1
|
Roychowdhury T, McNutt SW, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, De Stanchina E, Corben A, Modi S, Alpaugh ML, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation. Nat Commun 2024; 15:8912. [PMID: 39414766 PMCID: PMC11484706 DOI: 10.1038/s41467-024-53178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Rowan University, Glassboro, NJ, USA
| | | | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
2
|
Guarra F, Sciva C, Bonollo G, Pasala C, Chiosis G, Moroni E, Colombo G. Cracking the chaperone code through the computational microscope. Cell Stress Chaperones 2024; 29:626-640. [PMID: 39142378 PMCID: PMC11399801 DOI: 10.1016/j.cstres.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
The heat shock protein 90 kDa (Hsp90) chaperone machinery plays a crucial role in maintaining cellular homeostasis. Beyond its traditional role in protein folding, Hsp90 is integral to key pathways influencing cellular function in health and disease. Hsp90 operates through the modular assembly of large multiprotein complexes, with their composition, stability, and localization adapting to the cell's needs. Its functional dynamics are finely tuned by ligand binding and post-translational modifications (PTMs). Here, we discuss how to disentangle the intricacies of the complex code that governs the crosstalk between dynamics, binding, PTMs, and the functions of the Hsp90 machinery using computer-based approaches. Specifically, we outline the contributions of computational and theoretical methods to the understanding of Hsp90 functions, ranging from providing atomic-level insights into its dynamics to clarifying the mechanisms of interactions with protein clients, cochaperones, and ligands. The knowledge generated in this framework can be actionable for the design and development of chemical tools and drugs targeting Hsp90 in specific disease-associated cellular contexts. Finally, we provide our perspective on how computation can be integrated into the study of the fine-tuning of functions in the highly complex Hsp90 landscape, complementing experimental methods for a comprehensive understanding of this important chaperone system.
Collapse
Affiliation(s)
| | | | | | - Chiranjeevi Pasala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies (SCITEC) - Italian National Research Council (CNR), Milano, Italy.
| | | |
Collapse
|
3
|
Liu S, Shen G, Zhou X, Sun L, Yu L, Cao Y, Shu X, Ran Y. Hsp90 Promotes Gastric Cancer Cell Metastasis and Stemness by Regulating the Regional Distribution of Glycolysis-Related Metabolic Enzymes in the Cytoplasm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310109. [PMID: 38874476 PMCID: PMC11434123 DOI: 10.1002/advs.202310109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Heat-shock protein 90 (Hsp90) plays a crucial role in tumorigenesis and tumor progression; however, its mechanism of action in gastric cancer (GC) remains unclear. Here, the role of Hsp90 in GC metabolism is the focus of this research. High expression of Hsp90 in GC tissues can interact with glycolysis, collectively affecting prognosis in clinical samples. Both in vitro and in vivo experiments demonstrate that Hsp90 is able to regulate the migration and stemness properties of GC cells. Metabolic phenotype analyses indicate that Hsp90 influences glycolytic metabolism. Mechanistically, Hsp90 interacts with glycolysis-related enzymes, forming multienzyme complexes to enhance glycolysis efficiency and yield. Additionally, Hsp90 binds to cytoskeleton-related proteins, regulating the regional distribution of glycolytic enzymes at the cell margin and lamellar pseudopods. This effect could lead to a local increase in efficient energy supply from glycolysis, further promoting epithelial-mesenchymal transition (EMT) and metastasis. In summary, Hsp90, through its interaction with metabolic enzymes related to glycolysis, forms multi-enzyme complexes and regulates regional distribution of glycolysis by dynamic cytoskeletal adjustments, thereby promoting the migration and stemness of GC cells. These conclusions also support the potential for a combined targeted approach involving Hsp90, glycolysis, and the cytoskeleton in clinical therapy.
Collapse
Affiliation(s)
- Shiya Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gaigai Shen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuanyu Zhou
- Department of Epidemiology & Population Health, Stanford University of Medicine, Stanford, CA, 94305, USA
| | - Lixin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanting Cao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiong Shu
- Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
4
|
Li F, Fan Y, Zhou L, Martin DR, Liu Z, Li Z. Synthesis and characterization of 64Cu-labeled Geldanamycin derivative for imaging HSP90 expression in breast cancer. Nucl Med Biol 2024; 136-137:108929. [PMID: 38796925 DOI: 10.1016/j.nucmedbio.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Heat shock protein 90 (HSP90) plays a crucial role in cancer cell growth and metastasis by stabilizing overexpressed signaling proteins. Inhibiting HSP90 has emerged as a promising anti-cancer strategy. In this study, we aimed to develop and characterize a HSP90-targeted molecular imaging probe, [64Cu]Cu-DOTA-BDA-GM, based on a specific HSP90 inhibitor, geldanamycin (GM), for PET imaging of cancers. GM is modified at the C-17 position with 1,4-butane-diamine (BDA) and linked to 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for 64Cu radiolabeling. We evaluated the probe's specific binding to HSP90-expressing cells using Chinese hamster ovary (CHO) cells and breast cancer cells including MDA-MB-231, MDA-MB-435S, MCF7, and KR-BR-3 cell lines. A competition study with non-radioactive GM-BDA yielded an IC50 value of 1.35 ± 0.14 nM, underscoring the probe's affinity for HSP90. In xenograft models of MDA-MB-231 breast cancer, [64Cu]Cu-DOTA-BDA-GM showcased targeted tumor localization, with significant radioactivity observed up to 18 h post-injection. Blocking studies using unlabeled GM-BDA and treatment with the anticancer drug Vorinostat (SAHA), which can affect the expression and activity of numerous proteins, such as HSPs, confirmed the specificity and sensitivity of the probe in cancer targeting. Additionally, PET/CT imaging in a lung metastasis mouse model revealed increased lung uptake of [64Cu]Cu-DOTA-BDA-GM in metastatic sites, significantly higher than in non-metastatic lungs, illustrating the probe's ability to detect metastatic breast cancer. In conclusion, [64Cu]Cu-DOTA-BDA-GM represents a sensitive and specific approach for identifying HSP90 expression in breast cancer and metastases, offering promising implications for clinical diagnosis and monitoring.
Collapse
Affiliation(s)
- Feng Li
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yubo Fan
- Division of Physical Science & Processing Technology, Brazosport College, Lake Jackson, TX, USA
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Diego R Martin
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Zhonglin Liu
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - Zheng Li
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Bay S, Digwal CS, Rodilla Martín AM, Sharma S, Stanisavljevic A, Rodina A, Attaran A, Roychowdhury T, Parikh K, Toth E, Panchal P, Rosiek E, Pasala C, Arancio O, Fraser PE, Alldred MJ, Prado MAM, Ginsberg SD, Chiosis G. Synthesis and Characterization of Click Chemical Probes for Single-Cell Resolution Detection of Epichaperomes in Neurodegenerative Disorders. Biomedicines 2024; 12:1252. [PMID: 38927459 PMCID: PMC11201208 DOI: 10.3390/biomedicines12061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Chander S. Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Ananda M. Rodilla Martín
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | | | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Anoosha Attaran
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; (A.A.); (M.A.M.P.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Kamya Parikh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Eugene Toth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY 10032, USA;
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada;
| | - Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; (A.S.); (M.J.A.)
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marco A. M. Prado
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; (A.A.); (M.A.M.P.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; (A.S.); (M.J.A.)
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
McNutt SW, Roychowdhury T, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, DeStanchina E, Corben A, Modi S, Alpaugh M, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-Driven Epichaperome Assembly: A Critical Regulator of Cellular Adaptability and Proliferation. RESEARCH SQUARE 2024:rs.3.rs-4114038. [PMID: 38645031 PMCID: PMC11030525 DOI: 10.21203/rs.3.rs-4114038/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- co-first author, equally contributed to the work
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- co-first author, equally contributed to the work
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| |
Collapse
|
7
|
Eisa NH, Crowley VM, Elahi A, Kommalapati VK, Serwetnyk MA, Llbiyi T, Lu S, Kainth K, Jilani Y, Marasco D, El Andaloussi A, Lee S, Tsai FT, Rodriguez PC, Munn D, Celis E, Korkaya H, Debbab A, Blagg B, Chadli A. Enniatin A inhibits the chaperone Hsp90 and unleashes the immune system against triple-negative breast cancer. iScience 2023; 26:108308. [PMID: 38025772 PMCID: PMC10663837 DOI: 10.1016/j.isci.2023.108308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Low response rates and immune-related adverse events limit the remarkable impact of cancer immunotherapy. To improve clinical outcomes, preclinical studies have shown that combining immunotherapies with N-terminal Hsp90 inhibitors resulted in improved efficacy, even though induction of an extensive heat shock response (HSR) and less than optimal dosing of these inhibitors limited their clinical efficacy as monotherapies. We discovered that the natural product Enniatin A (EnnA) targets Hsp90 and destabilizes its client oncoproteins without inducing an HSR. EnnA triggers immunogenic cell death in triple-negative breast cancer (TNBC) syngeneic mouse models and exhibits superior antitumor activity compared to Hsp90 N-terminal inhibitors. EnnA reprograms the tumor microenvironment (TME) to promote CD8+ T cell-dependent antitumor immunity by reducing PD-L1 levels and activating the chemokine receptor CX3CR1 pathway. These findings provide strong evidence for transforming the immunosuppressive TME into a more tumor-hostile milieu by engaging Hsp90 with therapeutic agents involving novel mechanisms of action.
Collapse
Affiliation(s)
- Nada H. Eisa
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Vincent M. Crowley
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Asif Elahi
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Vamsi Krishna Kommalapati
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Michael A. Serwetnyk
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Taoufik Llbiyi
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Sumin Lu
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Kashish Kainth
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Yasmeen Jilani
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Via Montesano, 49, 80131 Naples, Italy
| | - Abdeljabar El Andaloussi
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Sukyeong Lee
- Departments of Biochemistry and Molecular Biology, Molecular and Cellular Biology, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francis T.F. Tsai
- Departments of Biochemistry and Molecular Biology, Molecular and Cellular Biology, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - David Munn
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Esteban Celis
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Hasan Korkaya
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| | - Abdessamad Debbab
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Building 26.23, 40225 Düsseldorf, Germany
| | - Brian Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia at Augusta University, 1410 Laney Walker Boulevard, CN-3329, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Vogt M, Dienstbier N, Schliehe-Diecks J, Scharov K, Tu JW, Gebing P, Hogenkamp J, Bilen BS, Furlan S, Picard D, Remke M, Yasin L, Bickel D, Kalia M, Iacoangeli A, Lenz T, Stühler K, Pandyra AA, Hauer J, Fischer U, Wagener R, Borkhardt A, Bhatia S. Co-targeting HSP90 alpha and CDK7 overcomes resistance against HSP90 inhibitors in BCR-ABL1+ leukemia cells. Cell Death Dis 2023; 14:799. [PMID: 38057328 PMCID: PMC10700369 DOI: 10.1038/s41419-023-06337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and β) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90β isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.
Collapse
Affiliation(s)
- Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katerina Scharov
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Berna-Selin Bilen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Furlan
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Bickel
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Munishikha Kalia
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Julia Hauer
- Department of Pediatrics and Children's Cancer Research Center, Children's Hospital Munich Schwabing, Technical University of Munich, School of Medicine, Munich, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Sharma S, Joshi S, Kalidindi T, Digwal CS, Panchal P, Lee SG, Zanzonico P, Pillarsetty N, Chiosis G. Unraveling the Mechanism of Epichaperome Modulation by Zelavespib: Biochemical Insights on Target Occupancy and Extended Residence Time at the Site of Action. Biomedicines 2023; 11:2599. [PMID: 37892973 PMCID: PMC10604720 DOI: 10.3390/biomedicines11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Drugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism. They have shown significant therapeutic value in cancer and neurodegenerative diseases by disassembling epichaperomes, which are assemblies of tightly bound chaperones and other factors that serve as scaffolding platforms to pathologically rewire protein-protein interactions. To investigate their impact on epichaperomes in vivo, we conducted pharmacokinetic and target occupancy measurements for zelavespib and monitored epichaperome assemblies biochemically in a mouse model. Our findings provide evidence of the intricate mechanism through which zelavespib modulates epichaperomes in vivo. Initially, zelavespib becomes trapped when epichaperomes bound, a mechanism that results in epichaperome disassembly, with no change in the expression level of epichaperome constituents. We propose that the initial trapping stage of epichaperomes is a main contributing factor to the extended on-target residence time observed for this agent in clinical settings. Zelavespib's residence time in tumors seems to be dictated by target disassembly kinetics rather than by frank drug-target unbinding kinetics. The off-rate of zelavespib from epichaperomes is, therefore, much slower than anticipated from the recorded tumor pharmacokinetic profile or as determined in vitro using diluted systems. This research sheds light on the underlying processes that make epichaperome agents effective in the treatment of certain diseases.
Collapse
Affiliation(s)
- Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Chander S. Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Sang-Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Pat Zanzonico
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Nagavarakishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
11
|
Carter BZ, Mak PY, Muftuoglu M, Tao W, Ke B, Pei J, Bedoy AD, Ostermann LB, Nishida Y, Isgandarova S, Sobieski M, Nguyen N, Powell RT, Martinez-Moczygemba M, Stephan C, Basyal M, Pemmaraju N, Boettcher S, Ebert BL, Shpall EJ, Wallner B, Morgan RA, Karras GI, Moll UM, Andreeff M. Epichaperome inhibition targets TP53-mutant AML and AML stem/progenitor cells. Blood 2023; 142:1056-1070. [PMID: 37339579 PMCID: PMC10656725 DOI: 10.1182/blood.2022019047] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
TP 53-mutant acute myeloid leukemia (AML) remains the ultimate therapeutic challenge. Epichaperomes, formed in malignant cells, consist of heat shock protein 90 (HSP90) and associated proteins that support the maturation, activity, and stability of oncogenic kinases and transcription factors including mutant p53. High-throughput drug screening identified HSP90 inhibitors as top hits in isogenic TP53-wild-type (WT) and -mutant AML cells. We detected epichaperomes in AML cells and stem/progenitor cells with TP53 mutations but not in healthy bone marrow (BM) cells. Hence, we investigated the therapeutic potential of specifically targeting epichaperomes with PU-H71 in TP53-mutant AML based on its preferred binding to HSP90 within epichaperomes. PU-H71 effectively suppressed cell intrinsic stress responses and killed AML cells, primarily by inducing apoptosis; targeted TP53-mutant stem/progenitor cells; and prolonged survival of TP53-mutant AML xenograft and patient-derived xenograft models, but it had minimal effects on healthy human BM CD34+ cells or on murine hematopoiesis. PU-H71 decreased MCL-1 and multiple signal proteins, increased proapoptotic Bcl-2-like protein 11 levels, and synergized with BCL-2 inhibitor venetoclax in TP53-mutant AML. Notably, PU-H71 effectively killed TP53-WT and -mutant cells in isogenic TP53-WT/TP53-R248W Molm13 cell mixtures, whereas MDM2 or BCL-2 inhibition only reduced TP53-WT but favored the outgrowth of TP53-mutant cells. Venetoclax enhanced the killing of both TP53-WT and -mutant cells by PU-H71 in a xenograft model. Our data suggest that epichaperome function is essential for TP53-mutant AML growth and survival and that its inhibition targets mutant AML and stem/progenitor cells, enhances venetoclax activity, and prevents the outgrowth of venetoclax-resistant TP53-mutant AML clones. These concepts warrant clinical evaluation.
Collapse
Affiliation(s)
- Bing Z. Carter
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Po Yee Mak
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muharrem Muftuoglu
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenjing Tao
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Baozhen Ke
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingqi Pei
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrea D. Bedoy
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren B. Ostermann
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sevinj Isgandarova
- Center for Infectious and Inflammatory Disease, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Mary Sobieski
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Nghi Nguyen
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Reid T. Powell
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Margarita Martinez-Moczygemba
- Center for Infectious and Inflammatory Disease, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Mahesh Basyal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Georgios I. Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX
| | - Ute M. Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Patwardhan CA, Kommalapati VK, Llbiyi T, Singh D, Alfa E, Horuzsko A, Korkaya H, Panda S, Reilly CA, Popik V, Chadli A. Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin). Sci Rep 2023; 13:13790. [PMID: 37612326 PMCID: PMC10447550 DOI: 10.1038/s41598-023-40933-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Heat shock protein 90 (Hsp90) and its co-chaperones promote cancer, and targeting Hsp90 holds promise for cancer treatment. Most of the efforts to harness this potential have focused on targeting the Hsp90 N-terminus ATP binding site. Although newer-generation inhibitors have shown improved efficacy in aggressive cancers, induction of the cellular heat shock response (HSR) by these inhibitors is thought to limit their clinical efficacy. Therefore, Hsp90 inhibitors with novel mechanisms of action and that do not trigger the HSR would be advantageous. Here, we investigated the mechanism by which capsaicin inhibits Hsp90. Through mutagenesis, chemical modifications, and proteomic studies, we show that capsaicin binds to the N-terminus of Hsp90 and inhibits its ATPase activity. Consequently, capsaicin and its analogs inhibit Hsp90 ATPase-dependent progesterone receptor reconstitution in vitro. Capsaicin did not induce the HSR, instead, it promoted the degradation of Hsp70 through the lysosome-autophagy pathway. Remarkably, capsaicin did not induce degradation of the constitutively expressed cognate Hsc70, indicating selectivity for Hsp70. Combined treatments of capsaicin and the Hsp90 inhibitor 17-AAG improved the anti-tumor efficacy of 17-AAG in cell culture and tridimensional tumor spheroid growth assays using breast and prostate cancer models. Consistent with this, in silico docking studies revealed that capsaicin binding to the ATP binding site of Hsp90 was distinct from classical N-terminus Hsp90 inhibitors, indicating a novel mechanism of action. Collectively, these findings support the use of capsaicin as a chemical scaffold to develop novel Hsp90 N-terminus inhibitors as well as its ability to be a potential cancer co-therapeutic.
Collapse
Affiliation(s)
- Chaitanya A Patwardhan
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA
| | - Vamsi Krishna Kommalapati
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA
| | - Taoufik Llbiyi
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA
| | - Digvijay Singh
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA
| | - Eyad Alfa
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA
| | - Hasan Korkaya
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA
| | - Siva Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA, 30912, USA
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Vladimir Popik
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Ahmed Chadli
- Georgia Cancer Center at Augusta University (Formerly Medical College of Georgia), 1410 Laney Walker Blvd, CN-3313, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Woodford MR, Bourboulia D, Mollapour M. Epichaperomics reveals dysfunctional chaperone protein networks. Nat Commun 2023; 14:5084. [PMID: 37607923 PMCID: PMC10444821 DOI: 10.1038/s41467-023-40713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
14
|
Castelli M, Yan P, Rodina A, Digwal CS, Panchal P, Chiosis G, Moroni E, Colombo G. How aberrant N-glycosylation can alter protein functionality and ligand binding: An atomistic view. Structure 2023; 31:987-1004.e8. [PMID: 37343552 PMCID: PMC10526633 DOI: 10.1016/j.str.2023.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Protein-assembly defects due to an enrichment of aberrant conformational protein variants are emerging as a new frontier in therapeutics design. Understanding the structural elements that rewire the conformational dynamics of proteins and pathologically perturb functionally oriented ensembles is important for inhibitor development. Chaperones are hub proteins for the assembly of multiprotein complexes and an enrichment of aberrant conformers can affect the cellular proteome, and in turn, phenotypes. Here, we integrate computational and experimental tools to investigte how N-glycosylation of specific residues in glucose-regulated protein 94 (GRP94) modulates internal dynamics and alters the conformational fitness of regions fundamental for the interaction with ATP and synthetic ligands and impacts substructures important for the recognition of interacting proteins. N-glycosylation plays an active role in modulating the energy landscape of GRP94, and we provide support for leveraging the knowledge on distinct glycosylation variants to design molecules targeting GRP94 disease-associated conformational states and assemblies.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | | | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
15
|
Rodina A, Xu C, Digwal CS, Joshi S, Patel Y, Santhaseela AR, Bay S, Merugu S, Alam A, Yan P, Yang C, Roychowdhury T, Panchal P, Shrestha L, Kang Y, Sharma S, Almodovar J, Corben A, Alpaugh ML, Modi S, Guzman ML, Fei T, Taldone T, Ginsberg SD, Erdjument-Bromage H, Neubert TA, Manova-Todorova K, Tsou MFB, Young JC, Wang T, Chiosis G. Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation. Nat Commun 2023; 14:3742. [PMID: 37353488 PMCID: PMC10290137 DOI: 10.1038/s41467-023-39241-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.
Collapse
Affiliation(s)
- Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chao Xu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yogita Patel
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Anand R Santhaseela
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Swathi Merugu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Aftab Alam
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chenghua Yang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Liza Shrestha
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yanlong Kang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Justina Almodovar
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Rowan University, Glassboro, NJ, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Katia Manova-Todorova
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason C Young
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Wilson MR, Satapathy S, Vendruscolo M. Extracellular protein homeostasis in neurodegenerative diseases. Nat Rev Neurol 2023; 19:235-245. [PMID: 36828943 DOI: 10.1038/s41582-023-00786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
The protein homeostasis (proteostasis) system encompasses the cellular processes that regulate protein synthesis, folding, concentration, trafficking and degradation. In the case of intracellular proteostasis, the identity and nature of these processes have been extensively studied and are relatively well known. By contrast, the mechanisms of extracellular proteostasis are yet to be fully elucidated, although evidence is accumulating that their age-related progressive impairment might contribute to neuronal death in neurodegenerative diseases. Constitutively secreted extracellular chaperones are emerging as key players in processes that operate to protect neurons and other brain cells by neutralizing the toxicity of extracellular protein aggregates and promoting their safe clearance and disposal. Growing evidence indicates that these extracellular chaperones exert multiple effects to promote cell viability and protect neurons against pathologies arising from the misfolding and aggregation of proteins in the synaptic space and interstitial fluid. In this Review, we outline the current knowledge of the mechanisms of extracellular proteostasis linked to neurodegenerative diseases, and we examine the latest understanding of key molecules and processes that protect the brain from the pathological consequences of extracellular protein aggregation and proteotoxicity. Finally, we contemplate possible therapeutic opportunities for neurodegenerative diseases on the basis of this emerging knowledge.
Collapse
Affiliation(s)
- Mark R Wilson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Sandeep Satapathy
- Blavatnik Institute of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Torielli L, Serapian SA, Mussolin L, Moroni E, Colombo G. Integrating Protein Interaction Surface Prediction with a Fragment-Based Drug Design: Automatic Design of New Leads with Fragments on Energy Surfaces. J Chem Inf Model 2023; 63:343-353. [PMID: 36574607 PMCID: PMC9832486 DOI: 10.1021/acs.jcim.2c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) have emerged in the past years as significant pharmacological targets in the development of new therapeutics due to their key roles in determining pathological pathways. Herein, we present fragments on energy surfaces, a simple and general design strategy that integrates the analysis of the dynamic and energetic signatures of proteins to unveil the substructures involved in PPIs, with docking, selection, and combination of drug-like fragments to generate new PPI inhibitor candidates. Specifically, structural representatives of the target protein are used as inputs for the blind physics-based prediction of potential protein interaction surfaces using the matrix of low coupling energy decomposition method. The predicted interaction surfaces are subdivided into overlapping windows that are used as templates to direct the docking and combination of fragments representative of moieties typically found in active drugs. This protocol is then applied and validated using structurally diverse, important PPI targets as test systems. We demonstrate that our approach facilitates the exploration of the molecular diversity space of potential ligands, with no requirement of prior information on the location and properties of interaction surfaces or on the structures of potential lead compounds. Importantly, the hit molecules that emerge from our ab initio design share high chemical similarity with experimentally tested active PPI inhibitors. We propose that the protocol we describe here represents a valuable means of generating initial leads against difficult targets for further development and refinement.
Collapse
Affiliation(s)
- Luca Torielli
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy
| | - Stefano A. Serapian
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy
| | - Lara Mussolin
- Department
of Woman’s and Child’s Health, Pediatric Hematology,
Oncology and Stem Cell Transplant Center, University of Padua, Via Giustiniani, 3, Padua35128, Italy,Istituto
di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, 4 F, Padova35127, Italy
| | | | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy,
| |
Collapse
|
18
|
Ginsberg SD, Sharma S, Norton L, Chiosis G. Targeting stressor-induced dysfunctions in protein-protein interaction networks via epichaperomes. Trends Pharmacol Sci 2023; 44:20-33. [PMID: 36414432 PMCID: PMC9789192 DOI: 10.1016/j.tips.2022.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
Diseases are manifestations of complex changes in protein-protein interaction (PPI) networks whereby stressors, genetic, environmental, and combinations thereof, alter molecular interactions and perturb the individual from the level of cells and tissues to the entire organism. Targeting stressor-induced dysfunctions in PPI networks has therefore become a promising but technically challenging frontier in therapeutics discovery. This opinion provides a new framework based upon disrupting epichaperomes - pathological entities that enable dysfunctional rewiring of PPI networks - as a mechanism to revert context-specific PPI network dysfunction to a normative state. We speculate on the implications of recent research in this area for a precision medicine approach to detecting and treating complex diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sahil Sharma
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Larry Norton
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA; Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Sharma S, Kalidindi T, Joshi S, Digwal CS, Panchal P, Burnazi E, Lee SG, Pillarsetty N, Chiosis G. Synthesis of 124I-labeled epichaperome probes and assessment in visualizing pathologic protein-protein interaction networks in tumor bearing mice. STAR Protoc 2022; 3:101318. [PMID: 35496791 PMCID: PMC9046997 DOI: 10.1016/j.xpro.2022.101318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epichaperomes are disease-associated pathologic scaffolds composed of tightly bound chaperones and co-chaperones. They provide opportunities for precision medicine where aberrant protein-protein interaction networks, rather than a single protein, are detected and targeted. This protocol describes the synthesis and characterization of two 124I-labeled epichaperome probes, [124I]-PU-H71 and [124I]-PU-AD, both which have translated to clinical studies. It shows specific steps in the use of these reagents to image and quantify epichaperome-positivity in tumor bearing mice through positron emission tomography. For complete details on the use and execution of this protocol, please refer to Bolaender et al. (2021), Inda et al. (2020), and Pillarsetty et al. (2019).
Collapse
Affiliation(s)
- Sahil Sharma
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chander S. Digwal
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Palak Panchal
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eva Burnazi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sang Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
20
|
Triveri A, Sanchez-Martin C, Torielli L, Serapian SA, Marchetti F, D'Acerno G, Pirota V, Castelli M, Moroni E, Ferraro M, Quadrelli P, Rasola A, Colombo G. Protein allostery and ligand design: Computational design meets experiments to discover novel chemical probes. J Mol Biol 2022; 434:167468. [DOI: 10.1016/j.jmb.2022.167468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
21
|
Ginsberg SD, Joshi S, Sharma S, Guzman G, Wang T, Arancio O, Chiosis G. The penalty of stress - Epichaperomes negatively reshaping the brain in neurodegenerative disorders. J Neurochem 2021; 159:958-979. [PMID: 34657288 PMCID: PMC8688321 DOI: 10.1111/jnc.15525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Adaptation to acute and chronic stress and/or persistent stressors is a subject of wide interest in central nervous system disorders. In this context, stress is an effector of change in organismal homeostasis and the response is generated when the brain perceives a potential threat. Herein, we discuss a nuanced and granular view whereby a wide variety of genotoxic and environmental stressors, including aging, genetic risk factors, environmental exposures, and age- and lifestyle-related changes, act as direct insults to cellular, as opposed to organismal, homeostasis. These two concepts of how stressors impact the central nervous system are not mutually exclusive. We discuss how maladaptive stressor-induced changes in protein connectivity through epichaperomes, disease-associated pathologic scaffolds composed of tightly bound chaperones, co-chaperones, and other factors, impact intracellular protein functionality altering phenotypes, that in turn disrupt and remodel brain networks ranging from intercellular to brain connectome levels. We provide an evidence-based view on how these maladaptive changes ranging from stressor to phenotype provide unique precision medicine opportunities for diagnostic and therapeutic development, especially in the context of neurodegenerative disorders including Alzheimer's disease where treatment options are currently limited.
Collapse
Affiliation(s)
- Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
- Departments of Psychiatry, Neuroscience & Physiology, the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York City, New York, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Gianny Guzman
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York City, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, New York, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| |
Collapse
|
22
|
Joshi S, Gomes ED, Wang T, Corben A, Taldone T, Gandu S, Xu C, Sharma S, Buddaseth S, Yan P, Chan LYL, Gokce A, Rajasekhar VK, Shrestha L, Panchal P, Almodovar J, Digwal CS, Rodina A, Merugu S, Pillarsetty N, Miclea V, Peter RI, Wang W, Ginsberg SD, Tang L, Mattar M, de Stanchina E, Yu KH, Lowery M, Grbovic-Huezo O, O'Reilly EM, Janjigian Y, Healey JH, Jarnagin WR, Allen PJ, Sander C, Erdjument-Bromage H, Neubert TA, Leach SD, Chiosis G. Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer. Commun Biol 2021; 4:1333. [PMID: 34824367 PMCID: PMC8617294 DOI: 10.1038/s42003-021-02842-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Erica DaGama Gomes
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chao Xu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Salma Buddaseth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lon Yin L Chan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Askan Gokce
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Vinagolu K Rajasekhar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lisa Shrestha
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Justina Almodovar
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Swathi Merugu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Vlad Miclea
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania
| | - Radu I Peter
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania
| | - Wanyan Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marissa Mattar
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kenneth H Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maeve Lowery
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yelena Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter J Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chris Sander
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Steven D Leach
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Lebanon, NH, 03766, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
23
|
Calvo-Vidal MN, Zamponi N, Krumsiek J, Stockslager MA, Revuelta MV, Phillip JM, Marullo R, Tikhonova E, Kotlov N, Patel J, Yang SN, Yang L, Taldone T, Thieblemont C, Leonard JP, Martin P, Inghirami G, Chiosis G, Manalis SR, Cerchietti L. Oncogenic HSP90 Facilitates Metabolic Alterations in Aggressive B-cell Lymphomas. Cancer Res 2021; 81:5202-5216. [PMID: 34479963 PMCID: PMC8530929 DOI: 10.1158/0008-5472.can-21-2734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
HSP90 is critical for maintenance of the cellular proteostasis. In cancer cells, HSP90 also becomes a nucleating site for the stabilization of multiprotein complexes including signaling pathways and transcription complexes. Here we described the role of this HSP90 form, referred to as oncogenic HSP90, in the regulation of cytosolic metabolic pathways in proliferating B-cell lymphoma cells. Oncogenic HSP90 assisted in the organization of metabolic enzymes into non-membrane-bound functional compartments. Under experimental conditions that conserved cellular proteostasis, oncogenic HSP90 coordinated and sustained multiple metabolic pathways required for energy production and maintenance of cellular biomass as well as for secretion of extracellular metabolites. Conversely, inhibition of oncogenic HSP90, in absence of apparent client protein degradation, decreased the efficiency of MYC-driven metabolic reprogramming. This study reveals that oncogenic HSP90 supports metabolism in B-cell lymphoma cells and patients with diffuse large B-cell lymphoma, providing a novel mechanism of activity for HSP90 inhibitors. SIGNIFICANCE: The oncogenic form of HSP90 organizes and maintains functional multienzymatic metabolic hubs in cancer cells, suggesting the potential of repurposing oncogenic HSP90 selective inhibitors to disrupt metabolism in lymphoma cells.
Collapse
Affiliation(s)
- M Nieves Calvo-Vidal
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Nahuel Zamponi
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Max A Stockslager
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Maria V Revuelta
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jude M Phillip
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Rossella Marullo
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | | | | | - Jayeshkumar Patel
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Shao Ning Yang
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Lucy Yang
- Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tony Taldone
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Institute, New York, New York
| | - Catherine Thieblemont
- APHP, Saint-Louis Hospital, Hemato-Oncology, Paris - Paris Diderot University, Paris, France.,EA3788, Paris Descartes University, Paris, France
| | - John P Leonard
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Peter Martin
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Giorgio Inghirami
- Deparment of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Gabriela Chiosis
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Institute, New York, New York
| | - Scott R Manalis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Leandro Cerchietti
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
24
|
Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021; 12:4810. [PMID: 34376666 PMCID: PMC8355188 DOI: 10.1038/s41467-021-24792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Abeza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | | | | | | | | | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - François Gerbe
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Verheggen
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Edouard Bertrand
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- IGH, Univ Montpellier, CNRS, Montpellier, France.
| | | | - Bérengère Pradet-Balade
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- CRBM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
25
|
Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nat Commun 2021; 12:4669. [PMID: 34344873 PMCID: PMC8333062 DOI: 10.1038/s41467-021-24821-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Diseases are a manifestation of how thousands of proteins interact. In several diseases, such as cancer and Alzheimer’s disease, proteome-wide disturbances in protein-protein interactions are caused by alterations to chaperome scaffolds termed epichaperomes. Epichaperome-directed chemical probes may be useful for detecting and reversing defective chaperomes. Here we provide structural, biochemical, and functional insights into the discovery of epichaperome probes, with a focus on their use in central nervous system diseases. We demonstrate on-target activity and kinetic selectivity of a radiolabeled epichaperome probe in both cells and mice, together with a proof-of-principle in human patients in an exploratory single group assignment diagnostic study (ClinicalTrials.gov Identifier: NCT03371420). The clinical study is designed to determine the pharmacokinetic parameters and the incidence of adverse events in patients receiving a single microdose of the radiolabeled probe administered by intravenous injection. In sum, we introduce a discovery platform for brain-directed chemical probes that specifically modulate epichaperomes and provide proof-of-principle applications in their use in the detection, quantification, and modulation of the target in complex biological systems. Here, the authors show structural, biochemical, and functional insights into the discovery of epichaperome‐ directed chemical probes for use in central nervous system diseases. Probes emerging from this work have translated to human clinical studies in Alzheimer’s disease and cancer.
Collapse
|
26
|
Sugita M, Wilkes DC, Bareja R, Eng KW, Nataraj S, Jimenez-Flores RA, Yan L, De Leon JP, Croyle JA, Kaner J, Merugu S, Sharma S, MacDonald TY, Noorzad Z, Panchal P, Pancirer D, Cheng S, Xiang JZ, Olson L, Van Besien K, Rickman DS, Mathew S, Tam W, Rubin MA, Beltran H, Sboner A, Hassane DC, Chiosis G, Elemento O, Roboz GJ, Mosquera JM, Guzman ML. Targeting the epichaperome as an effective precision medicine approach in a novel PML-SYK fusion acute myeloid leukemia. NPJ Precis Oncol 2021; 5:44. [PMID: 34040147 PMCID: PMC8155064 DOI: 10.1038/s41698-021-00183-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The epichaperome is a new cancer target composed of hyperconnected networks of chaperome members that facilitate cell survival. Cancers with an altered chaperone configuration may be susceptible to epichaperome inhibitors. We developed a flow cytometry-based assay for evaluation and monitoring of epichaperome abundance at the single cell level, with the goal of prospectively identifying patients likely to respond to epichaperome inhibitors, to measure target engagement, and dependency during treatment. As proof of principle, we describe a patient with an unclassified myeloproliferative neoplasm harboring a novel PML-SYK fusion, who progressed to acute myeloid leukemia despite chemotherapy and allogeneic stem cell transplant. The leukemia was identified as having high epichaperome abundance. We obtained compassionate access to an investigational epichaperome inhibitor, PU-H71. After 16 doses, the patient achieved durable complete remission. These encouraging results suggest that further investigation of epichaperome inhibitors in patients with abundant baseline epichaperome levels is warranted.
Collapse
Affiliation(s)
- Mayumi Sugita
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David C Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth W Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Sarah Nataraj
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Reyna A Jimenez-Flores
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - LunBiao Yan
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeanne Pauline De Leon
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jaclyn A Croyle
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - Justin Kaner
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Swathi Merugu
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Y MacDonald
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - Zohal Noorzad
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danielle Pancirer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - Shuhua Cheng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - Jenny Z Xiang
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - Luke Olson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Koen Van Besien
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - David S Rickman
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Susan Mathew
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Bern Center of Precision Medicine, Universität of Bern, Bern, Switzerland
| | - Himisha Beltran
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Duane C Hassane
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Gail J Roboz
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Monica L Guzman
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Ginsberg SD, Neubert TA, Sharma S, Digwal CS, Yan P, Timbus C, Wang T, Chiosis G. Disease-specific interactome alterations via epichaperomics: the case for Alzheimer's disease. FEBS J 2021; 289:2047-2066. [PMID: 34028172 DOI: 10.1111/febs.16031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022]
Abstract
The increasingly appreciated prevalence of complicated stressor-to-phenotype associations in human disease requires a greater understanding of how specific stressors affect systems or interactome properties. Many currently untreatable diseases arise due to variations in, and through a combination of, multiple stressors of genetic, epigenetic, and environmental nature. Unfortunately, how such stressors lead to a specific disease phenotype or inflict a vulnerability to some cells and tissues but not others remains largely unknown and unsatisfactorily addressed. Analysis of cell- and tissue-specific interactome networks may shed light on organization of biological systems and subsequently to disease vulnerabilities. However, deriving human interactomes across different cell and disease contexts remains a challenge. To this end, this opinion article links stressor-induced protein interactome network perturbations to the formation of pathologic scaffolds termed epichaperomes, revealing a viable and reproducible experimental solution to obtaining rigorous context-dependent interactomes. This article presents our views on how a specialized 'omics platform called epichaperomics may complement and enhance the currently available conventional approaches and aid the scientific community in defining, understanding, and ultimately controlling interactome networks of complex diseases such as Alzheimer's disease. Ultimately, this approach may aid the transition from a limited single-alteration perspective in disease to a comprehensive network-based mindset, which we posit will result in precision medicine paradigms for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry, Neuroscience & Physiology, The NYU Neuroscience Institute, New York University Grossman School of Medicine, NY, USA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, USA
| | - Sahil Sharma
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Chander S Digwal
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Pengrong Yan
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Calin Timbus
- Department of Mathematics, Technical University of Cluj-Napoca, CJ, Romania
| | - Tai Wang
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA.,Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
28
|
Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem 2021; 64:7060-7082. [PMID: 34009983 DOI: 10.1021/acs.jmedchem.0c02091] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hsp70s are among the most highly conserved proteins in all of biology. Through an iterative binding and release of exposed hydrophobic residues on client proteins, Hsp70s can prevent aggregation and promote folding to the native state of their client proteins. The human proteome contains eight canonical Hsp70s. Because Hsp70s are relatively promiscuous they play a role in folding a large proportion of the proteome. Hsp70s are implicated in disease through their ability to regulate protein homeostasis. In recent years, researchers have attempted to develop selective inhibitors of Hsp70 isoforms to better understand the role of individual isoforms in biology and as potential therapeutics. Selective inhibitors have come from rational design, forced localization, and serendipity, but the development of completely selective inhibitors remains elusive. In the present review, we discuss the Hsp70 structure and function, the known Hsp70 client proteins, the role of Hsp70s in disease, and current efforts to discover Hsp70 modulators.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
29
|
Yan P, Patel HJ, Sharma S, Corben A, Wang T, Panchal P, Yang C, Sun W, Araujo TL, Rodina A, Joshi S, Robzyk K, Gandu S, White JR, de Stanchina E, Modi S, Janjigian YY, Hill EG, Liu B, Erdjument-Bromage H, Neubert TA, Que NLS, Li Z, Gewirth DT, Taldone T, Chiosis G. Molecular Stressors Engender Protein Connectivity Dysfunction through Aberrant N-Glycosylation of a Chaperone. Cell Rep 2021; 31:107840. [PMID: 32610141 PMCID: PMC7372946 DOI: 10.1016/j.celrep.2020.107840] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Stresses associated with disease may pathologically remodel the proteome by both increasing interaction strength and altering interaction partners, resulting in proteome-wide connectivity dysfunctions. Chaperones play an important role in these alterations, but how these changes are executed remains largely unknown. Our study unveils a specific N-glycosylation pattern used by a chaperone, Glucose-regulated protein 94 (GRP94), to alter its conformational fitness and stabilize a state most permissive for stable interactions with proteins at the plasma membrane. This "protein assembly mutation' remodels protein networks and properties of the cell. We show in cells, human specimens, and mouse xenografts that proteome connectivity is restorable by inhibition of the N-glycosylated GRP94 variant. In summary, we provide biochemical evidence for stressor-induced chaperone-mediated protein mis-assemblies and demonstrate how these alterations are actionable in disease.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hardik J Patel
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Currently at Mount Sinai Hospital, New York, NY 10029, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenghua Yang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Currently at Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weilin Sun
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thais L Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth Robzyk
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Srinivasa Gandu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie R White
- Comparative Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bei Liu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Nanette L S Que
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
30
|
Mshaik R, Simonet J, Georgievski A, Jamal L, Bechoua S, Ballerini P, Bellaye PS, Mlamla Z, Pais de Barros JP, Geissler A, Francin PJ, Girodon F, Garrido C, Quéré R. HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias. Blood Cancer J 2021; 11:61. [PMID: 33737511 PMCID: PMC7973815 DOI: 10.1038/s41408-021-00450-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
T-cell and B-cell acute lymphoblastic leukemias (T-ALL, B-ALL) are aggressive hematological malignancies characterized by an accumulation of immature T- or B-cells. Although patient outcomes have improved, novel targeted therapies are needed to reduce the intensity of chemotherapy and improve the prognosis of high-risk patients. Using cell lines, primary cells and patient-derived xenograft (PDX) models, we demonstrate that ALL cells viability is sensitive to NVP-BEP800, an ATP-competitive inhibitor of Heat shock protein 90 (HSP90). Furthermore, we reveal that lymphocyte-specific SRC family kinases (SFK) are important clients of the HSP90 chaperone in ALL. When PDX mice are treated with NVP-BEP800, we found that there is a decrease in ALL progression. Together, these results demonstrate that the chaperoning of SFK by HSP90 is involved in the growth of ALL. These novel findings provide an alternative approach to target SRC kinases and could be used for the development of new treatment strategies for ALL.
Collapse
Affiliation(s)
- Rony Mshaik
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
| | - John Simonet
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Layla Jamal
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
| | - Shaliha Bechoua
- Centre de Ressources Biologiques Ferdinand Cabanne, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Paola Ballerini
- Laboratoire d'Hématologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Pierre-Simon Bellaye
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Plateforme de Lipidomique, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
- Plateforme de Lipidomique, Université de Bourgogne Franche-Comté, Dijon, France
| | - Audrey Geissler
- Plateforme d'Imagerie Cellulaire, CellImaP, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Jean Francin
- Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Hôpital Universitaire François Mitterrand, Dijon, France
| | - François Girodon
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Service d'Hématologie Biologique, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
31
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
32
|
Grbovic-Huezo O, Pitter KL, Lecomte N, Saglimbeni J, Askan G, Holm M, Melchor JP, Chandwani R, Joshi S, Haglund C, Iacobuzio-Donahue CA, Chiosis G, Tammela T, Leach SD. Unbiased in vivo preclinical evaluation of anticancer drugs identifies effective therapy for the treatment of pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 2020; 117:30670-30678. [PMID: 33199632 PMCID: PMC7720119 DOI: 10.1073/pnas.1920240117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, which limits surgical options and portends a dismal prognosis. Current oncologic PDAC therapies confer marginal benefit and, thus, a significant unmet clinical need exists for new therapeutic strategies. To identify effective PDAC therapies, we leveraged a syngeneic orthotopic PDAC transplant mouse model to perform a large-scale, in vivo screen of 16 single-agent and 41 two-drug targeted therapy combinations in mice. Among 57 drug conditions screened, combined inhibition of heat shock protein (Hsp)-90 and MEK was found to produce robust suppression of tumor growth, leading to an 80% increase in the survival of PDAC-bearing mice with no significant toxicity. Mechanistically, we observed that single-agent MEK inhibition led to compensatory activation of resistance pathways, including components of the PI3K/AKT/mTOR signaling axis, which was overcome with the addition of HSP90 inhibition. The combination of HSP90(i) + MEK(i) was also active in vitro in established human PDAC cell lines and in vivo in patient-derived organoid PDAC transplant models. These findings encourage the clinical development of HSP90(i) + MEK(i) combination therapy and highlight the power of clinically relevant in vivo model systems for identifying cancer therapies.
Collapse
Affiliation(s)
- Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kenneth L Pitter
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Nicolas Lecomte
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Joseph Saglimbeni
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Matilda Holm
- Translational Cancer Biology Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Jerry P Melchor
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Caj Haglund
- Translational Cancer Biology Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gabriela Chiosis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tuomas Tammela
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Steven D Leach
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Molecular and Systems Biology, Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Lebanon, NH 03766
| |
Collapse
|
33
|
Jhaveri KL, Dos Anjos CH, Taldone T, Wang R, Comen E, Fornier M, Bromberg JF, Ma W, Patil S, Rodina A, Pillarsetty N, Duggan S, Khoshi S, Kadija N, Chiosis G, Dunphy MP, Modi S. Measuring Tumor Epichaperome Expression Using [ 124I] PU-H71 Positron Emission Tomography as a Biomarker of Response for PU-H71 Plus Nab-Paclitaxel in HER2-Negative Metastatic Breast Cancer. JCO Precis Oncol 2020; 4:2000273. [PMID: 33283132 DOI: 10.1200/po.20.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Epichaperome network maintenance is vital to survival of tumors that express it. PU-H71 is an epichaperome inhibitor that binds to the ATP-binding site of HSP90 and has demonstrated antitumor activity in breast cancer xenograft models and clinical safety in patients. PU-positron emission tomography (PET) is a theragnostic imaging tool that allows visualization of the epichaperome target. In this phase Ib trial, we present safety and tolerability for PU-H71 plus nab-paclitaxel in HER2-negative patients with metastatic breast cancer (MBC) and the utility of PU-PET as a noninvasive predictive biomarker. METHODS We performed a 3 + 3 dose-escalation study with escalating PU-H71 doses and standard nab-paclitaxel. The primary objective was to establish safety and determine maximum tolerated dose (MTD)/recommended phase 2 dose. Secondary objectives were to assess pharmacokinetics and clinical efficacy. Patients could enroll in a companion PU-PET protocol to measure epichaperome expression before treatment initiation to allow exploratory correlation with treatment benefit. RESULTS Of the 12 patients enrolled, dose-limiting toxicity occurred in one patient (G3 neutropenic fever) at dose level 1; MTD of PU-H71 was 300 mg/m2 plus nab-paclitaxel 260 mg/m2 administered every 3 weeks. Common toxicities included diarrhea, fatigue, peripheral neuropathy, and nausea. PU-H71 systemic exposure was not altered by nab-paclitaxel administration. Two of 12 patients had partial response (overall response rate, 17%) and the clinical benefit rate was 42% (5 of 12). Time to progression was associated with baseline epichaperome positivity and PU-H71 peak standard uptake value (SUV), with more durable disease control observed with high epichaperome levels. CONCLUSION The combination of PU-H71 and nab-paclitaxel was well tolerated, with evidence of clinical activity. More durable disease control without progression was observed in patients with high baseline epichaperome expression. A phase II trial of this combination with PU-PET as a companion diagnostic for patient selection is currently planned.
Collapse
Affiliation(s)
- Komal L Jhaveri
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carlos H Dos Anjos
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tony Taldone
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rui Wang
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth Comen
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Monica Fornier
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jacqueline F Bromberg
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Weining Ma
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sujata Patil
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anna Rodina
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Sarhe Khoshi
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nathan Kadija
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gabriela Chiosis
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark P Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shanu Modi
- Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
34
|
Hu K, Xie L, Hanyu M, Zhang Y, Li L, Ma X, Nagatsu K, Suzuki H, Wang W, Zhang MR. Harnessing the PD-L1 interface peptide for positron emission tomography imaging of the PD-1 immune checkpoint. RSC Chem Biol 2020; 1:214-224. [PMID: 34458761 PMCID: PMC8341843 DOI: 10.1039/d0cb00070a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Interface peptides that mediate protein–protein interactions (PPI) are a class of important lead compounds for designing PPI inhibitors. However, their potential as precursors for radiotracers has never been exploited. Here we report that the interface peptides from programmed death-ligand 1 (PD-L1) can be used in positron emission tomography (PET) imaging of programmed cell death 1 (PD-1) with high accuracy and sensitivity. Moreover, the performance differentiation between murine PD-L1 derived interface peptide (mPep-1) and human PD-L1 derived interface peptide (hPep-1) as PET tracers for PD-1 unveiled an unprecedented role of a non-critical residue in target binding, highlighting the significance of PET imaging as a companion diagnostic in drug development. Collectively, this study not only provided a first-of-its-kind peptide-based PET tracer for PD-1 but also conveyed a unique paradigm for developing imaging agents for highly challenging protein targets, which could be used to identify other protein biomarkers involved in the PPI networks. Leveraging interface peptides in PD-L1 for PET imaging of PD-1, providing a new paradigm for radiotracer development.![]()
Collapse
Affiliation(s)
- Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaohui Ma
- Department of Vascular Surgery, General Hospital of People's Liberation Army Beijing 100853 P. R. China
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Hisashi Suzuki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Weizhi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| |
Collapse
|
35
|
The Unique Pharmacometrics of Small Molecule Therapeutic Drug Tracer Imaging for Clinical Oncology. Cancers (Basel) 2020; 12:cancers12092712. [PMID: 32971780 PMCID: PMC7563483 DOI: 10.3390/cancers12092712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary New clinical radiology scans using trace amounts of therapeutic cancer drugs labeled with radioisotope injected into patients can provide oncologists with fundamentally unique insights about drug delivery to tumors. This new application of radiology aims to improve how cancer drugs are used, towards improving patient outcomes. The article reviews published clinical research in this important new field. Abstract Translational development of radiolabeled analogues or isotopologues of small molecule therapeutic drugs as clinical imaging biomarkers for optimizing patient outcomes in targeted cancer therapy aims to address an urgent and recurring clinical need in therapeutic cancer drug development: drug- and target-specific biomarker assays that can optimize patient selection, dosing strategy, and response assessment. Imaging the in vivo tumor pharmacokinetics and biomolecular pharmacodynamics of small molecule cancer drugs offers patient- and tumor-specific data which are not available from other pharmacometric modalities. This review article examines clinical research with a growing pharmacopoeia of investigational small molecule cancer drug tracers.
Collapse
|
36
|
Merugu S, Sharma S, Kaner J, Digwal C, Sugita M, Joshi S, Taldone T, Guzman ML, Chiosis G. Chemical probes and methods for single-cell detection and quantification of epichaperomes in hematologic malignancies. Methods Enzymol 2020; 639:289-311. [PMID: 32475406 DOI: 10.1016/bs.mie.2020.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection of protein connectivity dysfunctions in biological samples, i.e., informing on how protein-protein interactions change from a normal to a disease state, is important for both biomedical research and clinical development. The epichaperome is an executor of protein connectivity dysfunction in disease, and thus a surrogate for its detection. This chapter will detail on published methods for epichaperome detection and quantification that combine the advantages of multiparameter flow cytometry with those of the PU-FITC fluorescently labeled epichaperome detection probe. It will offer a comprehensive method description that includes the synthesis and characterization of an epichaperome detection probe and of the negative control probe, the preparation of the biospecimen for epichaperome analysis, the execution of the epichaperome detection and quantification assay and lastly, the data acquisition and analysis. The method provides, at single-cell level, the functional signature of cells, differentiating itself from other single-cell methods that provide a catalog of molecules.
Collapse
Affiliation(s)
- Swathi Merugu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin Kaner
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chander Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mayumi Sugita
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
37
|
Pechalrieu D, Assemat F, Halby L, Marcellin M, Yan P, Chaoui K, Sharma S, Chiosis G, Burlet-Schiltz O, Arimondo PB, Lopez M. Bisubstrate-Type Chemical Probes Identify GRP94 as a Potential Target of Cytosine-Containing Adenosine Analogs. ACS Chem Biol 2020; 15:952-961. [PMID: 32191434 DOI: 10.1021/acschembio.9b00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We synthesized affinity-based chemical probes of cytosine-adenosine bisubstrate analogs and identified several potential targets by proteomic analysis. The validation of the proteomic analysis identified the chemical probe as a specific inhibitor of glucose-regulated protein 94 (GRP94), a potential drug target for several types of cancers. Therefore, as a result of the use of bisubstrate-type chemical probes and a chemical-biology methodology, this work opens the way to the development of a new family of GRP94 inhibitors that could potentially be of therapeutic interest.
Collapse
Affiliation(s)
- Dany Pechalrieu
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Fanny Assemat
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Ludovic Halby
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR no. 3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Marlene Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pengrong Yan
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sahil Sharma
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Paola B. Arimondo
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR no. 3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Marie Lopez
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM UMR 5247, 240 Avenue du Prof. E. Jeanbrau, 34296 Montpellier Cedex 5, France
| |
Collapse
|
38
|
Xu G, Ma X, Chen F, Wu D, Miao J, Fan Y. 17-DMAG disrupted the autophagy flux leading to the apoptosis of acute lymphoblastic leukemia cells by inducing heat shock cognate protein 70. Life Sci 2020; 249:117532. [PMID: 32151689 DOI: 10.1016/j.lfs.2020.117532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Abstract
AIMS B-lineage acute lymphoblastic leukemia (B-ALL) is most common in children. We had reported heat shock protein 90 (Hsp90) over-expressed in high risk B-ALL children. 17-DMAG is a water soluble Hsp90 inhibitor, which was proved to be effective for advanced solid tumors and hematological malignancy. However, there is little research on its application in newly diagnosed B-ALL. And the detailed mechanism is seldom discussed. MAIN METHODS Primary blast cells from 24 newly diagnosed B-ALL pediatric patients and two B-ALL cell lines were used in this study. Cell viability was measured by MTS assay. Apoptosis was evaluated by flow cytometry after annexin V-PI double staining. Protein expression was detected by immunoblotting analysis and immunofluorescence imaging. Cyto-ID autophagy detection assay was performed to show the autophagosomes and LysoTracker labeling to show the lysosomes. Gene knockdown was performed by RNA interference, and mRNA expression was measured by RT-qPCR. KEY FINDINGS We showed 17-DMAG induced apoptosis in newly diagnosed B-ALL blasts and cell lines effectively. 17-DMAG induced heat shock cognate protein 70 (Hsc70) expression significantly. High expressed Hsc70 inhibited cathepsin D post-transcriptionally to impede the autophagic flux, which lead to the cell death. SIGNIFICANCE Our work added new information towards understanding the molecular pharmacology of 17-DMAG, and suggested the newly diagnosed B-ALL pediatric patients might be benefited from 17-DMAG. Furthermore, we proved Hsc70 participated in the mechanism of cell death 17-DMAG leading in B-ALL.
Collapse
Affiliation(s)
- Gang Xu
- Department of Pediatric, Shengjing Hospital, China Medical University, Shenyang 110004, PR China
| | - Xiujuan Ma
- Division of Pathology and Laboratory Medicine, Yanda Daopei Hospital, Langfang 065201, PR China
| | - Fang Chen
- Department of Hematology Laboratory, Shengjing Hospital, China Medical University, Shenyang 110004, PR China
| | - Di Wu
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, PR China; Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Disease, Liaoning Province, Shenyang 110004, PR China
| | - Jianing Miao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, PR China; Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Disease, Liaoning Province, Shenyang 110004, PR China
| | - Yang Fan
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, PR China; Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Disease, Liaoning Province, Shenyang 110004, PR China.
| |
Collapse
|
39
|
Inda MC, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, Che AY, Taldone T, Yan P, Sun W, Uddin M, Panchal P, Riolo M, Shah S, Barlas A, Xu K, Chan LYL, Gruzinova A, Kishinevsky S, Studer L, Fossati V, Noggle SA, White JR, de Stanchina E, Sequeira S, Anthoney KH, Steele JW, Manova-Todorova K, Patil S, Dunphy MP, Pillarsetty N, Pereira AC, Erdjument-Bromage H, Neubert TA, Rodina A, Ginsberg SD, De Marco Garcia N, Luo W, Chiosis G. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun 2020; 11:319. [PMID: 31949159 PMCID: PMC6965647 DOI: 10.1038/s41467-019-14082-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer's disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional. We introduce the term protein connectivity-based dysfunction (PCBD) to define this mechanism. Among most sensitive to PCBD are pathways with key roles in synaptic plasticity. We show at cellular and target organ levels that network connectivity and functional imbalances revert to normal levels upon epichaperome inhibition. In conclusion, we provide proof-of-principle to propose AD is a PCBDopathy, a disease of proteome-wide connectivity defects mediated by maladaptive epichaperomes.
Collapse
Affiliation(s)
- Maria Carmen Inda
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Hostos Community College, City University of New York, The Bronx, NY, 10451, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexander Bolaender
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John Koren Iii
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alicia Yue Che
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Weilin Sun
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mohammad Uddin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Matthew Riolo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Smit Shah
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Ke Xu
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Lon Yin L Chan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra Gruzinova
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sarah Kishinevsky
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lorenz Studer
- Department of Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, 10019, USA
| | - Scott A Noggle
- The New York Stem Cell Foundation Research Institute, New York, NY, 10019, USA
| | - Julie R White
- Comparative Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sonia Sequeira
- Office of Clinical Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyle H Anthoney
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - John W Steele
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Sujata Patil
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mark P Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Ana C Pereira
- Department of Neuroscience, Rockefeller University, New York, NY, 10065, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | | | - Wenjie Luo
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
40
|
Yan P, Wang T, Guzman ML, Peter RI, Chiosis G. Chaperome Networks - Redundancy and Implications for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:87-99. [PMID: 32297213 PMCID: PMC7279512 DOI: 10.1007/978-3-030-40204-4_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Radu I Peter
- Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
41
|
Joshua AM, Tannock IF. Companion Diagnostics to Identify Biomarkers of Response to Anticancer Drugs Targeting the Proteome. Cancer Cell 2019; 36:464-465. [PMID: 31715128 DOI: 10.1016/j.ccell.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this issue of Cancer Cell, Pillarsetty and colleagues radiolabel the potential anticancer drug PU-H71 and use it with PET imaging to quantify the epichaperome protein complex in tumors and its inhibition by the drug. They thereby develop a companion diagnostic paradigm of probe-drug pairing to explore therapeutic potential.
Collapse
Affiliation(s)
- Anthony M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, Australia
| | - Ian F Tannock
- Department of Medical Oncology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|