1
|
Marletta S, Marcolini L, Caliò A, Pedron S, Antonini P, Martelli FM, Stefanizzi L, Martignoni G. Stimulator of interferon genes (STING) immunohistochemical expression in fumarate hydratase-deficient renal cell carcinoma: biological and potential predictive implications. Virchows Arch 2025:10.1007/s00428-025-04041-5. [PMID: 39899047 DOI: 10.1007/s00428-025-04041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Fumarate hydratase (FH)-deficient renal cell carcinoma is an aggressive neoplasm driven by inactivating mutations of the FH gene, which cause metabolites like S-(2-succinyl)cysteine (2SC) to accumulate and trigger cascades supporting malignant transformation. Although in preclinical models the c-GAS-STING pathway is activated by fumarate metabolites, its role in humans has not been explored yet. Eleven FH-deficient renal cell carcinomas, including primary neoplasms and metastases, were retrieved and evaluated for clinical-pathological features and immunohistochemical expression of FH, 2SC (commercially available), and STING. The in-house collection accounted for 0.2% of the 2011-2023 renal cell carcinomas cohort (5/2210). Eight-on-ten cases with available follow-up behaved aggressively (local recurrence/distant metastases). All tumors revealed FH staining loss and strong and diffuse 2SC immunolabeling. At least focal STING expression was detected in most primary tumors (9/11, 82%), often (78%) in a wide percentage of cells (≥ 30%). Notably, significant STING expression was observed in all but two aggressive renal neoplasms, with one of the remaining showing increased staining in its hepatic localization, and in 86% (6/7) of neoplasms significantly expressing PD-L1. In our series, (i) FH-deficient renal cell carcinoma represents 0.2% of in-house cases; (ii) combining FH loss and positive 2SC staining now commercially available is useful in primary and secondary tumors, supporting this latter marker's safe routine adoption; and (iii) a significant STING labeling (≥ 30%) in most of the samples, especially in those behaving aggressively and expressing PD-L1, provides novel insights regarding the molecular basis of FH-deficient renal cell carcinomas, proposing STING as a potential predictive marker.
Collapse
Affiliation(s)
- S Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
- Division of Pathology, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - L Marcolini
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - A Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - S Pedron
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - P Antonini
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - F M Martelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - L Stefanizzi
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - G Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy.
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy.
| |
Collapse
|
2
|
Perotti D, O'Sullivan MJ, Walz AL, Davick J, Al-Saadi R, Benedetti DJ, Brzezinski J, Ciceri S, Cost NG, Dome JS, Drost J, Evageliou N, Furtwängler R, Graf N, Maschietto M, Mullen EA, Murphy AJ, Ortiz MV, van der Beek JN, Verschuur A, Wegert J, Williams R, Spreafico F, Geller JI, van den Heuvel-Eibrink MM, Hong AL. Hallmark discoveries in the biology of non-Wilms tumour childhood kidney cancers. Nat Rev Urol 2025:10.1038/s41585-024-00993-6. [PMID: 39881003 DOI: 10.1038/s41585-024-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Approximately 20% of paediatric and adolescent/young adult patients with renal tumours are diagnosed with non-Wilms tumour, a broad heterogeneous group of tumours that includes clear-cell sarcoma of the kidney, congenital mesoblastic nephroma, malignant rhabdoid tumour of the kidney, renal-cell carcinoma, renal medullary carcinoma and other rare histologies. The differential diagnosis of these tumours dates back many decades, when these pathologies were identified initially through clinicopathological observation of entities with outcomes that diverged from Wilms tumour, corroborated with immunohistochemistry and molecular cytogenetics and, subsequently, through next-generation sequencing. These advances enabled near-definitive recognition of different tumours and risk stratification of patients. In parallel, the generation of new renal-tumour models of some of these pathologies including cell lines, organoids, xenografts and genetically engineered mouse models improved our understanding of the development of these tumours and have facilitated the identification of new therapeutic targets. Despite these many achievements, paediatric and adolescent/young adult patients continue to die from such rare cancers at higher rates than patients with Wilms tumour. Thus, international coordinated efforts are needed to answer unresolved questions and improve outcomes.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Histopathology, School of Medicine, Trinity College, Dublin, Ireland
- Departments of Histopathology and Paediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Amy L Walz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan Davick
- University of Iowa Hospitals and Clinics Stead Family Children's Hospital, Carver College of Medicine, Iowa City, IA, USA
| | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Daniel J Benedetti
- Division of Pediatric Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nicholas G Cost
- Department of Surgery, Division of Urology, University of Colorado School of Medicine and the Surgical Oncology Program at Children's Hospital Colorado, Denver, CO, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Rhoikos Furtwängler
- Pediatric Hematology and Oncology, Children's Hospital, Inselspital Bern University, Bern, Switzerland
- Childhood Renal Tumour Center Saarland University, Homburg, Germany
| | - Norbert Graf
- Department Paediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | | | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Andrew J Murphy
- St. Jude Children's Research Hospital Memphis, Memphis, TN, USA
| | | | - Justine N van der Beek
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arnauld Verschuur
- Department of Pediatric Hematology and Oncology, Hôpital d'Enfants de la Timone, APHM, Marseille, France
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Richard Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Filippo Spreafico
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
3
|
Miller JW, Johnson JS, Guske C, Mannam G, Hatoum F, Nassar M, Potez M, Fazili A, Spiess PE, Chahoud J. Immune-Based and Novel Therapies in Variant Histology Renal Cell Carcinomas. Cancers (Basel) 2025; 17:326. [PMID: 39858107 PMCID: PMC11763753 DOI: 10.3390/cancers17020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease that represents the most common type of kidney cancer. The classification of RCC is primarily based on distinct morphological and molecular characteristics, with two broad categories: clear cell RCC (ccRCC) and non-clear cell RCC (nccRCC). Clear cell RCC is the predominant subtype, representing about 70-80% of all RCC cases, while non-clear cell subtypes collectively make up the remaining 20-30%. Non-clear cell RCC encompasses many histopathological variants, each with unique biological and clinical characteristics. Additionally, any RCC subtype can undergo sarcomatoid dedifferentiation, which is associated with poor prognosis and rapid disease progression. Recent advances in molecular profiling have also led to the identification of molecularly defined variants, further highlighting the complexity of this disease. While immunotherapy has shown efficacy in some RCC variants and subpopulations, significant gaps remain in the treatment of rare subtypes. This review explores the outcomes of immunotherapy across RCC subtypes, including rare variants, and highlights opportunities for improving care through novel therapies, biomarker-driven approaches, and inclusive clinical trial designs.
Collapse
Affiliation(s)
- Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher Guske
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Firas Hatoum
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Marine Potez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Gubbiotti MA, McCutcheon IE, Rao P, Genovese G, Wang L, Tarasov A, Putintsev V, Berlinski A, Stupichev D, Kriukov K, Davitavyan S, Salem B, Sarachakov A, Lebedev D, Hensley M, Bagaev A, Paradiso F, Kushnarev V, Khegai G, Tannir NM, Msaouel P. A novel case of glial transdifferentiation in renal medullary carcinoma brain metastasis. Acta Neuropathol Commun 2025; 13:12. [PMID: 39833894 PMCID: PMC11748356 DOI: 10.1186/s40478-025-01929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Renal medullary carcinoma is a rare undifferentiated tumor of the kidney associated with sickle cell trait and characterized by INI1 (SMARCB1) loss. Although metastasis to lungs, lymph nodes, and bone is commonly reported, distant spread to the central nervous system almost never occurs. Here we present an unusual case of a patient with renal medullary carcinoma with metastasis to the brain following treatment which included tazemetostat, an EZH2 inhibitor. The metastatic brain lesion harbored morphologic, immunohistochemical, and methylation profile supportive of a primary CNS phenotype with loss of the trimethylated lysine 27 residue of histone 3 while maintaining INI1 loss and a specific gene fusion shared with the patient's tumor prior to initiation of tazemetostat therapy. Therefore, given the common genetic signatures in the brain metastasis and the patient's prior tumor, this case represents a rare event of glial transdifferentiation in a brain metastasis of renal medullary carcinoma following the use of an epigenetic modulator. As renal medullary carcinoma has been known to cleverly utilize adaptive mechanisms for survival, we propose that such cell plasticity seen in this case may have been provoked by the use of a drug that alters the epigenetic signature of the tumor cells. Thus, careful assessment of tumor biology following novel therapeutic treatment options must be performed in order to note such unexpected consequences of treatment.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 85, Houston, TX, 77030-3721, USA.
| | - Ian E McCutcheon
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Rao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 85, Houston, TX, 77030-3721, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center Unit 1374, 1155 Pressler St, Houston, TX, 77030-3721, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, Anderson Cancer Center, Houston, MD, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA
| | | | | | | | | | | | | | - Basim Salem
- BostonGene Corporation, Waltham, MA, 02453, USA
| | | | | | | | | | | | | | - Gleb Khegai
- BostonGene Corporation, Waltham, MA, 02453, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center Unit 1374, 1155 Pressler St, Houston, TX, 77030-3721, USA.
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center Unit 1374, 1155 Pressler St, Houston, TX, 77030-3721, USA.
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center Unit 1374, 1155 Pressler St, Houston, TX, 77030-3721, USA.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, Anderson Cancer Center, Houston, MD, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Zhao S, Du H, Zhang Z, Yang J, Zhou Y, Xiao G, Ma H, Lan C, Liang J, Yang K, Wen L. SMARCB1/INI-1-Deficient sinonasal carcinoma demonstrates a poor prognosis but favorable clinical outcomes after PD-1/PD-L1 inhibitor therapy: A case series. Sci Prog 2025; 108:368504251315075. [PMID: 39886754 PMCID: PMC11783480 DOI: 10.1177/00368504251315075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Despite advances in multimodal cancer therapy, such as combining radical surgery with high-intensity chemoradiotherapy, for SMARCB1/INI-1-deficient sinonasal carcinoma (SDSC), the prognosis of patients remains poor. Immunotherapy is gaining increasing popularity as a novel treatment strategy for patients with SMARCB1/INI-1-deficient tumors. Herein, we report on the management of three patients with SDSC who received PD-1/PD-L1 inhibitor therapy as a part of multimodal therapy based on surgery and chemoradiotherapy. All three patients survived and demonstrated good clinical remission and disease control. To our knowledge, this is the first case series reporting the use of immunotherapy to improve clinical outcomes in neoadjuvant, adjuvant, and late first-line stages of treatment in patients with SDSC. Furthermore, we reviewed the relevant literature and further explored the correlation between SMARCB1/INI-1 deletion and immunotherapy.
Collapse
Affiliation(s)
- Shuhan Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Hao Du
- Department of Neurosurgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Jinsong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - You Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guixiang Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caini Lan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Jinzi Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| |
Collapse
|
6
|
Li B, Sadagopan A, Li J, Wu Y, Cui Y, Konda P, Weiss CN, Choueiri TK, Doench JG, Viswanathan SR. A framework for target discovery in rare cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620074. [PMID: 39484513 PMCID: PMC11527139 DOI: 10.1101/2024.10.24.620074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3-translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To generalize to other rare cancers in which experimental models may not be readily available, we employed machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets.
Collapse
Affiliation(s)
- Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yuqianxun Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yantong Cui
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Pezzicoli G, Musci V, Ciciriello F, Salonne F, Cafforio P, Lionetti N, Ragno A, Rizzo M. Genomic profiling and molecular characterization of non-clear cell renal cell carcinoma: a narrative review from a clinical perspective. Ther Adv Med Oncol 2024; 16:17588359241298500. [PMID: 39563719 PMCID: PMC11574901 DOI: 10.1177/17588359241298500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
While the clear-cell renal cell carcinoma (ccRCC) treatment has undergone several paradigm shifts in recent years, the non-clear cell renal cell carcinoma (nccRCC) therapeutic approach has yet to be extensively investigated and improved. The WHO 2022 classification of renal neoplasms redefined the most common nccRCC subtypes (papillary and chromophobe RCC) and introduced the molecularly defined RCC class, which is a first step in the direction of better molecular profiling of nccRCC. We reviewed the literature data on known genomic alterations of clinical interest in nccRCC and discussed their potential role in guiding therapeutic choices in each nccRCC entity. Among the alterations discussed, we focused on the ones that could be treated with already available drugs, such as MET-driven papillary RCC, mechanistic target of rapamycin altered chromophobe RCC, anaplastic lymphoma kinase-rearranged RCC, and fumarate-hydratase deficient RCC. Furthermore, we focused on the currently ongoing clinical trials and further evidence for all the other entities, such as SMARCB1-deficient RCC, TFE3 and transcription factorEB (TFEB)-altered RCC, and Elongin C (ELOC)-mutated RCC. The vast heterogeneity of nccRCC does not allow a one-size-fits-all solution; therefore, molecular characterization is the path toward effective therapies and fully personalized medicine for these entities.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Francesco Salonne
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Nicoletta Lionetti
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, Bari, Italy
| | - Mimma Rizzo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
8
|
Tang Y, Chen J, Zhang M, Hu X, Guo J, Zhang Y, Chen Y, Liu H, Zhao J, Chen N, Sun G, Zeng H. Tertiary lymphoid structures potentially promote immune checkpoint inhibitor response in SMARCB1-deficient medullary renal cell carcinoma. NPJ Precis Oncol 2024; 8:261. [PMID: 39543276 PMCID: PMC11564649 DOI: 10.1038/s41698-024-00756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
The WHO's classification of renal cell carcinoma (RCC) has identified loss of SMARCB1 as one of the driven mutations. Despite intensive postoperative interventions, the prognosis for SMARCB1-deficient medullary RCC remains poor, indicating insufficiency in current therapy. Herein, we reported the treatment outcomes of five patients with metastatic SMARCB1-deficient medullary RCC and molecular correlates. Four patients were treated with first-line immune checkpoint inhibitors (ICI) plus tyrosine kinase inhibitors (TKI) combination therapy with a median PFS (mPFS) of 12.3 months. Transcriptomic analysis revealed enrichment of immune-related pathways in SMARCB1-deficient medullary RCC compared to clear-cell and papillary RCC. Multiple immunofluorescence (mIF) revealed the association between the formation of mature tertiary lymphoid structures (TLSs) and the favorable response to ICI-based combination therapy. In conclusion, ICI-based combination therapy showed promising anti-tumor activity in SMARCB1-deficient medullary RCC patients. The presence of mature tertiary TLSs may partially elucidate the mechanism underlying treatment response.
Collapse
Affiliation(s)
- Yanfeng Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengxin Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Guo
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
10
|
Guan P, Chen J, Mo C, Fukawa T, Zhang C, Cai X, Li M, Hong JH, Chan JY, Ng CCY, Lee JY, Wong SF, Liu W, Zeng X, Wang P, Xiao R, Rajasegaran V, Myint SS, Lim AMS, Yeong JPS, Tan PH, Ong CK, Xu T, Du Y, Bai F, Yao X, Teh BT, Tan J. Comprehensive molecular characterization of collecting duct carcinoma for therapeutic vulnerability. EMBO Mol Med 2024; 16:2132-2145. [PMID: 39122888 PMCID: PMC11393068 DOI: 10.1038/s44321-024-00102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Collecting duct carcinoma (CDC) is an aggressive rare subtype of kidney cancer with unmet clinical needs. Little is known about its underlying molecular alterations and etiology, primarily due to its rarity, and lack of preclinical models. This study aims to comprehensively characterize molecular alterations in CDC and identify its therapeutic vulnerabilities. Through whole-exome and transcriptome sequencing, we identified KRAS hotspot mutations (G12A/D/V) in 3/13 (23%) of the patients, in addition to known TP53, NF2 mutations. 3/13 (23%) patients carried a mutational signature (SBS22) caused by aristolochic acid (AA) exposures, known to be more prevalent in Asia, highlighting a geologically specific disease etiology. We further discovered that cell cycle-related pathways were the most predominantly dysregulated pathways. Our drug screening with our newly established CDC preclinical models identified a CDK9 inhibitor LDC000067 that specifically inhibited CDC tumor growth and prolonged survival. Our study not only improved our understanding of oncogenic molecular alterations of Asian CDC, but also identified cell-cycle machinery as a therapeutic vulnerability, laying the foundation for clinical trials to treat patients with such aggressive cancer.
Collapse
Affiliation(s)
- Peiyong Guan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chengqiang Mo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Tomoya Fukawa
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Chao Zhang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Xiuyu Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Jing Yi Lee
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Suet Far Wong
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Wei Liu
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Xian Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Vikneswari Rajasegaran
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Swe Swe Myint
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Abner Ming Sun Lim
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
- Division of Pathology, Singapore General Hospital, Singapore, Republic of Singapore
- Luma Medical Centre, Singapore, Republic of Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin Yao
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China.
| | - Bin Tean Teh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore.
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Republic of Singapore.
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore.
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Republic of Singapore.
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore.
- Hainan Academy of Medical Science, Hainan Medical University, Haikou, PR China.
| |
Collapse
|
11
|
Kotecha RR, Doshi SD, Knezevic A, Chaim J, Chen Y, Jacobi R, Zucker M, Reznik E, McHugh D, Shah NJ, Feld E, Aggen DH, Rafelson W, Xiao H, Carlo MI, Feldman DR, Lee CH, Motzer RJ, Voss MH. A Phase 2 Trial of Talazoparib and Avelumab in Genomically Defined Metastatic Kidney Cancer. Eur Urol Oncol 2024; 7:804-811. [PMID: 37945488 PMCID: PMC11074239 DOI: 10.1016/j.euo.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Although different kidney cancers represent a heterogeneous group of malignancies, multiple subtypes including Von Hippel-Lindau (VHL)-altered clear cell renal cell carcinoma (ccRCC), fumarate hydratase (FH)- and succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC), and renal medullary carcinoma (RMC) are affected by genomic instability. Synthetic lethality with poly ADP-ribose polymerase inhibitors (PARPis) has been suggested in preclinical models of these subtypes, and paired PARPis with immune checkpoint blockade (ICB) may achieve additive and/or synergistic effects in patients with previously treated advanced kidney cancers. OBJECTIVE To evaluate combined PARPi + ICB in treatment-refractory metastatic kidney cancer. DESIGN, SETTING, AND PARTICIPANTS We conducted a single-center, investigator-initiated phase 2 trial in two genomically selected advanced kidney cancer cohorts: (1) VHL-altered RCC with at least one prior ICB agent and one vascular endothelial growth factor (VEGF) inhibitor, and (2) FH- or SDH-deficient RCC with at least one prior ICB agent or VEGF inhibitor and RMC with at least one prior line of chemotherapy. INTERVENTION Patients received talazoparib 1 mg daily plus avelumab 800 mg intravenously every 14 d in 28-d cycles. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was objective response rate (ORR) by Immune Response Evaluation Criteria in Solid Tumors at 4 mo, and the secondary endpoints included progression-free survival (PFS), overall survival, and safety. RESULTS AND LIMITATIONS Cohort 1 consisted of ten patients with VHL-altered ccRCC. All patients had previously received ICB. The ORR was 0/9 patients; one patient was not evaluable due to missed doses. In this cohort, seven patients achieved stable disease (SD) as the best response. The median PFS was 3.5 mo (95% confidence interval [CI] 1.0, 3.9 mo). Cohort 2 consisted of eight patients; four had FH-deficient RCC, one had SDH-deficient RCC, and three had RMC. In this cohort, six patients had previously received ICB. The ORR was 0/8 patients; two patients achieved SD as the best response and the median PFS was 1.2 mo (95% CI 0.4, 2.9 mo). The most common treatment-related adverse events of all grades were fatigue (61%), anemia (28%), nausea (22%), and headache (22%). There were seven grade 3-4 and no grade 5 events. CONCLUSIONS The first clinical study of combination PARPi and ICB therapy in advanced kidney cancer did not show clinical benefit in multiple genomically defined metastatic RCC cohorts or RMC. PATIENT SUMMARY We conducted a study to look at the effect of two medications, talazoparib and avelumab, in patients with metastatic kidney cancer who had disease progression on standard treatment. Talazoparib blocks the normal activity of molecules called poly ADP-ribose polymerase, which then prevents tumor cells from repairing themselves and growing, while avelumab helps the immune system recognize and kill cancer cells. We found that the combination of these agents was safe but not effective in specific types of kidney cancer.
Collapse
Affiliation(s)
- Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Sahil D Doshi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Chaim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingbei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Jacobi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Zucker
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deaglan McHugh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neil J Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Emily Feld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David H Aggen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - William Rafelson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Han Xiao
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
12
|
Zou H, Liu C, Ruan Y, Fang L, Wu T, Han S, Dang T, Meng H, Zhang Y. Colorectal medullary carcinoma: a pathological subtype with intense immune response and potential to benefit from immune checkpoint inhibitors. Expert Rev Clin Immunol 2024; 20:997-1008. [PMID: 38459764 DOI: 10.1080/1744666x.2024.2328746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Different pathological types of colorectal cancer have distinguished immune landscape, and the efficacy of immunotherapy will be completely different. Colorectal medullary carcinoma, accounting for 2.2-3.2%, is characterized by massive lymphocyte infiltration. However, the attention to the immune characteristics of colorectal medullary carcinoma is insufficient. AREA COVERED We searched the literature about colorectal medullary carcinoma on PubMed through November 2023to investigate the hallmarks of colorectal medullary carcinoma's immune landscape, compare medullary carcinoma originating from different organs and provide theoretical evidence for precise treatment, including applying immunotherapy and BRAF inhibitors. EXPERT OPINION Colorectal medullary carcinoma is a pathological subtype with intense immune response, with six immune characteristics and has the potential to benefit from immunotherapy. Mismatch repair deficiency, ARID1A missing and BRAF V600E mutation often occurs. IFN-γ pathway is activated and PD-L1 expression is increased. Abundant lymphocyte infiltration performs tumor killing function. In addition, BRAF mutation plays an important role in the occurrence and development, and we can consider the combination of BRAF inhibitors and immunotherapy in patients with BRAF mutant. The exploration of colorectal medullary carcinoma will arouse researchers' attention to the correlation between pathological subtypes and immune response, and promote the process of precise immunotherapy.
Collapse
Affiliation(s)
- Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University in Shandong, Qingdao, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
13
|
Jacquin N, Flippot R, Masliah-Planchon J, Grisay G, Brillet R, Dupain C, Kamal M, Guillou I, Gruel N, Servant N, Gestraud P, Wong J, Cockenpot V, Goncalves A, Selves J, Blons H, Rouleau E, Delattre O, Gervais C, Le Tourneau C, Bièche I, Allory Y, Albigès L, Watson S. Metastatic renal cell carcinoma with occult primary: a multicenter prospective cohort. NPJ Precis Oncol 2024; 8:147. [PMID: 39025947 PMCID: PMC11258290 DOI: 10.1038/s41698-024-00648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Metastatic carcinoma of presumed renal origin (rCUP) has recently emerged as a new entity within the heterogeneous entity of Cancers of Unknown Primary (CUP) but their biological features and optimal therapeutic management remain unknown. We report the molecular characteristics and clinical outcome of a series of 25 rCUP prospectively identified within the French National Multidisciplinary Tumor Board for CUP. This cohort strongly suggests that rCUP share similarities with common RCC subtypes and benefit from renal-tailored systemic treatment. This study highlights the importance of integrating clinical and molecular data for optimal diagnosis and management of CUP.
Collapse
Affiliation(s)
- Nicolas Jacquin
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Medical Oncology, Institut Godinot, Reims, France
| | - Ronan Flippot
- Department of Cancer Medicine, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Guillaume Grisay
- Department of Cancer Medicine, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Riwan Brillet
- Clinical Bioinformatic Unit, Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital, Paris, France
| | - Célia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Isabelle Guillou
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Nadège Gruel
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Translational Research, Institut Curie Hospital, Paris, France
| | - Nicolas Servant
- INSERM U900, CBIO-Centre for Computational Biology, Institut Curie Research Center, Mines ParisTech, Paris, France
| | - Pierre Gestraud
- INSERM U900, CBIO-Centre for Computational Biology, Institut Curie Research Center, Mines ParisTech, Paris, France
| | - Jennifer Wong
- Somatic Genetic Unit, Department of Genetics, Institut Curie Hospital, Paris, France
| | | | | | - Janick Selves
- Department of Pathology, University Hospital of Toulouse (IUCT), Toulouse, France
| | - Hélène Blons
- Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Etienne Rouleau
- PRISM Center for personalized medicine, Gustave Roussy Cancer Center, Villejuif, France
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Somatic Genetic Unit, Department of Genetics, Institut Curie Hospital, Paris, France
| | - Claire Gervais
- Department of Medical Oncology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900, Institut Curie, Saint-Cloud, France
- Paris-Saclay University, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie Hospital, INSERM U1016, Université Paris Cité, Paris, France
| | - Yves Allory
- Department of Pathology, Institut Curie Hospital, Saint-Cloud, France.
- Université Versailles St-Quentin, Université Paris-Saclay, Montigny-le-Bretonneux, France.
| | - Laurence Albigès
- Department of Cancer Medicine, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| | - Sarah Watson
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.
- Department of Medical Oncology, Institut Curie Hospital, Paris, France.
| |
Collapse
|
14
|
Lebenthal JM, Kontoyiannis PD, Hahn AW, Lim ZD, Rao P, Cheng JP, Chan B, Daw NC, Sheth RA, Karam JA, Tang C, Tannir NM, Msaouel P. Clinical Characteristics, Management, and Outcomes of Patients with Renal Medullary Carcinoma: A Single-center Retrospective Analysis of 135 Patients. Eur Urol Oncol 2024:S2588-9311(24)00175-5. [PMID: 39013742 DOI: 10.1016/j.euo.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND AND OBJECTIVE SMARCB1-deficient renal medullary carcinoma (RMC) is a rare kidney cancer associated with sickle cell hemoglobinopathies with poor outcomes described only in case reports and small series. We report disease and management characteristics as well as contemporary survival outcomes in a large cohort of patients with RMC. METHODS Data were extracted retrospectively from all patients with RMC treated at MD Anderson Cancer Center between January 2003 and December 2023. Multivariable Cox regression was used to estimate overall survival (OS) by diagnosis period. KEY FINDINGS AND LIMITATIONS Among 135 patients (median follow-up of 54.9 mo), only nine did not harbor a sickle hemoglobinopathy and were categorized as having renal cell carcinoma, unclassified with medullary phenotype (RCCU-MP). Most patients (78%) presented with metastatic disease, predominantly to the retroperitoneal lymph nodes (81.7%), and hematuria was the most frequent presenting symptom (60%) in RMC associated with sickle hemoglobinopathy. Survival outcomes improved by diagnosis year (adjusted hazard ratio 0.70, 95% confidence interval 0.53-0.92, p = 0.01). RCCU-MP occurred in slightly older patients with median OS of 19.5 mo from diagnosis, did not show a predilection to the right kidney or male predominance, and afflicted mainly Caucasians (89%). The study is limited by its retrospective nature conducted at one center. CONCLUSIONS AND CLINICAL IMPLICATIONS RMC frequently presents with hematuria and is highly likely to spread to the retroperitoneal lymph nodes. Survival outcomes are improving with contemporary management. RCCU-MP is very rare and may be slightly less aggressive. PATIENT SUMMARY Renal medullary carcinoma (RMC) is a rare and aggressive subtype of kidney cancer afflicting primarily young men and women of African descent. There exist limited data regarding patient demographics and disease characteristics. We reported our institution's experience in treating patients with RMC. The first symptom most patients with RMC reported was blood in the urine, and the most common places where the cancer spread were the lymph nodes around the kidney. Patients with RMC are living longer with contemporary treatments.
Collapse
Affiliation(s)
- Justin M Lebenthal
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew W Hahn
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zita D Lim
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Rao
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica P Cheng
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beei Chan
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Najat C Daw
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose A Karam
- Department of Urology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Kanakaraj J, Chang J, Hampton LJ, Smith SC. The New WHO Category of "Molecularly Defined Renal Carcinomas": Clinical and Diagnostic Features and Management Implications. Urol Oncol 2024; 42:211-219. [PMID: 38519377 DOI: 10.1016/j.urolonc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 03/24/2024]
Abstract
The evolution of classification of renal tumors has been impacted since the turn of the millennium by rapid progress in histopathology, immunohistochemistry, and molecular genetics. Together, these features have enabled firm recognition of specific, classic types of renal cell carcinomas, such as clear cell renal cell carcinoma, that in current practice trigger histologic-type specific management and treatment protocols. Now, the fifth Edition World Health Classification's new category of "Molecularly defined renal carcinomas" changes the paradigm, defining a total of seven entities based specifically on their fundamental molecular underpinnings. These tumors, which include TFE3-rearranged, TFEB-altered, ELOC-mutated, fumarate hydratase-deficient, succinate dehydrogenase-deficient, ALK-rearranged, and SMARCB1-deficient renal medullary carcinoma, encompass a wide clinical and histopathologic phenotypic spectrum of tumors. Already, important management aspects are apparent for several of these entities, while emerging therapeutic angles are coming into view. A brief, clinically-oriented introduction of the entities in this new category, focusing on relevant diagnostic, molecular, and management aspects, is the subject of this review.
Collapse
Affiliation(s)
- Jonathan Kanakaraj
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Justin Chang
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Lance J Hampton
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA; Department of Pathology, Richmond Veterans Affairs Medical Center, Richmond, VA; VCU Massey Comprehensive Cancer Center, Richmond, VA
| | - Steven Christopher Smith
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA; Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA; Department of Pathology, Richmond Veterans Affairs Medical Center, Richmond, VA; VCU Massey Comprehensive Cancer Center, Richmond, VA.
| |
Collapse
|
16
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Mbilinyi RH, Msaouel P, Rao P, Karam JA, Tannir NM, Tang C. Radiation Therapy for the Management of Renal Medullary Carcinoma: A Multi-Case Study. Clin Genitourin Cancer 2024:102065. [PMID: 38556389 DOI: 10.1016/j.clgc.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Robert H Mbilinyi
- Department of Genitourinary Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Medical Education, Texas A&M School of Medicine, Bryan, TX
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Priya Rao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad Tang
- Department of Genitourinary Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
18
|
Chen YB. Update on Selected High-grade Renal Cell Carcinomas of the Kidney: FH-deficient, ALK-rearranged, and Medullary Carcinomas. Adv Anat Pathol 2024; 31:118-125. [PMID: 38145398 PMCID: PMC11232671 DOI: 10.1097/pap.0000000000000426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
High-grade renal cell carcinoma (RCC), often diagnosed at advanced stages, significantly contributes to renal cancer-related mortality. This review explores the progress in understanding specific subtypes of high-grade RCC, namely fumarate hydratase (FH)-deficient RCC, anaplastic lymphoma kinase (ALK)-rearranged RCC, and SMARCB1-deficient renal medullary carcinoma, all of which are now recognized as molecularly defined entities in the WHO classification system (2022). While these entities each exhibit a morphologic spectrum that overlaps with other high-grade RCC, ancillary tools developed based on their distinctive molecular alterations can help establish a specific diagnosis, underscoring the importance of integrating molecular findings into diagnostic paradigms. It is important to exclude these specific tumor types in cases with similar morphologic spectrum before rendering a diagnosis of high-grade papillary RCC, collecting duct carcinoma, or RCC, NOS. Several gray areas exist within the spectrum of high-grade uncommon types of RCC, necessitating continued research to enhance diagnostic precision and therapeutic options.
Collapse
Affiliation(s)
- Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Amara CS, Kami Reddy KR, Yuntao Y, Chan YS, Piyarathna DWB, Dobrolecki LE, Shih DJH, Shi Z, Xu J, Huang S, Ellis MJ, Apolo AB, Ballester LY, Gao J, Hansel DE, Lotan Y, Hodges HC, Lerner SP, Creighton CJ, Sreekumar A, Zheng WJ, Msaouel P, Kavuri SM, Putluri N. The IL6/JAK/STAT3 signaling axis is a therapeutic vulnerability in SMARCB1-deficient bladder cancer. Nat Commun 2024; 15:1373. [PMID: 38355560 PMCID: PMC10867091 DOI: 10.1038/s41467-024-45132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.
Collapse
Affiliation(s)
- Chandra Sekhar Amara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Karthik Reddy Kami Reddy
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang Yuntao
- Mcwilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuen San Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Lacey Elizabeth Dobrolecki
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David J H Shih
- Mcwilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jun Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leomar Y Ballester
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Seth P Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - W Jim Zheng
- Mcwilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Msaouel P, Sheth RA. Locoregional Therapies in Immunologically "Cold" Tumors: Opportunities and Clinical Trial Design Considerations. J Vasc Interv Radiol 2024; 35:198-202. [PMID: 38272640 DOI: 10.1016/j.jvir.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 01/27/2024] Open
Abstract
Immunotherapy has revolutionized cancer management, but many tumors, particularly immunologically "cold" tumors, remain resistant to the therapy. The combination of conventional systemic immunotherapies and locoregional interventional radiology approaches is being explored to transform these cold tumors into immunologically active "hot" ones. The present article uses the example of chromophobe renal cell carcinoma (ChRCC), a renal cell carcinoma subtype resistant to current systemic immunotherapies, to address practical and conceptual challenges that have prevented the activation of clinical trials specifically designed for this malignancy to date. The practical framework discussed herein can help overcome logistic and funding limitations and facilitate the development of biology-informed clinical trials tailored to specific rare diseases such as ChRCC.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas; David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Pei X, Yan X, Ding C. Proteogenomic Workflow for Characterization of Microphthalmia Transcription Factor (MiT) Family Translocation Renal Cell Carcinoma. Methods Mol Biol 2024; 2823:109-127. [PMID: 39052217 DOI: 10.1007/978-1-0716-3922-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare, aggressive, and heterogeneous subtype of kidney cancer, which is not well characterized. Since genetic alterations are always associated with carcinogenesis, and proteins are the major executors of biological features, multi-omics studies can reveal the systematic tRCC biological process comprehensively. Here, we describe the proteogenomic workflow for characterization of tRCC in detail to provide the knowledge foundation for integrated proteogenomic analysis of tRCC and other malignant tumors in the future.
Collapse
Affiliation(s)
- Xiaoru Pei
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute , Fudan University, Shanghai, China
| | - Xin Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute , Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Msaouel P, Genovese G, Tannir NM. Renal Cell Carcinoma of Variant Histology: Biology and Therapies. Hematol Oncol Clin North Am 2023; 37:977-992. [PMID: 37244822 PMCID: PMC11608423 DOI: 10.1016/j.hoc.2023.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The term variant histology renal cell carcinomas (vhRCCs), also known as non-clear cell RCCs, refers to a diverse group of malignancies with distinct biologic and therapeutic considerations. The management of vhRCC subtypes is often based on extrapolating results from the more common clear cell RCC studies or basket trials that are not specific to each histology. The unique management of each vhRCC subtype necessitates accurate pathologic diagnosis and dedicated research efforts. Herein, we discuss tailored recommendations for each vhRCC histology informed by ongoing research and clinical experience.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; TRACTION Platform, Division of Therapeutic Discoveries, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Drobner J, Portal D, Runcie K, Yang Y, Singer EA. Systemic Treatment for Advanced and Metastatic Non-Clear Cell Renal Cell Carcinoma: Examining Modern Therapeutic Strategies for a Notoriously Challenging Malignancy. J Kidney Cancer VHL 2023; 10:37-60. [PMID: 37789902 PMCID: PMC10542704 DOI: 10.15586/jkcvhl.v10i3.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023] Open
Abstract
Non-clear cell renal cell carcinoma (nccRCC) is a heterogeneous group of malignancies that represents 25% of renal cell carcinoma (RCC) cases. Treatment for non-clear cell histologies is mostly based on evidence from small phase II clinical trials or extrapolated from successful therapies in clear cell RCC because of the low incidence of non-clear cell pathology. Advances in genomic profiling have improved clinicians' understanding of molecular targets for nccRCC, such as altered mesenchymal epithelial transition (MET) gene status and fumarate hydratase (FH) gene inactivation, but patient outcomes remain poor and optimal management of this disease remains unclear. This review assesses outcomes by histologic subtype from 27 prospective and 13 ongoing clinical trials to identify therapeutic strategies for advanced or metastatic nccRCC. Vascular endothelial growth factor tyrosine kinase inhibitors (TKI), such as sunitinib, and mammalian target of rapamycin (mTOR) inhibitors, such as everolimus, have demonstrated efficacy and remain viable treatment options, with a preference for sunitinib. However, everolimus is preferred in patients with chromophobe RCC because folliculin (FLCN) gene mutations upregulate the mTOR pathway. Novel TKIs, such as cabozantinib, show improved outcomes in patients with papillary RCC because of targeted MET inhibition. Platinum-based chemotherapy continues to be the recommended treatment strategy for collecting duct and medullary RCC. Clinically meaningful antitumor activity has been observed across all non-clear cell histologies for immune checkpoint inhibitors, such as nivolumab, pembrolizumab, and ipilimumab. Ongoing trials are evaluating novel tyrosine kinase inhibitor and immunotherapy combination regimens, with an emphasis on the promising MET-inhibitor cabozantinib and pembrolizumab plus lenvatinib.
Collapse
Affiliation(s)
- Jake Drobner
- Division of Urology, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, USA
| | - Daniella Portal
- Division of Urology, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, USA
| | - Karie Runcie
- Division of Hematology/Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Yuanquan Yang
- Genitourinary Oncology Section, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center-James Cancer Hospital, Columbus, OH, USA
| | - Eric A. Singer
- Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
24
|
Msaouel P, Lee J, Thall PF. Interpreting Randomized Controlled Trials. Cancers (Basel) 2023; 15:4674. [PMID: 37835368 PMCID: PMC10571666 DOI: 10.3390/cancers15194674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
This article describes rationales and limitations for making inferences based on data from randomized controlled trials (RCTs). We argue that obtaining a representative random sample from a patient population is impossible for a clinical trial because patients are accrued sequentially over time and thus comprise a convenience sample, subject only to protocol entry criteria. Consequently, the trial's sample is unlikely to represent a definable patient population. We use causal diagrams to illustrate the difference between random allocation of interventions within a clinical trial sample and true simple or stratified random sampling, as executed in surveys. We argue that group-specific statistics, such as a median survival time estimate for a treatment arm in an RCT, have limited meaning as estimates of larger patient population parameters. In contrast, random allocation between interventions facilitates comparative causal inferences about between-treatment effects, such as hazard ratios or differences between probabilities of response. Comparative inferences also require the assumption of transportability from a clinical trial's convenience sample to a targeted patient population. We focus on the consequences and limitations of randomization procedures in order to clarify the distinctions between pairs of complementary concepts of fundamental importance to data science and RCT interpretation. These include internal and external validity, generalizability and transportability, uncertainty and variability, representativeness and inclusiveness, blocking and stratification, relevance and robustness, forward and reverse causal inference, intention to treat and per protocol analyses, and potential outcomes and counterfactuals.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juhee Lee
- Department of Statistics, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Peter F. Thall
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
25
|
Perelli L, Zhang L, Mangiameli S, Russell AJC, Giannese F, Peng F, Carbone F, Le C, Khan H, Citron F, Soeung M, Lam TNA, Lundgren S, Zhu C, Catania D, Feng N, Gurreri E, Sgambato A, Tortora G, Draetta GF, Tonon G, Futreal A, Giuliani V, Carugo A, Viale A, Heffernan TP, Wang L, Cittaro D, Chen F, Genovese G. Evolutionary fingerprints of EMT in pancreatic cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558231. [PMID: 37786705 PMCID: PMC10541589 DOI: 10.1101/2023.09.18.558231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.
Collapse
|
26
|
Venkatesh N, Martini A, McQuade JL, Msaouel P, Hahn AW. Obesity and renal cell carcinoma: Biological mechanisms and perspectives. Semin Cancer Biol 2023; 94:21-33. [PMID: 37286114 PMCID: PMC10526958 DOI: 10.1016/j.semcancer.2023.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Obesity, defined by body mass index (BMI), is an established risk factor for specific renal cell carcinoma (RCC) subtypes such as clear cell RCC, the most common RCC histology. Many studies have identified an association between obesity and improved survival after diagnosis of RCC, a potential "obesity paradox." Clinically, there is uncertainty whether improved outcomes observed after diagnosis are driven by stage, type of treatment received, or artifacts of longitudinal changes in weight and body composition. The biological mechanisms underlying obesity's influence on RCC are not fully established, but multiomic and mechanistic studies suggest an impact on tumor metabolism, particularly fatty acid metabolism, angiogenesis, and peritumoral inflammation, which are known to be key biological hallmarks of clear cell RCC. Conversely, high-intensity exercise associated with increased muscle mass may be a risk factor for renal medullary carcinoma, a rare RCC subtype that predominantly occurs in individuals with sickle hemoglobinopathies. Herein, we highlight methodologic challenges associated with studying the influence of obesity on RCC and review the clinical evidence and potential underlying mechanisms associating RCC with BMI and body composition.
Collapse
Affiliation(s)
- Neha Venkatesh
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alberto Martini
- Department of Urology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Andrew W Hahn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Nze C, Msaouel P, Derbala MH, Stephen B, Abonofal A, Meric-Bernstam F, Tannir NM, Naing A. A Phase II Clinical Trial of Pembrolizumab Efficacy and Safety in Advanced Renal Medullary Carcinoma. Cancers (Basel) 2023; 15:3806. [PMID: 37568622 PMCID: PMC10417298 DOI: 10.3390/cancers15153806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Renal medullary carcinoma (RMC) is one of most aggressive renal cell carcinomas and novel therapeutic strategies are therefore needed. Recent comprehensive molecular and immune profiling of RMC tissues revealed a highly inflamed phenotype, suggesting the potential therapeutic role for immune checkpoint therapies. We present the first prospective evaluation of an immune checkpoint inhibitor in a cohort of patients with RMC. METHODS A cohort of patients with locally advanced or metastatic RMC was treated with pembrolizumab 200 mg intravenously every 21 days in a phase II basket trial (ClinicalTrials.gov: NCT02721732). Responses were assessed by irRECIST. Tumor tissues were evaluated for PD-L1 expression and for tumor-infiltrating lymphocyte (TIL) levels. Somatic mutations were assessed by targeted next-generation sequencing. RESULTS A total of five patients were treated. All patients had advanced disease, with the majority of patients (60%) having metastatic disease at diagnosis. All patients had rapid disease progression despite pembrolizumab treatment, with a median time to progression of 8.7 weeks. One patient (patient 5) experienced sudden clinical progression immediately after treatment initiation and was thus taken off trial less than one week after receiving pembrolizumab. CONCLUSIONS This prospective evaluation showed no evidence of clinical activity for pembrolizumab in patients with RMC, irrespective of PD-L1 or TIL levels.
Collapse
Affiliation(s)
- Chijioke Nze
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed H. Derbala
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.D.); (B.S.); (F.M.-B.)
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.D.); (B.S.); (F.M.-B.)
| | - Abdulrahman Abonofal
- Department of Medicine, Section of Hematology/Oncology, West Virginia University, Morgantown, WV 26506, USA;
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.D.); (B.S.); (F.M.-B.)
| | - Nizar M. Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.D.); (B.S.); (F.M.-B.)
| |
Collapse
|
28
|
Soto-Castillo JJ, Llavata-Marti L, Fort-Culillas R, Andreu-Cobo P, Moreno R, Codony C, García Del Muro X, Alemany R, Piulats JM, Martin-Liberal J. SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy. Int J Mol Sci 2023; 24:11143. [PMID: 37446319 DOI: 10.3390/ijms241311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.
Collapse
Affiliation(s)
- Juan José Soto-Castillo
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Lucía Llavata-Marti
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Roser Fort-Culillas
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Pablo Andreu-Cobo
- Medical Oncology Department, Parc Tauli Hospital Universitari, 08208 Sabadell, Spain
| | - Rafael Moreno
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Carles Codony
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Xavier García Del Muro
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Ramon Alemany
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
29
|
Perelli L, Carbone F, Zhang L, Huang JK, Le C, Khan H, Citron F, Del Poggetto E, Gutschner T, Tomihara H, Soeung M, Minelli R, Srinivasan S, Peoples M, Lam TNA, Lundgren S, Xia R, Zhu C, Mohamed AMT, Zhang J, Sircar K, Sgambato A, Gao J, Jonasch E, Draetta GF, Futreal A, Bakouny Z, Van Allen EM, Choueiri T, Signoretti S, Msaouel P, Litchfield K, Turajlic S, Wang L, Chen YB, Di Natale RG, Hakimi AA, Giuliani V, Heffernan TP, Viale A, Bristow CA, Tannir NM, Carugo A, Genovese G. Interferon signaling promotes tolerance to chromosomal instability during metastatic evolution in renal cancer. NATURE CANCER 2023; 4:984-1000. [PMID: 37365326 PMCID: PMC10368532 DOI: 10.1038/s43018-023-00584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.
Collapse
Affiliation(s)
- Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Federica Carbone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Nerviano Medical Sciences, NMS Group Spa, Milan, Italy
| | - Li Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin K Huang
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney Le
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hania Khan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francesca Citron
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edoardo Del Poggetto
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tony Gutschner
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hideo Tomihara
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melinda Soeung
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalba Minelli
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjana Srinivasan
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Peoples
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Truong Nguyen Anh Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian Lundgren
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruohan Xia
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cihui Zhu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alaa M T Mohamed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanishka Sircar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandro Sgambato
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - JianJun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Toni Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sabina Signoretti
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renzo G Di Natale
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Virginia Giuliani
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P Heffernan
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher A Bristow
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandro Carugo
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biology, IRBM S.p.A., Rome, Italy.
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Mortezaee K, Majidpoor J, Kharazinejad E. The impact of hypoxia on tumor-mediated bypassing anti-PD-(L)1 therapy. Biomed Pharmacother 2023; 162:114646. [PMID: 37011483 DOI: 10.1016/j.biopha.2023.114646] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Extending the durability of response is the current focus in cancer immunotherapy with immune checkpoint inhibitors (ICIs). However, factors like non-immunogenic tumor microenvironment (TME) along with aberrant angiogenesis and dysregulated metabolic systems are negative contributors. Hypoxia is a key TME condition and a critical promoter of tumor hallmarks. It acts on immune and non-immune cells within TME in order for promoting immune evasion and therapy resistance. Extreme hypoxia is a major promoter of resistance to the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor therapy. Hypoxia inducible factor-1 (HIF-1) acts as a key mediator of hypoxia and a critical promoter of resistance to the anti-PD-(L)1. Targeting hypoxia or HIF-1 can thus be an effective strategy for reinvigoration of cellular immunity against cancer. Among various strategies presented so far, the key focus is over vascular normalization, which is an approach highly effective for reducing the rate of hypoxia, increasing drug delivery into the tumor area, and boosting the efficacy of anti-PD-(L)1.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Islamic Republic of Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Islamic Republic of Iran
| | - Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Islamic Republic of Iran.
| |
Collapse
|
31
|
Hu X, Tan C, Zhu G. Clinical Characteristics of Molecularly Defined Renal Cell Carcinomas. Curr Issues Mol Biol 2023; 45:4763-4777. [PMID: 37367052 DOI: 10.3390/cimb45060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Kidney tumors comprise a broad spectrum of different histopathological entities, with more than 0.4 million newly diagnosed cases each year, mostly in middle-aged and older men. Based on the description of the 2022 World Health Organization (WHO) classification of renal cell carcinoma (RCC), some new categories of tumor types have been added according to their specific molecular typing. However, studies on these types of RCC are still superficial, many types of these RCC currently lack accurate diagnostic standards in the clinic, and treatment protocols are largely consistent with the treatment guidelines for clear cell RCC (ccRCC), which might result in worse treatment outcomes for patients with these types of molecularly defined RCC. In this article, we conduct a narrative review of the literature published in the last 15 years on molecularly defined RCC. The purpose of this review is to summarize the clinical features and the current status of research on the detection and treatment of molecularly defined RCC.
Collapse
Affiliation(s)
- Xinfeng Hu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Congzhu Tan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
32
|
Vokshi BH, Davidson G, Tawanaie Pour Sedehi N, Helleux A, Rippinger M, Haller AR, Gantzer J, Thouvenin J, Baltzinger P, Bouarich R, Manriquez V, Zaidi S, Rao P, Msaouel P, Su X, Lang H, Tricard T, Lindner V, Surdez D, Kurtz JE, Bourdeaut F, Tannir NM, Davidson I, Malouf GG. SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 2023; 14:3034. [PMID: 37236926 DOI: 10.1038/s41467-023-38472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells.
Collapse
Affiliation(s)
- Bujamin H Vokshi
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Guillaume Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Nassim Tawanaie Pour Sedehi
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Alexandra Helleux
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Marc Rippinger
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Alexandre R Haller
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Justine Gantzer
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Jonathan Thouvenin
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Philippe Baltzinger
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Rachida Bouarich
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Valeria Manriquez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Priya Rao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hervé Lang
- Department of Urology, CHRU Strasbourg, Strasbourg University, 67000, Strasbourg, France
| | - Thibault Tricard
- Department of Urology, CHRU Strasbourg, Strasbourg University, 67000, Strasbourg, France
| | - Véronique Lindner
- Department of Pathology, CHRU Strasbourg, Strasbourg University, 67200, Strasbourg, France
| | - Didier Surdez
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- INSERM, U830, Pediatric Translational Research, PSL Research University, SIREDO Oncology Center, Institut Curie, Paris, France
| | - Jean-Emmanuel Kurtz
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Franck Bourdeaut
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Irwin Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France.
- 'Équipe Labellisée' Ligue National contre le Cancer, Paris, France.
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France.
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France.
- 'Équipe Labellisée' Ligue National contre le Cancer, Paris, France.
| |
Collapse
|
33
|
Soeung M, Perelli L, Chen Z, Dondossola E, Ho IL, Carbone F, Zhang L, Khan H, Le CN, Zhu C, Peoples MD, Feng N, Jiang S, Zacharias NM, Minelli R, Shapiro DD, Deem AK, Gao S, Cheng EH, Lucchetti D, Walker CL, Carugo A, Giuliani V, Heffernan TP, Viale A, Tannir NM, Draetta GF, Msaouel P, Genovese G. SMARCB1 regulates the hypoxic stress response in sickle cell trait. Proc Natl Acad Sci U S A 2023; 120:e2209639120. [PMID: 37186844 PMCID: PMC10214195 DOI: 10.1073/pnas.2209639120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.
Collapse
Affiliation(s)
- Melinda Soeung
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Ziheng Chen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - I-Lin Ho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | | | - Li Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Hania Khan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Courtney N. Le
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Cihui Zhu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Michael D. Peoples
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Ningping Feng
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Shan Jiang
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | | | - Rosalba Minelli
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Daniel D. Shapiro
- Division of Urology, William S. Middleton Memorial VA Hospital, Madison, WI53705
| | - Angela K. Deem
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Sisi Gao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Emily H. Cheng
- Department of Pathology, Memorial Sloan Kettering Cancer Institute, New York City, NY10065
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery–Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Rome00168, Italy
- Multiplex Spatial Profiling Center, Fondazione Policlinico Universitario “A. Gemelli”, Rome00168, Italy
| | - Cheryl L. Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - Alessandro Carugo
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- Department of Oncology, IRBM S.p.A., Rome00071, Italy
| | - Virginia Giuliani
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Timothy P. Heffernan
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Nizar M. Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Giulio F. Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| | - Giannicola Genovese
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX77025
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77025
| |
Collapse
|
34
|
Shapiro DD, Zacharias NM, Tripathi DN, Karki M, Bertocchio J, Soeung M, He R, Westerman ME, Gao J, Rao P, Lam TNA, Jonasch E, Perelli L, Cheng EH, Carugo A, Heffernan TP, Walker CL, Genovese G, Tannir NM, Karam JA, Msaouel P. Neddylation inhibition sensitises renal medullary carcinoma tumours to platinum chemotherapy. Clin Transl Med 2023; 13:e1267. [PMID: 37226898 PMCID: PMC10210052 DOI: 10.1002/ctm2.1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Renal medullary carcinoma (RMC) is a highly aggressive cancer in need of new therapeutic strategies. The neddylation pathway can protect cells from DNA damage induced by the platinum-based chemotherapy used in RMC. We investigated if neddylation inhibition with pevonedistat will synergistically enhance antitumour effects of platinum-based chemotherapy in RMC. METHODS We evaluated the IC50 concentrations of the neddylation-activating enzyme inhibitor pevonedistat in vitro in RMC cell lines. Bliss synergy scores were calculated using growth inhibition assays following treatment with varying concentrations of pevonedistat and carboplatin. Protein expression was assessed by western blot and immunofluorescence assays. The efficacy of pevonedistat alone or in combination with platinum-based chemotherapy was evaluated in vivo in platinum-naïve and platinum-experienced patient-derived xenograft (PDX) models of RMC. RESULTS The RMC cell lines demonstrated IC50 concentrations of pevonedistat below the maximum tolerated dose in humans. When combined with carboplatin, pevonedistat demonstrated a significant in vitro synergistic effect. Treatment with carboplatin alone increased nuclear ERCC1 levels used to repair the interstrand crosslinks induced by platinum salts. Conversely, the addition of pevonedistat to carboplatin led to p53 upregulation resulting in FANCD2 suppression and reduced nuclear ERCC1 levels. The addition of pevonedistat to platinum-based chemotherapy significantly inhibited tumour growth in both platinum-naïve and platinum-experienced PDX models of RMC (p < .01). CONCLUSIONS Our results suggest that pevonedistat synergises with carboplatin to inhibit RMC cell and tumour growth through inhibition of DNA damage repair. These findings support the development of a clinical trial combining pevonedistat with platinum-based chemotherapy for RMC.
Collapse
Affiliation(s)
- Daniel D. Shapiro
- Department of UrologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Division of UrologyWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | | | - Durga N. Tripathi
- Center for Precision Environmental HealthBaylor College of MedicineHoustonTexasUSA
| | - Menuka Karki
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jean‐Philippe Bertocchio
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Melinda Soeung
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Rong He
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Mary E. Westerman
- Department of UrologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jianjun Gao
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Priya Rao
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Truong N. A. Lam
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Eric Jonasch
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Luigi Perelli
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emily H. Cheng
- Human Oncology & Pathogenesis Program and Department of PathologyMemorial Sloan Kettering Cancer InstituteNew YorkNew YorkUSA
| | - Alessandro Carugo
- Institute for Applied Cancer ScienceThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Translational Research to Advance Therapeutics and Innovation in OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of OncologyIRBM SpaRomeItaly
| | - Timothy P. Heffernan
- Institute for Applied Cancer ScienceThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Translational Research to Advance Therapeutics and Innovation in OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Cheryl L. Walker
- Center for Precision Environmental HealthBaylor College of MedicineHoustonTexasUSA
| | - Giannicola Genovese
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- David H. Koch Center for Applied Research of Genitourinary CancersThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Nizar M. Tannir
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jose A. Karam
- Department of UrologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Pavlos Msaouel
- Center for Precision Environmental HealthBaylor College of MedicineHoustonTexasUSA
- Department of Genitourinary Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- David H. Koch Center for Applied Research of Genitourinary CancersThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
35
|
Marletta S, Caliò A, Bogina G, Rizzo M, Brunelli M, Pedron S, Marcolini L, Stefanizzi L, Gobbo S, Princiotta A, Porta C, Pecoraro A, Antonelli A, Martignoni G. STING is a prognostic factor related to tumor necrosis, sarcomatoid dedifferentiation, and distant metastasis in clear cell renal cell carcinoma. Virchows Arch 2023:10.1007/s00428-023-03549-y. [PMID: 37120444 DOI: 10.1007/s00428-023-03549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
STING is a molecule involved in immune reactions against double-stranded DNA fragments, released in infective and neoplastic diseases, whose role in the interactions between immune and neoplastic cells in clear cell renal cell carcinoma has not been studied yet. We investigated the immunohistochemical expression of STING in a series of 146 clear-cell renal cell carcinomas and correlated it with the main pathological prognostic factors. Furthermore, tumoral inflammatory infiltrate was evaluated and studied for the subpopulations of lymphocytes. Expression of STING was observed in 36% (53/146) of the samples, more frequently in high-grade (G3-G4) tumors (48%,43/90) and recurrent/metastatic ones (75%, 24/32) than in low grade (G1-G2) and indolent neoplasms (16%, 9/55). STING staining correlated with parameters of aggressive behavior, including coagulative granular necrosis (p = 0.001), stage (p < 0.001), and development of metastases (p < 0.001). Among prognostic parameters, STING immune expression reached an independent statistical significance (p = 0.029) in multivariable analysis, along with the stage and the presence of coagulative granular necrosis. About tumor immune-environment, no significant statistical association has been demonstrated between tumor-infiltrating lymphocytes and STING. Our results provide novel insights regarding the role of STING in aggressive clear cell renal cell carcinomas, suggesting its adoption as a prognostic marker and a potentially targetable molecule for specific immunotherapies.
Collapse
Affiliation(s)
- Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Giuseppe Bogina
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Mimma Rizzo
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Serena Pedron
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Lisa Marcolini
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | | | - Stefano Gobbo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "A. Moro,", Bari, Italy
| | - Angela Pecoraro
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
- Department of Urology, Pederzoli Hospital, Peschiera del Garda, Italy
| | | | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy.
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy.
| |
Collapse
|
36
|
Mimma R, Anna C, Matteo B, Gaetano P, Carlo G, Guido M, Camillo P. Clinico-pathological implications of the 2022 WHO Renal Cell Carcinoma classification. Cancer Treat Rev 2023; 116:102558. [PMID: 37060647 DOI: 10.1016/j.ctrv.2023.102558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
The new WHO classification of urogenital tumours published in 2022, contains significant revisions upon the previous 2016 version regarding Renal Cell Carcinoma (RCC). While the most common histotype remains almost untouched, some of the main novelties concerns papillary RCC and oncocytic neoplasms. The main change is the introduction of a new category of molecularly-defined RCC, which includes TFE3-rearranged RCC, TFEB-rearranged, and TFEB-amplified RCC, FH-deficient RCC, SDH-deficient RCC, ALK-rearranged RCC, ELOC (formerly TCEB1)-mutated RCC, SMARCB1 (INI1)-deficient RCC. In this paper we analyze the current knowledge on emerging entities and molecularly-defined RCC to assess whether the current pathological classification offers the oncologist the possibility of selecting more specific and personalized treatments, from both those currently available, as well as those that will soon be available.
Collapse
Affiliation(s)
- Rizzo Mimma
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy.
| | - Caliò Anna
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | - Brunelli Matteo
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | - Pezzicoli Gaetano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari "A. Moro", Bari, Italy
| | - Ganini Carlo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari "A. Moro", Bari, Italy
| | - Martignoni Guido
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy; Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| | - Porta Camillo
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy; Chair of Oncology, Interdisciplinary Department of Medicine, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
37
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
38
|
Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, Hirst M, Weissman BE. SMARCB1 Loss in Poorly Differentiated Chordomas Drives Tumor Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:456-473. [PMID: 36657718 PMCID: PMC10123523 DOI: 10.1016/j.ajpath.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Tara A Walhart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Bryanna Vacca
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James Petrongelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Erin L McKean
- Department of Otolaryngology and Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle Moksa
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
39
|
Severseike BO, Schafernak KT, Willard SD, Goncalves LF, Kothari AK, Eshun FK, Mangum R. Diagnostic challenges of renal medullary carcinoma and the role for cytologic assessment: Case report and literature review. J Clin Lab Anal 2023; 37:e24854. [PMID: 36843202 PMCID: PMC10020844 DOI: 10.1002/jcla.24854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Renal medullary carcinoma (RMC) is a diagnostically challenging, aggressive primary renal malignancy associated with abysmal survival. Delays in diagnosis contribute to most patients having diffusely metastatic disease at the time of initial presentation. METHODS We present the case of a 13-year-old African American male with sickle cell trait who presented with a renal mass and hematuria. Evaluation included imaging, fluid cultures, and cytologic assessment. RESULTS Patient was diagnosed with RMC based on cytologic assessment of sub-centimeter fluid collections aspirated from the left kidney at the time of cortical biopsy for suspected renal mass. The additional fluid aspiration in conjunction with renal biopsy was an atypical but crucial step in early diagnosis. CONCLUSION Cytomorphologic evaluation of fluid biospecimens is not currently part of the standard work-up for patients with renal masses but, when available, can provide crucial information that reduces time to diagnosis. Prompt symptom recognition and treatment initiation may improve patient outcomes.
Collapse
Affiliation(s)
- Benjamin O. Severseike
- Phoenix Children's Hospital Residency Program Alliance (PCHRP)Phoenix Children's HospitalPhoenixArizonaUSA
| | - Kristian T. Schafernak
- Pathology and Laboratory MedicinePhoenix Children's HospitalPhoenixArizonaUSA
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Creighton University School of MedicinePhoenixArizonaUSA
- Mayo Clinic Alix School of MedicinePhoenixArizonaUSA
| | - Scott D. Willard
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Creighton University School of MedicinePhoenixArizonaUSA
- Mayo Clinic Alix School of MedicinePhoenixArizonaUSA
- Interventional RadiologyPhoenix Children's HospitalPhoenixArizonaUSA
| | - Luis F. Goncalves
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Creighton University School of MedicinePhoenixArizonaUSA
- Mayo Clinic Alix School of MedicinePhoenixArizonaUSA
- Radiology DepartmentPhoenix Children's HospitalPhoenixArizonaUSA
| | - Alok K. Kothari
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Creighton University School of MedicinePhoenixArizonaUSA
- Mayo Clinic Alix School of MedicinePhoenixArizonaUSA
- Center for Cancer and Blood DisordersPhoenix Children's HospitalPhoenixArizonaUSA
| | - Francis K. Eshun
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Creighton University School of MedicinePhoenixArizonaUSA
- Mayo Clinic Alix School of MedicinePhoenixArizonaUSA
- Center for Cancer and Blood DisordersPhoenix Children's HospitalPhoenixArizonaUSA
| | - Ross Mangum
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Creighton University School of MedicinePhoenixArizonaUSA
- Mayo Clinic Alix School of MedicinePhoenixArizonaUSA
- Center for Cancer and Blood DisordersPhoenix Children's HospitalPhoenixArizonaUSA
| |
Collapse
|
40
|
Thibault C, Fléchon A, Albiges L, Joly C, Barthelemy P, Gross-Goupil M, Chevreau C, Coquan E, Rolland F, Laguerre B, Gravis G, Pécuchet N, Elaidi RT, Timsit MO, Brihoum M, Auclin E, de Reyniès A, Allory Y, Oudard S. Gemcitabine plus platinum-based chemotherapy in combination with bevacizumab for kidney metastatic collecting duct and medullary carcinomas: Results of a prospective phase II trial (BEVABEL-GETUG/AFU24). Eur J Cancer 2023; 186:83-90. [PMID: 37054556 DOI: 10.1016/j.ejca.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Renal medullary carcinoma (RMC) and collecting duct carcinoma (CDC) are rare entities with a poor outcome. First-line metastatic treatment is based on gemcitabine + platinum chemotherapy (GC) regimen but retrospective data suggest enhanced anti-tumour activity with the addition of bevacizumab. Therefore, we performed a prospective assessment of the safety and efficacy of GC + bevacizumab in metastatic RMC/CDC. METHODS We conducted a phase 2 open-label trial in 18 centres in France in patients with metastatic RMC/CDC and no prior systemic treatment. Patients received bevacizumab plus GC up to 6 cycles followed, for non-progressive disease, by maintenance therapy with bevacizumab until progression or unacceptable toxicity. The co-primary end-points were objective response rates (ORRs) and progression-free survival (PFS) at 6 months (ORR-6; PFS-6). PFS, overall survival (OS) and safety were secondary end-points. At interim analysis, the trial was closed due to toxicity and lack of efficacy. RESULTS From 2015 to 2019, 34 of the 41 planned patients have been enroled. After a median follow-up of 25 months, ORR-6 and PFS-6 were 29.4% and 47.1%, respectively. Median OS was 11.1 months (95% confidence interval [CI]: 7.6-24.2). Seven patients (20.6%) discontinued bevacizumab because of toxicities (hypertension, proteinuria, colonic perforation). Grade 3-4 toxicities were reported in 82% patients, the most common being haematologic toxicities and hypertension. Two patients experienced grade 5 toxicity (subdural haematoma related to bevacizumab and encephalopathy of unknown origin). CONCLUSION Our study showed no benefit for bevacizumab added to chemotherapy in metastatic RMC and CDC with higher than expected toxicity. Consequently, GC regimen remains a therapeutic option for RMC/CDC patients.
Collapse
Affiliation(s)
- Constance Thibault
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP-Centre, Université Paris Cité, Paris, France; Université Paris Cité, AP-HP, Centre de Recherche des Cordeliers INSERM UMR-S 1138, Paris, France
| | - Aude Fléchon
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Charlotte Joly
- Department of Medical Oncology, Hôpital Henri Mondor, Créteil, France
| | - Philippe Barthelemy
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Marine Gross-Goupil
- Department of Medical Oncology, Centre hospitalo-Universitaire, Bordeaux, France
| | - Christine Chevreau
- Department of Medical Oncology, Institut Claudius Regaud, Toulouse, France
| | - Elodie Coquan
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | - Frédéric Rolland
- Department of Medical Oncology, Centre René Gauducheau, Saint-Herblin, France
| | - Brigitte Laguerre
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmette, Marseille, France
| | - Nicolas Pécuchet
- Department of Medical Oncology, Hôpital d'Instruction des Armées Bégin, Saint Mandé F-94160, France
| | - Réza-Thierry Elaidi
- ARTIC: Association pour la Recherche de Thérapeutiques Innovantes en Cancérologie, Paris, France
| | - Marc-Olivier Timsit
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP-Centre, Université Paris Cité, Paris, France; Department of Urology, Hôpital Européen Georges Pompidou, APHP-Centre, France
| | | | - Edouard Auclin
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP-Centre, Université Paris Cité, Paris, France
| | - Aurélien de Reyniès
- Université Paris Cité, AP-HP, laboratoire SeQOIA, Centre de Recherche des Cordeliers INSERM UMR-S 1138, Paris, France
| | - Yves Allory
- Department of Anatomopathology, Institut Curie, Université Paris Saclay, Saint-Cloud, France; Institut Curie, CNRS, UMR 144, Paris 75248, France
| | - Stéphane Oudard
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP-Centre, Université Paris Cité, Paris, France; Université Paris Cité, PARCC, INSERM U970, Paris, France.
| |
Collapse
|
41
|
Sarkar S, Throckmorton W, Bingham R, Msaouel P, Genovese G, Slopis J, Rao P, Sadighi Z, Herzog CE. Renal Cell Carcinoma Unclassified with Medullary Phenotype in a Patient with Neurofibromatosis Type 2. Curr Oncol 2023; 30:3355-3365. [PMID: 36975468 PMCID: PMC10047671 DOI: 10.3390/curroncol30030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
We present, to our knowledge, the first reported case of germline neurofibromatosis Type 2 (NF2) associated with renal cell carcinoma unclassified with medullary phenotype (RCCU-MP) with somatic loss by immunohistochemistry of the SMARCB1 tumor suppressor gene located centromeric to NF2 on chromosome 22q. Our patient is a 15-year-old with germline neurofibromatosis Type 2 (NF2) confirmed by pathogenic mutation of c.-854-??46+??deletion. Her NF2 history is positive for a right optic nerve sheath meningioma, CNIII schwannoma requiring radiation therapy and post gross total resection of right frontotemporal anaplastic meningioma followed by radiation. At age 15 she developed new onset weight loss and abdominal pain due to RCCU-MP. Hemoglobin electrophoresis was negative for sickle hemoglobinopathy. Chemotherapy (cisplatin, gemcitabine and paclitaxel) was initiated followed by radical resection. Given the unique renal pathology of a high grade malignancy with loss of SMARCB1 expression via immunohistochemistry, and history of meningioma with MLH1 loss of expression and retained expression of PMS2, MSH2 and MSH6, further germline genetic testing was sent for SMARCB1 and mismatch repair syndromes. Germline testing was negative for mutation in SMARCB1. Therefore, this is the first reported case of RCCU-MP associated with germline NF2 mutation. This suggests the importance of closer surveillance in the adolescent and young adult population with NF2 with any suspicious findings of malignancy outside of the usual scope of practice with NF2.
Collapse
Affiliation(s)
- Sanila Sarkar
- MD Anderson Cancer Care Center, University of Texas, Houston, TX 77030, USA
| | | | | | - Pavlos Msaouel
- MD Anderson Cancer Care Center, University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ferro M, Musi G, Marchioni M, Maggi M, Veccia A, Del Giudice F, Barone B, Crocetto F, Lasorsa F, Antonelli A, Schips L, Autorino R, Busetto GM, Terracciano D, Lucarelli G, Tataru OS. Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects. Int J Mol Sci 2023; 24:4615. [PMID: 36902045 PMCID: PMC10003020 DOI: 10.3390/ijms24054615] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Alessandro Veccia
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Antonelli
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
43
|
John A, Spain L, Hamid AA. Navigating the Current Landscape of Non-Clear Cell Renal Cell Carcinoma: A Review of the Literature. Curr Oncol 2023; 30:923-937. [PMID: 36661719 PMCID: PMC9858145 DOI: 10.3390/curroncol30010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Non-clear cell renal cell carcinoma (nccRCC) is an entity comprised of a heterogeneous constellation of RCC subtypes. Genomic profiling has broadened our understanding of molecular pathogenic mechanisms unique to individual nccRCC subtypes. To date, clinical trials evaluating the use of immunotherapies and targeted therapies have predominantly been conducted in patients with clear cell histology. A comprehensive review of the literature has been undertaken in order to describe molecular pathogenic mechanisms pertaining to each nccRCC subtype, and concisely summarise findings from therapeutic trials conducted in the nccRCC space.
Collapse
Affiliation(s)
- Alexius John
- Department of Medical Oncology, Eastern Health, Melbourne, VIC 3128, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lavinia Spain
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Anis A. Hamid
- Department of Medical Oncology, Eastern Health, Melbourne, VIC 3128, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Eastern Health Clinical School, Monash University, Melbourne, VIC 3128, Australia
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
44
|
Qu Y, Wu X, Anwaier A, Feng J, Xu W, Pei X, Zhu Y, Liu Y, Bai L, Yang G, Tian X, Su J, Shi GH, Cao DL, Xu F, Wang Y, Gan HL, Ni S, Sun MH, Zhao JY, Zhang H, Ye D, Ding C. Proteogenomic characterization of MiT family translocation renal cell carcinoma. Nat Commun 2022; 13:7494. [PMID: 36470859 PMCID: PMC9722939 DOI: 10.1038/s41467-022-34460-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare type of kidney cancer, which is not well characterized. Here we show the comprehensive proteogenomic analysis of tRCC tumors and normal adjacent tissues to elucidate the molecular landscape of this disease. Our study reveals that defective DNA repair plays an important role in tRCC carcinogenesis and progression. Metabolic processes are markedly dysregulated at both the mRNA and protein levels. Proteomic and phosphoproteome data identify mTOR signaling pathway as a potential therapeutic target. Moreover, molecular subtyping and immune infiltration analysis characterize the inter-tumoral heterogeneity of tRCC. Multi-omic integration reveals the dysregulation of cellular processes affected by genomic alterations, including oxidative phosphorylation, autophagy, transcription factor activity, and proteasome function. This study represents a comprehensive proteogenomic analysis of tRCC, providing valuable insights into its biological mechanisms, disease diagnosis, and prognostication.
Collapse
Affiliation(s)
- Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Xiaohui Wu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jinwen Feng
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Xiaoru Pei
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yang Liu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Lin Bai
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Guojian Yang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jiaqi Su
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Fujiang Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Hua-Lei Gan
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shujuan Ni
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Meng-Hong Sun
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Chen Ding
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
45
|
Khaleel S, Ricketts C, Linehan WM, Ball M, Manley B, Turajilic S, Brugarolas J, Hakimi A. 2022 WUOF/SIU International Consultation on Urological Diseases: Genetics and Tumor Microenvironment of Renal Cell Carcinoma. SOCIETE INTERNATIONALE D'UROLOGIE JOURNAL : SIUJ 2022; 3:386-396. [PMID: 38840811 PMCID: PMC11151163 DOI: 10.48083/blpv3411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Renal cell carcinoma is a diverse group of diseases that can be distinguished by distinct histopathologic and genomic features. In this comprehensive review, we highlight recent advancements in our understanding of the genetic and microenvironmental hallmarks of kidney cancer. We begin with clear cell renal cell carcinoma (ccRCC), the most common subtype of this disease. We review the chromosomal and genetic alterations that drive initiation and progression of ccRCC, which has recently been shown to follow multiple highly conserved evolutionary trajectories that in turn impact disease progression and prognosis. We also review the diverse genetic events that define the many recently recognized rare subtypes within non-clear cell RCC. Finally, we discuss our evolving understanding of the ccRCC microenvironment, which has been revolutionized by recent bulk and single-cell transcriptomic analyses, suggesting potential biomarkers for guiding systemic therapy in the management of advanced ccRCC.
Collapse
Affiliation(s)
- Sari Khaleel
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Christopher Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Mark Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States
| | - Samra Turajilic
- The Francis Crick Institute, London, United Kingdom
- Renal Unit, The Royal Marsden Hospital, London, United Kingdom
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, United States
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
| | - Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
46
|
Fincke VE, Krulik ME, Joshi P, Frühwald MC, Chen YB, Johann PD. Renal Medullary Carcinomas Harbor a Distinct Methylation Phenotype and Display Aberrant Methylation of Genes Related to Early Nephrogenesis. Cancers (Basel) 2022; 14:cancers14205044. [PMID: 36291828 PMCID: PMC9599670 DOI: 10.3390/cancers14205044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Renal medullary carcinomas (RMC) are rare aggressive tumors of the kidneys, characterized by a loss of SMARCB1. Characteristically, these tumors arise in patients with sickle cell trait or other hemoglobinopathies. Recent characterization efforts have unraveled oncogenic pathways that drive tumorigenesis. Among these, gene sets that characterize replicative stress and the innate immune response are upregulated in RMCs. Despite comprehensive genetic and transcriptomic characterizations, commonalities or differences to other SMARCB1 deficient entities so far have not been investigated. We analyzed the methylome of seven primary RMC and compared it to other SMARCB1 deficient entities such as rhabdoid tumors (RT) and epithelioid sarcomas using 850 K methylation arrays. Moreover, we evaluated the differential gene expression of RMC using RNA-sequencing in comparison to other rhabdoid tumors. In accordance with previous gene expression data, we found that RMCs separate from other SMARCB1 deficient entities, pointing to a potentially different cell of origin and a role of additional genetic aberrations that may drive tumorigenesis and thus alter the methylome when compared to rhabdoid tumors. In a focused analysis of genes that are important for nephrogenesis, we particularly detected genes that govern early nephrogenesis such as FOXI1 to be hypomethylated and expressed at high levels in RMC. Overall, our analyses underscore the fact that RMCs represent a separate entity with limited similarities to rhabdoid tumors, warranting specific treatment tailored to the aggressiveness of the disease.
Collapse
Affiliation(s)
- Victoria E. Fincke
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
- Correspondence: (V.E.F.); (P.D.J.)
| | - Mateja E. Krulik
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Piyush Joshi
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael C. Frühwald
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pascal D. Johann
- Swabian Children’s Cancer Center, University Hospital Augsburg, 86156 Augsburg, Germany
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (V.E.F.); (P.D.J.)
| |
Collapse
|
47
|
Del Savio E, Maestro R. Beyond SMARCB1 Loss: Recent Insights into the Pathobiology of Epithelioid Sarcoma. Cells 2022; 11:cells11172626. [PMID: 36078034 PMCID: PMC9454995 DOI: 10.3390/cells11172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelioid sarcoma (ES) is a very rare and aggressive mesenchymal tumor of unclear origin and uncertain lineage characterized by a prevalent epithelioid morphology. The only recurrent genetic alteration reported in ES as yet is the functional inactivation of SMARCB1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1), a key component of the SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes. How SMARCB1 deficiency dictates the clinicopathological characteristics of ES and what other molecular defects concur to its malignant progression is still poorly understood. This review summarizes the recent findings about ES pathobiology, including defects in chromatin remodeling and other signaling pathways and their role as therapeutic vulnerabilities.
Collapse
|
48
|
Msaouel P, Lee J, Karam JA, Thall PF. A Causal Framework for Making Individualized Treatment Decisions in Oncology. Cancers (Basel) 2022; 14:cancers14163923. [PMID: 36010916 PMCID: PMC9406391 DOI: 10.3390/cancers14163923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Physicians routinely make individualized treatment decisions by accounting for the joint effects of patient prognostic covariates and treatments on clinical outcomes. Ideally, this is performed using historical randomized clinical trial (RCT) data. Randomization ensures that unbiased estimates of causal treatment effect parameters can be obtained from the historical RCT data and used to predict each new patient’s outcome based on the joint effect of their baseline covariates and each treatment being considered. However, this process becomes problematic if a patient seen in the clinic is very different from the patients who were enrolled in the RCT. That is, if a new patient does not satisfy the entry criteria of the RCT, then the patient does not belong to the population represented by the patients who were studied in the RCT. In such settings, it still may be possible to utilize the RCT data to help choose a new patient’s treatment. This may be achieved by combining the RCT data with data from other clinical trials, or possibly preclinical experiments, and using the combined dataset to predict the patient’s expected outcome for each treatment being considered. In such settings, combining data from multiple sources in a way that is statistically reliable is not entirely straightforward, and correctly identifying and estimating the effects of treatments and patient covariates on clinical outcomes can be complex. Causal diagrams provide a rational basis to guide this process. The first step is to construct a causal diagram that reflects the plausible relationships between treatment variables, patient covariates, and clinical outcomes. If the diagram is correct, it can be used to determine what additional data may be needed, how to combine data from multiple sources, how to formulate a statistical model for clinical outcomes as a function of treatment and covariates, and how to compute an unbiased treatment effect estimate for each new patient. We use adjuvant therapy of renal cell carcinoma to illustrate how causal diagrams may be used to guide these steps. Abstract We discuss how causal diagrams can be used by clinicians to make better individualized treatment decisions. Causal diagrams can distinguish between settings where clinical decisions can rely on a conventional additive regression model fit to data from a historical randomized clinical trial (RCT) to estimate treatment effects and settings where a different approach is needed. This may be because a new patient does not meet the RCT’s entry criteria, or a treatment’s effect is modified by biomarkers or other variables that act as mediators between treatment and outcome. In some settings, the problem can be addressed simply by including treatment–covariate interaction terms in the statistical regression model used to analyze the RCT dataset. However, if the RCT entry criteria exclude a new patient seen in the clinic, it may be necessary to combine the RCT data with external data from other RCTs, single-arm trials, or preclinical experiments evaluating biological treatment effects. For example, external data may show that treatment effects differ between histological subgroups not recorded in an RCT. A causal diagram may be used to decide whether external observational or experimental data should be obtained and combined with RCT data to compute statistical estimates for making individualized treatment decisions. We use adjuvant treatment of renal cell carcinoma as our motivating example to illustrate how to construct causal diagrams and apply them to guide clinical decisions.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| | - Juhee Lee
- Department of Statistics, University of California, Santa Cruz, CA 95064, USA
| | - Jose A. Karam
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter F. Thall
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
49
|
Identification of Cytosolic DNA Sensor cGAS-STING as Immune-Related Risk Factor in Renal Carcinoma following Pan-Cancer Analysis. J Immunol Res 2022; 2022:7978042. [PMID: 35983076 PMCID: PMC9381291 DOI: 10.1155/2022/7978042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background. The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) plays critical functions in innate immune responses via the production of the second messenger cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which stimulates the adaptor stimulator of interferon genes (STING). However, the clinical relevance and prognostic value of the cGAS-STING pathway in human cancers remains largely unexplored. Methods. A gene signature related to the cGAS-STING score was identified. The pan-cancer landscape of cGAS-STING expression was calculated using the RNAseq data acquired from the TCGA cohort. Tumor-infiltrating immune cells (TIICs) were determined by the ssGSEA method. Kaplan–Meier curves, Cox regression analyses, and the area under the curve (AUC) were employed to decipher the predictive value of cGAS-STING risk score and TIICs across several human cancers. Results. Most tumor tissues displayed a higher cGAS-STING score compared with their corresponding nontumor tissues, except for prostate adenocarcinoma (PRAD) and uterine corpus endometrial carcinoma (UCEC). Higher cGAS-STING score was closely associated with poor clinical outcome of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP), whereas the cGAS-STING score predicted a better prognosis in pheochromocytoma and paraganglioma (PCPG). Enrichment analysis showed that cGAS-STING was profoundly implicated in diverse immune-related pathways in KIRC, KIRP, and PCPG. Significant positive correlations were noticed between cGAS-STING score and TIICs, including activated CD8+ T cells, activated CD4+ T cells, monocytes, and mast cells. Finally, the cGAS-STING score was revealed to be an independent prognostic factor for KIRC patients and possessed a strong predictive power for the prognostic evaluation of KIRC and KIRP patients. Conclusions. We constructed a cGAS-STING gene signature to predict survival and tumor immunity across human cancers, which can serve as a novel prognostic indicator and therapeutic target, especially in KIRC and KIRP.
Collapse
|
50
|
Cooper GW, Hong AL. SMARCB1-Deficient Cancers: Novel Molecular Insights and Therapeutic Vulnerabilities. Cancers (Basel) 2022; 14:cancers14153645. [PMID: 35892904 PMCID: PMC9332782 DOI: 10.3390/cancers14153645] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Loss of SMARCB1 has been identified as the sole mutation in a number of rare pediatric and adult cancers, most of which have a poor prognosis despite intensive therapies including surgery, radiation, and chemotherapy. Thus, a more robust understanding of the mechanisms driving this set of cancers is vital to improving patient treatment and outcomes. This review outlines recent advances made in our understanding of the function of SMARCB1 and how these advances have been used to discover putative therapeutic vulnerabilities. Abstract SMARCB1 is a critical component of the BAF complex that is responsible for global chromatin remodeling. Loss of SMARCB1 has been implicated in the initiation of cancers such as malignant rhabdoid tumor (MRT), atypical teratoid rhabdoid tumor (ATRT), and, more recently, renal medullary carcinoma (RMC). These SMARCB1-deficient tumors have remarkably stable genomes, offering unique insights into the epigenetic mechanisms in cancer biology. Given the lack of druggable targets and the high mortality associated with SMARCB1-deficient tumors, a significant research effort has been directed toward understanding the mechanisms of tumor transformation and proliferation. Accumulating evidence suggests that tumorigenicity arises from aberrant enhancer and promoter regulation followed by dysfunctional transcriptional control. In this review, we outline key mechanisms by which loss of SMARCB1 may lead to tumor formation and cover how these mechanisms have been used for the design of targeted therapy.
Collapse
Affiliation(s)
- Garrett W. Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|