1
|
Huang Z, Ishii M, Watanabe E, Kanamitsu K, Tai K, Kusuhara H, Ohwada T, Otani Y. Effect of N-o-nitrobenzylation on conformation and membrane permeability of linear peptides. Bioorg Chem 2024; 145:107220. [PMID: 38387401 DOI: 10.1016/j.bioorg.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
In this study, we explored the potential of the photoremovable o-nitrobenzyl (oNB) group as a tool to manipulate the membrane permeability and regulate the conformation of linear peptides by means of experimental and computational studies. We found that the introduction of one or more oNB groups markedly increased the permeability and altered the conformation, as compared to the corresponding unmodified peptides. We thoroughly investigated the impact of peptide length, number of oNB group, oNB insertion position, and introduction of N- and C-terminal protecting groups on the passive membrane permeability by means of parallel artificial membrane permeability assay (PAMPA). Photoreaction of peptides containing one or two oNB groups proceeded cleanly in moderate to high yields, releasing the unprotected parent linear peptide. The oNB-modified peptides showed a cis/trans conformational equilibrium, while after photolysis, the unprotected linear peptides showed only the trans-amide conformation. Furthermore, a comprehensive comparison of oNB-modified peptides and N-methylated peptides was conducted, encompassing conformational analysis and physicochemical properties. N-Substituted peptides favored a folded-like structure, which may contribute to the improvement in permeability.
Collapse
Affiliation(s)
- Zhihan Huang
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mayumi Ishii
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Watanabe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kayoko Kanamitsu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kempei Tai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
2
|
He F, Chai Y, Zeng Z, Lu F, Chen H, Zhu J, Fang Y, Cheng K, Miclet E, Alezra V, Wan Y. Rapid Formation of Intramolecular Disulfide Bridges using Light: An Efficient Method to Control the Conformation and Function of Bioactive Peptides. J Am Chem Soc 2023; 145:22639-22648. [PMID: 37788450 DOI: 10.1021/jacs.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Disulfide bonds are widely found in natural peptides and play a pivotal role in stabilizing their secondary structures, which are highly associated with their biological functions. Herein, we introduce a light-mediated strategy to effectively control the formation of disulfides. Our strategy is based on 2-nitroveratryl (oNv), a widely used photolabile motif, which serves both as a photocaging group and an oxidant (after photolysis). We demonstrated that irradiation of oNv-caged thiols with UV light could release free thiols that are rapidly oxidized by locally released byproduct nitrosoarene, leading to a "break-to-bond" fashion. This strategy is highlighted by the in situ restoration of the antimicrobial peptide tachyplesin I (TPI) from its external disulfide-caged analogue TPI-1. TPI-1 exhibits a distorted structure and a diminished function. However, upon irradiation, the β-hairpin structure and membrane activity of TPI were largely restored via rapid intramolecular disulfide formation. Our study proposes a powerful method to regulate the conformation and function of peptides in a spatiotemporal manner, which has significant potential for the design of disulfide-centered light-responsive systems.
Collapse
Affiliation(s)
- Feng He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Yu Chai
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zizhen Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Fangling Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Huanwen Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Jinhua Zhu
- Institute of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Emeric Miclet
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, Université Paris-Saclay, Orsay 91400, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| |
Collapse
|
3
|
Liu C, Liu X, Zhou M, Xia C, Lyu Y, Peng Q, Soni C, Zhou Z, Su Q, Wu Y, Weerapana E, Gao J, Chatterjee A, Cheng L, Jia N. Fluorosulfate as a Latent Sulfate in Peptides and Proteins. J Am Chem Soc 2023; 145:20189-20195. [PMID: 37647087 PMCID: PMC10623540 DOI: 10.1021/jacs.3c07937] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sulfation widely exists in the eukaryotic proteome. However, understanding the biological functions of sulfation in peptides and proteins has been hampered by the lack of methods to control its spatial or temporal distribution in the proteome. Herein, we report that fluorosulfate can serve as a latent precursor of sulfate in peptides and proteins, which can be efficiently converted to sulfate by hydroxamic acid reagents under physiologically relevant conditions. Photocaging the hydroxamic acid reagents further allowed for the light-controlled activation of functional sulfopeptides. This work provides a valuable tool for probing the functional roles of sulfation in peptides and proteins.
Collapse
Affiliation(s)
- Chao Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xueyi Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Mi Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Yuhan Lyu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chintan Soni
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qiwen Su
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yujia Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lin Cheng
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Niu Jia
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
4
|
Lāce I, Bazzi S, Uranga J, Schirmacher A, Diederichsen U, Mata RA, Simeth NA. Modulating Secondary Structure Motifs Through Photo-Labile Peptide Staples. Chembiochem 2023; 24:e202300270. [PMID: 37216330 DOI: 10.1002/cbic.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Peptide-protein interactions (PPIs) are facilitated by the well-defined three-dimensional structure of bioactive peptides, interesting compounds for the development of new therapeutic agents. Their secondary structure and thus their propensity to engage in PPIs can be influenced by the introduction of peptide staples on the side chains. In particular, light-controlled staples based on azobenzene photoswitches and their structural influence on helical peptides have been studied extensively. In contrast, photolabile staples bearing photocages as a structural key motif, have mainly been used to block supramolecular interactions. Their influence on the secondary structure of the target peptide is under-investigated. Thus, in this study we use a combination of spectroscopic techniques and in silico simulations to systematically study a series of helical peptides with varying length of the photo-labile staple to obtain a detailed insight into the structure-property relationship in such photoresponsive biomolecules.
Collapse
Affiliation(s)
- Ilze Lāce
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jon Uranga
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Anastasiya Schirmacher
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
5
|
Shen J, Geng L, Li X, Emery C, Kroning K, Shingles G, Lee K, Heyden M, Li P, Wang W. A general method for chemogenetic control of peptide function. Nat Methods 2023; 20:112-122. [PMID: 36481965 PMCID: PMC10069916 DOI: 10.1038/s41592-022-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Natural or engineered peptides serve important biological functions. A general approach to achieve chemical-dependent activation of short peptides will be valuable for spatial and temporal control of cellular processes. Here we present a pair of chemically activated protein domains (CAPs) for controlling the accessibility of both the N- and C-terminal portion of a peptide. CAPs were developed through directed evolution of an FK506-binding protein. By fusing a peptide to one or both CAPs, the function of the peptide is blocked until a small molecule displaces them from the FK506-binding protein ligand-binding site. We demonstrate that CAPs are generally applicable to a range of short peptides, including a protease cleavage site, a dimerization-inducing heptapeptide, a nuclear localization signal peptide, and an opioid peptide, with a chemical dependence up to 156-fold. We show that the CAPs system can be utilized in cell cultures and multiple organs in living animals.
Collapse
Affiliation(s)
- Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lequn Geng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Emery
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Gwendolyn Shingles
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kerry Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Yuan D, Zhang Y, Lim KH, Leung SKP, Yang X, Liang Y, Lau WCY, Chow KT, Xia J. Site-Selective Lysine Acetylation of Human Immunoglobulin G for Immunoliposomes and Bispecific Antibody Complexes. J Am Chem Soc 2022; 144:18494-18503. [PMID: 36167521 DOI: 10.1021/jacs.2c07594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-selective acetylation of a single lysine residue in a protein that reaches a lysine acetyltransferase's accuracy, precision, and reliability is challenging. Here, we report a peptide-guided, proximity-driven group transfer reaction that acetylates a single lysine residue, Lys 248, of the fragment crystallizable region (Fc region) in the heavy chain of the human Immunoglobulin G (IgG). An Fc-interacting peptide bound with the Fc domain and positioned a phenolic ester close to Lys 248, which induced a nucleophilic reaction and resulted in the transfer of an acetyl group to Lys 248. The acetylation reaction proceeded to a decent yield under the physiological condition without the need for deglycosylation, unnatural amino acids, or catalysts. Along with acetylation, functional moieties such as azide, alkyne, fluorescent molecules, or biotin could also be site-selectively installed on Lys 248, allowing IgG's further derivatization. We then synthesized an antibody-lipid conjugate and constructed antibody-conjugated liposomes (immunoliposomes), targeting HER2-positive (HER2+) cancer cells. We also built a bispecific antibody complex (bsAbC) covalently linking an anti-HER2 antibody and an anti-CD3 antibody. The bsAbC showed in vitro effector-cell-mediated cytotoxicity at nanomolar concentrations. Compared with bispecific antibodies (bsAbs), bsAbCs are constructed based on native IgGs and contain two antigen-binding sites to each antigen, twice that of bsAbs. Altogether, this work reports a method of site-selective acetylation of native antibodies, highlights a facile way of site-selective IgG functionalization, and underscores the potential of bsAbCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Dingdong Yuan
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yu Zhang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - King Hoo Lim
- Department of Biomedical Sciences, The City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Stephen King Pong Leung
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizi Yang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yujie Liang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Wilson Chun Yu Lau
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Kwan T Chow
- Department of Biomedical Sciences, The City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Hu M, Ling Z, Ren X. Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng 2022; 16:13. [PMID: 35637526 PMCID: PMC9153193 DOI: 10.1186/s13036-022-00292-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix (ECM) constitutes the main acellular microenvironment of cells in almost all tissues and organs. The ECM not only provides mechanical support, but also mediates numerous biochemical interactions to guide cell survival, proliferation, differentiation, and migration. Thus, better understanding the everchanging temporal and spatial shifts in ECM composition and structure - the ECM dynamics - will provide fundamental insight regarding extracellular regulation of tissue homeostasis and how tissue states transition from one to another during diverse pathophysiological processes. This review outlines the mechanisms mediating ECM-cell interactions and highlights how changes in the ECM modulate tissue development and disease progression, using the lung as the primary model organ. We then discuss existing methodologies for revealing ECM compositional dynamics, with a particular focus on tracking newly synthesized ECM proteins. Finally, we discuss the ramifications ECM dynamics have on tissue engineering and how to implement spatial and temporal specific extracellular microenvironments into bioengineered tissues. Overall, this review communicates the current capabilities for studying native ECM dynamics and delineates new research directions in discovering and implementing ECM dynamics to push the frontier forward.
Collapse
Affiliation(s)
- Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022; 12:600-620. [PMID: 34401226 PMCID: PMC8359643 DOI: 10.1016/j.apsb.2021.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023] Open
Abstract
The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.
Collapse
Key Words
- AAV, adeno-associated virus
- ALI/ARDS
- ALI/ARDS, acute lung injury/acute respiratory distress syndrome
- AM, alveolar macrophage
- ATI, alveolar cell type I
- ATII, alveolar cell type II
- AV, adenovirus
- Ago-2, argonaute 2
- CFDA, China Food and Drug Administration
- COPD, chronic obstructive pulmonary disease
- CPP, cell-penetrating peptide
- CS, cigarette smoke
- CXCR4, C–X–C motif chemokine receptor type 4
- Cellular uptake
- DAMPs, danger-associated molecular patterns
- DC-Chol, 3β-(N-(N′,N′-dimethylethylenediamine)-carbamoyl) cholesterol
- DDAB, dimethyldioctadecylammonium bromide
- DODAP, 1,2-dioleyl-3-dimethylammonium-propane
- DODMA, 1,2-dioleyloxy-N,N-dimethyl-3-aminopropane
- DOGS, dioctadecyl amido glycin spermine
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, 1,2-dioleoyl-l-α-glycero-3-phosphatidylethanolamine
- DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
- DPI, dry powder inhaler
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- EC, endothelial cell
- EPC, egg phosphatidylcholine
- EXOs, exosomes
- Endosomal escape
- EpiC, epithelial cell
- FDA, US Food and Drug Administration
- HALI, hyperoxic acute lung injury
- HMGB1, high-mobility group box 1
- HMVEC, human primary microvascular endothelial cell
- HNPs, hybrid nanoparticles
- Hem-CLP, hemorrhagic shock followed by cecal ligation and puncture septic challenge
- ICAM-1, intercellular adhesion molecule-1
- IFN, interferons
- Inflammatory diseases
- LPS, lipopolysaccharides
- MEND, multifunctional envelope-type nano device
- MIF, macrophage migration inhibitory factor
- Myd88, myeloid differentiation primary response 88
- N/P ratio, nitrogen /phosphate ratio
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor kappa B
- NPs, nanoparticles
- Nanoparticles
- PAI-1, plasminogen activator inhibitor-1
- PAMAM, polyamidoamine
- PAMPs, pathogen-associated molecular patterns
- PD-L1, programmed death ligand-1
- PDGFRα, platelet-derived growth factor receptor-α
- PEEP, positive end-expiratory pressure
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PF, pulmonary fibrosis
- PFC, perfluorocarbon
- PLGA, poly(d,l-lactic-co-glycolic acid)
- PMs, polymeric micelles
- PRR, pattern recognition receptor
- PS, pulmonary surfactant
- Pulmonary administration
- RIP2, receptor-interacting protein 2
- RISC, RNA-induced silencing complex
- RNAi, RNA interference
- ROS, reactive oxygen species
- SLN, solid lipid nanoparticle
- SNALP, stable nucleic acid lipid particle
- TGF-β, transforming growth factor-β
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-α
- VALI, ventilator-associated lung injury
- VILI, ventilator-induced lung injury
- dsDNA, double-stranded DNA
- dsRNA, double-stranded RNA
- eggPG, l-α-phosphatidylglycerol
- mRNA, messenger RNA
- miRNA, microRNA
- pDNA, plasmid DNA
- shRNA, short RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - George Frimpong Boafo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
9
|
Mangubat-Medina AE, Ball ZT. Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem Soc Rev 2021; 50:10403-10421. [PMID: 34320043 DOI: 10.1039/d0cs01434f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been a significant push in recent years to deploy fundamental knowledge and methods of photochemistry toward biological ends. Photoreactive groups have enabled chemists to activate biological function using the concept of photocaging. By granting spatiotemporal control over protein activation, these photocaging methods are fundamental in understanding biological processes. Peptides and proteins are an important group of photocaging targets that present conceptual and technical challenges, requiring precise chemoselectivity in complex polyfunctional environments. This review focuses on recent advances in photocaging techniques and methodologies, as well as their use in living systems. Photocaging methods include genetic and chemical approaches that require a deep understanding of structure-function relationships based on subtle changes in primary structure. Successful implementation of these ideas can shed light on important spatiotemporal aspects of living systems.
Collapse
Affiliation(s)
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
10
|
Precise spatiotemporal control of voltage-gated sodium channels by photocaged saxitoxin. Nat Commun 2021; 12:4171. [PMID: 34234116 PMCID: PMC8263607 DOI: 10.1038/s41467-021-24392-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.
Collapse
|
11
|
Kambanis L, Chisholm TS, Kulkarni SS, Payne RJ. Rapid one-pot iterative diselenide-selenoester ligation using a novel coumarin-based photolabile protecting group. Chem Sci 2021; 12:10014-10021. [PMID: 34349969 PMCID: PMC8317654 DOI: 10.1039/d1sc02781f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
The development of an iterative one-pot peptide ligation strategy is described that capitalises on the rapid and efficient nature of the diselenide–selenoester ligation reaction, together with photodeselenisation chemistry. This ligation strategy hinged on the development of a novel photolabile protecting group for the side chain of selenocysteine, namely the 7-diethylamino-3-methyl coumarin (DEAMC) moiety. Deprotection of this DEAMC group can be effected in a mild, reagent-free manner using visible light (λ = 450 nm) without deleterious deselenisation of selenocysteine residues, thus enabling a subsequent ligation reaction without purification. The use of this DEAMC-protected selenocysteine in iterative DSL chemistry is highlighted through the efficient one-pot syntheses of 60- and 80-residue fragments of mucin-1 as well as apolipoprotein CIII in just 2–4 hours. A method for the rapid one-pot iterative assembly of proteins via diselenide–selenoester ligation (DSL) chemistry is described that capitalises on a novel coumarin-based photolabile protecting group for selenocysteine.![]()
Collapse
Affiliation(s)
- Lucas Kambanis
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Timothy S Chisholm
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
12
|
Shchelik IS, Tomio A, Gademann K. Design, Synthesis, and Biological Evaluation of Light-Activated Antibiotics. ACS Infect Dis 2021; 7:681-692. [PMID: 33656844 DOI: 10.1021/acsinfecdis.1c00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The spatial and temporal control of bioactivity of small molecules by light (photopharmacology) constitutes a promising approach for study of biological processes and ultimately for the treatment of diseases. In this study, we investigated two different "caged" antibiotic classes that can undergo remote activation with UV-light at λ = 365 nm, via the conjugation of deactivating and photocleavable units through a short synthetic sequence. The two widely used antibiotics vancomycin and cephalosporin were thus enhanced in their performance by rendering them photoresponsive and thereby suppressing undesired off-site activity. The antimicrobial activity against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 29213, S. aureus ATCC 43300 (MRSA), Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 could be spatiotemporally controlled with light. Both molecular series displayed a good activity window. The vancomycin derivative displayed excellent values against Gram-positive strains after uncaging, and the next-generation caged cephalosporin derivative achieved good and broad activity against both Gram-positive and Gram-negative strains after photorelease.
Collapse
Affiliation(s)
- Inga S. Shchelik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Tomio
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
14
|
Hassan MM, Olaoye OO. Recent Advances in Chemical Biology Using Benzophenones and Diazirines as Radical Precursors. Molecules 2020; 25:E2285. [PMID: 32414020 PMCID: PMC7288102 DOI: 10.3390/molecules25102285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
15
|
de Sousa AP, Gondim ACS, Sousa EHS, de Vasconcelos MA, Teixeira EH, Bezerra BP, Ayala AP, Martins PHR, Lopes LGDF, Holanda AKM. An unusual bidentate methionine ruthenium(II) complex: photo-uncaging and antimicrobial activity. J Biol Inorg Chem 2020; 25:419-428. [DOI: 10.1007/s00775-020-01772-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
|
16
|
Zuo C, Zhang B, Wu M, Bierer D, Shi J, Fang GM. Chemical synthesis and racemic crystallization of rat C5a-desArg. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Mangubat-Medina AE, Trial HO, Vargas RD, Setegne MT, Bader T, Distefano MD, Ball ZT. Red-shifted backbone N–H photocaging agents. Org Biomol Chem 2020; 18:5110-5114. [DOI: 10.1039/d0ob00923g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3-nitrodibenzofuran cure provides blue-shifted reactivity in vinylogous photocleavage processes.
Collapse
Affiliation(s)
| | | | | | | | - Taysir Bader
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|
18
|
Wang C, Mao Z, Liu Y, Wang Q, Si C, Wei B, Lin G. Stereoselective Intermolecular [4+2] Process of
N
,O‐acetals with Terminal Alkynes for Construction of Functional
cis
‐Pyrido and Pyrrolo[1,2‐c][1,3]oxazin‐1‐ones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chen Wang
- School of PharmacyFudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Zhuo‐Ya Mao
- School of PharmacyFudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Yi‐Wen Liu
- School of PharmacyFudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Qiao‐E Wang
- Beijing Key Lab of Plant Resource Research and DevelopmentBeijing Technology and Business University Beijing 100048 People's Republic of China
| | - Chang‐Mei Si
- School of PharmacyFudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Bang‐Guo Wei
- School of PharmacyFudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Guo‐Qiang Lin
- Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
19
|
Abstract
An on-resin, three-component Passerini reaction was developed to synthesize C-terminal photocaged peptides. Highly compatible with conventional Fmoc SPPS, this reaction produces peptides with a C-terminal o-amido-6-nitroveratryl (αANV) ester in one pot with conserved chirality. Under physiological conditions, the C-terminal αANV ester rapidly photolyzed to revert to carboxylate, offering a convenient method for optical control of cellular signals by modulating the C-terminal carboxylate.
Collapse
Affiliation(s)
- Wing Ho So
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Jiang Xia
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| |
Collapse
|
20
|
Wang XM, Liu YW, Wang QE, Zhou Z, Si CM, Wei BG. A divergent method to key unit of tubulysin V through one-pot diastereoselective Mannich process of N,O-acetal with ketone. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Li X, Liu L, Li Y. 15th Chinese International Peptide Symposium. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|