano
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Veronica Steri
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
De Bortoli M, Queisser A, Pham VC, Dompmartin A, Helaers R, Boutry S, Claus C, De Roo AK, Hammer F, Brouillard P, Abdelilah-Seyfried S, Boon LM, Vikkula M. Somatic Loss-of-Function PIK3R1 and Activating Non-hotspot PIK3CA Mutations Associated with Capillary Malformation with Dilated Veins (CMDV). J Invest Dermatol 2024; 144:2066-2077.e6. [PMID: 38431221 DOI: 10.1016/j.jid.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/05/2024]
Abstract
Common capillary malformations are red vascular skin lesions, most commonly associated with somatic activating GNAQ or GNA11 mutations. We focused on capillary malformations lacking such a mutation to identify previously unreported genetic causes. We used targeted next-generation sequencing on 82 lesions. Bioinformatic analysis allowed the identification of 9 somatic pathogenic variants in PIK3R1 and PIK3CA, encoding for the regulatory and catalytic subunits of phosphoinositide 3-kinase, respectively. Recharacterization of these lesions unraveled a common phenotype: a pale capillary malformation associated with visible dilated veins. Primary endothelial cells from 2 PIK3R1-mutated lesions were isolated, and PI3k-Akt-mTOR and RAS-RAF-MAPK signaling were assessed by western blot. This unveiled an abnormal increase in Akt phosphorylation, effectively reduced by PI3K pathway inhibitors, such as mTOR, Akt, and PIK3CA inhibitors. The effects of mutant PIK3R1 were further studied using zebrafish embryos. Endothelium-specific expression of PIK3R1 mutants resulted in abnormal development of the posterior capillary-venous plexus. In summary, capillary malformation associated with visible dilated veins emerges as a clinical entity associated with somatic pathogenic variants in PIK3R1 or PIK3CA (nonhotspot). Our findings suggest that the activated Akt signaling can be effectively reversed by PI3K pathway inhibitors. In addition, the proposed zebrafish model holds promise as a valuable tool for future drug screening aimed at developing patient-tailored treatments.
Collapse
Affiliation(s)
- Martina De Bortoli
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Angela Queisser
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Van Cuong Pham
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Anne Dompmartin
- Department of Dermatology, VASCERN VASCA European Reference Center, Université de Caen Basse Normandie, Caen, France
| | - Raphaël Helaers
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Simon Boutry
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Cathy Claus
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - An-Katrien De Roo
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Service d'anatomopathologie, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Frank Hammer
- Department of Medical Imaging, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Laurence M Boon
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
36
|
Nokin MJ, Mira A, Patrucco E, Ricciuti B, Cousin S, Soubeyran I, San José S, Peirone S, Caizzi L, Vietti Michelina S, Bourdon A, Wang X, Alvarez-Villanueva D, Martínez-Iniesta M, Vidal A, Rodrigues T, García-Macías C, Awad MM, Nadal E, Villanueva A, Italiano A, Cereda M, Santamaría D, Ambrogio C. RAS-ON inhibition overcomes clinical resistance to KRAS G12C-OFF covalent blockade. Nat Commun 2024; 15:7554. [PMID: 39215000 PMCID: PMC11364849 DOI: 10.1038/s41467-024-51828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Selective KRASG12C inhibitors have been developed to covalently lock the oncogene in the inactive GDP-bound state. Two of these molecules, sotorasib and adagrasib, are approved for the treatment of adult patients with KRASG12C-mutated previously treated advanced non-small cell lung cancer. Drug treatment imposes selective pressures leading to the outgrowth of drug-resistant variants. Mass sequencing from patients' biopsies identified a number of acquired KRAS mutations -both in cis and in trans- in resistant tumors. We demonstrate here that disease progression in vivo can also occur due to adaptive mechanisms and increased KRAS-GTP loading. Using the preclinical tool tri-complex KRASG12C-selective covalent inhibitor, RMC-4998 (also known as RM-029), that targets the active GTP-bound (ON) state of the oncogene, we provide a proof-of-concept that the clinical stage KRASG12C(ON) inhibitor RMC-6291 alone or in combination with KRASG12C(OFF) drugs can be an alternative potential therapeutic strategy to circumvent resistance due to increased KRAS-GTP loading.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- INSERM U1312, University of Bordeaux, IECB, Pessac, France
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alessia Mira
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Biagio Ricciuti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sophie Cousin
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | | | - Sonia San José
- INSERM U1312, University of Bordeaux, IECB, Pessac, France
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Serena Peirone
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, Candiolo, Torino, Italy
| | - Livia Caizzi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, Candiolo, Torino, Italy
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Xinan Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel Alvarez-Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - María Martínez-Iniesta
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - August Vidal
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Telmo Rodrigues
- Comparative Pathology Unit, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Carmen García-Macías
- Comparative Pathology Unit, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology (ICO); Preclinical and Experimental Research in Thoracic Tumors (PReTT) Group, Oncobell Program, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Medical Oncology, Catalan Institute of Oncology (ICO); Preclinical and Experimental Research in Thoracic Tumors (PReTT) Group, Oncobell Program, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, Italy.
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, Candiolo, Torino, Italy.
| | - David Santamaría
- INSERM U1312, University of Bordeaux, IECB, Pessac, France.
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain.
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
37
|
Ostroverkhova D, Sheng Y, Panchenko A. Are Next-Generation Pathogenicity Predictors Applicable to Cancer? J Mol Biol 2024; 436:168644. [PMID: 38848867 DOI: 10.1016/j.jmb.2024.168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Next-generation pathogenicity predictors are designed to identify pathogenic mutations in genetic disorders but are increasingly used to detect driver mutations in cancer. Despite this, their suitability for cancer is not fully established. Here we have assessed the effectiveness of next-generation pathogenicity predictors when applied to cancer by using a comprehensive experimental benchmark of cancer driver and neutral mutations. Our findings indicate that state-of-the-art methods AlphaMissense and VARITY demonstrate commendable performance despite generally underperforming compared to cancer-specific methods. This is notable considering that these methods do not explicitly incorporate cancer-related data in their training and have made concerted efforts to prevent data leakage from the human-curated training and test sets. Nevertheless, it should be mentioned that a significant limitation of using pathogenicity predictors for cancer arises from their inability to detect cancer potential driver mutations specific for a particular cancer type.
Collapse
Affiliation(s)
| | - Yiru Sheng
- Department of Biology and Molecular Sciences, Queen's University, Canada
| | - Anna Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Canada; Department of Biology and Molecular Sciences, Queen's University, Canada; School of Computing, Queen's University, Canada; Ontario Institute of Cancer Research, Canada.
| |
Collapse
|
38
|
Lv F, Li X, Wang Z, Wang X, Liu J. Identification and validation of Rab GTPases RAB13 as biomarkers for peritoneal metastasis and immune cell infiltration in colorectal cancer patients. Front Immunol 2024; 15:1403008. [PMID: 39192986 PMCID: PMC11347351 DOI: 10.3389/fimmu.2024.1403008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Background As one of the most common cancer, colorectal cancer (CRC) is with high morbidity and mortality. Peritoneal metastasis (PM) is a fatal state of CRC, and few patients may benefit from traditional therapies. There is a complex interaction between PM and immune cell infiltration. Therefore, we aimed to determine biomarkers associated with colorectal cancer peritoneal metastasis (CRCPM) and their relationship with immune cell infiltration. Methods By informatic analysis, differently expressed genes (DEGs) were selected and hub genes were screened out. RAB13, one of the hub genes, was identificated from public databases and validated in CRC tissues. The ESTIMATE, CEBERSORT and TIMER algorithms were applied to analyze the correlation between RAB13 and immune infiltration in CRC. RAB13's expression in different cells were analyzed at the single-cell level in scRNA-Seq. The Gene Set Enrichment Analysis (GSEA) was performed for RAB13 enrichment and further confirmed. Using oncoPredict algorithm, RAB13's impact on drug sensitivity was evaluated. Results High RAB13 expression was identified in public databases and led to a poor prognosis. RAB13 was found to be positively correlated with the macrophages and other immune cells infiltration and from scRNA-Seq, RAB13 was found to be located in CRC cells and macrophages. GSEA revealed that high RAB13 expression enriched in a various of biological signaling, and oncoPredict algorithm showed that RAB13 expression was correlated with paclitaxel sensitivity. Conclusion Our study indicated clinical role of RAB13 in CRC-PM, suggesting its potential as a therapeutic target in the future.
Collapse
Affiliation(s)
- Fei Lv
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoqi Li
- Oncology Department III, People’s Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Zhe Wang
- Department of Digestive Diseases 1, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Xiaobo Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
39
|
Vicario R, Fragkogianni S, Weber L, Lazarov T, Hu Y, Hayashi SY, Craddock BP, Socci ND, Alberdi A, Baako A, Ay O, Ogishi M, Lopez-Rodrigo E, Kappagantula R, Viale A, Iacobuzio-Donahue CA, Zhou T, Ransohoff RM, Chesworth R, Abdel-Wahab O, Boisson B, Elemento O, Casanova JL, Miller WT, Geissmann F. A microglia clonal inflammatory disorder in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577216. [PMID: 38328106 PMCID: PMC10849735 DOI: 10.1101/2024.01.25.577216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.
Collapse
Affiliation(s)
- Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stamatina Fragkogianni
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Leslie Weber
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Institute for Computational Biomedicine,Weill Cornell New York, NY 10021, USA
| | - Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ann Baako
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oyku Ay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - Estibaliz Lopez-Rodrigo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Rajya Kappagantula
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine A. Iacobuzio-Donahue
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine,Weill Cornell New York, NY 10021, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
40
|
Zou Y, Xu L, Wang W, Zhu X, Lin J, Li H, Chen J, Xu W, Gao H, Wu X, Yin Z, Wang Q. Muscone restores anoikis sensitivity in TMZ-resistant glioblastoma cells by suppressing TOP2A via the EGFR/Integrin β1/FAK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155714. [PMID: 38723526 DOI: 10.1016/j.phymed.2024.155714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Temozolomide (TMZ) resistance is the main obstacle faced by glioblastoma multiforme (GBM) treatment. Muscone, one of the primary active pharmacological ingredients of Shexiang (Moschus), can cross the blood-brain barrier (BBB) and is being investigated as an antineoplastic medication. However, muscone treatment for GBM has received little research, and its possible mechanisms are still unclear. PURPOSE This study aims to evaluate the effect and the potential molecular mechanism of muscone on TMZ-resistant GBM cells. METHODS The differentially expressed genes (DEGs) between TMZ-resistant GBM cells and TMZ-sensitive GBM cells were screened using GEO2R. By progressively raising the TMZ concentration, a relatively stable TMZ-resistant human GBM cell line was established. The drug-resistance traits of U251-TR cells were assessed via the CCK-8 assay and Western Blot analysis of MGMT and TOP2A expression. Cell viability, cell proliferation, cell migration ability, and drug synergism were detected by the CCK-8 assay, colony formation assay, wound healing assay, and drug interaction relationship test, respectively. Anoikis was quantified by Calcein-AM/EthD-1 staining, MTT assay, and flow cytometry. Measurements of cell cycle arrest, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were performed using cell cycle staining, Annexin V-FITC/PI labeling, JC-1 assay, and ROS assay, respectively. DNA damage was measured by TUNEL assay, alkaline comet assay, and γ-H2AX foci assay. GEPIA was used to investigate the link between the anoikis marker (FAK)/drug resistance gene and critical proteins in the EGFR/Integrin β1 signaling pathway. Molecular docking was used to anticipate the probable targets of muscone. The intracellular co-localization and expression of EGFR and FAK were shown using immunofluorescence. The U251-TR cell line stably overexpressing EGFR was constructed using lentiviral transduction to assess the involvement of EGFR-related signaling in anoikis resistance. Western Blot was employed to detect the expression of migration-related proteins, cyclins, anoikis-related proteins, DNA damage/repair-related proteins, and associated pathway proteins. RESULTS DEGs analysis identified 97 deregulated chemotherapy-resistant genes and 3779 upregulated genes in TMZ-resistant GBM cells. Subsequent experiments verified TMZ resistance and the hyper-expression of DNA repair-related genes (TOP2A and MGMT) in continuously low-dose TMZ-induced U251-TR cells. Muscone exhibited dose-dependent inhibition of U251-TR cell migration and proliferation, and its co-administration with TMZ showed the potential for enhanced therapeutic efficacy. By downregulating FAK, muscone reduced anoikis resistance in anchorage-independent U251-TR cells. It also caused cell cycle arrest in the G2/M phase by upregulating p21 and downregulating CDK1, CDK2, and Cyclin E1. Muscone-induced anoikis was accompanied by mitochondrial membrane potential collapse, ROS production, an increase in the BAX/Bcl-2 ratio, as well as elevated levels of Cytochrome c (Cyt c), cleaved caspase-9, and cleaved caspase-3. These findings indicated that muscone might trigger mitochondrial-dependent anoikis via ROS generation. Moreover, significant DNA damage, DNA double-strand breaks (DSBs), the formation of γ-H2AX foci, and a reduction in TOP2A expression are also associated with muscone-induced anoikis. Overexpression of EGFR in U251-TR cells boosted the expression of Integrin β1, FAK, β-Catenin, and TOP2A, whereas muscone suppressed the expression levels of EGFR, Integrin β1, β-Catenin, FAK, and TOP2A. Muscone may influence the expression of the key DNA repair enzyme, TOP2A, by suppressing the EGFR/Integrin β1/FAK pathway. CONCLUSION We first demonstrated that muscone suppressed TOP2A expression through the EGFR/Integrin β1/FAK pathway, hence restoring anoikis sensitivity in TMZ-resistant GBM cells. These data suggest that muscone may be a promising co-therapeutic agent for enhancing GBM treatment, particularly in cases of TMZ-resistant GBM with elevated TOP2A expression.
Collapse
Affiliation(s)
- Yuheng Zou
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lanyang Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wanyu Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaqi Lin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huazhao Li
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haiqiong Gao
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xianghui Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qirui Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
41
|
Dorighi KM, Zhu A, Fortin JP, Hung-Hao Lo J, Sudhamsu J, Wendorff TJ, Durinck S, Callow M, Foster SA, Haley B. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep 2024; 43:114313. [PMID: 38838224 DOI: 10.1016/j.celrep.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anqi Zhu
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Department of Data Science and Statistical Computing, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jerry Hung-Hao Lo
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Marinella Callow
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott A Foster
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
42
|
Yuasa H, Morino N, Wagatsuma T, Munekane M, Ueda S, Matsunaga M, Uchida Y, Katayama T, Katoh T, Kambe T. ZNT5-6 and ZNT7 play an integral role in protein N-glycosylation by supplying Zn 2+ to Golgi α-mannosidase II. J Biol Chem 2024; 300:107378. [PMID: 38762179 PMCID: PMC11209640 DOI: 10.1016/j.jbc.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.
Collapse
Affiliation(s)
- Hana Yuasa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naho Morino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
43
|
Schagerholm C, Robertson S, Toosi H, Sifakis EG, Hartman J. PIK3CA mutations in endocrine-resistant breast cancer. Sci Rep 2024; 14:12542. [PMID: 38822093 PMCID: PMC11143214 DOI: 10.1038/s41598-024-62664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Around 75% of breast cancer (BC) patients have tumors expressing the predictive biomarker estrogen receptor α (ER) and are offered endocrine therapy. One-third eventually develop endocrine resistance, a majority with retained ER expression. Mutations in the phosphatidylinositol bisphosphate 3-kinase (PI3K) catalytic subunit encoded by PIK3CA is a proposed resistance mechanism and a pharmacological target in the clinical setting. Here we explore the frequency of PIK3CA mutations in endocrine-resistant BC before and during treatment and correlate to clinical features. Patients with ER-positive (ER +), human epidermal growth factor receptor 2 (HER2)-negative primary BC with an ER + relapse within 5 years of ongoing endocrine therapy were retrospectively assessed. Tissue was collected from primary tumors (n = 58), relapse tumors (n = 54), and tumor-free lymph nodes (germline controls, n = 62). Extracted DNA was analyzed through panel sequencing. Somatic mutations were observed in 50% (31/62) of the patients, of which 29% occurred outside hotspot regions. The presence of PIK3CA mutations was significantly associated with nodal involvement and mutations were more frequent in relapse than primary tumors. Our study shows the different PIK3CA mutations in endocrine-resistant BC and their fluctuations during therapy. These results may aid investigations of response prediction, facilitating research deciphering the mechanisms of endocrine resistance.
Collapse
Affiliation(s)
- Caroline Schagerholm
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.
| | - Stephanie Robertson
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
| | - Hosein Toosi
- Division of Computational Science and Technology, KTH Royal Institute of Technology and Science for Life Laboratory, Stockholm, Sweden
| | - Emmanouil G Sifakis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Li Q, Button-Simons KA, Sievert MAC, Chahoud E, Foster GF, Meis K, Ferdig MT, Milenković T. Enhancing Gene Co-Expression Network Inference for the Malaria Parasite Plasmodium falciparum. Genes (Basel) 2024; 15:685. [PMID: 38927622 PMCID: PMC11202799 DOI: 10.3390/genes15060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Malaria results in more than 550,000 deaths each year due to drug resistance in the most lethal Plasmodium (P.) species P. falciparum. A full P. falciparum genome was published in 2002, yet 44.6% of its genes have unknown functions. Improving the functional annotation of genes is important for identifying drug targets and understanding the evolution of drug resistance. RESULTS Genes function by interacting with one another. So, analyzing gene co-expression networks can enhance functional annotations and prioritize genes for wet lab validation. Earlier efforts to build gene co-expression networks in P. falciparum have been limited to a single network inference method or gaining biological understanding for only a single gene and its interacting partners. Here, we explore multiple inference methods and aim to systematically predict functional annotations for all P. falciparum genes. We evaluate each inferred network based on how well it predicts existing gene-Gene Ontology (GO) term annotations using network clustering and leave-one-out crossvalidation. We assess overlaps of the different networks' edges (gene co-expression relationships), as well as predicted functional knowledge. The networks' edges are overall complementary: 47-85% of all edges are unique to each network. In terms of the accuracy of predicting gene functional annotations, all networks yielded relatively high precision (as high as 87% for the network inferred using mutual information), but the highest recall reached was below 15%. All networks having low recall means that none of them capture a large amount of all existing gene-GO term annotations. In fact, their annotation predictions are highly complementary, with the largest pairwise overlap of only 27%. We provide ranked lists of inferred gene-gene interactions and predicted gene-GO term annotations for future use and wet lab validation by the malaria community. CONCLUSIONS The different networks seem to capture different aspects of the P. falciparum biology in terms of both inferred interactions and predicted gene functional annotations. Thus, relying on a single network inference method should be avoided when possible. SUPPLEMENTARY DATA Attached.
Collapse
Affiliation(s)
- Qi Li
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
| | - Katrina A. Button-Simons
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mackenzie A. C. Sievert
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elias Chahoud
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel F. Foster
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kaitlynn Meis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael T. Ferdig
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
| |
Collapse
|
45
|
Zhong G, Zhao Y, Zhuang D, Chung WK, Shen Y. PreMode predicts mode-of-action of missense variants by deep graph representation learning of protein sequence and structural context. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581321. [PMID: 38746140 PMCID: PMC11092447 DOI: 10.1101/2024.02.20.581321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Accurate prediction of the functional impact of missense variants is important for disease gene discovery, clinical genetic diagnostics, therapeutic strategies, and protein engineering. Previous efforts have focused on predicting a binary pathogenicity classification, but the functional impact of missense variants is multi-dimensional. Pathogenic missense variants in the same gene may act through different modes of action (i.e., gain/loss-of-function) by affecting different aspects of protein function. They may result in distinct clinical conditions that require different treatments. We developed a new method, PreMode, to perform gene-specific mode-of-action predictions. PreMode models effects of coding sequence variants using SE(3)-equivariant graph neural networks on protein sequences and structures. Using the largest-to-date set of missense variants with known modes of action, we showed that PreMode reached state-of-the-art performance in multiple types of mode-of-action predictions by efficient transfer-learning. Additionally, PreMode's prediction of G/LoF variants in a kinase is consistent with inactive-active conformation transition energy changes. Finally, we show that PreMode enables efficient study design of deep mutational scans and optimization in protein engineering.
Collapse
|
46
|
Simon JJ, Fowler DM, Maly DJ. Multiplexed, multimodal profiling of the intracellular activity, interactions, and druggability of protein variants using LABEL-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590094. [PMID: 38659825 PMCID: PMC11042325 DOI: 10.1101/2024.04.19.590094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Multiplexed assays of variant effect are powerful tools for assessing the impact of protein sequence variation, but are limited to measuring a single protein property and often rely on indirect readouts of intracellular protein function. Here, we developed LAbeling with Barcodes and Enrichment for biochemicaL analysis by sequencing (LABEL-seq), a platform for the multimodal profiling of thousands of protein variants in cultured human cells. Multimodal measurement of ~20,000 variant effects for ~1,600 BRaf variants using LABEL-seq revealed that variation at positions that are frequently mutated in cancer had minimal effects on folding and intracellular abundance but could dramatically alter activity, protein-protein interactions, and druggability. Integrative analysis of our multimodal measurements identified networks of positions with similar roles in regulating BRaf's signaling properties and enabled predictive modeling of variant effects on complex processes such as cell proliferation and small molecule-promoted degradation. LABEL-seq provides a scalable approach for the direct measurement of multiple biochemical effects of protein variants in their native cellular context, yielding insight into protein function, disease mechanisms, and druggability.
Collapse
Affiliation(s)
- Jessica J Simon
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Co-corresponding authors: ,
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Co-corresponding authors: ,
| |
Collapse
|
47
|
George GV, Liu H, Jajosky AN, Oltvai ZN. Resolving Discrepancies in Idylla BRAF Mutational Assay Results Using Targeted Next-Generation Sequencing. Genes (Basel) 2024; 15:527. [PMID: 38790156 PMCID: PMC11121162 DOI: 10.3390/genes15050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
BRAF mutation identification is important for the diagnosis and treatment of several tumor types, both solid and hematologic. Rapid identification of BRAF mutations is required to determine eligibility for targeted BRAF inhibitor therapy. The Idylla BRAF mutation assay is a rapid, multiplex allele-specific PCR test designed to detect the most common oncogenic BRAF V600 mutations in formalin-fixed paraffin-embedded (FFPE) tissue samples. Here, we describe the validation of the Idylla BRAF mutation assay in our laboratory. During routine clinical practice, we noticed cases in which BRAF V600 mutations were identified with unusual amplification curves, with three cases displaying a delayed amplification within a double amplification pattern and two false-positive calls. We therefore initiated a quality improvement effort to systematically and retrospectively evaluate next-generation sequencing (NGS)-tested cases with BRAF mutations identified within five amino acids of BRAF codon V600 and did not identify additional false-positive cases. We hypothesize that late amplification in a double amplification pattern may represent non-specific amplification, whereas cases displaying single delayed amplification curves may stem from the presence of either non-V600 variants, very low-level V600 variants, cytosine deamination artifacts, and/or non-specific amplification by an allele-specific PCR primer. Regardless, we recommend that Idylla BRAF cases with non-classical amplification curves undergo reflex NGS testing. These findings are likely relevant for other Idylla assays interrogating hotspot mutations in genes such as EGFR, IDH1/2, KRAS, and NRAS.
Collapse
Affiliation(s)
| | | | | | - Zoltán N. Oltvai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
48
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 PMCID: PMC11653080 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
49
|
Hayes TK, Aquilanti E, Persky NS, Yang X, Kim EE, Brenan L, Goodale AB, Alan D, Sharpe T, Shue RE, Westlake L, Golomb L, Silverman BR, Morris MD, Fisher TR, Beyene E, Li YY, Cherniack AD, Piccioni F, Hicks JK, Chi AS, Cahill DP, Dietrich J, Batchelor TT, Root DE, Johannessen CM, Meyerson M. Comprehensive mutational scanning of EGFR reveals TKI sensitivities of extracellular domain mutants. Nat Commun 2024; 15:2742. [PMID: 38548752 PMCID: PMC10978866 DOI: 10.1038/s41467-024-45594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/30/2024] [Indexed: 04/01/2024] Open
Abstract
The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.
Collapse
Affiliation(s)
- Tikvah K Hayes
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Elisa Aquilanti
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Nicole S Persky
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Aera Therapeutics, Cambridge, MA, USA
| | - Xiaoping Yang
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Erica E Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Lisa Brenan
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Amy B Goodale
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Douglas Alan
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Ted Sharpe
- Data Science Platform, The Broad Institute of M.I.T. and Harvard Cambridge, Cambridge, MA, USA
| | - Robert E Shue
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Lindsay Westlake
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Lior Golomb
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Brianna R Silverman
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Myshal D Morris
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA, USA
| | - Ty Running Fisher
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA, USA
| | - Eden Beyene
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA, USA
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Federica Piccioni
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Merck Research Laboratories, Cambridge, MA, USA
| | - J Kevin Hicks
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew S Chi
- Center for Neuro-Oncology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel P Cahill
- Center for Neuro-Oncology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - David E Root
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Cory M Johannessen
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA.
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA.
| |
Collapse
|
50
|
de Kock L, Cuillerier A, Gillespie M, Couse M, Hartley T, Mears W, Bernier FP, Chudley AE, Frosk P, Nikkel SM, Innes AM, Lauzon J, Thomas M, Guerin A, Armour CM, Weksberg R, Scott JN, Watkins D, Harvey S, Cytrynbaum C, Kernohan KD, Boycott KM. Molecular characterization of 13 patients with PIK3CA-related overgrowth spectrum using a targeted deep sequencing approach. Am J Med Genet A 2024; 194:e63466. [PMID: 37949664 DOI: 10.1002/ajmg.a.63466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Activating variants in the PIK3CA gene cause a heterogeneous spectrum of disorders that involve congenital or early-onset segmental/focal overgrowth, now referred to as PIK3CA-related overgrowth spectrum (PROS). Historically, the clinical diagnoses of patients with PROS included a range of distinct syndromes, including CLOVES syndrome, dysplastic megalencephaly, hemimegalencephaly, focal cortical dysplasia, Klippel-Trenaunay syndrome, CLAPO syndrome, fibroadipose hyperplasia or overgrowth, hemihyperplasia multiple lipomatosis, and megalencephaly capillary malformation-polymicrogyria (MCAP) syndrome. MCAP is a sporadic overgrowth disorder that exhibits core features of progressive megalencephaly, vascular malformations, distal limb malformations, cortical brain malformations, and connective tissue dysplasia. In 2012, our research group contributed to the identification of predominantly mosaic, gain-of-function variants in PIK3CA as an underlying genetic cause of the syndrome. Mosaic variants are technically more difficult to detect and require implementation of more sensitive sequencing technologies and less stringent variant calling algorithms. In this study, we demonstrated the utility of deep sequencing using the Illumina TruSight Oncology 500 (TSO500) sequencing panel in identifying variants with low allele fractions in a series of patients with PROS and suspected mosaicism: pathogenic, mosaic PIK3CA variants were identified in all 13 individuals, including 6 positive controls. This study highlights the importance of screening for low-level mosaic variants in PROS patients. The use of targeted panels with deep sequencing in clinical genetic testing laboratories would improve diagnostic yield and accuracy within this patient population.
Collapse
Affiliation(s)
- Leanne de Kock
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexanne Cuillerier
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Meredith Gillespie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Madeline Couse
- The Centre for Computational Medicine, the Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Wendy Mears
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Francois P Bernier
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Albert E Chudley
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrick Frosk
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sarah M Nikkel
- Provincial Medical Genetics Program, BC Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Micheil Innes
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Julie Lauzon
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Maryann Thomas
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | - Christine M Armour
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Paediatrics and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - James N Scott
- Departments of Diagnostic Imaging and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Debra Watkins
- Northeastern Ontario Medical Genetics Program, Health Sciences North, Greater Sudbury, Ontario, Canada
| | - Shirley Harvey
- Program of Genetics and Metabolism, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, Department of Genetic Counselling and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|