1
|
Chen J, Chen L, Wu L, Yan C, Sun N, Peng G, Yang S, He H, Qi C. Activation of Metabisulfite by Dissolved Fe(III) at Environmentally Relevant Concentrations for Organic Contaminants Degradation. Int J Mol Sci 2025; 26:953. [PMID: 39940722 PMCID: PMC11817393 DOI: 10.3390/ijms26030953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Currently, iron-catalyzed low-valent sulfur species processes are regarded as potentially valuable advanced oxidation processes (AOPs) in wastewater treatment. As a commonly used low-valent sulfur species in the food industry, metabisulfite (MBS) can undergo decomposition to bisulfite when dissolved in water. Therefore, the combination of MBS with dissolved Fe(III) at environmentally relevant concentrations is proposed in this study to accelerate organic contaminants degradation while simultaneously minimizing the production of iron sludge. The results show that the Fe(III)/MBS process could degrade various organic contaminants, including acid orange 7 (AO7), and the removal efficiency of AO7 obeyed the pseudo-first-order kinetic. The rate constant values exhibited variations depending on the initial concentrations of Fe(III) and MBS, pH values, as well as the reaction temperature. Moreover, the contribution of HO• and SO4•- to AO7 degradation was estimated as 51.59% and 46.45%, respectively. Furthermore, Cl- showed a minimal effect while HCO3- and humic acid resulted in a significant inhibitory effect on AO7 degradation. The satisfactory degradation of AO7 was achieved in three real water bodies. Ultimately, the results of gas chromatography-mass spectrometry and the theoretical calculations greatly facilitate the proposal of AO7 degradation pathways, including N=N cleavage, hydroxylation, and hydrogen abstraction. The findings of this study indicate that the Fe(III)/MBS process may be a promising AOP for further application in organic contaminants degradation during wastewater treatment.
Collapse
Affiliation(s)
- Jianan Chen
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
| | - Longjiong Chen
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
| | - Leliang Wu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
| | - Chengyu Yan
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
| | - Ningxin Sun
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guilong Peng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Shaogui Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
| | - Chengdu Qi
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco–remediation, Nanjing Normal University, Nanjing 210023, China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Liu S, Di F, Lian Z, Wang G, Yu Q, Han D. New insights into the Fe(III)-activated peroxyacetic acid: Oxidation properties and mechanism. ENVIRONMENTAL RESEARCH 2025; 270:120912. [PMID: 39848513 DOI: 10.1016/j.envres.2025.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented. Although the reaction rate of Fe(III) with PAA was slightly slower than that of Fe(II), Fe(III) was still able to activate PAA effectively, and the degradation efficiency of RhB was comparable to that of the Fe(II)/PAA system after 30 min of reaction. Notably, the Fe(III)/PAA system demonstrated superior oxidation capacity compared to conventional oxidant systems, including Fe(III)/H2O2, Fe(III)/PDS, Fe(III)/PMS. The degradation efficiency varied significantly across different water substrates. While Cl- exhibited a certain inhibitory effect on the degradation of RhB, H2PO4- exerted a pronounced inhibitory influence, whereas NO3-, SO42- and HCO3- had negligible effects. The increase of humic acid (HA) showed a facilitating effect in the initial stage, followed by an inhibitory effect. Furthermore, mechanistic studies indicated that H2O2 in PAA solution was not effectively activated. The degradation of RhB primarily occurred through a non-radical pathway generated by PAA activation, with the contribution of reactive species (RS) in the order of FeIVO2+ > •OH > R-O• (CH3COO• and CH3COOO•). RhB degradation was achieved not only by attacking the chromophore of RhB molecules, but also the effective destruction of the stable structures such as benzene rings. This study enhances the understanding of Fe(III)-activated PAA and broadens its potential for developing and applying PAA-based AOPs.
Collapse
Affiliation(s)
- Songyun Liu
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Fei Di
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhan Lian
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Guang Wang
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qi Yu
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Donghui Han
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
3
|
Wang Z, Jia X, Wang J, Li C, Song H, Zhao Q, Li Y, Tian S. Phenolic acid-containing compounds enhanced Fe 3+/peroxides processes for efficient removal of sulfamethoxazole in surface waters. ENVIRONMENTAL RESEARCH 2025; 265:120407. [PMID: 39577721 DOI: 10.1016/j.envres.2024.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Sulfamethoxazole (SMX) in surface waters has raised widespread concerns due to its potential environmental and biological hazards. In this study, the performance, mechanism, and environmental application of phenolic acid-containing compounds (PACCs) enhanced Fe3+/peroxides processes for SMX degradation were investigated. PACCs with two Ar-OH groups exhibited the lowest toxicity and the best enhancement performance (65%-66% of PDS, 47%-58% of PMS and 61%-63% of H2O2), which were attributed to the excellent chelating and reducing ability towards Fe3+. Free radicals played the predominant role in PDS (37% of SO4-·, 34% of ·OH), PMS (37% of SO4-·, 35% of ·OH) and H2O2 (61% of ·OH) oxidation processes. FeIVO2+ play a non-negligible role in PDS and PMS processes (ŋ[PMSO2] = 52%-80% and ŋ[PMSO2] = 59%-72%). PDS and PMS processes were suitable for a pH range of 3.0-9.0, while the H2O2 process was 3.0-10.0. PDS and PMS processes exhibited stronger resistance to the common anions in surface waters. PMS process exhibited higher adaptability to surface waters quality (92%-98%). This study provides a novel approach for enhancing the degradation of SMX in natural surface waters.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Xiaolei Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Jianfei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| |
Collapse
|
4
|
Luo CW, Cai L, Xie C, Jiang TJ. Sulfur-doped α-Fe 2O 3 as an efficient and recycled peroxydisulfate activator toward organic pollutant degradation: performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117846-117861. [PMID: 37875758 DOI: 10.1007/s11356-023-30163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
Sulfur (S)-doped α-Fe2O3 has been regarded as an excellent catalyst for eliminating organic pollutants in the photo-Fenton-like reaction. Yet, the synthetic complexity and extremely low activity in the dark Fenton-like reaction still need to be solved. In this study, magnetic α-Fe2O3 with sulfide was successfully fabricated via hydrothermal and calcination processes, for the first time, where thiourea acted as both S source and reducing agent, and then, it was applied for activating peroxydisulfate (PDS) to degrade organic contaminants. Important influencing factors were systemically investigated, and the results showed that this catalyst activating PDS was highly effective in the removal of organic pollutants in dark- and photo-Fenton-like reactions. In addition, the catalyst possessed good stability and recyclable ability. The structure of catalyst was analyzed by several characterizations, such as XRD and XPS. The results revealed that sulfide had an important effect on the structure and performance of α-Fe2O3. The detected mechanism indicated that the main reactive oxygen species were altered after switching from darkness to LED illumination. This work offered a promising method to rationally design for S/α-Fe2O3 in the environmental remediation.
Collapse
Affiliation(s)
- Cai-Wu Luo
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China.
- Key Laboratory of Low-Cost Rural Environment Treatment Technology at Education Department of Sichuan Province, Sichuan University of Arts and Science, Dazhou, 635000, China.
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Lei Cai
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China
| | - Chao Xie
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China
| | - Tian-Jiao Jiang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421000, China
| |
Collapse
|
5
|
Yueyu S. The synergistic degradation of pollutants in water by photocatalysis and PMS activation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10927. [PMID: 37723660 DOI: 10.1002/wer.10927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.
Collapse
Affiliation(s)
- Song Yueyu
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan, China
| |
Collapse
|
6
|
Li Y, Jiang ZR, Yang X, Lan Y, Guo J. Structure of a novel Co-based heterogeneous catalyst via Mn 3(PO 4) 2 as a carrier to efficiently activate peroxymonosulfate for improving degradation of sulfonamides. CHEMOSPHERE 2023; 325:138337. [PMID: 36907488 DOI: 10.1016/j.chemosphere.2023.138337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Effective degradation of sulfonamides (SAs) in water is of global importance for decreasing its pathogenicity and bioaccumulation. In this study, Mn3(PO4)2 was used as a carrier to fabricate a novel and high-efficient catalyst with Co3O4 anchored (Co3O4@Mn3(PO4)2) for the activation of peroxymonosulfate (PMS) to degrade SAs. Surprisingly, the catalyst exhibited superior performance, and nearly 100% of SAs (10 mg L-1) including sulfamethazine (SMZ), sulfadimethoxine (SDM), sulfamethoxazole (SMX), and sulfisoxazole (SIZ) was degraded by Co3O4@Mn3(PO4)2-activated PMS within 10 min. A series of characterization of the Co3O4@Mn3(PO4)2 composite were conducted and the main operational parameters of SMZ degradation were investigated. SO4•-, •OH, and 1O2 were determined to be the dominating reactive oxygen species (ROS) responsible for the degradation of SMZ. Co3O4@Mn3(PO4)2 also exhibited excellent stability and the removal rate of SMZ still maintained over 99% even in the fifth cycle. The plausible pathways and mechanisms of SMZ degradation in the system of Co3O4@Mn3(PO4)2/PMS were deduced on the basis of the analyses of LCMS/MS and XPS. This is the first report on high-efficient heterogeneous activating PMS by mooring Co3O4 on Mn3(PO4)2 to degrade SAs, which provides us with a strategy to structure novel bimetallic catalysts for PMS activation.
Collapse
Affiliation(s)
- Yuxin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | | | - Xiaoli Yang
- Taizhou Education Bureau, Taizhou, 225300, PR China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Jing Guo
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Li J, Shi Q, Sun M, Liu J, Zhao R, Chen J, Wang X, Liu Y, Gong W, Liu P, Chen K. Peroxymonosulfate Activation by Facile Fabrication of α-MnO 2 for Rhodamine B Degradation: Reaction Kinetics and Mechanism. Molecules 2023; 28:molecules28114388. [PMID: 37298863 DOI: 10.3390/molecules28114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The persulfate-based advanced oxidation process has been an effective method for refractory organic pollutants' degradation in aqueous phase. Herein, α-MnO2 with nanowire morphology was facially fabricated via a one-step hydrothermal method and successfully activated peroxymonosulfate (PMS) for Rhodamine B (RhB) degradation. Influencing factors, including the hydrothermal parameter, PMS concentration, α-MnO2 dosage, RhB concentration, initial pH, and anions, were systematically investigated. The corresponding reaction kinetics were further fitted by the pseudo-first-order kinetic. The RhB degradation mechanism via α-MnO2 activating PMS was proposed according to a series of quenching experiments and the UV-vis scanning spectrum. Results showed that α-MnO2 could effectively activate PMS to degrade RhB and has good repeatability. The catalytic RhB degradation reaction was accelerated by increasing the catalyst dosage and the PMS concentration. The effective RhB degradation performance can be attributed to the high content of surface hydroxyl groups and the greater reducibility of α-MnO2, and the contribution of different ROS (reactive oxygen species) was 1O2 > O2·- > SO4·- > ·OH.
Collapse
Affiliation(s)
- Juexiu Li
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qixu Shi
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Maiqi Sun
- International Education College, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinming Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Rui Zhao
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Jianjing Chen
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xiangfei Wang
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Weijin Gong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Panpan Liu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Kongyao Chen
- Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
8
|
Zhou F, Liu Q, Qin Y, Liu W, Zhang L. Efficient Fe(III)/Fe(II) cycling mediated by L-cysteine functionalized zero-valent iron for enhancing Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131717. [PMID: 37245369 DOI: 10.1016/j.jhazmat.2023.131717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Herein, L-cysteine (Cys) was modified on zero-valent iron (C-ZVIbm) by using a mechanical ball-milling method to improve the surface functionality and the Cr(VI) removal efficiency. Characterization results indicated that Cys was modified on the surface of ZVI by the specific adsorption of Cys on the oxide shell to form a -COO-Fe complex. The Cr(VI) removal efficiency of C-ZVIbm (99.6%) was much higher than that of ZVIbm (7.3%) in 30 min. The attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis inferred that Cr(VI) was more likely to be adsorbed on the surface of C-ZVIbm to form bidentate binuclear inner-sphere complexes. The adsorption process was well-matched to the Freundlich isotherm and the pseudo-second-order kinetic model. Electrochemical analysis and electron paramagnetic resonance (ESR) spectroscopy revealed that Cys on the C-ZVIbm lowered the redox potential of Fe(III)/Fe(II), and favored the surface Fe(III)/Fe(II) cycling mediated by the electrons from Fe0 core. These electron transfer processes were beneficial to the surface reduction of Cr(VI) to Cr(III). Our findings provide new understandings into the surface modification of ZVI with a low-molecular weight amino acid to promote in-situ Fe(III)/Fe(II) cycling, and have great potential for the construction of efficient systems for Cr(VI) removal.
Collapse
Affiliation(s)
- Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Qiangling Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
9
|
Zhang Z, Li Z, Bai X, Shi J, Hu M, Chai J, Li K, Jin P. Photosensitive Dye as an Ideal Peroxymonosulfate Activator for Efficient Self-Degradation: A Novel Idea of Using Waste to Treat Waste. Molecules 2023; 28:molecules28104237. [PMID: 37241979 DOI: 10.3390/molecules28104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Commonly used peroxydisulfate (PS) or peroxymonosulfate (PMS) activation methods have been limited in their practical application due to certain drawbacks, such as high cost, high energy consumption and secondary pollution. In this study, a catalyst-free alizarin green (AG) self-activating PMS catalytic system was constructed based on photosensitization properties of dye, which ultimately achieved efficient degradation of the dye activator, also the target pollutant. Here, 52.5% of the 100 mL mixture of 10 mg/L AG decomposed within 60 min with 1 mM PMS under visible-light irradiation, thereby showing a strong pH adaptation. Mechanism of AG self-activating PMS was revealed that the photo-excited AG can effectively transfer photo-induced electrons to PMS for its activation, which generates reactive oxidizing species dominated by singlet oxygen (1O2), and supplemented by hydroxyl radical (•OH), superoxide radical (O2•-) and sulfate radical (SO4•-) to realize the efficient self-degradation of the dye pollutants. Moreover, such self-catalytic system operated well under natural sunlight irradiation, indicating the great application potential in the actual wastewater treatment. Herein, photosensitive dye acted as an ideal PMS activator realizing its efficient self-degradation, which provides a novel idea of "using waste to treat waste" for developing wastewater treatment process in a high-efficiency and low-consumption way.
Collapse
Affiliation(s)
- Zhiyao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhaolin Li
- Oil and Gas Technology Research Institute, Petrochina Changqing Oilfield Company, Xi'an 710018, China
| | - Xue Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Chai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Keqian Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Highly Efficient Copper Doping LaFeO3 Perovskite for Bisphenol A Removal by Activating Peroxymonosulfate. Catalysts 2023. [DOI: 10.3390/catal13030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
A series of copper doping LaFeO3 perovskite (LaCuxFe1−xO3, LCFO, x = 0.1, 0.4, 0.5, 0.6, 0.9) are successfully synthesized by the sol-gel method under mild conditions. In this study, it is applied for the activation of peroxymonosulfate (PMS) for bisphenol A (BPA) removal. More than 92.6% of BPA was degraded within 30 min at 0.7 g/L of LCFO and 10.0 mM of PMS over a wide pH range with limited leaching of copper and iron ions. The physical–chemical properties of the catalysts were demonstrated by using X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, the effects of catalyst dosage, PMS concentration, initial pH value, and inorganic anions on the LCFO/PMS system were fully investigated. Quenching experiments were performed to verify the formation of reactive oxidant species, which showed that the radical reaction and mechanisms play a great role in the catalytic degradation of BPA. The perovskite LCFO is considered a stable, easy to synthesize, and efficient catalyst for the activation of PMS for wastewater treatment.
Collapse
|
11
|
Application of BiOX Photocatalyst to Activate Peroxydisulfate Ion-Investigation of a Combined Process for the Removal of Organic Pollutants from Water. Catalysts 2023. [DOI: 10.3390/catal13030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The persulfate-based advanced oxidation processes employing heterogeneous photocatalysts to generate sulfate radicals (SO4•−) from peroxydisulfate ion (PDS, S2O82−) have been extensively investigated to remove organic pollutants. In this work, BiOX (X = Cl, Br, and I) photocatalysts were investigated to activate PDS and enhance the transformation rate of various organic substances under UV (398 nm) and Vis (400–700 nm) radiation. For BiOCl and BiOBr, in addition to excitability, the light-induced oxygen vacancies are decisive in the activity. Although without organic substances, the BiOI efficiency highly exceeds that of BiOBr and BiOCl for PDS activation (for BiOI, 15–20%, while for BiOBr and BiOCl, only 3–4% of the PDS transformed); each BiOX catalyst showed enhanced activity for 1,4-hydroquinone (HQ) transformation due to the semiquinone radical-initiated PDS activation. For sulfamethoxypyridazine (SMP), the transformation is driven by direct charge transfer, and the effect of PDS was less manifested. BiOI proved efficient for transforming various organic substances even under Vis radiation. The efficiency was enhanced by PDS addition (HQ is wholly transformed within 20 min, and SMP conversion increased from 40% to 90%) without damaging the catalyst; its activity did change over three consecutive cycles. Results related to the well-adsorbed trimethoprim (TRIM) and application of biologically treated domestic wastewater as a matrix highlighted the limiting factors of the method and visible light active photocatalyst, BiOI.
Collapse
|
12
|
Chen X, Mu S, Luo Y. Degradation of petroleum pollutants in oil-based drilling cuttings using an Fe 2+-based Fenton-like advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37669-37678. [PMID: 36574125 DOI: 10.1007/s11356-022-24925-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Oil-based drilling cuttings (OBDC) contain a large amount of total petroleum hydrocarbon (TPH) pollutants, which are hazardous to the environment. In this study, Fe2+-activating hydrogen peroxide (Fe2+/H2O2), peroxymonosulfate (Fe2+/PMS), and peroxydisulfate (Fe2+/PDS) advanced oxidation processes (AOPs) were used to treat OBDC due to the difference in the degradation capacity of TPH caused by the type of free radical generated and effective activation conditions observed for the different oxidants studied. The results showed that the oxidant concentration, Fe2+ dosage, and reaction time in the three AOPs were greatly positively correlated with the TPH removal rate in a certain range. The initial pH value had a significant effect on the Fe2+/H2O2 process, and its TPH removal rate was negatively correlated in the pH range from 3 to 11. However, the Fe2+/PMS and Fe2+/PDS processes only displayed lower TPH removal rates under neutral conditions and tolerated a wider range of pH conditions. The optimal TPH removal rates observed for the Fe2+/H2O2, Fe2+/PMS, and Fe2+/PDS processes were 45.04%, 42.75%, and 44.95%, respectively. Fourier transform infrared spectrometer and gas chromatography-mass spectrometer analysis showed that the alkanes in OBDC could be effectively removed using the three processes studied, and their degradation ability toward straight-chain alkanes was in the order of Fe2+/PMS > Fe2+/PDS > Fe2+/H2O2, among which Fe2+/PMS exhibited the optimal removal effect for aromatic hydrocarbons. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction results showed no significant changes in the elemental and mineral composition of OBDC before and after treatment. Therefore, this study provided a theoretical reference for the effective degradation of TPH pollutants in OBDC.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuanfeng Luo
- Department of Ecology and Environment of Sichuan Province, Sichuan Academy of Environmental Policy and Planning, Chengdu, 610093, China.
| |
Collapse
|
13
|
An Y, Li X, Liu Z, Li Y, Zhou Z, Liu X. Constant oxidation of atrazine in Fe(III)/PDS system by enhancing Fe(III)/Fe(II) cycle with quinones: Reaction mechanism, degradation pathway and DFT calculation. CHEMOSPHERE 2023; 317:137883. [PMID: 36693481 DOI: 10.1016/j.chemosphere.2023.137883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/24/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Quinones are potential pollutants and redox active compounds widely distributed in environmental media. In this study, methyl-p-benzoquinone (MBQ) was introduced into Fe(III)/peroxydisulfate system (Fe(III)/PDS) to expedite the conversion of Fe(III) to Fe(II) and the degradation of atrazine (ATZ), ultimately establishing an environmentally friendly system of "treating pollution with pollution". MBQ/Fe(III)/PDS system showed superior performance to traditional Fe(II)/PDS system in pH range of 2-7. Sulfate radical (SO4•-) and hydroxyl radical (•OH) were confirmed to exist in MBQ/Fe(III)/PDS system according to alcohol quenching experiments and ESR tests. Meanwhile, stable 80% of η[PMSO2] (i.e., the molar ratio of PMSO2 generation to PMSO consumption) was achieved and manifested that highly reactive substance Fe(IV) also participated in MBQ/Fe(III)/PDS system. The spontaneous transformation of MBQ and methyl-hydroquinone (MHQ) drove Fe(III)/Fe(II) cycle, during which MHQ induced Fe(III) reduction and Fe(II) regeneration. Transformation pathways of ATZ were proposed based on HPLC-MS detection and DFT calculation and ATZ degradation could be initiated by lateral chain oxidation and dechlorination-hydroxylation. The acute toxicity, bioaccumulation factor, developmental toxicity and mutagenicity of ATZ and its degradation intermediates were evaluated by Toxicity Estimation Software Tool, and the luminescent bacteria test was conducted to investigate the acute toxicity variation of the reaction solution. Cl- obviously inhibited ATZ degradation and three main by-products generation, while humic acid (HA) had little effect on them probably due to the established balance between inhibition (some components in HA competed to consume reactive species) and acceleration (quinone units in HA also facilitated Fe(III)/Fe(II) cycle).
Collapse
Affiliation(s)
- Yujiao An
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaowan Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Zihao Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yiwen Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; North China Power Engineering Co., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
14
|
Gómez E, Fons A, Cestaro R, Serrà A. Enhanced Activation of Peroxymonosulfate for Tetracycline Degradation Using CoNi-Based Electrodeposited Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:790. [PMID: 36903668 PMCID: PMC10005342 DOI: 10.3390/nano13050790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Synthesizing efficient heterogeneous catalysts with multiple active sites able to activate peroxymonosulfate (PMS) for the degradation of persistent organic pollutants continues to be a challenge for societies worldwide. In response, cost-effective, eco-friendly oxidized Ni-rich and Co-rich CoNi micro-nanostructured films were fabricated following a two-step process based on simple electrodeposition using green deep eutectic solvent as an electrochemical media and thermal annealing. The CoNi-based catalysts demonstrated exceptional efficiency in the heterogeneous catalyzed activation of PMS for tetracycline degradation and mineralization. The effects of the catalysts' chemical nature and morphology, the pH, the concentration of PMS, irradiation with visible light, and the duration of contact with the catalysts on the degradation and mineralization of tetracycline were also studied. In dark conditions, oxidized Co-rich CoNi degraded more than 99% of tetracyclines in only 30 min and mineralized more than 99% of them in only 60 min. Moreover, the degradation kinetics doubled from 0.173 min-1 in dark conditions to 0.388 min-1 under visible light irradiation. In addition, the material demonstrated excellent reusability and can be easily recovered with simple heat treatment. Given those findings, our work provides new strategies for constructing high-efficiency and cost-effective PMS catalysts and elucidating the effects of operational parameters and primary reactive species formed by the catalyst-PMS system on water treatment technologies.
Collapse
Affiliation(s)
- Elvira Gómez
- Grup d’Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Arnau Fons
- Grup d’Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
| | - Roberto Cestaro
- Empa Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, CH-8600 Dübendorf, Switzerland
| | - Albert Serrà
- Grup d’Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Pyrite Cinder as an Effective Fenton-like Catalyst for the Degradation of Reactive Azo Dye: Effects of Process Parameters and Complete Effluent Characterization. Catalysts 2023. [DOI: 10.3390/catal13020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
This research investigates the potential use of pyrite cinder (PC) as an efficient Fenton-like catalyst for the removal of the reactive azo dye Reactive Red 120 (RR120) from aqueous solutions. The characterization of its PC structure and composition confirmed its great potential to act as catalytic iron source in a heterogeneous Fenton system. Dye removal optimization was performed in terms of PC dosage (0.4–8 g/L), H2O2 concentration (2–25 mM), pH value (2–4.6), initial dye concentration (50–200 mg/L), and mixing time. The highest decolorization efficiency (92%) was achieved after a reaction time of 480 min under following conditions: RR120 = 50 mg/L, PC = 4 g/L, H2O2 = 10 mM, and pH = 3. After decolorization, an extensive analysis of the generated effluent was performed regarding metal leaching, mineralization, toxicity, and degradation product formation. The metal leaching indicated the necessity for a pH increase in order to remove the settled metal hydroxides. The mineralization efficiency was satisfactory, reaching 85% and 62% of the COD and TOC removal, respectively. The respirometry measurements and bioluminescence tests indicated the detoxification of the treated solution. The absorption spectra and GC/MS analysis confirmed the changes in the molecular structure in the form of the destruction of the azo bond, with a simpler aromatic and aliphatic intermediates formation. This study provides an effective method for removing azo dye in polluted water by employing waste tailings as alternative Fenton-like catalysts, while also using waste tailings as the secondary resource.
Collapse
|
16
|
Wu J, Wang B, Qu H, Wang F, Duan L, Yu G. Acid-washed zero-valent aluminum as a highly efficient persulfate activator for degradation of phenacetin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19439-19449. [PMID: 36229732 DOI: 10.1007/s11356-022-23473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Phenacetin (PNT) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the water ecosystems, which poses a potential risk to environmental aquatic organisms. Acid-washed zero-valent aluminum (ZVAl) as a highly efficient activator for persulfate (PS) process was investigated to degrade PNT from the aqueous solution. The results indicated that acid-washed pretreatment for ZVAl could efficiently increase the degradation efficiency of PNT in the PS treatment. The degradation efficiency of PNT (50 μM) was up to 90% in 4 hours with the addition of 0.2 g/L acid-washed ZVAl and 8 mM PS at pH 6.8 and 25 °C. The PNT degradation followed pseudo-first order kinetics in the present system. High activator dosage, PS concentration, and reaction temperature could enhance the PNT degradation. The presence of inorganic anions (i.e., NO3-, HCO3-) and humic acid (HA) showed inhibitory effects on the PNT degradation. The reuse results illustrated the acid-washed ZVAl material would have continuous and efficient activation performance for PS to degrade the PNT. Radical scavenger experiments and electron paramagnetic resonance indicated that both SO4•- and •OH were major reactive species during the PNT degradation. The possible degradation pathways of PNT mainly included the break of C-N and C-O bonds and further oxidation.
Collapse
Affiliation(s)
- Junxue Wu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China.
| | - Han Qu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Duan
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Green Synthesis of Silver Oxide Microparticles Using Green Tea Leaves Extract for an Efficient Removal of Malachite Green from Water: Synergistic Effect of Persulfate. Catalysts 2023. [DOI: 10.3390/catal13020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The removal of water pollutants by photocatalysis is a promising technique, mainly due to its environmentally friendly and sustainable nature. In this study, the degradation of a recalcitrant organic pollutant, malachite green (MG), was investigated in water by a microstructured silver oxide photocatalyst. The silver oxide (Ag2O) microparticles (MPs) were synthesized by a low-cost, green method, mediated by green tea leaves extract. The surface, morphological and optical properties of the synthesized Ag2O MPs were determined by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-visible) spectrophotometry. The synthesized Ag2O MPs showed good photoactivity, represented by 83% degradation of malachite green (MG) ([C]0 = 0.4 mM, Ag2O loading = 0.1 g L−1) at neutral pH, in 3 h. Persulfate ions (PS) showed a strong synergistic effect on the efficiency of solar/Ag2O photocatalysis, represented by complete MG removal in 15 min, in the presence of 1.6 mM PS. The results revealed that solar/Ag2O, particularly solar/Ag2O/PS photocatalysis is a promising method for the elimination of toxic organic pollutants, such as malachite green, from the water environment.
Collapse
|
18
|
Qian Z, Wang L, Dzakpasu M, Tian Y, Ding D, Chen R, Wang G, Yang S. Spontaneous Fe III/Fe II redox cycling in single-atom catalysts: Conjugation effect and electron delocalization. iScience 2022; 26:105902. [PMID: 36691626 PMCID: PMC9860487 DOI: 10.1016/j.isci.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The mechanism of spontaneous FeIII/FeII redox cycling in iron-centered single-atom catalysts (I-SACs) is often overlooked. Consequently, pathways for continuous SO4 ·-/HO⋅ generation during peroxymonosulfate (PMS) activation by I-SACs remain unclear. Herein, the evolution of the iron center and ligand in I-SACs was comprehensively investigated. I-SACs could be considered as a coordination complex created by iron and a heteroatom N-doped carbonaceous ligand. The ligand-field theory could well explain the electronic behavior of the complex, whereby electrons delocalized by the conjugation effect of the ligand were confirmed to be responsible for the FeIII/FeII redox cycle. The possible pyridinic ligand in I-SACs was demonstrably weaker than the pyrrolic ligand in FeIII reduction due to its shielding effect on delocalized π orbitals by local lone-pair electrons. The results of this study significantly advance our understanding of the mechanism of spontaneous FeIII/FeII redox cycling and radical generation pathways in the I-SACs/PMS process.
Collapse
Affiliation(s)
- Zheng Qian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Lingzhen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Yujia Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing, 100049, China,Corresponding author
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China,Corresponding author
| |
Collapse
|
19
|
UV and Zero-Valent Iron (ZVI) Activated Continuous Flow Persulfate Oxidation of Municipal Wastewater. Catalysts 2022. [DOI: 10.3390/catal13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Currently, sulfate-radical-based advanced oxidation processes are promising candidates to become viable post-treatment processes for wastewater purification. In this work, a continuous flow UV light/persulfate (PS)/zero-valent iron (ZVI) system has been applied for wastewater treatment for the first time. The influence of certain photo-Fenton-like process parameters, such as space time, PS concentration, and PS to ZVI molar ratio, on the removal of total organic carbon (TOC), was examined using the Box–Behnken design. First, synthetic municipal wastewater was used for the experiments, and the polynomial regression model was constructed utilizing the real data by using the response surface methodology (RSM). The adequacy of the RSM model was assessed by analysis of variance, which showed that the model was reliable and could be applied to improve the process parameters for TOC removal. Moreover, both synthetic and real municipal wastewater were spiked with carbamazepine (CBZ), which is commonly prescribed as an antiepileptic drug, to investigate its fate in the UV/PS/ZVI system. With a space time of 60 min, PS concentration of 60 mM, and PS to ZVI molar ratio of 15, it was possible to remove 71% of TOC and completely remove CBZ from the synthetic municipal wastewater, whereas a 60% TOC removal and complete removal of CBZ were achieved at a space time of 50 min, PS concentration of 50 mM, and PS/ZVI molar ratio of 15 for the real municipal wastewater. This difference in TOC removal could possibly be linked to the complex matrix of the real wastewater and the presence of radical scavenging agents.
Collapse
|
20
|
Integrated Adsorption-Photocatalytic Decontamination of Oxytetracycline from Wastewater Using S-Doped TiO2/WS2/Calcium Alginate Beads. Catalysts 2022. [DOI: 10.3390/catal12121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Integrated wastewater treatment processes are needed due to the inefficient removal of emerging pharmaceuticals by single methods. Herein, an adsorbent-photocatalyst integrated material was fabricated by coupling calcium alginate with sulfur-doped TiO2/tungsten disulfide (S-TiO2/WS2/alginate beads) for the removal of oxytetracycline (OTC) from aqueous solution by an integrated adsorption-photocatalysis process. The semiconductor S-TiO2/WS2 hybrid photocatalyst was synthesized with a hydrothermal method, while the integrated adsorbent-photocatalyst S-TiO2/WS2/alginate beads were synthesized by blending S-TiO2/WS2 with sodium alginate using calcium chloride as a precipitating agent. The physicochemical characteristics of S-TiO2/WS2/alginate beads were analyzed using X-ray diffraction , scanning electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The integrated adsorption-photocatalysis process showed enhanced removal from 92.5 to 72%, with a rise in the OTC concentration from 10 to 75 mg/L respectively. The results demonstrated that the adsorption of OTC onto S-TiO2/WS2/alginate beads followed the Elovich kinetic model and Redlich–Peterson isotherm models. The formations of H-bonds, cation bridge bonding, and n-π electron donor-acceptor forces were involved in the adsorption of OCT onto S-TiO2/WS2/alginate beads. In the integrated adsorption-photocatalysis, surface-adsorbed OTC molecules were readily decomposed by the photogenerated active radical species (h⁺, O2•−, and HO•). The persulfate addition to the OTC solution further increased the photocatalysis efficacy due to the formation of additional oxidizing species (SO4•⁻, SO4⁻). Moreover, S-TiO2/WS2/alginate beads showed favorable efficiency and sustainability in OTC removal, approaching 78.6% after five cycles. This integrated adsorption-photocatalysis process offered significant insight into improving efficiency and reusability in water treatment.
Collapse
|
21
|
Peroxymonosulfate Activation by BaTiO3 Piezocatalyst. Catalysts 2022. [DOI: 10.3390/catal12111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Peroxymonosulfate (PMS) plays an important role in the advanced oxidation process for environmental remediation. In this study, barium titanate (BTO) piezocatalyst was selected for the activation of PMS driven by ultrasonic power. The degradation of Rhodamine B (RhB) by BTO single component, PMS single component, and BTO/PMS double components were investigated. The results indicated that PMS can be efficiently activated by BTO under an ultrasound with an RhB degradation rate of 98% within 20 min. The ultrasound not only promoted the activation of the PMS itself, but the surface charge carriers of BTO induced by the ultrasound also contributed to the activation of PMS. ·O2−, ·OH, and ·SO4− radicals were found to be the main active species that participated in the reaction. In order to verify the reaction’s environmental applicability, amoxicillin (AMX) as a typical environmental pollutant was studied. BTO/PMS displayed 80% removal efficiency of AMX, and the products generated were less toxic as demonstrated by eco-toxicity comparison. This work provides a promising strategy to improve the utilization of ultrasonic energy and apply it to the field of environmental pollutants treatment.
Collapse
|
22
|
Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species. Catalysts 2022. [DOI: 10.3390/catal12111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The activation of persulfate (PS) by Fe(III) for the removal of environmental organic pollutants was severely limited by the low reduction rate from Fe(III) to Fe(II). In present study, we reported that reducing sulfur species (i.e., SO32−, HSO3−, S2−, and HS−) under low concentration could significantly accelerate the Fe(III)/Fe(II) cycle in the Fe(III)/PS system. Under the condition of 1.0 mM Fe(III) and 4.0 mM PS, the removal performance of Fe(III)/PS system was poor, and only 21.6% of BPA was removed within 40 min. However, the degradation efficiency of BPA increased to 66.0%, 65.5%, 72.9% and 82.7% with the addition of 1.0 mM SO32−, HSO3−, S2−, and HS−, respectively. The degradation efficiency of BPA was highly dependent on solution pH and the concentration of reducing sulfur species. When the reductant was excessive, the removal efficiency would be significantly inhibited due to the elimination of reactive species. This study provided some valuable insights for the treatment of organic wastewater containing these inorganic reducing ions.
Collapse
|
23
|
Core-Shell Hierarchical Fe/Cu Bimetallic Fenton Catalyst with Improved Adsorption and Catalytic Performance for Congo Red Degradation. Catalysts 2022. [DOI: 10.3390/catal12111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preparation of heterogeneous Fenton catalysts with both adsorption and catalytic properties has become an effective strategy for the treatment of refractory organic wastewater. In this work, 4A-Fe@Cu bimetallic Fenton catalysts with a three-dimensional core-shell structure were prepared by a simple, template-free, and surfactant-free methodology and used in the adsorption and degradation of Congo red (CR). The results showed that the open three-dimensional network structure and the positive charge of the surface of the 4A-Fe@Cu catalyst could endow a high adsorption capacity for CR, reaching 432.9 mg/g. The good adsorption property of 4A-Fe@Cu for CR not only did not inactivate the catalytic site on 4A-Fe@Cu but also could promote the contact between CR and the active sites on the catalyst surface and accelerate the degradation process. The 4A-Fe@Cu bimetallic catalyst exhibited higher catalytic activity than monometallic 4A@Cu and/or 4A-Fe catalysts due to low work function value. The effects of different pH, H2O2 dosages, and catalyst dosages on the catalytic performance of 4A-Fe@Cu were explored. In the conditions of 7.2 mM H2O2, 2 g/L 4A-Fe@Cu, and 1 g/L CR solution, the degradation ratio of CR by 4A-Fe@Cu could reach 99.2% at pH 8. This strategy provided guidance to the design of high-performance Fenton-like catalysts with both adsorption and catalysis properties for dye wastewater treatment.
Collapse
|
24
|
Photo-Induced Holes Initiating Peroxymonosulfate Oxidation for Carbamazepine Degradation via Singlet Oxygen. Catalysts 2022. [DOI: 10.3390/catal12111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peroxymonosulfate (PMS) has been intensively used to enhance the photocatalytic activity of catalysts, which is adopted as an electron acceptor to inhibit the recombination of electrons and holes. However, the effect of holes generated by visible light (VL) on PMS activation is always overlooked. Herein, the VL/Bi2WO6/PMS process was constructed for the efficient removal of organics, in which the degradation rate of carbamazepine (CBZ) increased by over 33.0 times by the introduction of PMS into Bi2WO6 under visible light. The radical quenching and determination experiments confirmed that the photogenerated holes could firstly oxidize PMS to form SO5•− and react with HSO5− to produce 1O2, then inducing the formation of other reactive species to greatly enhance the performance of pollutant removal by the VL/Bi2WO6/PMS process. Density functional theory (DFT) predicted that sites with high Fukui index (f0) on CBZ were more susceptible to being attacked, resulting in hydroxylation, ring closure, and C=C bond cleavage of CBZ. Toxicity estimation indicated that photocatalysis degradation products from CBZ were less toxic compared to the parent compound. This study provides a potential avenue for improving photocatalytic efficiency and widening the application of photocatalytic technology in wastewater purification.
Collapse
|
25
|
Electro-Chemical Degradation of Norfloxacin Using a PbO2-NF Anode Prepared by the Electrodeposition of PbO2 onto the Substrate of Nickel Foam. Catalysts 2022. [DOI: 10.3390/catal12111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel three-dimensional network nickel foam/PbO2 combination electrode (PbO2-NF) with high electrochemical degradation efficiency to norfloxacin was successfully fabricated through the electrodeposition of PbO2 on the substrate of nickel foam. The characterization of an PbO2-NF electrode, including surface morphology, elemental components, electrochemical performance, and stability was performed. In electrochemical oxidation tests, the removal efficiency of norfloxacin (initial concentration for 50 mg/L) on PbO2-NF reached 88.64% within 60 min of electrolysis, whereas that of pure nickel foam was only 30%. In the presence of PbO2-NF, the optimum current density, solution pH, electrode spacing for norfloxacin degradation were 30 mA/cm2, 11, and 3 cm, respectively. The electric energy consumption for 80% norfloxacin was approximately 5 Wh/L. Therefore, these results provide a new anode to improve the removal of norfloxacin in the wastewater with high efficiency and low energy consumption.
Collapse
|
26
|
Wastewater Purification and All-Solid Z-Scheme Heterojunction ZnO-C/MnO2 Preparation: Properties and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike many studies on the preparation of Z-scheme heterojunctions by doping precious metals, in this paper we first prepared a core-shell material obtained by C doping in ZnO and then composite with MnO2 to form a heterojunction; that is, a low-cost and highly catalytic ternary composite catalyst was prepared by a simple hydrothermal reaction. Meanwhile, a large amount of experimental data have enabled the heterostructure type as well as the mechanism of photocatalytic performance to be fully demonstrated. It is proven that C as an intermediate medium achieves electron transport while making up the deficiency of ZnO, and constitutes an all-solid state Z-scheme heterojunction, which enables the rapid transfer of photogenerated electron pairs and visible light irradiation to the stream to improve the photocatalytic performance of the composite photocatalyst. In terms of examination of degradation performance, this catalyst showed a high photodegradation rate of tetracycline hydrochloride (TC) of 92.6% within 60 min, and the surface ZnO-C/MnO2 catalysts also showed good degradation effect on practical petrochemical wastewater in CODcr degradation experiments.
Collapse
|
27
|
Huang F, Wang H, Ruan X. Study on the catalytic degradation of Acid Orange 7 and the potential mechanism by ferrous-percarbonate. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10796. [PMID: 36278310 DOI: 10.1002/wer.10796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Factors affecting the degradation of Acid Orange 7 (AO7) were evaluated and optimized when ferrous was used to catalyze percarbonate in the present study. The optimized conditions included the initial pH values ranging from 3 to 11 for AO7 solution, the initial level of AO7, sodium percarbonate (SPC), and Fe2+ . Some ions and natural organic materials, which commonly exist in natural water, were also tested to evaluate their potential impacts on the degradation of AO7. The degradation efficiency of AO7 was up to 95% under the optimized test conditions, where the ferrous/percarbonate/AO7 molar ratio was 15/10/1 in the 0.285 mmol/l AO7 aqueous solution. The presence of Cl- , SO4 2- , NO3 - , Na+ , and Mg2+ did not affect the removal of AO7. The addition of HCO3 - significantly inhibited its removal, even when the concentration of HCO3 - was low to 0.6 mmol/l. A slight inhibition effect was observed when the added concentration of humic acid ranged from 0.5 to 5 mg/l, whereas the residue of AO7 was significantly enhanced when the level of humic acid was continually increased from 50 to 100 mg/l. Hydroxyl radicals (•OH) were the main reactive intermediates controlling the oxidation of AO7 in the present Fe2+ /SPC system. The produced intermediates through the degradation of AO7 were identified to include 2-coumaranone, 2-naphthol, phthalic acid, phthalimide, N-methylnaphthylamine, and 2-methylphenol. The proposed degradation pathways are consistent with the radical formation and the identified intermediates. PRACTITIONER POINTS: The ferrous/percarbonate system can remove 95% of AO7 under the optimized conditions. AO7 removal was inhibited by adding HCO3 - and humic acid, but not affected by Cl- , SO4 2- , NO3 - , Na+ , and Mg2+ . Hydroxylation, ring opening, and mineralization driven by the generated hydroxyl radicals were derived as the major processes for degrading AO7.
Collapse
Affiliation(s)
- Fengyun Huang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
- Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Huan Wang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
- Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Xinchao Ruan
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
- Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, China
| |
Collapse
|
28
|
Cheng Z, Tao H, Zhang J, Wang S, Yang Y, Li J, Wu D, Ma Z. KBH4 Modification of Fe3O4 Core Shell Carbon Microspheres Promoted Persulfate Activation for Organic Contaminants degradation: Factors and Mechanism. Catal Letters 2022. [DOI: 10.1007/s10562-022-04143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
Ali A, Siddique M, Chen W, Han Z, Khan R, Bilal M, Waheed U, Shahzadi I. Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116396. [PMID: 35681981 PMCID: PMC9180375 DOI: 10.3390/ijerph19116396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Phenol is the most common organic pollutant in many industrial wastewaters that may pose a health risk to humans due to its widespread application as industrial ingredients and additives. In this study, waste green tea leaves (WGTLs) were modified through chemical activation/carbonization and used as an adsorbent in the presence of ultrasound (cavitation) to eliminate phenol in the aqueous solution. Different treatments, such as cavitation, adsorption, and sono-adsorption were investigated to remove the phenol. The scanning electron microscope (SEM) morphology of the adsorbent revealed that the structure of WGTLs was porous before phenol was adsorbed. A Fourier Transform Infrared (FTIR) analysis showed an open chain of carboxylic acids after the sono-adsorption process. The results revealed that the sono-adsorption process is more efficient with enhanced removal percentages than individual processes. A maximum phenol removal of 92% was obtained using the sono-adsorption process under an optimal set of operating parameters, such as pH 3.5, 25 mg L−1 phenol concentration, 800 mg L−1 adsorbent dosage, 60 min time interval, 30 ± 2 °C temperature, and 80 W cavitation power. Removal of chemical oxygen demand (COD) and total organic carbon (TOC) reached 85% and 53%. The Freundlich isotherm model with a larger correlation coefficient (R2, 0.972) was better fitted for nonlinear regression than the Langmuir model, and the sono-adsorption process confirmed the pseudo-second-order reaction kinetics. The findings indicated that WGTLs in the presence of a cavitation effect prove to be a promising candidate for reducing phenol from the aqueous environment.
Collapse
Affiliation(s)
- Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Zhixin Han
- Geological Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Tai’an 271000, China;
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 59300, Pakistan;
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| |
Collapse
|