1
|
Yang Y, Li L, Dai F, Deng L, Yang K, He C, Chen Y, Yang X, Song L. Fibroblast-derived versican exacerbates periodontitis progression by regulating macrophage migration and inflammatory cytokine secretion. Cell Signal 2025; 131:111755. [PMID: 40112905 DOI: 10.1016/j.cellsig.2025.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Versican (VCAN), a prominent extracellular matrix component upregulated in inflammatory diseases, demonstrates context-specific regulatory mechanisms. Periodontitis, a chronic inflammatory disease leading to periodontal tissue destruction and tooth loss, the pathological role of it remains poorly defined. Our study aims to examine VCAN-mediated mechanisms in periodontitis. METHODS We conducted a comprehensive analysis of bulk RNA sequencing and single-cell RNA sequencing data to examine VCAN expression level and source in periodontitis. Functional and correlation analyses were used to explore its biological functions. We then validated VCAN expression using quantitative real-time polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining in animal models and investigated its biological functions in inflammation through in vitro experiments. RESULTS Our findings reveal that VCAN is mainly generated by fibroblast in periodontitis, and its expression significantly upregulated at both mRNA and protein levels. Using VCAN-overexpressing L929 cells, we demonstrated enhanced proliferative capacity and inflammatory potential. Co-culture experiments with RAW264.7 cells showed promoted migration, adhesion, M1 polarization, and mitogen-activated protein kinase (MAPK) pathway activation. CONCLUSION VCAN enhances fibroblast proliferation and migration, and upregulates inflammatory cytokines expression. Furthermore, fibroblast-derived VCAN not only induces macrophage chemotaxis, migration, adhesion, and polarization toward the proinflammatory M1 phenotype, but also activates MAPK signaling of macrophage, which may amplify inflammatory cascades to exacerbate periodontal tissue destruction. Targeted regulation of VCAN expression may become a promising precision treatment strategy for periodontitis.
Collapse
Affiliation(s)
- Yuting Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Li Li
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Fang Dai
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China
| | - Libin Deng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Kaiqiang Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Chenjiang He
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Yeke Chen
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Xinbo Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Li Song
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Jiang Y, Qian Z, Wang C, Wu D, Liu L, Ning X, You Y, Mei J, Zhao X, Zhang Y. Targeting B7-H3 inhibition-induced activation of fatty acid synthesis boosts anti-B7-H3 immunotherapy in triple-negative breast cancer. J Immunother Cancer 2025; 13:e010924. [PMID: 40221152 DOI: 10.1136/jitc-2024-010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most malignant breast cancer, highlighting the need for effective immunotherapeutic targets. The immune checkpoint molecule B7-H3 has recently gained attention as a promising therapeutic target due to its pivotal role in promoting tumorigenesis and cancer progression. However, the therapeutic impact of B7-H3 inhibitors (B7-H3i) remains unclear. METHODS Transcriptomic and metabolomic analyses were conducted to explore the underlying mechanisms of B7-H3 inhibition in TNBC. The therapeutic efficacy of the combined treatment strategy was substantiated through comprehensive phenotypic assays conducted in vitro and validated in vivo using animal models. RESULTS B7-H3 blockade induces a "primed for death" stress state in cancer cells, leading to distinct alterations in metabolic pathways. Specifically, B7-H3 knockdown activated the AKT signaling pathway and upregulated sterol regulatory element-binding protein 1 (SREBP1), which in turn elevated FASN expression. The simultaneous inhibition of both B7-H3 and FASN more effectively attenuated the malignant progression of TNBC. CONCLUSIONS Our findings propose an "immune attack-metabolic compensation" dynamic model and suggest the feasibility of a dual-targeting strategy that concurrently inhibits both B7-H3 and FASN to enhance therapeutic efficacy in TNBC patients.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cengzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Danping Wu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lu Liu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Ning
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yilan You
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqian Zhao
- Department of Breast Surgery, Women's Hospital of Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Guan Z, Zhang Z, Wang K, Qiao S, Ma T, Wu L. Targeting myeloid cells for hematological malignancies: the present and future. Biomark Res 2025; 13:59. [PMID: 40205623 PMCID: PMC11983845 DOI: 10.1186/s40364-025-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
Hematological malignancies are a diverse group of cancers that originate in the blood and bone marrow and are characterized by the abnormal proliferation and differentiation of hematopoietic cells. Myeloid blasts, which are derived from normal myeloid progenitors, play a central role in these diseases by disrupting hematopoiesis and driving disease progression. In addition, other myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, adapt dynamically to the tumor microenvironment, where they can promote immune evasion and resistance to treatment. This review explores the unique characteristics and pathogenic mechanisms of myeloid blasts, the immunosuppressive roles of myeloid cells, and their complex interactions within the TME. Furthermore, we highlight emerging therapeutic approaches targeting myeloid cells, focusing on strategies to reprogram their functions, inhibit their suppressive effects, or eliminate pathological populations altogether, as well as the latest preclinical and clinical trials advancing these approaches. By integrating insights from these studies, we aim to provide a comprehensive understanding of the roles of myeloid cells in hematological malignancies and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Zihui Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Peking University First Hospital, Beijing, 100034, China
| | - Zhengqi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kaiyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shukai Qiao
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Teng Ma
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
4
|
Tian B, Wang Z, Cao M, Wang N, Jia X, Zhang Y, Zhou J, Liu S, Zhang W, Dong X, Li Z, Xue J, Wang J, Fan GH, Li Q. CCR8 antagonist suppresses liver cancer progression via turning tumor-infiltrating Tregs into less immunosuppressive phenotype. J Exp Clin Cancer Res 2025; 44:113. [PMID: 40186298 PMCID: PMC11969927 DOI: 10.1186/s13046-025-03286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/12/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are the main immunosuppressive cells in tumor immune microenvironment (TIME). However, systemic Treg depletion is not favored due to the crucial role of Tregs in the maintenance of immune homeostasis and prevention of autoimmunity. Recently, CCR8 has been identified as a key chemokine receptor expressed on tumor-infiltrating Tregs and targeted blockade of CCR8 exerts anticancer effect in several cancer types, but whether this pathway is involved in the progression of hepatocellular carcinoma (HCC) remains unclear. METHODS We determined the involvement of CCR8+ Tregs in HCC using human HCC tissues and TCGA database, and examined the anticancer effect and the underlying molecular mechanisms of the CCR8 antagonist, IPG0521m, which was developed in house, in murine liver cancer model with flow cytometry, bulk and single-cell RNA sequencing and Real-Time PCR. RESULTS Remarkable increase in CCR8+ Tregs was observed in human HCC tissues. Treatment of syngeneic liver cancer model with IPG0521m resulted in dramatic inhibition of tumor growth, associated with increased CD8+ T cells in tumor tissues. Bulk RNA sequencing analysis indicated that IPG0521m treatment resulted in remarkable increase in antitumor immunity. Furthermore, single-cell RNA sequencing analysis demonstrated that IPG0521m treatment resulted in a switch of Tregs from high immunosuppression to low immunosuppression phenotype, associated with elevated CD8+ T and NK cell proliferation and cytotoxicity, and decreased myeloid-derived suppressor cells and tumor-associated macrophages in the tumor tissues. CONCLUSIONS IPG0521m inhibited liver cancer growth via reducing the immunosuppressive function of Tregs, thereby boosting anti-cancer immunity. Our study paves the way for the clinical study of CCR8 antagonist in HCC and other cancers.
Collapse
MESH Headings
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Animals
- Mice
- Humans
- Receptors, CCR8/antagonists & inhibitors
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- Disease Progression
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Tumor Microenvironment/drug effects
- Phenotype
- Disease Models, Animal
- Cell Line, Tumor
- Immune Tolerance
Collapse
Affiliation(s)
- Binle Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhilong Wang
- Department of Oncology, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Mei Cao
- Department of Gynecology and Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Na Wang
- Department of Antibody Development, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuanyuan Zhang
- Department of Oncology, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Jingyi Zhou
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Sijia Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wen Zhang
- Department of Oncology, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Xiao Dong
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zheng Li
- Department of Autoimmune Disease, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| | - JianFei Wang
- Excecutive Office, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China.
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China.
| | - Guo-Huang Fan
- Excecutive Office, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China.
| | - Qi Li
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
5
|
Hou R, Wu X, Wang C, Fan H, Zhang Y, Wu H, Wang H, Ding J, Jiang H, Xu J. Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). Int J Oncol 2025; 66:28. [PMID: 40017131 PMCID: PMC11900975 DOI: 10.3892/ijo.2025.5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
Cancer is the second leading cause of death among humans worldwide. Despite remarkable improvements in cancer therapies, drug resistance remains a significant challenge. The tumor microenvironment (TME) is intimately associated with therapeutic resistance. Tumor‑associated neutrophils (TANs) are a crucial component of the TME, which, along with other immune cells, play a role in tumorigenesis, development and metastasis. In the current review, the roles of TANs in the TME, as well as the mechanisms of neutrophil‑mediated resistance to cancer therapy, including immunotherapy, chemotherapy, radiotherapy and targeted therapy, were summarized. Furthermore, strategies for neutrophil therapy were discussed and TANs were explored as potential targets for cancer treatment. In conclusion, the need to explore the precise roles, recruitment pathways and mechanisms of action of TANs was highlighted for the purpose of developing therapies that precisely target TANs and reverse drug resistance.
Collapse
Affiliation(s)
- Rui Hou
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Xi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Cenzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanfang Fan
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Yuhan Zhang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanchi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huning Jiang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| |
Collapse
|
6
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025:S1471-4906(25)00059-6. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Yuan X, Rosen JM. Histone acetylation modulators in breast cancer. Breast Cancer Res 2025; 27:49. [PMID: 40165290 PMCID: PMC11959873 DOI: 10.1186/s13058-025-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. Aberrant epigenetic reprogramming such as dysregulation of histone acetylation has been associated with the development of breast cancer. Histone acetylation modulators have been targeted as potential treatments for breast cancer. This review comprehensively discusses the roles of these modulators and the effects of their inhibitors on breast cancer. In addition, epigenetic reprogramming not only affects breast cancer cells but also the immunosuppressive myeloid cells, which can facilitate breast cancer progression. Therefore, the review also highlights the roles of these immunosuppressive myeloid cells and summarizes how histone acetylation modulators affect their functions and phenotypes. This review provides insights into histone acetylation modulators as potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
9
|
Bennion KB, Miranda R.Bazzano J, Liu D, Wagener M, Paulos CM, Ford ML. Macrophage-derived Fgl2 dampens antitumor immunity through regulation of FcγRIIB+CD8+ T cells in melanoma. JCI Insight 2025; 10:e182563. [PMID: 40125553 PMCID: PMC11949062 DOI: 10.1172/jci.insight.182563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer immunotherapy has emerged as a promising therapeutic modality but heterogeneity in patient responsiveness remains. Thus, greater understanding of the immunologic factors that dictate response to immunotherapy is critical to improve patient outcomes. Here, we show that fibrinogen-like protein 2 (Fgl2) is elevated in the setting of melanoma in humans and mice and plays a functional role in inhibiting the CD8+ T cell response. Surprisingly, the tumor itself is not the major cellular source of Fgl2. Instead, we found that macrophage-secreted Fgl2 dampens the CD8+ T cell response through binding and apoptosis of FcγRIIB+CD8+ T cells. This regulation was CD8+ T cell autonomous and not via an antigen-presenting cell intermediary, as absence of Fcgr2b from the CD8+ T cells rendered T cells insensitive to Fgl2 regulation. Fgl2 is robustly expressed by macrophages in 10 cancer types in humans and in 6 syngeneic tumor models in mice, underscoring the clinical relevance of Fgl2 as a therapeutic target to promote T cell activity and improve patient immunotherapeutic response.
Collapse
Affiliation(s)
- Kelsey B. Bennion
- Cancer Biology PhD program
- Department of Surgery
- Winship Cancer Institute
| | | | - Danya Liu
- Department of Surgery
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maylene Wagener
- Department of Surgery
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Mandy L. Ford
- Cancer Biology PhD program
- Department of Surgery
- Winship Cancer Institute
- Immunology and Molecular Pathogenesis PhD program, and
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Sholevar CJ, Liu NM, Mukarrama T, Kim J, Lawrence J, Canter RJ. Myeloid Cells in the Immunosuppressive Microenvironment as Immunotargets in Osteosarcoma. Immunotargets Ther 2025; 14:247-258. [PMID: 40125425 PMCID: PMC11930235 DOI: 10.2147/itt.s485672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Osteosarcoma is an aggressive primary malignant bone tumor associated with high rates of metastasis and poor 5-year survival rates with limited improvements in approximately 40 years. Standard multimodality treatment includes chemotherapy and surgery, and survival rates have remained stagnant. Overall, response rates to immunotherapy like immune checkpoint inhibitors have been disappointing in osteosarcoma despite exciting results in other epithelial tumor types. The poor response of osteosarcoma to current immunotherapies is multifactorial, but a key observation is that the tumor microenvironment in osteosarcoma is profoundly immunosuppressive, and increasing evidence suggests a significant role of suppressive myeloid cells in tumor progression and immune evasion, particularly by myeloid-derived suppressor cells. Targeting suppressive myeloid cells via novel agents are attractive strategies to develop novel immunotherapies for osteosarcoma, and combination strategies will likely be important for durable responses. In this review, we will examine mechanisms of the immunosuppressive microenvironment, highlight pre-clinical and clinical data of combination strategies including colony-stimulating factor 1 (CSF-1) receptor, phosphoinositide 3-kinase (PI3K), CXCR4, and checkpoint inhibition, as well as the role of canine models in elucidating myeloid cells as targets in osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Cyrus J Sholevar
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| | - Natalie M Liu
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| | - Tasneem Mukarrama
- Biomedical Engineering, University of California Davis, Sacramento, CA, USA
| | - Jinhwan Kim
- Biomedical Engineering, University of California Davis, Sacramento, CA, USA
| | - Jessica Lawrence
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
11
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00798-8. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Reggio A, Fuoco C, Deodati R, Palma A. SPP1 macrophages across diseases: A call for reclassification? FASEB J 2025; 39:e70448. [PMID: 40047497 PMCID: PMC11884386 DOI: 10.1096/fj.202403227r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
SPP1+ macrophages, characterized by elevated expression of the osteopontin gene (secreted phosphoprotein 1, SPP1), have emerged as key players in various pathological contexts, including aging, chronic inflammatory diseases, and cancer. While frequently classified as a subclass of tumor-associated macrophages in oncological settings, their presence in noncancer conditions, such as aging-related disorders and muscular diseases, suggests a broader role beyond tumors. These macrophages share conserved traits, including fibrosis promotion, extracellular matrix remodeling, and immune modulation, often linked to poor clinical outcomes. This perspective explores the multifaceted roles of SPP1+ macrophages across diseases and advocates for their reclassification as a distinct macrophage subtype associated with chronic or prolonged inflammation. Recognizing their cross-disease relevance could reshape macrophage biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alessio Reggio
- Saint Camillus International University of Health SciencesRomeItaly
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Claudia Fuoco
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Rebecca Deodati
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Alessandro Palma
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomeItaly
| |
Collapse
|
13
|
Bhatia D, Dolcetti R, Mazzieri R. Are monocytes a preferable option to develop myeloid cell-based therapies for solid tumors? J Exp Clin Cancer Res 2025; 44:98. [PMID: 40089746 PMCID: PMC11909881 DOI: 10.1186/s13046-025-03359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
In the last two decades, novel and promising cell-based therapies have populated the treatment landscape for haematological tumors. However, commonly exploited T and NK cell-based therapies show limited applicability to solid tumors. This is mainly given by the impaired tumor trafficking capability and limited effector activity of these cells within a highly immunosuppressive tumor microenvironment. Myeloid cells spontaneously home to tumors and can thus be reprogrammed and/or engineered to directly attack tumor cells or locally and selectively deliver therapeutically relevant payloads that may improve the efficacy of immunotherapy against difficult-to-access solid tumors. In the context of myeloid cell-based therapies, adoptive transfer of monocytes has often been overshadowed by infusion of differentiated macrophages or hematopoietic stem cell transplantation despite their promising therapeutic potential. Here, we summarize the recent improvements and benefits of using monocytes for the treatment of solid tumors, their current clinical applications and the challenges of their use as well as some possible strategies to overcome them.
Collapse
Affiliation(s)
- Daisy Bhatia
- Swiss Federal Institute of Technology, Lausanne, Switzerland
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
14
|
Xue L, Gao L, Zhou S, Yan C, Zhang X, Lin W, Li H, Shen Y, Wang X. Single-cell RNA sequencing revealed changes in the tumor microenvironment induced by radiotherapy for cervical cancer and the molecular mechanism of mast cells in immunosuppression. Funct Integr Genomics 2025; 25:63. [PMID: 40082276 DOI: 10.1007/s10142-025-01564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/25/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Radiotherapy (RT) is an important treatment for cervical cancer (CC), effectively controlling tumor growth and improving survival rates. However, radiotherapy-induced cell heterogeneity and its underlying mechanisms remain unclear, which may potentially impact treatment efficacy. This study aims to investigate tumor microenvironment changes following radiotherapy for CC, hoping to provide evidence to improve the therapeutic effects of radiotherapy. For the first time, we applied single-cell RNA sequencing (scRNA-seq) to analyze tissue samples from three CC patients pre- and post-radiotherapy. We obtained gene expression data from 52,506 cells to identify the cellular changes and molecular mechanisms induced by radiotherapy. Radiotherapy significantly alters cellular composition and gene expression within the tumor microenvironment (TME), notably upregulating mast cell expression. Mast cells are involved in multiple cell axes in the CC ecosystem after radiotherapy, and play a pivotal role in tumor immunosuppression and matrix remodeling. scRNA-seq revealed gene expression variations among cell types after radiotherapy, underscoring the importance of specific cell types in modulating the TME post-treatment. This study revealed the molecular mechanism of radiotherapy for CC and the role of mast cells, providing a foundation for optimizing the personalized treatment of CC.
Collapse
Affiliation(s)
- Lujiadai Xue
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Linzhi Gao
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Shimin Zhou
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Chaofan Yan
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Xian Zhang
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Wei Lin
- Department of Gynecology, The First Peoples Hospital of Changde City, No 388 People's East Road, Wuling District, Changde City, 415000, China
| | - Hu Li
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China.
| | - Yuan Shen
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China.
| | - Xiaoyu Wang
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China.
| |
Collapse
|
15
|
Liu XM, Li Z, Wang XY, Ding BW, Wang JQ, Qiao X, Feng YK, Hao JH, Xu JY. Self-assembled HO-1i-Pt(IV) nanomedicine targeting p38/MAPK and MDR pathways for cancer chemo-immunotherapy. J Control Release 2025; 379:797-813. [PMID: 39848589 DOI: 10.1016/j.jconrel.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Platinum(II)-based antitumor drugs are widely used in clinics but limited by severe side effects and resistance. Multi-target Platinum(IV) complexes are emerging as ideal alternatives. Heme oxygenase-1 (HO-1) works as a rate-limiting step in heme degradation and is overexpressed in malignant tumors. Herein, HO-1i-based Platinum(IV) prodrugs are prepared and candidate complex 15 is further developed into self-assembled nanoparticles (15-NPs). 15 and 15-NPs significantly increase cytotoxicity, particularly in HepG2 (74.77- and 96.14-fold increases) and A549cisR (38.6- and 47.24-fold increases), while reducing toxicity towards normal cells compared to cisplatin. In vitro experiments show 15 and 15-NPs activated multiple pathways, including p38/MAPK- and MDR-related proteins, achieving multi-target synergistic chemosensitization and anti-resistance, further verified by RNA-sequencing analysis. In vivo tests demonstrate that 15 and 15-NPs efficiently inhibit tumor growth and systemic toxicity, especially 15-NPs with optimal tumor-inhibition rate and survival (80% and 100%), superior to cisplatin (40% and 50%), attributing to its extra endocytosis, EPR effect, and precisely tumor-targeted release besides the advantage of a free HO-1i-Pt(IV) prodrug. Additionally, 15 and 15-NPs distinctly regulate T-cell and macrophage functions, thereby exhibiting a chemoimmuno-combined action. This study highlights that multi-functional Platinum(IV) prodrug target-delivered to tumors via carrier-free nanoparticles may represent an effective modality for improving cancer therapy.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiao-Ya Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bo-Wen Ding
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jia-Qian Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Kuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Ji-Hui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
16
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
17
|
Liu W, Zhao Z. Scupa: single-cell unified polarization assessment of immune cells using the single-cell foundation model. BIOINFORMATICS (OXFORD, ENGLAND) 2025; 41:btaf090. [PMID: 39999031 DOI: 10.1093/bioinformatics/btaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
MOTIVATION Immune cells undergo cytokine-driven polarization in response to diverse stimuli, altering their transcriptional profiles and functional states. This dynamic process is central to immune responses in health and diseases, yet a systematic approach to assess cytokine-driven polarization in single-cell RNA sequencing data has been lacking. RESULTS To address this gap, we developed single-cell unified polarization assessment (Scupa), the first computational method for comprehensive immune cell polarization assessment. Scupa leverages data from the Immune Dictionary, which characterizes cytokine-driven polarization states across 14 immune cell types. By integrating cell embeddings from the single-cell foundation model Universal Cell Embeddings, Scupa effectively identifies polarized cells across different species and experimental conditions. Applications of Scupa in independent datasets demonstrated its accuracy in classifying polarized cells and further revealed distinct polarization profiles in tumor-infiltrating myeloid cells across cancers. Scupa complements conventional single-cell data analysis by providing new insights into dynamic immune cell states, and holds potential for advancing therapeutic insights, particularly in cytokine-based therapies. AVAILABILITY AND IMPLEMENTATION The code is available at https://github.com/bsml320/Scupa.
Collapse
Affiliation(s)
- Wendao Liu
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, United States
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, United States
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| |
Collapse
|
18
|
Qiao W, Li S, Luo L, Chen M, Zheng X, Ye J, Liang Z, Wang Q, Hu T, Zhou L, Wang J, Ge X, Feng G, Hu F, Liu R, Li J, Yang J. Ce6-GFFY is a novel photosensitizer for colorectal cancer therapy. Genes Dis 2025; 12:101441. [PMID: 39759121 PMCID: PMC11697048 DOI: 10.1016/j.gendis.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025] Open
Abstract
Photodynamic therapy is an "old" strategy for cancer therapy featuring clinical safety and rapid working, but suitable photosensitizers for colorectal cancer therapy remain lacking. This study synthesized a novel photosensitizer termed Ce6-GFFY based on a self-assembling peptide GFFY and a photo-responsive molecule chlorin e6 (Ce6). Ce6-GFFY forms macroparticles with a diameter of ∼160 nm and possesses a half-life of 10 h, as well as an ideal tumor-targeting ability in mouse models. Ce6-GFFY effectively penetrates cells and generates numerous reactive oxygen species upon 660 nm laser irradiation. The reactive oxygen species promotes the accumulation of cytotoxic T cells and decrease of myeloid-derived suppressor cells in the tumor microenvironment through immunogenic cell death, thus prohibiting the growth of both primary and metastatic tumors after once treatment. This study not only provides a strategy for photosensitizer development but also confirms a promising application of Ce6-GFFY for colorectal cancer therapy.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuxin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Linna Luo
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Meiling Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaobin Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jiacong Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhaohui Liang
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ting Hu
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ling Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaosong Ge
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rongbin Liu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jianjun Li
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
19
|
Liu X, Pan B, Ding J, Zhai X, Hong J, Zheng J. Identifying potential signatures of immune cells in hepatocellular carcinoma using integrative bioinformatics approaches and machine-learning strategies. Immunol Res 2025; 73:46. [PMID: 39904830 DOI: 10.1007/s12026-024-09585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/24/2024] [Indexed: 02/06/2025]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor regulated by the immune system. Immunotherapy using checkpoint inhibitors has shown encouraging outcomes in a subset of HCC patients. The main challenges in checkpoint immunotherapy for HCC are to expand treatment options and to broaden the beneficiary population. Therefore, the search for potential signatures of immune cells is meaningful in the development of immunotherapy for HCC. The HCC related datasets were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Differential expression analysis and functional analysis were performed first. Then support vector machine-recursive feature elimination (SVM-RFE), random forests (RF), least absolute shrinkage and selection operation (LASSO), and weighed gene co-expression network analysis (WGCNA) were employed to screen for critical genes, and receiver operating characteristic (ROC) analysis was performed to compare diagnostic performance. Subsequently, single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between signatures and immune cells. Finally, we validated the expression of these biomarkers in human HCC samples. 531 overlapping differentially expressed genes (DEGs) were identified. Furthermore, enrichment analysis revealed pathways associated with immune activation processes, immune cell involvement and inflammatory signaling. After using multiple machine-learning strategies, extracellular matrix protein 1 (ECM1), leukemia inhibitory factor receptor (LIFR), sushi repeat containing protein X-linked (SRPX), and thromboxane A2 receptor (TBXA2R) were identified as critical signatures, and exhibited high expression in tumor-adjacent normal tissues. According to the ssGSEA results, ECM1, LIFR, SRPX and TBXA2R were all significantly associated with diverse immune cells, such as monocytes and neutrophils. Moreover, immunostaining of human HCC samples showed that these critical signatures all colocalized with CD14-positive monocytes. Our findings report the potential signatures of immune cells in HCC and confirm that they localize in monocytes of tumor-adjacent normal tissues. ECM1, LIFR, SRPX and TBXA2R could become new potential targets for predictive diagnosis, early intervention and immunotherapy of HCC in the future.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Bo Pan
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xiaofeng Zhai
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jing Hong
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jianming Zheng
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Ren F, Meng L, Zheng S, Cui J, Song S, Li X, Wang D, Li X, Liu Q, Bu W, Sun H. Myeloid cell-derived apCAFs promote HNSCC progression by regulating proportion of CD4 + and CD8 + T cells. J Exp Clin Cancer Res 2025; 44:33. [PMID: 39891284 PMCID: PMC11783918 DOI: 10.1186/s13046-025-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
It is well-known that cancer-associated fibroblasts (CAFs) are involved in the desmoplastic responses in Head and Neck Squamous Cell Carcinoma (HNSCC). CAFs are pivotal in the tumor microenvironment (TME) molding, and exert a profound influence on tumor development. The origin and roles of CAFs, however, are still unclear in the HNSCC, especially antigen-presenting cancer-associated fibroblasts (apCAFs). Our current study tried to explore the origin, mechanism, and function of the apCAFs in the HNSCC. Data from single-cell transcriptomics elucidated the presence of apCAFs in the HNSCC. Leveraging cell trajectory and Cellchat analysis along with robust lineage-tracing assays revealed that apCAFs were primarily derived from myeloid cells. This transdifferentiation was propelled by the macrophage migration inhibitory factor (MIF), which was secreted by tumor cells and activated the JAK/STAT3 signaling pathway. Analysis of the TCGA database has revealed that markers of apCAFs were inversely correlated with survival rates in patients with HNSCC. In vivo experiments have demonstrated that apCAFs could facilitate tumor progression. Furthermore, apCAFs could modulate ratio of CD4+ T cells/CD8+ T cells, such as higher ratio of CD4+ T cells/CD8+ T cells could promote tumor progression. Most importantly, data from in vivo assays revealed that inhibitors of MIF and p-STAT3 could significantly inhibit the OSCC growth. Therefore, our findings show potential innovative therapeutic approaches for the HNSCC.Significance: ApCAFs derived from myeloid cells promote the progression of HNSCC by increasing the ratio of CD4+/CD8+ cells, indicating potential novel targets to be used to treat the human HNSCC.
Collapse
Affiliation(s)
- Feilong Ren
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Lin Meng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shize Zheng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Jiasen Cui
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Shaoyi Song
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Dandan Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Qilin Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Wenhuan Bu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China.
| |
Collapse
|
21
|
Zhang Y, Wang X, Gu Y, Liu T, Zhao X, Cheng S, Duan L, Huang C, Wu S, Gao S. Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells. Proc Natl Acad Sci U S A 2025; 122:e2420005122. [PMID: 39847320 PMCID: PMC11789090 DOI: 10.1073/pnas.2420005122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, EV C3 induces the secretion of CCL2 and CXCL1 by lung macrophages and subsequently enhances TAM polarization and PMN-MDSC recruitment. Notably, targeting the CCL2/CCR2 or CXCL1/CXCR2 axis with the inhibitors RS504393 or Navarixin, respectively, effectively suppresses lung metastasis induced by RCC-derived C3 in a mouse model. Clinically, RCC patients with high expression of C3 demonstrate poor prognosis. Collectively, our findings reveal that tumor-derived EV C3 induces an immunosuppressive tumor microenvironment via TAMs, and thus promoting RCC metastasis.
Collapse
Affiliation(s)
- Yibi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Xiaodong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Yinmin Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Tongfeng Liu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
- Medical College, Guizhou University, Guiyang550025, China
| | - Xujie Zhao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Shuwen Cheng
- Medical School of Nanjing University, Nanjing210046, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Shanxi Provincial Key Laboratory of Protein Structure Determination, Taiyuan030032, China
| | - Chang Huang
- Medical College, Guizhou University, Guiyang550025, China
| | - Songzhe Wu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| |
Collapse
|
22
|
Yang Y, Pei T, Liu C, Cao M, Hu X, Yuan J, Chen F, Guo B, Hong Y, Liu J, Li B, Li X, Wang H. Glutamine metabolic competition drives immunosuppressive reprogramming of intratumour GPR109A + myeloid cells to promote liver cancer progression. Gut 2025; 74:255-269. [PMID: 38981667 DOI: 10.1136/gutjnl-2024-332429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE The metabolic characteristics of liver cancer drive considerable hurdles to immune cells function and cancer immunotherapy. However, how metabolic reprograming in the tumour microenvironment impairs the antitumour immune response remains unclear. DESIGN Human samples and multiple murine models were employed to evaluate the correlation between GPR109A and liver cancer progression. GPR109A knockout mice, immune cells depletion and primary cell coculture models were used to determine the regulation of GPR109A on tumour microenvironment and identify the underlying mechanism responsible for the formation of intratumour GPR109A+myeloid cells. RESULTS We demonstrate that glutamine shortage in liver cancer tumour microenvironment drives an immunosuppressive GPR109A+myeloid cells infiltration, leading to the evasion of immune surveillance. Blockade of GPR109A decreases G-MDSCs and M2-like TAMs abundance to trigger the antitumour responses of CD8+ T cells and further improves the immunotherapy efficacy against liver cancer. Mechanistically, tumour cells and tumour-infiltrated myeloid cells compete for glutamine uptake via the transporter SLC1A5 to control antitumour immunity, which disrupts the endoplasmic reticulum (ER) homoeostasis and induces unfolded protein response of myeloid cells to promote GPR109A expression through IRE1α/XBP1 pathway. The restriction of glutamine uptake in liver cancer cells, as well as the blockade of IRE1α/XBP1 signalling or glutamine supplementation, can eliminate the immunosuppressive effects of GPR109A+ myeloid cells and slow down tumour progression. CONCLUSION Our findings identify the immunometabolic crosstalk between liver cancer cells and myeloid cells facilitates tumour progression via a glutamine metabolism/ER stress/GPR109A axis, suggesting that GPR109A can be exploited as an immunometabolic checkpoint and putative target for cancer treatment.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianduo Pei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaobao Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingtao Cao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Hu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yuan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqian Chen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao Guo
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuemei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jibin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Bin Li
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medicine University, Shanghai, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Chen Q, Deng D, Zhu H, Li S. Single-cell transcriptomics unveils multifaceted immune heterogeneity in early-onset versus late-onset cervical cancer. World J Surg Oncol 2025; 23:12. [PMID: 39810181 PMCID: PMC11730844 DOI: 10.1186/s12957-025-03654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures. Epithelial cells in EOCC exhibited a notable dual immunological phenotype, characterized by immune-suppressive properties driven by elevated CXCL production, alongside immune-stimulatory features linked to heightened HLA molecule expression. CD4 + and CD8 + T cells in LOCC demonstrated a heightened activation state, while NK cells exhibited diminished cytotoxicity. Macrophages in LOCC displayed enhanced polarization towards both M1 and M2 phenotypes, along with dendritic cells showing augmented antigen-presenting capacity. Regarding cancer-associated fibroblasts (CAFs), EOCC was enriched with inflammatory CAFs, whereas LOCC harbored a higher proportion of antigen-presenting CAFs. These findings reveal the multifaceted immune heterogeneity between EOCC and LOCC, underscoring the imperative for age-tailored immunotherapeutic strategies.
Collapse
Affiliation(s)
- Qian Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dongfeng Deng
- Department of Oncology, Hunan University of Medicine General Hospital, Huaihua, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Tariq HK, Liang Z, Rabiu L, Ibrahim A, Mohamady Farouk Abdalsalam N, Li R, Yang Q, Wan X, Yan D. Blockade of TIPE2-Mediated Ferroptosis of Myeloid-Derived Suppressor Cells Achieves the Full Potential of Combinatory Ferroptosis and Anti-PD-L1 Cancer Immunotherapy. Cells 2025; 14:108. [PMID: 39851538 PMCID: PMC11763990 DOI: 10.3390/cells14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Although immune checkpoint blockade (ICB) therapy has attained unprecedented clinical success, the tolerance and immune suppression mechanisms evolved by tumor cells and their tumor microenvironment (TME) hinder its maximum anti-cancer potential. Ferroptosis therapy can partially improve the efficacy of ICB, but it is still subject to immune suppression by myeloid-derived suppressor cells (MDSCs) in the TME. Recent research suggests that an MDSC blockade can unleash the full therapeutic potential of the combined therapy of ferroptosis and ICB in liver cancer treatment. However, whether blocking the intrinsic ferroptosis pathways of MDSCs can relieve imidazole ketone erastin (IKE)-initiated ferroptosis-induced immune suppression and ultimately trigger the optimal therapeutic effect of the combined ferroptosis and ICB therapy is still unknown. Here, we report that TIPE2, a phospholipid transfer protein, regulated the ferroptosis susceptibility in MDSCs through reprogramming lipid peroxidation-related phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species composition. TIPE2-deficient MDSCs resisted IKE-induced ferroptosis by up-regulating SLC7A11 and GPX4, and dissolved ferroptosis-induced immunosuppressive function by down-regulating lipid ROS whilst encouraging T cell proliferation and infiltration into tumor tissues to improve ferroptosis therapy. More importantly, TIPE2-deficient MDSCs achieved the full anti-tumor therapeutic potential of IKE-induced ferroptosis therapy and a PD-L1 blockade. These findings indicate that TIPE2 confers the ferroptosis sensitivity of MDSCs, and combining the targeting of the TIPE2 of MDSCs, ferroptosis therapy, and ICB is a novel therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
| | - Lawan Rabiu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
| | - Qiong Yang
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|
25
|
Yan Q, Mohammadpour H. Platelet-activating factor: a potential therapeutic target to improve cancer immunotherapy. Mol Oncol 2025; 19:11-14. [PMID: 39558859 PMCID: PMC11705722 DOI: 10.1002/1878-0261.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
The tumor microenvironment (TME) fosters cancer progression by supporting the differentiation and proliferation of myeloid-derived suppressor cells (MDSCs), which play a critical role in suppressing immune responses and facilitating tumor growth. Recent findings by Dahal et al. reveal that platelet-activating factor (PAF), a lipid mediator elevated in the TME, contributes to the differentiation of neutrophils into immunosuppressive neutrophils. They showed that inhibiting PAF signaling reduces MDSC-mediated immunosuppression, thereby enhancing cytotoxic T-cell activity. This approach may improve cancer immunotherapy outcomes, particularly when combined with checkpoint blockade therapies, suggesting a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Qi Yan
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Hemn Mohammadpour
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| |
Collapse
|
26
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
27
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
28
|
Chen Y, Zhang X, Huang S, Febbraio M. Hidden features: CD36/SR-B2, a master regulator of macrophage phenotype/function through metabolism. Front Immunol 2024; 15:1468957. [PMID: 39742252 PMCID: PMC11685046 DOI: 10.3389/fimmu.2024.1468957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Once thought to be in a terminally differentiated state, macrophages are now understood to be highly pliable, attuned and receptive to environmental cues that control and align responses. In development of purpose, the centrality of metabolic pathways has emerged. Thus, macrophage inflammatory or reparative phenotypes are tightly linked to catabolic and anabolic metabolism, with further fine tuning of specific gene expression patterns in specific settings. Single-cell transcriptome analyses have revealed a breadth of macrophage signatures, with some new influencers driving phenotype. CD36/Scavenger Receptor B2 has established roles in immunity and lipid metabolism. Macrophage CD36 is a key functional player in metabolic expression profiles that determine phenotype. Emerging data show that alterations in the microenvironment can recast metabolic pathways and modulate macrophage function, with the potential to be leveraged for therapeutic means. This review covers recent data on phenotypic characterization of homeostatic, atherosclerotic, lipid-, tumor- and metastatic-associated macrophages, with the integral role of CD36 highlighted.
Collapse
Affiliation(s)
- Yuge Chen
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xuejia Zhang
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Maria Febbraio
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Chen T, Qiao C, Yinwang E, Wang S, Wen X, Feng Y, Jin X, Li S, Xue Y, Zhou H, Zhang W, Zeng X, Wang Z, Sun H, Jiang L, Li H, Li B, Cai Z, Ye Z, Lin N. Natural lung-tropic T H9 cells: a sharp weapon for established lung metastases. J Immunother Cancer 2024; 12:e009629. [PMID: 39631847 PMCID: PMC11624796 DOI: 10.1136/jitc-2024-009629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Lung metastasis remains the primary cause of tumor-related mortality, with limited treatment options and unsatisfactory efficacy. In preclinical studies, T helper 9 (TH9) cells have shown promise in treating solid tumors. However, it is unclear whether TH9 cells can tackle more challenging situations, such as established lung metastases. Moreover, comprehensive exploration into the nuanced biological attributes of TH9 cells is imperative to further unravel their therapeutic potential. METHODS We adoptively transferred TH1, TH9, and TH17 cells into subcutaneous, in situ, and established lung metastases models of osteosarcoma and triple-negative breast cancer, respectively, comparing their therapeutic efficacy within each distinct model. We employed flow cytometry and an in vivo imaging system to evaluate the accumulation patterns of TH1, TH9, and TH17 cells in the lungs after transfusion. We conducted bulk RNA sequencing on in vitro differentiated TH9 cells to elucidate the chemokine receptor CXCR4, which governs their heightened pulmonary tropism relative to TH1 and TH17 cell counterparts. Using Cd4 cre Cxcr4 flox/flox mice, we investigate the effects of CXCR4 on the lung tropism of TH9 cells. We performed mass spectrometry to identify the E3 ligase responsible for CXCR4 ubiquitination and elucidated the mechanism governing CXCR4 expression within TH9 cellular milieu. Ultimately, we analyzed the tumor immune composition after TH9 cell transfusion and evaluated the therapeutic efficacy of adjunctive anti-programmed cell death protein-1 (PD-1) therapy in conjunction with TH9 cells. RESULTS In this study, we provide evidence that TH9 cells exhibit higher lung tropism than TH1 and TH17 cells, thereby exhibiting exceptional efficacy in combating established lung metastases. CXCR4-CXCL12 axis is responsible for lung tropism of TH9 cells as ablating CXCR4 in CD4+ T cells reverses their lung accumulation. Mechanistically, tumor necrosis factor receptor-associated factor 6 (TRAF6)-driven hyperactivation of NF-κB signaling in TH9 cells inhibited ITCH-mediated ubiquitination of CXCR4, resulting in increased CXCR4 accumulation and enhanced lung tropism of TH9 cells. Besides, TH9 cells' transfusion significantly improved the immunosuppressed microenvironment. TH9 cells and anti-PD-1 exhibit synergistic effects in tumor control. CONCLUSIONS Our findings emphasized the innate lung tropism of TH9 cells driven by the activation of TRAF6, which supports the potential of TH9 cells as a promising therapy for established lung metastases.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxiao Qiao
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Featured Laboratory of Respiratory Immunology and Regenerative Medicine in Universities of Shandong, Jinan Clinical Research Center for Respiratory Disease, Jinan, Shandong, People's Republic of China
| | - Eloy Yinwang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shengdong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xuehuan Wen
- Department of Oncology, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yixuan Feng
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangang Jin
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Shuming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wenkan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xianchang Zeng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hangxiang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Lifeng Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hengyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Binghao Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zhijian Cai
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Nong Lin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
30
|
Xue J, Yang S, Zhang SS, Fan J, Wu ZL, Sui CJ, Yang YQ, Zhang JF, Liu P, Zhang DJ, Qiu XY, Zhang T, Chen L, Wu G, Wang HY, Tang J. Deciphering the Multifaceted Immune Landscape of Unresectable Primary Liver Cancer to Predict Immunotherapy Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309631. [PMID: 39467150 DOI: 10.1002/advs.202309631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/30/2024] [Indexed: 10/30/2024]
Abstract
Immunotherapies employing PD-1/PD-L1 immune checkpoint inhibitors (ICIs) are vital for primary liver cancer (PLC), but response rates remain unsatisfying. Accurate differentiation of responders from non-responders to immunotherapy is imperative. Here, single-cell-scaled mass cytometry analysis on sequential peripheral blood mononuclear cells (PBMCs) from ICI-treated PLC patients is conducted, and tissue residence of immune subpopulations is assessed via multiplex immunohistochemistry. In the discovery cohort (n = 24), responders have lower baseline B cell and HLA-DR+CD8+T cell, and higher CD14+CD16- classical monocyte (CM) proportions. CMs decrease more in responders PBMCs, while HLA-DR+CD8+T cells conformably amplify after ICI-exposure. Responsive individuals display upregulated exhaustion and activation markers in peripheral immune lineages. In the expanded cohort of 77 patients, the augment of the B cells in non-responders is re-confirmed. Responders demonstrate much higher enrichment of B cells or tertiary lymphoid structures in tumor compared to non-responders. A prospective model that excelled in early discrimination of responders is developed using generalized linear model and achieves a satisfactory AUC over 0.9 in all three independent cohorts. Integratedly, the study unveils dynamic immune landscapes in PLC patients undergoing ICI-based therapy, aiding in PLC patient stratification for ICI-based treatment and fostering new response monitoring strategies.
Collapse
Affiliation(s)
- Jun Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Si-Si Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jun Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zi-Long Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Cheng-Jun Sui
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Yong-Qiang Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jin-Feng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - De-Jun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Yao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Yang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
31
|
Liu QQ, Li HZ, Li SX, Bao Y, Wang TC, Hu C, Xiao YD. CD36-mediated accumulation of MDSCs exerts abscopal immunosuppressive responses in hepatocellular carcinoma after insufficient microwave ablation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167493. [PMID: 39233261 DOI: 10.1016/j.bbadis.2024.167493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The immune landscape of distant unablated tumors following insufficient microwave ablation (iMWA) in hepatocellular carcinoma (HCC) remains to be clarified. The objective of this study is to define the abscopal immune landscape in distant unablated tumor before and after iMWA for HCC. Two treatment-naive patients were recruited for tumor tissue sampling, of each with two HCC lesions. Tumor samples were obtained at before and after microwave ablation in distant unablated sites for single-cell RNA sequencing (scRNA-seq). Mouse model with bilateral hepatoma tumors were developed, and distant unablated tumors were analyzed using multicolor immunofluorescence, RNA sequencing and flow cytometry. The scRNA-seq revealed that a reduced proportion of CD8+ T cells and an increased proportion of myeloid-derived suppressor cells (MDSCs) were observed in the distant unablated tumor microenvironment (TME). A notable disruption was observed in the lipid metabolism of tumor-associated immune cells, accompanied by an upregulated expression of CD36 in tumor-infiltrating immune cells in distant unablated tumor. The administration of a CD36 inhibitor has been demonstrated to ameliorate the adverse effects induced by iMWA, primarily by reinstating the anti-tumor responses of T cells in distant unablated tumor. These findings explain the recurrence and progression of tumors after iMWA and provide a new target of immunotherapy for HCC.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Hui-Zhou Li
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Shu-Xian Li
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Yan Bao
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Tian-Cheng Wang
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Chao Hu
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Yu-Dong Xiao
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
32
|
Mi X, Duan Y, Sun J, Tai Q, Yao H, Meng L, Yang X, Shi X, Shi B, Chen J, Sun L, Zhou D, Xiao S, Yao Y, He S. The ketogenic diet modulates tumor-associated neutrophil polarization via the AMOT-YAP/TAZ axis to inhibit colorectal cancer progression. Pharmacol Res 2024; 210:107494. [PMID: 39510146 DOI: 10.1016/j.phrs.2024.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Despite significant advances in the diagnosis and treatment of colorectal cancer (CRC), the prognosis for late-stage patients remains poor, highlighting the urgent need for new preventive and therapeutic strategies. Recent studies have focused on the ketogenic diet (KD) and its metabolite, β-hydroxybutyrate (BHB), for their tumor-suppressive effects and modulation of inflammatory responses. Using the azoxymethane (AOM) / dextran sulfate sodium (DSS)-induced mouse CRC model, we found that the ketogenic diet and BHB inhibit pro-tumor N2-type tumor-associated neutrophils (TANs) while promoting the polarization of TANs towards the anti-tumor N1 type. This shift in TANs polarization affects tumor growth and metastasis. The underlying mechanism involves BHB acting on the intracellular receptor histone deacetylases 3 (HDAC3), which modulates the activation of the AMOT-YAP/TAZ axis, leading to the inhibition of pro-carcinogenic factor transcription and release. Moreover, clinical cohort data corroborate these findings, showing that CRC patients with elevated BHB levels have significantly lower rates of lymph node involvement, which is associated with a higher infiltration ratio of anti-carcinogenic N1-type TANs in the tumor microenvironment (TME). These results suggest that BHB levels could serve as a prognostic biomarker for CRC. In conclusion, our findings indicate that BHB derived from KD regulates TANs polarization in CRC via the HDAC3-AMOT-YAP/TAZ axis, effectively inhibiting tumor growth and metastasis. These insights establish a novel theoretical basis for employing the KD in the treatment of CRC and for developing cancer adjuvant immunotherapy strategy based on the polarization of neutrophils.
Collapse
Affiliation(s)
- Xiuwei Mi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Advanced Molecular Pathology Institute of Soochow University and SANO, & SANO Medical Laboratories Suzhou, Jiangsu 215000, China
| | - Yudong Duan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiying Sun
- Advanced Molecular Pathology Institute of Soochow University and SANO, & SANO Medical Laboratories Suzhou, Jiangsu 215000, China; Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Qingliang Tai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Lijun Meng
- Advanced Molecular Pathology Institute of Soochow University and SANO, & SANO Medical Laboratories Suzhou, Jiangsu 215000, China
| | - Xiaoshan Yang
- Advanced Molecular Pathology Institute of Soochow University and SANO, & SANO Medical Laboratories Suzhou, Jiangsu 215000, China
| | - Xinyu Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Bo Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Junjie Chen
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215299, China
| | - Liang Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Diyuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
33
|
Lustig M, Hahn C, Leangen Herigstad M, Andersen JT, Leusen JHW, Burger R, Valerius T. Sialylation inhibition improves macrophage mediated tumor cell phagocytosis of breast cancer cells triggered by therapeutic antibodies of different isotypes. Front Oncol 2024; 14:1488668. [PMID: 39659795 PMCID: PMC11628485 DOI: 10.3389/fonc.2024.1488668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Tumor cell phagocytosis by macrophages is considered a relevant mechanism of action for many therapeutic IgG antibodies. However, tumor cells employ several mechanisms to evade immune recognition, including hypersialylation. Here, we describe how reduction of sialic acid exposure on tumor cells promotes antibody-dependent tumor cell phagocytosis (ADCP) by macrophages. Incubation with the sialyltransferase inhibitor (STi) P-3Fax-Neu5Ac reduced sialylation on two breast cancer cell lines, rendering these cells more susceptible to macrophage mediated phagocytosis by EGFR or HER2 antibodies. This was observed with not only IgG1 and IgG2 antibodies but also IgA2 variants. These results show that inhibiting sialic acid exposure triggers enhanced tumor cell phagocytosis by macrophages irrespective of the antibody isotype and the tumor target antigen. Investigating the underlying mechanisms of enhanced ADCP, we observed reduced binding of soluble sialic acid-binding immunoglobulin-like lectins (Siglec)-7 and Siglec-9 to tumor cells after sialylation inhibition. However, Fc silent blocking antibodies against Siglec-7 or Siglec-9, or their combination, only marginally improved ADCP. Our results further promote the concept of cancer hypersialylation as immune escape mechanism, which could serve as target to improve tumor immunotherapy with monoclonal antibodies.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Hahn
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marie Leangen Herigstad
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renate Burger
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
34
|
Ren YF, Ma Q, Zeng X, Huang CX, Ren JL, Li F, Tong JJ, He JW, Zhong Y, Tan SY, Jiang H, Zhang LF, Lai HZ, Xiao P, Zhuang X, Wu P, You LT, Shi W, Fu X, Zheng C, You FM. Single-cell RNA sequencing reveals immune microenvironment niche transitions during the invasive and metastatic processes of ground-glass nodules and part-solid nodules in lung adenocarcinoma. Mol Cancer 2024; 23:263. [PMID: 39580469 PMCID: PMC11585206 DOI: 10.1186/s12943-024-02177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Radiographically, ground-glass nodules (GGN) and part-solid nodules (PSN) in lung adenocarcinoma (LUAD) have significant heterogeneity in their clinical manifestations, biological characteristics, and prognosis. This study aimed to explore the heterogeneity of LUAD in different radiological phenotypes and associated factors influencing tumor evolution. METHODS We performed single-cell RNA sequencing (scRNA-seq) on tumor tissues from eight and seven cases of GGN- and PSN-LUAD, respectively, at different disease stages, including minimally invasive adenocarcinoma (MIA), invasive adenocarcinoma (IAC), and metastatic lung cancer (MLC). Additionally, we analyzed adjacent normal tissues from four cases. Immunohistochemistry, multiplex immunofluorescence, and external scRNA-seq data were employed to confirm the expression of signature genes as well as the distribution patterns of CXCL9 + TAMs and TREM2 + TAMs. A LUAD mouse model was generated using gene editing, organoid culture, and orthotopic transplantation techniques, and comprehensive analyses such as histopathology, RNA sequencing, and Western blotting were performed to validate key pathways. RESULTS Diverse cellular compositions were observed in the tumor microenvironment (TME) during GGN- and PSN-LUAD invasion and metastasis. Notably, CXCL9 + and TREM2 + tumor-associated macrophages (TAMs) exhibited the most significant enrichment changes. It was found that GGN-LUAD exhibited a stronger immune response than PSN-LUAD, with increased interaction between CXCL9 + TAMs and CD8 + tissue-resident memory T cells during invasion stage (MIA-IAC). Conversely, greater interactions between TREM2 + TAMs and tumor cells were observed in PSN-LUAD during the MLC stage. Additionally, TREM2 + TAMs were found to differentiate into TREM2 + /SPP1 + and TREM2 + /SPP1- TAMs at different stages, which promotes tumor progression. This study also emphasizes that during the transdifferentiation process of GGN- and PSN-LUAD, IFN-γ activates the STAT1 signaling pathway to regulate the activation of CXCL9 + TAMs, and further recruiting CD8 + Trm cells and activating T cells through MHC class I antigen presentation. The role of the IFN-γ/STAT1 pathway in the occurrence and development of LUAD was further validated by animal experiments. CONCLUSIONS Our findings offer a potential therapeutic strategy to maintain a dynamic balance within the TME and improve the immunotherapy efficacy by modulating the relative proportions and functional states of CXCL9 + TAMs and TREM2 + TAMs.
Collapse
Affiliation(s)
- Yi-Feng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Xiao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Jia-Li Ren
- LC-Bio Technologies (Hangzhou) CO., LTD, Hangzhou, 310018, Zhejiang Province, China
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Jia-Jing Tong
- LC-Bio Technologies (Hangzhou) CO., LTD, Hangzhou, 310018, Zhejiang Province, China
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Shi-Yan Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Long-Fei Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Heng-Zhou Lai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Ping Xiao
- Department of Thoracic Surgery, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, Sichuan Province, China
| | - Xiang Zhuang
- Department of Thoracic Surgery, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, Sichuan Province, China
| | - Peng Wu
- LC-Bio Technologies (Hangzhou) CO., LTD, Hangzhou, 310018, Zhejiang Province, China
| | - Li-Ting You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Wei Shi
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
35
|
Mohamady Farouk Abdalsalam N, Liang Z, Kashaf Tariq H, Ibrahim A, Li R, Wan X, Yan D. Etomoxir Sodium Salt Promotes Imidazole Ketone Erastin-Induced Myeloid-Derived Suppressor Cell Ferroptosis and Enhances Cancer Therapy. BIOLOGY 2024; 13:949. [PMID: 39596904 PMCID: PMC11592117 DOI: 10.3390/biology13110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Although ferroptosis inducers trigger ferroptotic tumor cells and immune cells in the tumor microenvironment (TME), imidazole ketone erastin (IKE)'s induction of ferroptosis shows no effect on tumor growth in immunocompetent tumor-bearing mice due to the presence of myeloid-derived suppressor cells (MDSCs). Treatment of the carnitine palmitoyltransferase 1a (CPT1A)-specific inhibitor decreases the immunosuppressive function of MDSCs and enhances ferroptotic inducer-initiated tumor cell ferroptosis. However, whether blocking CPT1A could enhance IKE-induced MDSC ferroptosis and thereby inhibit tumor growth is still unclear. Here, we report that a CPT1A-specific inhibitor, etomoxir sodium salt (Eto), and IKE combined treatment increased MDSC ferroptosis. Interestingly, the combination treatment of Eto and IKE blocked MDSCs' immunosuppressive function and accumulation by downregulating the expression of SLC7A11, GPX4, and ARG1 while promoting T-cell proliferation and infiltration into tumor tissues to enhance cancer therapy. These data provide a rationale for the combination therapy of a specific CPT1A inhibitor, Eto, with IKE in clinical settings.
Collapse
Affiliation(s)
- Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
| | - Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|
36
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
37
|
Zhao J, Gu M, Zhang Y, Jia X, Xiao W, Lu G, Chen W, Gong W. Myeloid-derived suppressor cells in the tumor microenvironment reduce uncoupling protein 1 expression to boost immunosuppressive activity. Biochem Biophys Res Commun 2024; 732:150408. [PMID: 39032414 DOI: 10.1016/j.bbrc.2024.150408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Uncoupling protein 1 (UCP1) is located at the inner membrane of mitochondria and mediates nonshivering thermogenesis. Its abnormal expression is associated with metabolic diseases, cancer, and acute kidney injury. Myeloid-derived suppressor cells (MDSCs) with immunosuppressive activity accumulate in the tumor microenvironment (TME). Here, decreased UCP1 expression in MDSCs was observed in the peripheral blood of patients with colorectal cancer and transplanted mouse tumors. Aggravated tumor progression was observed in UCP1-knockout mice and conditional knockout mice (UCP1fl/fl-S100A8cre). The number of G-MDSCs and M-MDSCs increased in the transplanted tumor tissues from UCP1-deficient mice compared with those from wild-type mice. The tumor-promoting effect disappeared when the tumor-bearing mice were depleted of MDSCs by the α-DR5 administration. Adoptive transfer of tumor-derived MDSCs sharply promoted the tumor growth in vivo. Furthermore, these tumor-derived MDSCs enhanced the proliferation, reduced death, inhibited IFN-γ production of CD4+ and CD8+T cells, and induced Treg cells ex vivo. In conclusion, MDSCs in the TME alter the metabolic pattern by decreasing UCP1 expression to enhance immunosuppressive activity for tumor escape.
Collapse
Affiliation(s)
- Jianghua Zhao
- Department of Medicine, Jingjiang Traditional Chinese Medicine Hospital, Taizhou, 214504, China
| | - Min Gu
- Univeristy Key Laboratory of Jiangsu Province for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou, 225001, China
| | - Yu Zhang
- Univeristy Key Laboratory of Jiangsu Province for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou, 225001, China
| | - Xiaoqin Jia
- Univeristy Key Laboratory of Jiangsu Province for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou, 225001, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, China
| | - Weiwei Chen
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, China.
| | - Weijuan Gong
- Univeristy Key Laboratory of Jiangsu Province for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou, 225001, China; Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225001, China.
| |
Collapse
|
38
|
Zheng W, Li J, Li J, Bie N, Wei Z, Qin J, Li S, Yong T, Du Q, Yang X, Gan L. In-situ nanoplatform with synergistic neutrophil intervention and chemotherapy to prevent postoperative tumor recurrence and metastasis. J Control Release 2024; 375:316-330. [PMID: 39251139 DOI: 10.1016/j.jconrel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In addition to residual tumor cells, surgery-induced inflammation significantly contributes to tumor recurrence and metastasis by recruiting polymorphonuclear neutrophils (PMNs) and promoting their involvement in tumor cell proliferation, invasion and immune evasion. Efficiently eliminating residual tumor cells while concurrently intervening in PMN function represents a promising approach for enhanced postoperative cancer treatment. Here, a chitosan/polyethylene oxide electrospun fibrous scaffold co-delivering celecoxib (CEL) and doxorubicin-loaded tumor cell-derived microparticles (DOX-MPs) is developed for postoperative in-situ treatment in breast cancer. This implant (CEL/DOX-MPs@CP) ensures prolonged drug retention and sustained release within the surgical tumor cavity. The released DOX-MPs effectively eliminate residual tumor cells, while the released CEL inhibits the function of inflammatory PMNs, suppressing their promotion of residual tumor cell proliferation, migration and invasion, as well as remodeling the tumor immune microenvironment. Importantly, the strategy is closely associated with interference in neutrophil extracellular trap (NET) released from inflammatory PMNs, leading to a substantial reduction in postoperative tumor recurrence and metastasis. Our results demonstrate that CEL/DOX-MPs@CP holds great promise as an implant to enhance the prognosis of breast cancer patients following surgery.
Collapse
Affiliation(s)
- Wenxia Zheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaojiao Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Qin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Du
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
39
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Poschel DB, Klement JD, Merting AD, Lu C, Zhao Y, Yang D, Xiao W, Zhu H, Rajeshwari P, Toscano M, Jones K, Barrett A, Bollag RJ, Fallon PG, Shi H, Liu K. PD-L1 restrains PD-1 +Nrp1 lo Treg cells to suppress inflammation-driven colorectal tumorigenesis. Cell Rep 2024; 43:114819. [PMID: 39368087 PMCID: PMC11574783 DOI: 10.1016/j.celrep.2024.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
T cells function not only as an essential component of host cancer immunosurveillance but also as a regulator of colonic inflammation, a process that promotes colorectal cancer. Programmed death-ligand 1 (PD-L1) is a T cell-negative regulator, but its role in regulation of T cell functions in the context of colorectal cancer is unknown. We report that global deletion of Cd274 results in increased colonic inflammation, PD-1+ T cells, and inflammation-driven colorectal tumorigenesis in mice. Single-cell RNA sequencing (scRNA-seq) analysis revealed that PD-L1 suppresses subpopulations of programmed cell death protein 1 (PD-1)+Nrp1lo regulatory T (Treg) cells and interleukin (IL) 6+ neutrophils in colorectal tumor. Treg cells produce transforming growth factor (TGF) β to recruit IL6+ neutrophils. Neutrophils produce IL6 to inhibit activation of tumor-specific cytotoxic T lymphocytes (CTLs) and primary CTLs. Accordingly, IL6 blockade immunotherapy increases CTL activation and suppresses colon tumor growth in vivo. Our findings determine that PD-L1 restrains PD-1+Nrp1loTGFβ+ Treg cells to suppress IL6+ neutrophil tumor recruitment to sustain CTL activation to control inflammation-driven colorectal tumorigenesis.
Collapse
Affiliation(s)
- Dakota B Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Wei Xiao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | | | | | - Kimya Jones
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Roni J Bollag
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA.
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
41
|
Koya J, Tanigawa T, Mizuno K, Kim H, Ito Y, Yuasa M, Yamaguchi K, Kogure Y, Saito Y, Shingaki S, Tabata M, Murakami K, Chiba K, Okada A, Shiraishi Y, Marouf A, Liévin R, Chaubard S, Jaccard A, Hermine O, de Leval L, Tournilhac O, Damaj G, Gaulard P, Couronné L, Yasui T, Nakashima K, Miyoshi H, Ohshima K, Kataoka K. Modeling NK-cell lymphoma in mice reveals its cell-of-origin and microenvironmental changes and identifies therapeutic targets. Nat Commun 2024; 15:9106. [PMID: 39438472 PMCID: PMC11496546 DOI: 10.1038/s41467-024-53376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm preferentially involving the upper aerodigestive tract. Here we show that NK-cell-specific Trp53 disruption in mice leads to the development of NK-cell lymphomas after long latency, which involve not only the hematopoietic system but also the salivary glands. Before tumor onset, Trp53 knockout causes extensive gene expression changes, resulting in immature NK-cell expansion, exclusively in the salivary glands. Both human and murine NK-cell lymphomas express tissue-resident markers, suggesting tissue-resident NK cells as their cell-of-origin. Murine NK-cell lymphomas show recurrent Myc amplifications and upregulation of MYC target gene signatures. EBV-encoded latent membrane protein 1 expression accelerates NK-cell lymphomagenesis and causes diverse microenvironmental changes, particularly myeloid propagation, through interferon-γ signaling. In turn, myeloid cells support tumor cells via CXCL16-CXCR6 signaling and its inhibition is effective against NK-cell tumors in vivo. Remarkably, KLRG1-expressing cells expand in the tumor and are capable of repopulating tumors in secondary recipients. Furthermore, targeting KLRG1 alone or combined with MYC inhibition using an eIF4 inhibitor is effective against NK-cell tumors. Therefore, our observations provide insights into the pathogenesis and highlight potential therapeutic targets, including CXCL16, KLRG1, and MYC, in ENKTCL, which can help improve its diagnostic and therapeutic strategies.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Tumor Microenvironment/immunology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/virology
- Lymphoma, Extranodal NK-T-Cell/pathology
- Humans
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Mice, Knockout
- Disease Models, Animal
- Interferon-gamma/metabolism
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/genetics
- Chemokine CXCL16/metabolism
- Chemokine CXCL16/genetics
- Herpesvirus 4, Human
- Gene Expression Regulation, Neoplastic
- Signal Transduction
- Salivary Glands/pathology
- Salivary Glands/metabolism
- Myeloid Cells/metabolism
- Cell Line, Tumor
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiko Tanigawa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kota Mizuno
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haryoon Kim
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Ito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Yuasa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yamaguchi
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sumito Shingaki
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Murakami
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Amira Marouf
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Raphaël Liévin
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sammara Chaubard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Arnaud Jaccard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Olivier Hermine
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Hematology Department, Necker Children's Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Olivier Tournilhac
- Department of Hematology, Clermont-Ferrand University Hospital, Clermont Auvergne University, Clermont-Ferrand, France
| | - Gandhi Damaj
- Department of Hematology, Caen University Hospital, Normandy University, Caen, France
| | - Philippe Gaulard
- University Paris Est Créteil, INSERMU955, IMRB, Créteil, France
- Pathology Department, Henri Mondor University Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Créteil, France
| | - Lucile Couronné
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Paris, France
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Japan
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | - Koichi Ohshima
- Division of Pathology, Kurume University, Fukuoka, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
42
|
Du J, Que Z, Aihaiti A, Zhai M, Zhang Z, Shao Y, Zhang Y, Miao F, Shen Y, Chen X, Zhang J. Co-delivery of SN38 and MEF2D-siRNA via tLyp-1-modified liposomes reverses PD-L1 expression induced by STING activation in hepatocellular carcinoma. Colloids Surf B Biointerfaces 2024; 245:114318. [PMID: 39418821 DOI: 10.1016/j.colsurfb.2024.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) exhibits an immunosuppressive tumor microenvironment, leading to a low objective response rate when immune checkpoint inhibitors (ICIs) are utilized. The cGAS-STING pathway demonstrates a powerful immune stimulatory effect, nevertheless, activation of this pathway triggers an upregulation of PD-L1, which inhibits the anti-tumor function of immune cells. The present study discovered that knockdown of MEF2D by a siRNA in H22 cells decreases the expression of PD-L1. Subsequently, tLyp-1-modified liposomes were developed for the delivery of SN38 and MEF2D-siRNA. The outcomes indicated that the modification of tLyp-1 could enhance the uptake of liposomes by tumor cells. tLip/siMEF2D/SN38 liposomes can effectively knockdown the expression of MEF2D in HCC cells and reduce the expression of PD-L1 in vitro and in vivo, thereby enhancing proliferation inhibition and apoptosis induction, and effectively suppressing the growth of tumors. SN38 treatment elevated the expression of p-TBK1 and p-IRF3 in tumor tissue, signifying the activation of the cGAS-STING pathway and facilitating the maturation of dendritic cells in vitro and in vivo. At the same time, the co-delivery of MEF2D-siRNA reduced the expression of PD-L1, thereby decreasing the quantity of M2 macrophages and myeloid-derived suppressor cells (MDSCs) in tumors, increasing the number of CD4+ T cells within the tumor, and strengthening the anti-tumor immune efficacy. In conclusion, our results suggest that tLyP-1 modified, SN38- and MEF2D siRNA-loaded liposomes have the potential for the treatment of HCC and optimize the immunotherapy of HCC via STING activation.
Collapse
Affiliation(s)
- Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ziting Que
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China
| | - Ailifeire Aihaiti
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Zhiwei Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China
| | - Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Xin Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, PR China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, PR China.
| | - Jianqiong Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China; Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China.
| |
Collapse
|
43
|
Qian J, Ma C, Waterbury QT, Zhi X, Moon CS, Tu R, Kobayashi H, Wu F, Zheng B, Zeng Y, Zheng H, Ochiai Y, White RA, Harle DW, LaBella JS, Zamechek LB, Hu LZ, Moy RH, Han AS, Daugherty B, Lederman S, Wang TC. A CXCR4 partial agonist improves immunotherapy by targeting polymorphonuclear myeloid-derived suppressor cells and cancer-driven granulopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617228. [PMID: 39416177 PMCID: PMC11482799 DOI: 10.1101/2024.10.09.617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.
Collapse
|
44
|
Hou W, Zou Y, Li J, Jiang H, Li J, Wu J, Zhu S, Ding Y, Xu H, Jia F, Li X. Synergistic Therapy of Melanoma by Co-Delivery of Dacarbazine and Ferroptosis-Inducing Ursolic Acid Using Biomimetic Nanoparticles. ACS OMEGA 2024; 9:41532-41543. [PMID: 39398166 PMCID: PMC11465262 DOI: 10.1021/acsomega.4c05209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Melanoma is one of the most aggressive types of cancer and is prone to metastasis, making current clinical treatment quite difficult. The usage of the first-line medication dacarbazine (DTIC) for melanoma is limited due to harsh side effects, limited water solubility, and a short half-life. To tackle these disadvantages, polylactic acid-hydroxyacetic acid copolymer nanoparticles (NPs) loaded with dacarbazine and ursolic acid (NPs) were fabricated, which were further encapsulated with a red blood cell membrane (RNPs). MTT, apoptosis assay, wound healing assay, colony formation assay, and immunohistochemistry were used to assess the antitumor effect of NPs and RNPs. Ferroptosis evaluation was implemented using GSH detection and the malondialdehyde assay. We found that RNPs exhibited stability and biosafety in vitro and in vivo and achieved superior anticancer ability against xenograft tumors compared with single agents and NPs, which indicated the synergistic and biomimetic efficacy. Furthermore, ferroptotic activity was observed in RNPs-treated tumor cells, and ferroptosis inhibition could partially rescue melanoma cells from RNPs-induced cell death. Collectively, this study evaluated the potential of RNPs as a novel biomimetic nanomedicine for synergistic melanoma therapy by eliciting ferroptosis in tumor cells with both anticancer activity and biosafety.
Collapse
Affiliation(s)
- Wenjun Hou
- Department
of Dermatology, Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing 210008, China
| | - Yifan Zou
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Department
of General Surgery, The First Affiliated
Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jie Li
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Hui Jiang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jinyu Li
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jie Wu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Senlin Zhu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Yan Ding
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Huae Xu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Feng Jia
- Department
of Neurosurgery, Yancheng No. 1 People’s Hospital, The Affiliated Yancheng First Hospital of Nanjing
University Medical School, 66 Renmin South Road, Yancheng 224008, China
| | - Xiaolin Li
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
45
|
Brenna JT, Sergeeva MG, Pestov NB, Korneenko TV, Shchepinov MS. Arachidonic acid: reconciling the dichotomy of its oxidative cascade through specific deuteration. Free Radic Res 2024; 58:583-593. [PMID: 37897398 DOI: 10.1080/10715762.2023.2277145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
A new approach to attenuating pathological inflammatory reactions by buffering the eicosanoid pathways with oxidation-resistant hexadeuterated arachidonic acid (D-ARA) is discussed. Enzymatic processing of ARA, released by phospholipase A2, by lipoxygenases, cyclooxygenases, and cytochromes yields a wide range of bioactive eicosanoids, including pro-inflammation, pro-angiogenesis and pro-thrombosis species that, when produced in excess, are an underlying cause of pathology. Conversely, some products of ARA oxidation possess pro-resolving properties. Non-enzymatic free radical oxidation of ARA generates another large group of products such as isoprostanes and their metabolites, associated with inflammation, ischemia-reperfusion stress, and atherosclerosis. A separate group comprises reactive carbonyl derivatives that irreversibly damage diverse biomolecules. Being resistant to both enzymatic and non-enzymatic oxidation pathways due to large kinetic isotope effects, D-ARA may play a role in mitigating inflammation-related disorders and conditions, including inflammaging.
Collapse
Affiliation(s)
- J Thomas Brenna
- University of TX at Austin, Departments of Pediatrics, of Chemistry, and of Nutrition, Dell Pediatric Research Institute, Austin, TX, USA
| | - Marina G Sergeeva
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Laboratory of Tick-Borne Encephalitis and other Encephalitides, Moscow, Russia
- Institute of Biomedical Chemistry, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Moscow, Russia
| | - Tatyana V Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Moscow, Russia
| | | |
Collapse
|
46
|
Li A, Wang H, Zhang L, Zhao Q, Yang Y, Zhang Y, Yang L. A single-cell RNA-seq dataset describing macrophages in NSCLC tumor and peritumor tissues. Sci Data 2024; 11:1064. [PMID: 39353975 PMCID: PMC11445445 DOI: 10.1038/s41597-024-03885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Examining tumor-associated macrophages in the immune microenvironment of non-small cell lung cancer (NSCLC) is essential for gaining an understanding of the genesis and development of NSCLC as well as for identifying key clinical therapeutic targets. Although previous studies have reported the diverse phenotypes and functions of macrophages in tumor tissues, thereby highlighting their significant role in the tumor microenvironment, the characteristic differences and correlations between tumor and peritumor tissue-derived macrophages that are necessary for an understanding of NSCLC progression remain unclear. Based on single-cell RNA sequencing, we generated a comprehensive dataset of transcriptomes from NSCLC tumor and peritumor tissues, thereby facilitating comprehensive analysis and providing significant insights. In summary, our dataset will serve as a valuable transcriptomic resource for further studies investigating NSCLC development.
Collapse
Affiliation(s)
- Aitian Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huishang Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
47
|
Mao Z, Hu Y, Zhao Y, Zhang X, Guo L, Wang X, Zhang J, Miao M. The Mutual Regulatory Role of Ferroptosis and Immunotherapy in Anti-tumor Therapy. Apoptosis 2024; 29:1291-1308. [PMID: 38853203 PMCID: PMC11416416 DOI: 10.1007/s10495-024-01988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis is a form of cell death that is triggered by the presence of ferrous ions and is characterized by lipid peroxidation induced by these ions. The mechanism exhibits distinct morphological characteristics compared to apoptosis, autophagy, and necrosis. A notable aspect of ferroptosis is its ability to inhibit uncontrolled tumor replication and immortalization, especially in malignant, drug-resistant, and metastatic tumors. Additionally, immunotherapy, a novel therapeutic approach for tumors, has been found to have a reciprocal regulatory relationship with ferroptosis in the context of anti-tumor therapy. A comprehensive analysis of ferroptosis and immunotherapy in tumor therapy is presented in this paper, highlighting the potential for mutual adjuvant effects. Specifically, we discuss the mechanisms underlying ferroptosis and immunotherapy, emphasizing their ability to improve the tumor immune microenvironment and enhance immunotherapeutic effects. Furthermore, we investigate how immunotherapeutic factors may increase the sensitivity of tumor cells to ferroptosis. We aim to provide a prospective view of the promising value of combined ferroptosis and immunotherapy in anticancer therapy by elucidating the mutual regulatory network between each.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Yilong Hu
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Yinan Zhao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Xiaolei Zhang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Lin Guo
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Xiaoran Wang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Jinying Zhang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Mingsan Miao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China.
| |
Collapse
|
48
|
Joshi S. New insights into SYK targeting in solid tumors. Trends Pharmacol Sci 2024; 45:904-918. [PMID: 39322438 PMCID: PMC11984332 DOI: 10.1016/j.tips.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Spleen tyrosine kinase (SYK) is predominantly expressed in hematopoietic cells and has been extensively studied for its pivotal role in B cell malignancies and autoimmune diseases. In epithelial solid tumors, SYK shows a paradoxical role, acting as a tumor suppressor in some cancers while driving tumor growth in others. Recent preclinical studies have identified the role of SYK in the tumor microenvironment (TME), revealing that SYK signaling in immune cells, especially B cells, and myeloid cells, promote immunosuppression, tumor growth, and metastasis across various solid tumors. This review explores the emerging roles of SYK in solid tumors, the mechanisms of SYK activation, and findings from preclinical and clinical studies of SYK inhibitors as either standalone treatments or in combination with immunotherapy or chemotherapy for solid tumors.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA.
| |
Collapse
|
49
|
Ou Y, Jiang HM, Wang YJ, Shuai QY, Cao LX, Guo M, Qi CC, Li ZX, Shi J, Hu HY, Liu YX, Zuo SY, Chen X, Feng MD, Shi Y, Sun PQ, Wang H, Yang S. The Zeb1-Cxcl1 axis impairs the antitumor immune response by inducing M2 macrophage polarization in breast cancer. Am J Cancer Res 2024; 14:4378-4397. [PMID: 39417185 PMCID: PMC11477816 DOI: 10.62347/uais7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zeb1, a key epithelial-mesenchymal transition (EMT) regulator, has recently been found to be involved in M2 macrophage polarization in the tumor immune microenvironment, thereby promoting tumor development. However, the underlying mechanism of Zeb1-induced M2 macrophage polarization remains largely unexplored. To identify the potential role of Zeb1 in remodeling the tumor immune microenvironment in breast cancer, we crossed the floxed Zeb1 allele homozygously into PyMT mice to generate PyMT;Zeb1cKO (MMTV-Cre;PyMT;Zeb1fl/fl ) mice. We found that the recruitment of M2-type tumor-associated macrophages (TAMs) was significantly reduced in tumors from PyMT;Zeb1cKO mice, and their tumor suppressive effects were weakened. Mechanistically, Zeb1 played a crucial role in transcriptionally promoting the production of Cxcl1 in tumor cells. In turn, Cxcl1 activated the Cxcr2-Jak-Stat3 pathway to induce M2 polarization of TAMs in a paracrine manner, which eventually led to T-cell inactivation and impaired the antitumor immune response in breast cancer. Our results collectively revealed an important role of Zeb1 in remodeling the tumor microenvironment, suggesting a novel therapeutic intervention for the treatment of advanced breast cancer.
Collapse
Affiliation(s)
- Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hui-Min Jiang
- Beijing Institute of Brain Disorders, Capital Medical UniversityBeijing, P. R. China
| | - Yan-Jing Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Qiu-Ying Shuai
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Li-Xia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Min Guo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Chun-Chun Qi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Zhao-Xian Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Jie Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hua-Yu Hu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yu-Xin Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Si-Yu Zuo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Xiao Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Meng-Dan Feng
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yi Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Pei-Qing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston-Salem, NC, USA
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| |
Collapse
|
50
|
Xiao J, Guo X, Li K, Luo W, Lin Y, Lu W, Wang Z. Role of myeloid cells in mediating the effects of lipids on ulcerative colitis. Front Immunol 2024; 15:1416562. [PMID: 39286250 PMCID: PMC11402659 DOI: 10.3389/fimmu.2024.1416562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To evaluate the causal relationship between lipids and ulcerative colitis (UC) through Mendelian Randomization (MR), and to further investigate the involvement of immune cells in mediating this process. Methods Utilizing summary statistics from genome-wide association studies (GWAS) of individuals with European ancestry, we analyzed the causal link between 179 lipid types and UC (2,569 UC cases and 453,779 controls) through Two-sample Mendelian randomization (2SMR) and Bayesian-weighted MR (BWMR). Based on this, a mediation screening of 731 immune cell phenotypes was conducted to identify exposure and mediator factors. Lastly, the role and proportion of immune cells in mediating the causal effects of lipids on UC were assessed via reverse MR (RMR) and two-step MR. Results The results of MR showed that there was a causal relationship between the six genetically predicted lipid types and UC (P <0.05), and the four immune cell phenotypes were identified as mediators of the association between lipids and UC. Notably, Phosphatidylcholine (PC) (16:0_0:0) served as the exposure factor, and myeloid cells CD11b on CD33+ HLA DR+ CD14dim acted as the mediator. Mediation analysis showed that CD11b on CD33+ HLA DR+ CD14dim had a mediation effect of -0.0205 between PC (16:0_0:0) and UC, with the mediation effect ratio at 15.38%. Conclusion Our findings elucidate the causal effect of lipids on UC and identify the significant mediating role of myeloid cells CD11b on CD33+ HLA DR+ CD14dim in regulating UC through PC (16:0_0:0), offering new pathways and strategies for UC clinical treatment.
Collapse
Affiliation(s)
- Jinyin Xiao
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People's Hospital of Xiangtan City, Xiangtan, China
| | - Keya Li
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wenpeng Luo
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Youwei Lin
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wenhong Lu
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|