1
|
Yi C, Zhang J, Yi R, Zeng J, Xu W, Sulemana H, Wang X, Yu H. Degradation mechanism and decomposition of sulfamethoxazole aqueous solution with persulfate activated by dielectric barrier discharge. ENVIRONMENTAL TECHNOLOGY 2024:1-20. [PMID: 38753523 DOI: 10.1080/09593330.2024.2354058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The present study focused on the degradation of sulfamethoxazole (SMX) aqueous solution and the toxicity of processing aqueous by the dielectric barrier discharge (DBD) activated persulfate (PS). The effects of input voltage, input frequency, duty cycle, and PS dosage ratio on the SMX degradation efficiency were measured. Based on the results of the Response Surface Methodology (RSM), SMX degradation efficiency reached 83.21% which is 10.54% higher than that without PS, and the kinetic constant was 0.067 min-1 in 30 min when the input voltage at 204 V (input power at 110.6 W), the input frequency at 186 Hz, the duty cycle at 63%, and the PS dosage ratio at 5.1:1. The addition of PS can produce more active particles reached 1.756 mg/L (O3), 0.118 mg/L (H2O2), 0.154 mmol/L (·OH) in 30 min. Furthermore, the DBD plasma system effectively activated an optimal amount of PS, leading to improved removal efficiency of COD, and TOC to 30.21% and 47.21%, respectively. Subsequently, eight primary by-products were pinpointed, alongside the observation of three distinct pathways of transformation. Predictions from the ECOSAR software indicated that most of the degradation intermediates were less toxic than SMX. The biological toxicity experiments elucidated that the treatment with the DBD/PS system effectively reduced the mortality of zebrafish larvae caused by SMX from 100% to 20.13% and improved the hatching rate from 55.69% to 80.86%. In particular, it is important to note that the degradation intermediates exhibit teratogenic effects on zebrafish larvae.
Collapse
Affiliation(s)
- Chengwu Yi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water treatment, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Jianan Zhang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Rongjie Yi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water treatment, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jiangwei Zeng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenlin Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Husseini Sulemana
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xinyi Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Huidi Yu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
2
|
He Y, Jiang L, Wu X, Zhang W, Zong Y, Wang J, Chen J, Shan J, Kong D, Ji R. Fate of sulfamethoxazole in wetland sediment under controlled redox conditions. WATER RESEARCH 2024; 254:121350. [PMID: 38402752 DOI: 10.1016/j.watres.2024.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Redox condition is an important controlling factor for contaminant removal in constructed wetlands; however, the redox-sensitivity of antibiotic removal in wetland sediments under controlled conditions with specific electron acceptors remains unclear. Here, using a 14C radioactive tracer, we explored fate of sulfamethoxazole (SMX) in a wetland sediment slurry under oxic, nitrate-reducing, iron-reducing, and methanogenic conditions. In the sterile treatment, unlike the comparable SMX dissipation from the water phase under four redox conditions, non-extractable residues (NERs) of SMX was highest formed in the sediment under oxic condition, mainly in sequestered and ester/amide-linked forms. Microorganisms markedly promoted SMX transformation in the slurry. The dissipation rate of SMX and its transformation products (TPs) followed the order: oxic ≈ iron-reducing > methanogenic >> nitrate-reducing conditions, being consistent with the dynamics of microbial community in the sediment, where microbial diversity was greater and networks connectivity linking dominant bacteria to SMX transformation were more complex under oxic and iron-reducing conditions. Kinetic modeling indicated that the transformation trend of SMX and its TPs into the endpoint pool NERs depended on the redox conditions. Addition of wetland plant exudates and sediment dissolved organic matter at environmental concentrations affected neither the abiotic nor the biotic transformation of SMX. Overall, the iron-reducing condition was proven the most favorable and eco-friendly for SMX transformation, as it resulted in a high rate of SMX dissipation from water without an increase in toxicity and subsequent formation of significant stable NERs in sediment. Our study comprehensively revealed the abiotic and biotic transformation processes of SMX under controlled redox conditions and demonstrated iron-reducing condition allowing optimal removal of SMX in constructed wetlands.
Collapse
Affiliation(s)
- Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Longxue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing 210042, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| |
Collapse
|
3
|
Zhou C, Wu M, Song H, Yan Z, Yang L, Liu Y, Mao X, Sun Y. Low energy consumption pathway to improve sulfamethoxazole degradation by carbon fiber@Fe 3O 4-CuO: Electrocatalysis activity, mechanism and toxicity. J Colloid Interface Sci 2024; 660:834-844. [PMID: 38277840 DOI: 10.1016/j.jcis.2024.01.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Catalysts play a pivotal role in advanced oxidation processes for the remediation of organic wastewater. In this study, a 3D carbon fiber@Fe3O4-CuO catalyst was fabricated, and its efficacy for persulfate activation to remove sulfamethoxazole (SMX) was investigated at extremely low current density. The results of characterization revealed that the catalyst was uniformly distributed on the carbon fiber, and the loaded catalyst was Fe3O4-CuO nanoparticles with a diameter range of 20-50 nm. The SMX removal rate was significantly enhanced at extremely low current density by the metallic oxide catalyst loaded on carbon fiber. Approximately 90 % of SMX was degraded within 90 min when the electric current density was set at 0.1 mA cm-2. This modification process not only improved the persulfate activation efficiency but also enhanced the generation of hydrogen peroxide. Both radical and non-radical pathways were involved in the degradation of SMX. The degradation pathway mainly included hydroxylation, carboxylation, aniline cleavage, and desulfonation reactions. The quantitative structure-activity relationship model indicated that the potential risk of intermediate products to fish, daphnia, and green algae significantly decreased during the electrocatalytic oxidation process. This study provides a novel strategy for persulfate activation, which can significantly enhance the degradation efficiency, toxicity abatement, and energy usage effectiveness of electrocatalytic technology.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Mian Wu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Huarong Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zongyu Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Yan Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Xingzhi Mao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Yanlong Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China.
| |
Collapse
|
4
|
Zhu Y, Wang H, Li B, Wang T, Zhu Y, Hou J. Construction of a Zero-gap Flow-Through Microfluidic Reactor with Porous RuO 2 -IrO 2 @Pt Anode for Electrocatalytic Oxidation of Antibiotics in Water. Chem Asian J 2024:e202301128. [PMID: 38323702 DOI: 10.1002/asia.202301128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
In this study, a zero-gap flow-through microfluidic reactor was constructed for the degradation of tetracycline and norfloxacin in water using a porous Ti/RuO2 -IrO2 @Pt electrode as the anode and porous titanium plate as the cathode. The operation parameters included electrolyte type, electrolyte concentration, current density, initial concentration of pollutants and pH, were investigated. The degradation efficiency and energy consumption were calculated and compared with traditional electrolyzer. In the zero-gap flow-through microfluidic reactor, 100 % of both tetracycline and norfloxacin can be decomposed in 15 min, and high mineralization rate were achieved under the optimized reaction condition. And the reaction was consistent with pseudo-first-order kinetics with k value of 0.492 cm-1 and 1.010 cm-1 , for tetracycline and norfloxacin, respectively. In addition, the energy consumption was 28.33 kWh ⋅ kg-1 TC and 8.36 kWh ⋅ kg-1 NOR, for tetracycline and norfloxacin, respectively, which was much lower than that of traditional electrolyzer. The LC-MS results showed that tetracycline underwent a series of demethylation, dehydration and deamination reactions, and the norfloxacin went through ring opening reaction, decarboxylation and hydroxylation reaction, and finally both produced CO2 and H2 O.
Collapse
Affiliation(s)
- Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Huan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Bingqing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Tian Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
| | - Yunfu Zhu
- Shaanxi Haofengjingcheng Environmental Technology Co. LTD, Xian, 710021, PR China
| | - Jianing Hou
- Shaanxi Haofengjingcheng Environmental Technology Co. LTD, Xian, 710021, PR China
| |
Collapse
|
5
|
Chalaris M, Gkika DA, Tolkou AK, Kyzas GZ. Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119627-119653. [PMID: 37962753 DOI: 10.1007/s11356-023-30891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Metallurgy is pivotal for societal progress, yet it yields wastewater laden with hazardous compounds. Adhering to stringent environmental mandates, the scientific and industrial sectors are actively researching resilient treatment and disposal solutions for metallurgical effluents. The primary origins of organic pollutants within the metallurgical sector include processes such as coke quenching, steel rolling, solvent extraction, and electroplating. This article provides a detailed analysis of strategies for treating steel industry waste in wastewater treatment. Recent advancements in membrane technologies, adsorption, and various other processes for removing hazardous pollutants from steel industrial wastewater are comprehensively reviewed. The literature review reveals that advanced oxidation processes (AOPs) demonstrate superior effectiveness in eliminating persistent contaminants. However, the major challenges to their industrial-scale implementation are their cost and scalability. Additionally, it was discovered that employing a series of biological reactors instead of single-step biological processes enhances command over microbial communities and operating variables, thus boosting the efficacy of the treatment mechanism (e.g., achieving a chemical oxygen demand (COD) elimination rate of over 90%). This review seeks to conduct an in-depth examination of the current state of treating metallurgical wastewater, with a particular emphasis on strategies for pollutant removal. These pollutants exhibit distinct features influenced by the technologies and workflows unique to their respective processes, including factors such as their composition, physicochemical properties, and concentrations. Therefore, it is of utmost importance for customized treatment and disposal approaches, which are the central focus of this review. In this context, we will explore these methods, highlighting their advantages and characteristics.
Collapse
Affiliation(s)
- Michail Chalaris
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece.
| | - Despina A Gkika
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - Athanasia K Tolkou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| |
Collapse
|
6
|
Huang L, Zheng J, Ke J, Pan J, Zhuang L, Zhang M, Zhang W. Enhancing the photodegradation of tetracycline in aquaculture wastewater via iron(III)-alginate: Degradation pathway transformation and toxicity reduction. CHEMOSPHERE 2023; 341:140021. [PMID: 37659507 DOI: 10.1016/j.chemosphere.2023.140021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Tetracycline's (TC) incomplete self-photolysis by light irradiation generally produces toxic intermediate products, which posing serious harm to the aqueous environment. In order to diminish the environmental risks of TC self-photolysis, an iron(III)-alginate (Fe-SA) hydrogel assisted photocatalytic method was developed and the underlying mechanisms was also analyzed in this work. Under simulated sunlight, the photo-degradation efficiency of TC was 61.1% at pH 7.0 within 2 h. Importantly, four of the seven intermediate products that identified during the self-photolysis of TC were found toxic based on QSAR analysis. In contrast, the removal efficiency of TC could be improved to 87.4% by adding Fe-SA under the same conditions. Moreover, only two relatively weakly toxic intermediate products were detected after exposing to the Fe-SA photocatalytic system, indicating a significant reduction of the potential ecological risks caused by TC self-photolysis. Furthermore, the determination of reactive oxidation species (ROS) demonstrated that the addition of Fe-SA primarily facilitated the degradation of TC and the related toxic intermediate products through assisting the free radical (∙OH and ∙O2-) photocatalytic degradation pathway. Additionally, the photocatalytic application under actual sunlight conditions and the reusability experiments of Fe-SA further confirmed its effectiveness and low cost in removing TC. This study revealed the photodegradation mechanisms of TC from the perspective of the self-photolysis process, and also offering new insights into the removal of TC pollution in the environment.
Collapse
Affiliation(s)
- Lianyang Huang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jiahui Zheng
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jiaqi Ke
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China
| | - Jiahong Pan
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Lingling Zhuang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Menglu Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
7
|
Xu M, Gao C, Zhang X, Liang X, Hu Y, Wang F. Development of SDS-Modified PbO 2 Anode Material Based on Ti 3+ Self-Doping Black TiO 2NTs Substrate as a Conductive Interlayer for Enhanced Electrocatalytic Oxidation of Methylene Blue. Molecules 2023; 28:6993. [PMID: 37836836 PMCID: PMC10574806 DOI: 10.3390/molecules28196993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Efficient and stable electrode materials are urgently required for wastewater treatment in the electrocatalytic degradation of toxic and refractory organic pollutants. Ti3+ self-doping black TiO2 nanotube arrays (Ti/B-TiO2-NTs) as an interlayer were used for preparing a novel PbO2 electrode via an electrochemical reduction technology, and a sodium dodecyl sulfate (SDS)-modified PbO2 catalytic layer was successfully achieved via an electrochemical deposition technology. The physicochemical characterization tests showed that the Ti/B-TiO2-NTs/PbO2-SDS electrodes have a denser surface and finer grain size with the introduction of Ti3+ in the interlayer of Ti/TiO2-NTs and the addition of SDS in the active layer of PbO2. The electrochemical characterization results showed that the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode had higher oxygen evolution potential (2.11 V vs. SCE), higher electrode stability, smaller charge-transfer resistance (6.74 Ω cm-2), and higher hydroxyl radical production activity, leading to it possessing better electrocatalytic properties. The above results indicated that the physicochemical and electrochemical characterization of the PbO2 electrode were all enhanced significantly with the introduction of Ti3+ and SDS. Furthermore, the Ti/B-TiO2-NTs/PbO2-SDS electrodes displayed the best performance on the degradation of methylene blue (MB) in simulated wastewater via bulk electrolysis. The removal efficiency of MB and the chemical oxygen demand (COD) could reach about 99.7% and 80.6% under the optimal conditions after 120 min, respectively. The pseudo-first-order kinetic constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode was 0.03956 min-1, which was approximately 3.18 times faster than that of the Ti/TiO2-NTs/PbO2 electrode (0.01254 min-1). In addition, the Ti/B-TiO2-NTs/PbO2-SDS electrodes showed excellent stability and reusability. The degradation mechanism of MB was explored via the experimental identification of intermediates. In summary, the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode is a promising electrode in treating wastewater.
Collapse
Affiliation(s)
- Mai Xu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Chunli Gao
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
| | - Xiaoyan Zhang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Xian Liang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Yunhu Hu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Fengwu Wang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| |
Collapse
|
8
|
Ali I, Barros de Souza A, De Laet S, Van Eyck K, Dewil R. Anodic oxidation of sulfamethoxazole paired to cathodic hydrogen peroxide production. CHEMOSPHERE 2023; 319:137984. [PMID: 36720407 DOI: 10.1016/j.chemosphere.2023.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A double chamber electrochemical system is developed consisting of a boron-doped diamond (BDD) anode and a graphite cathode, which not only degrades sulfamethoxazole (SMX) but also simultaneously generates hydrogen peroxide (H2O2). The degradation of SMX is carried out by (in)direct oxidation at the BDD anode and H2O2 is produced by two electron oxygen (O2) reduction reaction (ORR) at the cathode. The effect of different parameters on the kinetics of both mechanisms was investigated. The performance of the system at the optimized conditions (pH 3, 0.05 M Na2SO4 as electrolyte, and 10 mA as applied current) showed that after 180 min of electrolysis, SMX was almost fully degraded (95% removal and ∼90% COD reduction) as well as about 535 μM H2O2 was accumulated. With the help of LC-MS, five intermediates formed during SMX electrolysis were properly identified and a degradation pathway was proposed. This study advocates methods for improving the effectiveness of energy use in advanced wastewater treatment.
Collapse
Affiliation(s)
- Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Sint-Katelijne-Waver, Belgium
| | | | - Steven De Laet
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium
| | - Kwinten Van Eyck
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| |
Collapse
|
9
|
Mussa ZH, Al-Qaim FF. A non-steroidal drug "diclofenac" is a substrate for electrochemical degradation process using graphite anode. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:461. [PMID: 36905447 DOI: 10.1007/s10661-023-11085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the electrochemical degradation process, the elimination of organic pollutants could be enhanced using supporting electrolyte and applied voltage. After degradation of the target organic compound, some by-products are formed. Chlorinated by-products are the main products formed in the presence of sodium chloride. In the present study, an electrochemical oxidation process has been applied to diclofenac (DCF) using graphite as an anode and sodium chloride (NaCl) as a supporting electrolyte. Monitoring the removal of the by-products and elucidating them were provided using HPLC and LC-TOF/MS, respectively. A high removal% of 94% DCF was observed under the conditions: 0.5 g NaCl, 5 V, and 80 min of electrolysis, while the removal% of chemical oxygen demand (COD) was 88% under the same conditions, but 360 min of electrolysis was required. The pseudo-first-order rate constant values were quite varied based on the selected experimental conditions; the rate constants were between 0.0062 and 0.054 min-1, between 0.0024 and 0.0326 min-1 under the influence of applied voltage and sodium chloride, respectively. The maximum values of energy consumption were 0.93 and 0.55 Wh/mg using 0.1 g NaCl and 7 V, respectively. Some chlorinated by-products, C13H18Cl2NO5, C11H10Cl3NO4, and C13H13Cl5NO5, were selected and elucidated using LC-TOF/MS.
Collapse
Affiliation(s)
| | - Fouad Fadhil Al-Qaim
- Department of Chemistry, Faculty of Science for Women, University of Babylon, PO Box 4, Hilla, Iraq.
| |
Collapse
|
10
|
Zhu D, Zhou F, Ma Y, Xiong Y, Li X, Li W, Wang D. An economic, self-supporting, robust and durable LiFe 5O 8 anode for sulfamethoxazole degradation. CHEMOSPHERE 2023; 316:137810. [PMID: 36634712 DOI: 10.1016/j.chemosphere.2023.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemically activating peroxydisulfate (PDS) to degrade organic pollutants is one of the most attractive advanced oxidation processes (AOPs) to address environmental issues, but the high cost, poor stability, and low degradation efficiency of the anode materials hinder their application. Herein, an economic, self-supporting, robust, and durable LiFe5O8 on Fe substrate (Fe@LFO) anode is reported to degrade sulfamethoxazole (SMX). When PDS is electrochemically activated by the Fe@LFO anode, the degradation rate of SMX is significantly improved. It is found that hydroxyl radicals (•OH), superoxide radical (O2•-), singlet oxygen (1O2), Fe(Ⅳ), activated PDS (PDS*), and direct electron transfer (DET) reactions synergistically contribute to the degradation of SMX, which can realize the degradation of SMX in four possible routes: cleavage of the isoxazole ring, hydroxylation of the benzene ring, oxidation of the aniline group, and cleavage of the S-N bond, as evidenced by a series of tests of radicals quenching, electron paramagnetic resonance (EPR), linear sweep voltammetry (LSV) and liquid chromatograph mass spectrometer (LC-MS). Furthermore, Fe@LFO has good structural stability, excellent cyclability and low degradation cost, demonstrating its great potential for practical applications. This work contributes to a stable and effective anode material in the field of AOPs.
Collapse
Affiliation(s)
- Dongdong Zhu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Fengyin Zhou
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yongsong Ma
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yu Xiong
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Xiangyun Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Wei Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| | - DiHua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
11
|
Ma N, Ru Y, Weng M, Chen L, Chen W, Dai Q. Synergistic mechanism of supported Mn-Ce oxide in catalytic ozonation of nitrofurazone wastewater. CHEMOSPHERE 2022; 308:136192. [PMID: 36041529 DOI: 10.1016/j.chemosphere.2022.136192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, the catalytic materials of MnOx/γ-Al2O3, CeO2/γ-Al2O3, and MnxCe1-xO2/γ-Al2O3 for catalytic ozonation were synthesized. The catalysts were used in heterogeneous catalytic ozonation of the wastewater containing ntrofurazone (NFZ). The effects of the catalytic ozonation operational factors were systematically evaluated in terms of ozone dosing, catalyst dosing, initial NFZ concentration, and pH. The results showed that the catalytic activity of the MnxCe1-xO2/γ-Al2O3 was higher than that of the MnOx/γ-Al2O3 and CeO2/γ-Al2O3. The kinetics analysis revealed that bimetallic loading has a synergistic effect and the mechanism of this effect was investigated in the catalytic ozonation system. The catalysts were characterized by FESEM, EDS, XRD, XPS, IR, and BET. The characteristics of the catalysts revealed that Mn could alter the oxide species on the metal surface and interfere with the formation of CeO2 crystals, which led to smaller grains, enhanced adsorption oxygen, and greater specific surface area. The MnxCe1-xO2/γ-Al2O3 crystals could form a solid solution, which helps higher catalytic activity. This study adds to the understanding of the synergistic mechanism of the loaded Ce-Mn oxide catalysts in the heterogeneous catalytic ozonation system and provides a feasible method for degrading pharmaceutical wastewater.
Collapse
Affiliation(s)
- Nengwei Ma
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yifan Ru
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mili Weng
- College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Lu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
12
|
Degradation and detoxification mechanisms of organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) during electrochemical oxidation process. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Liu H, Zhai L, Wang P, Li Y, Gu Y. Ti/PbO 2 Electrode Efficiency in Catalytic Chloramphenicol Degradation and Its Effect on Antibiotic Resistance Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15632. [PMID: 36497705 PMCID: PMC9741302 DOI: 10.3390/ijerph192315632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Livestock farming has led to the rapid accumulation of antibiotic resistance genes in the environment. Chloramphenicol (CAP) was chosen as a model compound to investigate its degradation during electrochemical treatment. Ti/PbO2 electrodes were prepared using electrodeposition. The prepared Ti/PbO2-La electrodes had a denser surface and a more complete PbO2 crystal structure. Ti/PbO2-Co electrodes exhibited improved electrochemical catalytic activity and lifetime in practice. The impact of different conditions on the effectiveness of CAP electrochemical degradation was investigated, and the most favorable conditions were identified (current density: I = 15.0 mA/cm, electrolyte concentration: c = 0.125 mol/L, solution pH = 5). Most importantly, we investigated the effects of the different stages of treatment with CAP solutions on the abundance of resistance genes in natural river substrates (intI1, cmlA, cmle3, and cata2). When CAP was completely degraded (100% TOC removal), no effect on resistance gene abundance was observed in the river substrate; incomplete CAP degradation significantly increased the absolute abundance of resistance genes. This suggests that when treating solutions with antibiotics, they must be completely degraded (100% TOC removal) before discharge into the environment to reduce secondary pollution. This study provides insights into the deep treatment of wastewater containing antibiotics and assesses the environmental impact of the resulting treated wastewater.
Collapse
Affiliation(s)
- Hao Liu
- Shandong Tiantai Environmental Technology Co., Jinan 250101, China
| | - Luwei Zhai
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengqi Wang
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanfeng Li
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
14
|
Shao D, Li W, Wang Z, Yang C, Xu H, Yan W, Yang L, Wang G, Yang J, Feng L, Wang S, Li Y, Jia X, Song H. Variable activity and selectivity for electrochemical oxidation wastewater treatment using a magnetically assembled electrode based on Ti/PbO2 and carbon nanotubes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Zheng T, Wei C, Chen H, Xu J, Wu Y, Xing X. Fabrication of PbO 2 Electrodes with Different Doses of Er Doping for Sulfonamides Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013503. [PMID: 36294088 PMCID: PMC9602837 DOI: 10.3390/ijerph192013503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 05/22/2023]
Abstract
In the present study, PbO2 electrodes, doped with different doses of Er (0%, 0.5%, 1%, 2%, and 4%), were fabricated and characterized. Surface morphology characterization by SEM-EDS and XRD showed that Er was successfully doped into the PbO2 catalyst layer and the particle size of Er-PbO2 was reduced significantly. Electrochemical oxidation of sulfamerazine (SMR) in the Er-PbO2 anode system obeyed te pseudo first-order kinetic model with the order of 2% Er-PbO2 > 4% Er-PbO2 > 1% Er-PbO2 > 0.5% Er-PbO2 > 0% PbO2. For 2% Er-PbO2, kSMR was 1.39 h-1, which was only 0.93 h-1 for 0% PbO2. Effects of different operational parameters on SMR degradation in 2% Er-PbO2 anode system were investigated, including the initial pH of the electrolyte and current density. Under the situation of an initial pH of 3, a current density of 30 mA·cm-2, a concentration of SMR 30 mg L-1, and 0.2 M Na2SO4 used as supporting electrolyte, SMR was totally removed in 3 h, and COD mineralization efficiency was achieved 71.3% after 6 h electrolysis. Furthermore, the degradation pathway of SMR was proposed as combining the active sites identification by density functional calculation (DFT) and intermediates detection by LC-MS. Results showed that Er-PbO2 has great potential for antibiotic wastewater treatment in practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wu
- Correspondence: (Y.W.); (X.X.); Tel.: +86-10-68933621 (X.X.)
| | - Xuan Xing
- Correspondence: (Y.W.); (X.X.); Tel.: +86-10-68933621 (X.X.)
| |
Collapse
|
16
|
Zhang H, Xiao S, Du Y, Song S, Hu K, Huang Y, Wang H, Wu Q. Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Zhao Q, Guo W, Luo H, Wang H, Yu T, Liu B, Si Q, Ren N. Dissecting the roles of conductive materials in attenuating antibiotic resistance genes: Evolution of physiological features and bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129411. [PMID: 35780739 DOI: 10.1016/j.jhazmat.2022.129411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Supplying conductive materials (CMs) into anaerobic bioreactors is considered as a promising technology for antibiotic wastewater treatment. However, whether and how CMs influence antibiotic resistance genes (ARGs) spread remains poorly known. Here, we investigated the effects of three CMs, i.e., magnetite, activated carbon (AC), and zero valent iron (ZVI), on ARGs dissemination during treating sulfamethoxazole wastewater, by dissecting the shifts of physiological features and microbial community. With the addition of magnetite, AC, and ZVI, the SMX removal was improved from 49.05 to 71.56-92.27 %, while the absolute abundance of ARGs reducing by 26.48 %, 61.95 %, 48.45 %, respectively. The reduced mobile genetic elements and antibiotic resistant bacteria suggested the inhibition of horizontal and vertical transfer of ARGs. The physiological features, including oxidative stress response, quorum sensing, and secretion system may regulate horizontal transfer of ARGs. The addition of all CMs relieved oxidative stress compared with no CMs, but ZVI may cause additional free radicals that needs to be concerned. Further, ZVI and AC also interfered with cell communication and secretion system. This research deepens the insights about the underlying mechanisms of CMs in regulating ARGs, and is expected to propose practical ways for mitigating ARGs proliferation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Taiping Yu
- Yangtze Ecology and Environment Co. Ltd., Wuhan 430062, China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
18
|
Electrochemical oxidation of lamivudine using graphene oxide and Yb co-modified PbO2 electrodes: characterization, influencing factors and degradation mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Reconstruction of Electronic Structure of MOF-525 via Metalloporphyrin for Enhanced Photoelectro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photoelectro-Fenton (PEF) process can continuously promote the occurrence of Fenton reaction and the generation of active species, which is an advanced oxidation technology for pollutant degradation. However, the lack of bifunctional catalysts restricts the development of PEF technology. In this study, the electronic rearrangement MOF-525 modified by metalloporphyrin (named MOF-525-Fe/Zr) was prepared, to load on the carbon felt as a novel cathode catalyst, which is used in PEF process. A series of characterization and photoelectric chemical properties tests combined with DFT calculation showed that the modification of MOF-525 could not only have the large specific surface area and multistage pore structure but also co-stimulate the metal-to-ligand charge transfer (MLCT) and ligand-to-cluster charge transfer (LCCT) by photoelectric synergy. These charge transitions provide periodic electron donor-acceptor conduction paths in MOF-525-Fe/Zr, which can improve the active species formation and transfer efficiency. Owing to their favorable pore and electronic structure as well as stability, MOF-525-Fe/Zr shows great promise for the application in the catalytic process of PEF. Sulfamethoxazole (SMX) degradation was enhanced by MOF-525-Fe/Zr with the TOC removal rate above 75% both in river water and tap water. Finally, the reasonable pathway of PEF catalytic degradation of SMX was proposed by HPLC-MS analysis. In conclusion, this study provides a new idea for reconstructing the electronic structure of MOFs catalyst and broadening the practical application of PEF technology.
Collapse
|
20
|
Zhuo Q, Xu X, Xie S, Ren X, Chen Z, Yang B, Li Y, Niu J. Electro-oxidation of Ni (II)-citrate complexes at BDD electrode and simultaneous recovery of metallic nickel by electrodeposition. J Environ Sci (China) 2022; 116:103-113. [PMID: 35219408 DOI: 10.1016/j.jes.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/14/2023]
Abstract
The simultaneous electro-oxidation of Ni (II)-citrate and electrodeposition recovery of nickel metal were attempted in a combined electro-oxidation-electrodeposition reactor with a boron-doped diamond (BDD) anode and a polished titanium cathode. Effects of initial nickel citrate concentration, current density, initial pH, electrode spacing, electrolyte type, and initial electrolyte dosage on electrochemical performance were examined. The efficiencies of Ni (II)-citrate removal and nickel metal recovery were determined to be 100% and over 72%, respectively, under the optimized conditions (10 mA/cm2, pH 4.09, 80 mmol/L Na2SO4, initial Ni (II)-citrate concentration of 75 mg/L, electrode spacing of 1 cm, and 180 min of electrolysis). Energy consumption increased with increased current density, and the energy consumption was 0.032 kWh/L at a current density of 10 mA/cm2 (pH 6.58). The deposits at the cathode were characterized by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These characterization results indicated that the purity of metallic nickel in cathodic deposition was over 95%. The electrochemical system exhibited a prospective approach to oxidize metal complexes and recover metallic nickel.
Collapse
Affiliation(s)
- Qiongfang Zhuo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaofeng Xu
- School of Civil Engineering, University of South China, Hengyang 421001, China; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuibo Xie
- School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Xiuwen Ren
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Zhongying Chen
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junfeng Niu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
21
|
Ren L, Ma J, Chen M, Qiao Y, Dai R, Li X, Wang Z. Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. iScience 2022; 25:104342. [PMID: 35602955 PMCID: PMC9117875 DOI: 10.1016/j.isci.2022.104342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The increasing occurrence of micropollutants in water and wastewater threatens human health and ecological security. Electrocatalytic membrane (EM), a new hybrid water treatment platform that integrates membrane separation with electrochemical technologies, has attracted extensive attention in the removal of micropollutants from water and wastewater in the past decade. Here, we systematically review the recent advances of EM for micropollutant removal from water and wastewater. The mechanisms of the EM for micropollutant removal are first introduced. Afterwards, the related membrane materials and operating conditions of the EM are summarized and analyzed. Lastly, the challenges and future prospects of the EM in research and applications are also discussed, aiming at a more efficient removal of micropollutants from water and wastewater.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yiwen Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Corresponding author
| |
Collapse
|
22
|
Sun J, Wan J, Wang Y, Yan Z, Ma Y, Ding S, Tang M, Xie Y. Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole:Design, degradation pathways, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128299. [PMID: 35077971 DOI: 10.1016/j.jhazmat.2022.128299] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted more attention because of their excellent environmental catalytic capabilities. Modulation approach as an advanced assistant strategy is vital essential to enhancing the performance of MOFs. In this study, the modulated method was used to successfully synthesize a group of Fe-based MOFs, with formic acid as the modulator on the synthesis mixture. The most modulated sample Fe-MOFs-2 exhibit high specific surface areas and higher catalytic activity, which could effectively degrade SMX via PS activation, with almost 95% removal efficiency within 120 min. The results revealed that the % RSE of modulated Fe-MOFs-2 increased from 2.31 to 3.27 when compared with the origin Fe-MOFs. This may be due to the addition of formic acid induces the formation of more coordinatively unsaturated metal sites in the catalyst, resulting in structural defects. In addition, the quenching experiment and EPR analysis verified SO4-·and·OH as the major active free radicals in the degradation process. Modulated Fe-MOFs-2 demonstrated good reusability and stability under fifth cycles. Finally, four possible degradation pathways and catalytic mechanism of Fe-MOFs-2 was tentatively proposed. Our work provides insights into the rational design of modulated Fe-MOFs as promising heterogeneous catalysts for advanced wastewater treatment.
Collapse
Affiliation(s)
- Jian Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Sino-Singapore International Joint Research Institute, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Sino-Singapore International Joint Research Institute, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China
| | - Su Ding
- School of Environmental and Bioengineering, Henan University of Engineering, No. 1 Xianghe Road, Zhengzhou 451191, China
| | - Min Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongchang Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Li S, Tong Y, Dong H, Lu J, Niu J. Formation of stable imine intermediates in the coexistence of sulfamethoxazole and humic acid by electrochemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128166. [PMID: 34996000 DOI: 10.1016/j.jhazmat.2021.128166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical degradation performance of sulfamethoxazole (SMX) was studied in the presence of humic acid (HA) by using a Ti/Ti4O7/β-PbO2 anode. The electrochemical degradation efficiency of SMX decreased from 93.4% to 45.8% in 50 min after the addition of 25 mg L-1 HA. The pseudo-first-order kinetic rate constant decreased by 71.4%, and the EEO value increased from 63.8 Wh L-1 to 90.9 Wh L-1. HA and its degradation intermediates could compete for free radicals, especially for ·OH, with SMX. The analytical results obtained using UPLC-ESI-Q-TOF-MS showed that 18 degradation intermediates were identified in the coexistence of SMX and HA. Four imine intermediates were formed through the reactions between the aniline moieties of SMX and quinone groups in the HA structure through covalent bonds. Furthermore, the relative abundances of the intermediates demonstrated that the imine intermediates were complex and stable during electrochemical degradation.
Collapse
Affiliation(s)
- Suxin Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
24
|
Feng J, Lan H, Tao Q, Chen W, Dai Q. Electrochemical oxidation of a typical PPCP wastewater with a novel high-efficiency PbO2 anode based on NCNSs and Ce co-modification: parameter optimization and degradation mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zhang B, He X, Yu C, Liu G, Ma D, Cui C, Yan Q, Zhang Y, Zhang G, Ma J, Xin Y. Degradation of tetracycline hydrochloride by ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst: Influencing factors, products and mechanism insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Shao D, Wang Z, Zhang C, Li W, Xu H, Tan G, Yan W. Embedding wasted hairs in Ti/PbO2 anode for efficient and sustainable electrochemical oxidation of organic wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Electrocatalytic degradation of 2,4-dichlorophenol by a 3DG-PbO2 powdered anode: Experimental and theoretical insights. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6010008] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Advanced oxidation procedures (AOPs) refer to a variety of technical procedures that produce OH radicals to sufficiently oxidize wastewater, organic pollutant streams, and toxic effluents from industrial, hospital, pharmaceutical and municipal wastes. Through the implementation of such procedures, the (post) treatment of such waste effluents leads to products that are more susceptible to bioremediation, are less toxic and possess less pollutant load. The basic mechanism produces free OH radicals and other reactive species such as superoxide anions, hydrogen peroxide, etc. A basic classification of AOPs is presented in this short review, analyzing the processes of UV/H2O2, Fenton and photo-Fenton, ozone-based (O3) processes, photocatalysis and sonolysis from chemical and equipment points of view to clarify the nature of the reactive species in each AOP and their advantages. Finally, combined AOP implementations are favored through the literature as an efficient solution in addressing the issue of global environmental waste management.
Collapse
|
29
|
Zhang Y, Zhang C, Shao D, Xu H, Rao Y, Tan G, Yan W. Magnetically assembled electrodes based on Pt, RuO 2-IrO 2-TiO 2 and Sb-SnO 2 for electrochemical oxidation of wastewater featured by fluctuant Cl - concentration. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126803. [PMID: 34388927 DOI: 10.1016/j.jhazmat.2021.126803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Magnetically assembled electrode (MAE) flexibly attracts magnetic particles (auxiliary electrodes, AEs) on a main electrode (ME) by the magnetic force, where the role of ME is always ignored. In this study, Ti/Pt, Ti/RuO2-IrO2-TiO2 and Ti/Sb-SnO2 were selected as the ME for comparison in treating synthetic wastewater (acid red G or phenol) with variable Cl- content. The effects of ME type, loading amount of Fe3O4/Sb-SnO2 AEs, and Cl- concentration were investigated, followed by varied electrochemical characterizations. Results show that AEs played a vital role in electrode activity and selectivity, and MEs also exerted an unignorable influence on the performance of the MAEs. Among the three MEs, Ti/RuO2-IrO2-TiO2 has the best OER/CER ability, activating more extra active sites with same AEs loading amount, leading to higher organics degradation efficiency under chlorine-free condition. However, this MAE is featured by the noticeable accumulation of intermediate products under chlorine-free condition even if 0.3 g·cm-2 of AEs are loaded. All electrodes' performances were enhanced in the presence of Cl-. With high concentration chloride (0.5 M NaCl), the accumulation of intermediate products was reduced significantly, especially on Ti/RuO2-IrO2-TiO2 based MAE, and no chlorinated compound was identified. Finally, the structure-activity relationships of these MAEs were proposed.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Cuiping Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dan Shao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Hao Xu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yongfang Rao
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guoqiang Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
30
|
Wang S, Zhang X, Chen G, Liu B, Li H, Hu J, Fu J, Liu M. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Fu J, Feng L, Liu Y, Zhang L, Li S. Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation. CHEMOSPHERE 2022; 287:132094. [PMID: 34492410 DOI: 10.1016/j.chemosphere.2021.132094] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical activation of peroxymonosulfate (PMS) at carbon cloth anode (E (Carbon cloth Anode)/PMS system) was investigated for sulfamethoxazole (SMX) degradation. The results indicated that PMS could be activated at carbon cloth anode during electrolysis, resulting in the improvement of SMX degradation. The degradation efficiency of SMX was facilitated with the higher PMS concentration and current density, respectively. The degradation rate constant of SMX increased with the rising pH from 3.6 to 6.0, and reached the highest value at pH 6.0, and then decreased with further increasing pH to 8.0. The presence of chloride ion (Cl-, 5-100 mM) significantly enhanced SMX degradation, while addition of humic acid (HA, 1-5 mgC L-1) inhibited SMX degradation. Addition of carbonate (HCO3-, 5-20 mM) had a negligible impact on SMX degradation. Small amounts of phosphate (PO43-, 0-5 mM) could promote degradation, while a large amount of PO43- (10-20 mM) inhibited the degradation. Moreover, the quenching experiments demonstrated that sulfate radical (SO4·-), hydroxyl radical (·OH) and singlet oxygen (1O2) contributed to SMX degradation in E (Carbon cloth Anode)/PMS system. The degradation intermediates of SMX were identified by LC-MS/MS and the degradation pathways were deduced to be hydroxylation, the cleavage of S-N bond, and oxidation of aniline group. Moreover, the micronucleus test of Vicia faba root tips indicated that the E (Carbon Cloth Anode)/PMS system could reduce the genetic toxicity of SMX contaminated water to some extent.
Collapse
Affiliation(s)
- Jingyi Fu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
32
|
Feng J, Tao Q, Lan H, Xia Y, Dai Q. Electrochemical oxidation of sulfamethoxazole by nitrogen-doped carbon nanosheets composite PbO 2 electrode: Kinetics and mechanism. CHEMOSPHERE 2022; 286:131610. [PMID: 34426123 DOI: 10.1016/j.chemosphere.2021.131610] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, nitrogen-doped carbon nanosheets (NCNSs) were prepared and successfully combined into the PbO2 electrode by the composite electrodeposition technology, thereby NCNS-PbO2 electrode was obtained. The electrochemical degradation of sulfamethoxazole (SMX) in aqueous solution by NCNS-PbO2 electrode was studied. The main influence factors on the degradation of SMX, such as the initial concentration of SMX, current density, electrolyte concentration and initial pH value, were analyzed in detail. Under the optimal process conditions, after 120 min of treatment, the removal ratio of SMX and chemical oxygen demand (COD) reached 99.8 % and 60.7 %, respectively. The results showed that the electrochemical degradation of SMX fitted pseudo-first-order reaction kinetics. The electrochemical performance of NCNS-PbO2 electrode was better than that of PbO2 electrode by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy, as well as the use of cyclic voltammetry and electrochemical impedance spectroscopy for electrochemical performance testing. This was because the doping of nitrogen atoms improved the properties of carbon nanosheets. After the composite, the active sites on the surface of PbO2 were improved, the particle size of PbO2 was reduced, and the electrical conductivity and electrocatalytic activity of the electrode were improved. In addition, the intermediate products were determined by GC-MS method, and the possible degradation pathways of SMX were proposed.
Collapse
Affiliation(s)
- Jieqi Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qibin Tao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Hao Lan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yi Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
33
|
Guo H, Xu Z, Wang D, Chen S, Qiao D, Wan D, Xu H, Yan W, Jin X. Evaluation of diclofenac degradation effect in "active" and "non-active" anodes: A new consideration about mineralization inclination. CHEMOSPHERE 2022; 286:131580. [PMID: 34280831 DOI: 10.1016/j.chemosphere.2021.131580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
This work investigates the electrochemical oxidation (EO) of diclofenac (DCF) in water with Ti/Ti4O7, Ti/Ru-Ir, Ti/Sb-SnO2 and Ti/PbO2 electrodes. Scanning electron microscope and X-ray diffraction results suggest that Ti/Ti4O7 has porous stacked surface morphology and Ti/Sb-SnO2 possesses the smallest grain size. Linear sweep voltammetry test results indicate that PbO2 has the highest oxygen evolution potential, while Ti/Ti4O7 and Ti/Ru-Ir show better oxygen evolution activity. DCF degradation results reveal that PbO2 possessed the highest DCF removal (RDCF = 99.2%) and chemical oxygen demand (COD) removal (RCOD = 97.0%), the fastest COD degradation rate (k = 0.0275 min-1, R2 = 0.964), the lowest specific energy consumption (ECDCF = 1.81 kWh.g DCF-1, ECTOC = 6.90 kWh.g TOC-1). The toxicity variation of DCF during EO process on PbO2 is rise first and then to fall. Considering the differences of the four electrodes in residual, conversion and mineralization aspects, mineralization selectivity (MS) was proposed to estimate the mineralization inclination of electrodes during EO process, and PbO2 displays the strongest mineralization inclination (MS = 0.594). In addition, the possible degradation pathway of DCF on PbO2 electrode indicates a composite behavior of conversion and mineralization. All of them above indicate the promising application potential of PbO2 in lower concentration pharmaceuticals and personal care products wastewater treatment. Moreover, MS could be employed as a supplementary index to assess the different inclinations of this composite behavior on various electrodes used for electrochemical treatment of organics in later studies.
Collapse
Affiliation(s)
- Hua Guo
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Zhicheng Xu
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Dan Wang
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Shiyu Chen
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Dan Qiao
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Dan Wan
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Shaanxi Zhengwei Environmental Testing CO., LTD, Xi'an, 710049, PR China
| | - Hao Xu
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China.
| | - Wei Yan
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Xiaoliang Jin
- Shaanxi Zhengwei Environmental Testing CO., LTD, Xi'an, 710049, PR China
| |
Collapse
|
34
|
Li Y, Zhu W, Guo Q, Wang X, Zhang L, Gao X, Luo Y. Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119403] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Enhancing the stability and electrocatalytic activity of Ti-based PbO2 anodes by introduction of an arc-sprayed TiN interlayer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Xiong P, Fan S, Song J, Dai Q. Mechanism of catalytic ozonation for elimination of methyldopa with Fe 3 O 4 @SiO 2 @CeO 2 catalyst. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2903-2913. [PMID: 34363642 DOI: 10.1002/wer.1622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, a magnetic nanocatalyst (Fe3 O4 @SiO2 @CeO2 ) was prepared and applied in the catalytic ozonation of methyldopa (MD). The effects of operational parameters on catalytic ozonation performance were investigated, including ozone dosage, catalyst dosage, initial MD concentration, and pH. The removal of MD was 45.2% in ozonation, whereas the efficiency was achieved to 83.0% with the addition of Fe3 O4 @SiO2 @CeO2 . The results showed that Fe3 O4 @SiO2 @CeO2 could significantly improve the catalytic ozonation performance. And the enhanced mechanism study showed that it was attributed to promotion of ozone decomposition to generate hydroxyl radical. The reaction model was explored, and the reaction rates were calculated for the MD degradation in catalytic ozonation. A higher degradation efficiency of MD in catalytic ozonation was attributed to the enhanced surface effect of the catalysts, which was confirmed by using TBA, PO4 3- , and p-BQ as scavengers of hydroxyl radical, surface reaction, and superoxide radical. The hydroxyl radical and superoxide radical played an important role in the degradation of MD. The mechanism of catalytic ozonation by Fe3 O4 @SiO2 @CeO2 was discussed via X-ray photoelectron spectroscopy (XPS) spectra and experimental data.
Collapse
Affiliation(s)
- Pan Xiong
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Fan
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinshan Song
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
37
|
Zhou Y, Yu M, Zhan R, Wang X, Peng G, Niu J. Ti3C2 MXene-induced interface electron separation in g-C3N4/Ti3C2 MXene/MoSe2 Z-scheme heterojunction for enhancing visible light-irradiated enoxacin degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Wang Q, Tu S, Wang W, Chen W, Duan X, Chang L. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Xu L, Cui X, Liao J, Liu Y, Jiang B, Niu J. Synchronous mineralization of three aqueous non-steroidal anti-inflammatory drugs in electrochemical advanced oxidation process. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.10.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Zhang J, Zhou Y, Yao B, Yang J, Zhi D. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126313. [PMID: 34329033 DOI: 10.1016/j.jhazmat.2021.126313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Various pharmaceuticals have been detected in natural water and wastewater bodies, causing threats to water ecosystem and human health. Although electrochemical anodic-oxidation (EAO) has been shown to be efficient for pharmaceuticals degradation from aqueous solution, it still has a distinct need to apply EAO technology for pharmaceuticals removal rationally. This review provides the most recent progress on the mechanisms, influencing factors, and new technique of EAO for pharmaceuticals degradation. The mechanism and superiority of EAO were analyzed. Major influencing factors (e.g., electrode materials, electrochemical reactor, applied current density, anode-cathode distance, electrolyte type and concentration, initial solution pH value, and initial pharmaceuticals concentration) were discussed on the removal of pharmaceuticals. The latest development of reactive electrochemical membranes (REM) was regarded as an emerging EAO technique, and it was also highlighted. This work revealed that the EAO of pharmaceuticals has extraordinary application prospects in the field of water and wastewater treatment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
41
|
Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the research on the environmental applications of electrochemistry to remove recalcitrant and priority pollutants and, in particular, drugs from the aqueous phase has increased dramatically. This literature review summarizes the applications of electrochemical oxidation in recent years to decompose pharmaceuticals that are often detected in environmental samples such as carbamazapine, sulfamethoxazole, tetracycline, diclofenac, ibuprofen, ceftazidime, ciprofloxacin, etc. Similar to most physicochemical processes, efficiency depends on many operating parameters, while the combination with either biological or other physicochemical methods seems particularly attractive. In addition, various strategies such as using three-dimensional electrodes or the electrosynthesis of hydrogen peroxide have been proposed to overcome the disadvantages of electrochemical oxidation. Finally, some guidelines are proposed for future research into the applications of environmental electrochemistry for the degradation of xenobiotic compounds and micropollutants from environmental matrices. The main goal of the present review paper is to facilitate future researchers to design their experiments concerning the electrochemical oxidation processes for the degradation of micropollutants/emerging contaminants, especially, some specific drugs considering, also, the existing limitations of each process.
Collapse
|
42
|
Electrochemical degradation of tris(2-chloroethyl) phosphate by metal-oxide-coated Ti anodes: Kinetics, toxicity and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|