1
|
Ocrospoma S, Anzueto A, Restrepo MI. Advancements and challenges in the management of pneumonia in elderly patients with COPD. Expert Rev Respir Med 2024; 18:975-989. [PMID: 39475387 DOI: 10.1080/17476348.2024.2422961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Chronic Obstructive Pulmonary Disease (COPD) significantly predisposes the elderly to pneumonia, presenting a complex interplay of pulmonary dysfunction and infection risk. AREAS COVERED This article reviews the substantial epidemiologic impact, elucidates the interlinked pathophysiology of COPD and pneumonia, and examines the microbial landscape shaping infection in these patients. It also evaluates management protocols and the multifaceted clinical challenges encountered during treatment. EXPERT OPINION Delving into the latest research, we underscore the criticality of preventive measures such as vaccination and present an integrated approach to managing Community-Acquired Pneumonia (CAP) in the COPD demographic. The review also proposes strategic directions for future investigations aimed at enhancing patient outcomes through a deeper understanding of the COPD-pneumonia nexus.
Collapse
Affiliation(s)
- Sebastian Ocrospoma
- Division of Pulmonary Diseases & Critical Care Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Section of Pulmonary & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Antonio Anzueto
- Division of Pulmonary Diseases & Critical Care Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Section of Pulmonary & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Marcos I Restrepo
- Division of Pulmonary Diseases & Critical Care Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Section of Pulmonary & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
2
|
Raherison C, Aguilaniu B, Zysman M, Burgel PR, Hess D, Ouaalaya EH, Tran TC, Roche N. Influenza and pneumococcal vaccination in patients with COPD from 3 French cohorts: Insufficient coverage and associated factors. Respir Med Res 2024; 86:101112. [PMID: 38901323 DOI: 10.1016/j.resmer.2024.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Low vaccination rates against influenza and Streptococcus (S.) pneumoniae infections in COPD could impair outcomes. Understanding underlying factors could help improving implementation. OBJECTIVES To describe vaccination rates at inclusion in COPD cohorts and analyze associated factors. METHODS Between 2012 and 2018, 5927 patients with sufficient data available were recruited in 3 French COPD cohorts (2566 in COLIBRI-COPD, 2653 in PALOMB and 708 in Initiatives BPCO). Data at inclusion were pooled to describe vaccination rates and analyze associated factors. RESULTS Mean age was 66 years, 34 % were women, 35 % were current smokers, mean FEV1 was 58 % predicted, 22 % reported ≥2 exacerbations in the year prior to inclusion, mMRC dyspnea grade was ≥2 in 59 %, 52 % had cardiovascular comorbidities and 9 % a history of asthma. Vaccinations rates in the year prior to study entry were 34.4 % for influenza + S. pneumoniae, 17.5 % for influenza alone and 8.9 % for S. pneumoniae alone. In multivariate analyses, influenza vaccination rate was greater in older age, smoking status, low FEV1, exacerbation history, mMRC dyspnea>2, asthma history, hypertension, diabetes mellitus, and the year of inclusion. SP vaccination was associated with type of practice of the respiratory physician, age, smoking status, FEV1, exacerbation history, dyspnea grade, asthma history and the year of inclusion. CONCLUSION Rates of vaccination against influenza and S. pneumoniae infection at inclusion in COPD cohorts remain insufficient and vaccination appears restricted to patients with specific features especially regarding severity and comorbidities, which is not consistent with current recommendations.
Collapse
Affiliation(s)
- Chantal Raherison
- Service de Pneumologie, CHU Guadeloupe Pointe-à-Pitre/Abymes - BP 465, 97159 Pointe-à-Pitre CEDEX, France; PALOMB cohort, ISPED, InsermU1219-Epicene, 146 rue Léo Saignat 33076 Bordeaux CEDEX, France
| | - Bernard Aguilaniu
- Service de Pneumologie, CHU Grenoble Alpes - CS 10217 - 38043 Grenoble CEDEX 9, France; COLIBRI-Pneumo platform, aCCPP, 19 Avenue Marcelin Berthelot, 38100 Grenoble, France
| | - Maeva Zysman
- Service de Pneumologie, CHU Bordeaux, INSERM U1045, CIC 1401, Centre François Magendie -Hôpital Haut-Lévêque - Groupe hospitalier Sud, Avenue de Magellan, 33604 PESSAC CEDEX, France
| | - Pierre-Régis Burgel
- Service de Pneumologie, Hôpital et Institut Cochin (INSERM UMR 1016), APHP, Université Paris-Cité, 27 rue du Fbg St Jacques, 75014 Paris, France; Initiatives BPCO group, 68 bd St Michel, 75006 Paris, France
| | - David Hess
- COLIBRI-Pneumo platform, aCCPP, 19 Avenue Marcelin Berthelot, 38100 Grenoble, France
| | - El Hassane Ouaalaya
- PALOMB cohort, ISPED, InsermU1219-Epicene, 146 rue Léo Saignat 33076 Bordeaux CEDEX, France; Effistat, 22 rue du Pont-Neuf - 75001 Paris, France
| | | | - Nicolas Roche
- Service de Pneumologie, Hôpital et Institut Cochin (INSERM UMR 1016), APHP, Université Paris-Cité, 27 rue du Fbg St Jacques, 75014 Paris, France; Initiatives BPCO group, 68 bd St Michel, 75006 Paris, France.
| |
Collapse
|
3
|
Laiman V, Chuang HC, Lo YC, Yuan TH, Chen YY, Heriyanto DS, Yuliani FS, Chung KF, Chang JH. Cigarette smoke-induced dysbiosis: comparative analysis of lung and intestinal microbiomes in COPD mice and patients. Respir Res 2024; 25:204. [PMID: 38730440 PMCID: PMC11088139 DOI: 10.1186/s12931-024-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The impact of cigarette smoke (CS) on lung diseases and the role of microbiome dysbiosis in chronic obstructive pulmonary disease (COPD) have been previously reported; however, the relationships remain unclear. METHODS Our research examined the effects of 20-week cigarette smoke (CS) exposure on the lung and intestinal microbiomes in C57BL/6JNarl mice, alongside a comparison with COPD patients' intestinal microbiome data from a public dataset. RESULTS The study found that CS exposure significantly decreased forced vital capacity (FVC), thickened airway walls, and induced emphysema. Increased lung damage was observed along with higher lung keratinocyte chemoattractant (KC) levels by CS exposure. Lung microbiome analysis revealed a rise in Actinobacteriota, while intestinal microbiome showed significant diversity changes, indicating dysbiosis. Principal coordinate analysis highlighted distinct intestinal microbiome compositions between control and CS-exposed groups. In the intestinal microbiome, notable decreases in Patescibacteria, Campilobacterota, Defferibacterota, Actinobacteriota, and Desulfobacterota were observed. We also identified correlations between lung function and dysbiosis in both lung and intestinal microbiomes. Lung interleukins, interferon-ɣ, KC, and 8-isoprostane levels were linked to lung microbiome dysbiosis. Notably, dysbiosis patterns in CS-exposed mice were similar to those in COPD patients, particularly of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 4 patients. This suggests a systemic impact of CS exposure. CONCLUSION In summary, CS exposure induces significant dysbiosis in lung and intestinal microbiomes, correlating with lung function decline and injury. These results align with changes in COPD patients, underscoring the important role of microbiome in smoke-related lung diseases.
Collapse
Affiliation(s)
- Vincent Laiman
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology based Omics- PKR Promics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - You-Yin Chen
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fara Silvia Yuliani
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Departments of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
van der Bie S, Haaksma ME, Vermin B, van Assema H, van Gorp ECM, Langerak T, Endeman H, Snijders D, van den Akker JPC, van Houten MA, van Lelyveld SFL, Goeijenbier M. A Systematic Review of the Pulmonary Microbiome in Patients with Acute Exacerbation COPD Requiring ICU Admission. J Clin Med 2024; 13:472. [PMID: 38256606 PMCID: PMC10816170 DOI: 10.3390/jcm13020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a major health concern. Acute exacerbations (AECOPD) may require intensive care unit (ICU) admission and mechanical ventilation. Acute infections and chronic colonization of the respiratory system are known to precipitate AECOPD. Detailed knowledge of the respiratory microbiome could lead to effective treatment and prevention of exacerbations. Objective: The aim of this review is to summarize the available evidence on the respiratory microbiome of patients with a severe AECOPD requiring mechanical ventilation and intensive care admission. Methods: A systematic literature search was conducted to identify the published papers until January 2023. The collected data were then subjected to qualitative analysis. After the first analysis, a secondary focused review of the most recent publications studying the relationship between microbiome and mortality in AECOPD was performed. Results: Out of 120 screened articles six articles were included in this review. Potentially pathogenic microorganisms (PPMs) were identified in 30% to 72% of the patients with community-acquired bacteria, gram-negative enteric bacilli, Stenotrophomonas and Pseudomonas being the most frequently isolated. During hospitalization, 21% of patients experienced colonization by PPMs. Adequate antimicrobial therapy resulted in the eradication of 77% of the identified PPMs. However, 24% of the bacteria displayed multi-drug resistance leading to prolonged or failure of eradication. Conclusion: PPMs are prevalent in a significant proportion of patients experiencing an AECOPD. The most identified PPMs include community-acquired pathogens and gram-negative enteric bacilli. Notably, no differences in mortality or duration of ventilation were observed between patients with and without isolated PPMs. However, the included studies did not investigate the virome of the patients, which may influence the microbiome and the outcome of infection. Therefore, further research is essential to comprehensively investigate the complete microbial and viral composition of the lower respiratory system in COPD patients admitted to the ICU.
Collapse
Affiliation(s)
- Sjoerd van der Bie
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Mark E. Haaksma
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Ben Vermin
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Hidde van Assema
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| | - Dominic Snijders
- Department of Pulmonology, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marlies A. van Houten
- Department of Pediatric Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marco Goeijenbier
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| |
Collapse
|
5
|
Johnsen RH, Heerfordt CK, Boel JB, Dessau RB, Ostergaard C, Sivapalan P, Eklöf J, Jensen JUS. Inhaled corticosteroids and risk of lower respiratory tract infection with Moraxella catarrhalis in patients with chronic obstructive pulmonary disease. BMJ Open Respir Res 2023; 10:e001726. [PMID: 37597970 PMCID: PMC10441089 DOI: 10.1136/bmjresp-2023-001726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Use of inhaled corticosteroids (ICS) is common in patients with chronic obstructive pulmonary disease (COPD) and has been associated with an increased risk of pneumonia. Moraxella catarrhalis is one of the most common bacterial causes of infectious exacerbation in COPD. Currently, to our knowledge, no studies have investigated if ICS increases the risk of lower respiratory tract infection with M. catarrhalis in patients with COPD. OBJECTIVE To investigate if accumulated ICS use in patients with COPD, is associated with a dose-dependent risk of infection with M. catarrhalis. METHODS This observational cohort study included 18 870 persons with COPD who were registered in The Danish Register of COPD. Linkage to several nationwide registries was performed.Exposure to ICS was determined by identifying all prescriptions for ICS, redeemed within 365 days prior to study entry. Main outcome was a lower respiratory tract sample positive for M. catarrhalis. For the main analysis, a Cox multivariate regression model was used.We defined clinical infection as admission to hospital and/or a redeemed prescription for a relevant antibiotic, within 7 days prior to 14 days after the sample was obtained. RESULTS We found an increased, dose-dependent, risk of a lower respiratory tract sample with M. catarrhalis among patients who used ICS, compared with non-users. For low and moderate doses of ICS HR was 1.65 (95% CI 1.19 to 2.30, p=0.003) and 1.82 (95% CI 1.32 to 2.51, p=0.0002), respectively. In the group of patients with highest ICS exposure, the HR of M. catarrhalis was 2.80 (95% CI 2.06 to 3.82, p<0.0001). Results remained stable in sensitivity analyses. 87% of patients fulfilled the criteria for clinical infection, and results remained unchanged in this population. CONCLUSION Our study shows a dose-dependent increased risk of infection with M. catarrhalis associated to ICS exposure.
Collapse
Affiliation(s)
- Rikke Helin Johnsen
- Section of Respiratory Medicine, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Christian Kjer Heerfordt
- Section of Respiratory Medicine, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jonas Bredtoft Boel
- Department of Clinical Microbiology, Herlev-Gentofte Hospital, Herlev, Denmark
| | - Ram Benny Dessau
- Department of Clinical Microbiology, Zealand University Hospital, University of Copenhagen, Slagelse, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christian Ostergaard
- Department of Clinical Microbiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Pradeesh Sivapalan
- Section of Respiratory Medicine, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Josefin Eklöf
- Section of Respiratory Medicine, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jens-Ulrik Stæhr Jensen
- Section of Respiratory Medicine, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
6
|
Abstract
New methods and technologies within the field of lung biology are beginning to shed new light into the microbial world of the respiratory tract. Long considered to be a sterile environment, it is now clear that the human lungs are frequently exposed to live microbes and their by-products. The nature of the lung microbiome is quite distinct from other microbial communities inhabiting our bodies such as those in the gut. Notably, the microbiome of the lung exhibits a low biomass and is dominated by dynamic fluxes of microbial immigration and clearance, resulting in a bacterial burden and microbiome composition that is fluid in nature rather than fixed. As our understanding of the microbial ecology of the lung improves, it is becoming increasingly apparent that certain disease states can disrupt the microbial-host interface and ultimately affect disease pathogenesis. In this Review, we provide an overview of lower airway microbial dynamics in health and disease and discuss future work that is required to uncover novel therapeutic targets to improve lung health.
Collapse
|
7
|
Laiman V, Lo YC, Chen HC, Yuan TH, Hsiao TC, Chen JK, Chang CW, Lin TC, Li SJ, Chen YY, Heriyanto DS, Chung KF, Chuang KJ, Ho KF, Chang JH, Chuang HC. Effects of antibiotics and metals on lung and intestinal microbiome dysbiosis after sub-chronic lower-level exposure of air pollution in ageing rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114164. [PMID: 36244167 DOI: 10.1016/j.ecoenv.2022.114164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 05/06/2023]
Abstract
We investigated the effects of antibiotics, drugs, and metals on lung and intestinal microbiomes after sub-chronic exposure of low-level air pollution in ageing rats. Male 1.5-year-old Fischer 344 ageing rats were exposed to low-level traffic-related air pollution via whole-body exposure system for 3 months with/without high-efficiency particulate air (HEPA) filtration (gaseous vs. particulate matter with aerodynamic diameter of ≤2.5 µm (PM2.5) pollution). Lung functions, antibiotics, drugs, and metals in lungs were examined and linked to lung and fecal microbiome analyses by high-throughput sequencing analysis of 16 s ribosomal (r)DNA. Rats were exposed to 8.7 μg/m3 PM2.5, 10.1 ppb NO2, 1.6 ppb SO2, and 23.9 ppb O3 in average during the study period. Air pollution exposure decreased forced vital capacity (FVC), peak expiratory flow (PEF), forced expiratory volume in 20 ms (FEV20), and FEF at 25∼75% of FVC (FEF25-75). Air pollution exposure increased antibiotics and drugs (benzotriazole, methamphetamine, methyl-1 H-benzotriazole, ketamine, ampicillin, ciprofloxacin, pentoxifylline, erythromycin, clarithromycin, ceftriaxone, penicillin G, and penicillin V) and altered metals (V, Cr, Cu, Zn, and Ba) levels in lungs. Fusobacteria and Verrucomicrobia at phylum level were increased in lung microbiome by air pollution, whereas increased alpha diversity, Bacteroidetes and Proteobacteria and decreased Firmicutes at phylum level were occurred in intestinal microbiome. Lung function decline was correlated with increasing antibiotics, drugs, and metals in lungs as well as lung and intestinal microbiome dysbiosis. The antibiotics, drugs, and Cr, Co, Ca, and Cu levels in lung were correlated with lung and intestinal microbiome dysbiosis. The lung microbiome was correlated with intestinal microbiome at several phylum and family levels after air pollution exposure. Our results revealed that antibiotics, drugs, and metals in the lung caused lung and intestinal microbiome dysbiosis in ageing rats exposed to air pollution, which may lead to lung function decline.
Collapse
Affiliation(s)
- Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia.
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Hsin-Chang Chen
- Department of Chemistry, College of Science, Tunghai University, Taichung, Taiwan.
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan.
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| | - Ching-Wen Chang
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia.
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong.
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Departments of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Criner GJ, Agusti A, Borghaei H, Friedberg J, Martinez FJ, Miyamoto C, Vogelmeier CF, Celli BR. Chronic Obstructive Pulmonary Disease and Lung Cancer: A Review for Clinicians. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:454-476. [PMID: 35790131 PMCID: PMC9448004 DOI: 10.15326/jcopdf.2022.0296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are common global causes of morbidity and mortality. Because both diseases share several predisposing risks, the 2 diseases may occur concurrently in susceptible individuals. The diagnosis of COPD has important implications for the diagnostic approach and treatment options if lesions concerning for lung cancer are identified during screening. Importantly, the presence of COPD has significant implications on prognosis and management of patients with lung cancer. In this monograph, we review the mechanistic linkage between lung cancer and COPD, the impact of lung cancer screening on patients at risk, and the implications of the presence of COPD on the approach to the diagnosis and treatment of lung cancer. This manuscript succinctly reviews the epidemiology and common pathogenetic factors for the concurrence of COPD and lung cancer. Importantly for the clinician, it summarizes the indications, benefits, and complications of lung cancer screening in patients with COPD, and the assessment of risk factors for patients with COPD undergoing consideration of various treatment options for lung cancer.
Collapse
Affiliation(s)
- Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Alvar Agusti
- Cátedra Salud Respiratoria, University of Barcelona; Respiratory Institute, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigacion Biomedica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Hossein Borghaei
- Department of Medical Oncology, Fox Chase Cancer Center at Temple University, Philadelphia, Pennsylvania, United States
| | - Joseph Friedberg
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | | | - Curtis Miyamoto
- Department of Radiation Oncology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Giessen and Marburg, Philipps-University Marburg, German Centre for Lung Research, Marburg, Germany
| | - Bartolome R. Celli
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Rodríguez-Arce I, Morales X, Ariz M, Euba B, López-López N, Esparza M, Hood DW, Leiva J, Ortíz-de-Solórzano C, Garmendia J. Development and multimodal characterization of an elastase-induced emphysema mouse disease model for the COPD frequent bacterial exacerbator phenotype. Virulence 2021; 12:1672-1688. [PMID: 34252004 PMCID: PMC8276669 DOI: 10.1080/21505594.2021.1937883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients undergo infectious exacerbations whose frequency identifies a clinically meaningful phenotype. Mouse models have been mostly used to separately study both COPD and the infectious processes, but a reliable model of the COPD frequent exacerbator phenotype is still lacking. Accordingly, we first established a model of single bacterial exacerbation by nontypeable Haemophilus influenzae (NTHi) infection on mice with emphysema-like lesions. We characterized this single exacerbation model combining both noninvasive in vivo imaging and ex vivo techniques, obtaining longitudinal information about bacterial load and the extent of the developing lesions and host responses. Bacterial load disappeared 48 hours post-infection (hpi). However, lung recovery, measured using tests of pulmonary function and the disappearance of lung inflammation as revealed by micro-computed X-ray tomography, was delayed until 3 weeks post-infection (wpi). Then, to emulate the frequent exacerbator phenotype, we performed two recurrent episodes of NTHi infection on the emphysematous murine lung. Consistent with the amplified infectious insult, bacterial load reduction was now observed 96 hpi, and lung function recovery and disappearance of lesions on anatomical lung images did not happen until 12 wpi. Finally, as a proof of principle of the use of the model, we showed that azithromycin successfully cleared the recurrent infection, confirming this macrolide utility to ameliorate infectious exacerbation. In conclusion, we present a mouse model of recurrent bacterial infection of the emphysematous lung, aimed to facilitate investigating the COPD frequent exacerbator phenotype by providing complementary, dynamic information of both infectious and inflammatory processes.
Collapse
Affiliation(s)
- Irene Rodríguez-Arce
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Xabier Morales
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Mikel Ariz
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Begoña Euba
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Maider Esparza
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Derek W. Hood
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - José Leiva
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
- Servicio De Microbiología, Clínica Universidad De Navarra, Pamplona, Spain
| | - Carlos Ortíz-de-Solórzano
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
| | - Junkal Garmendia
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
10
|
Inhaled Corticosteroids and the Lung Microbiome in COPD. Biomedicines 2021; 9:biomedicines9101312. [PMID: 34680429 PMCID: PMC8533282 DOI: 10.3390/biomedicines9101312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
The Global Initiative for Chronic Obstructive Lung Disease 2021 Report recommends inhaled corticosteroid (ICS)-containing regimens as part of pharmacological treatment in patients with chronic obstructive lung disease (COPD) and frequent exacerbations, particularly with eosinophilic inflammation. However, real-world studies reveal overprescription of ICS in COPD, irrespective of disease presentation and inflammatory endotype, leading to increased risk of side effects, mainly respiratory infections. The optimal use of ICS in COPD therefore remains an area of intensive research, and additional biomarkers of benefit and risk are needed. Although the interplay between inflammation and infection in COPD is widely acknowledged, the role of the microbiome in shaping lower airway inflammation has only recently been explored. Next-generation sequencing has revealed that COPD disease progression and exacerbation frequency are associated with changes in the composition of the lung microbiome, and that the immunosuppressive effects of ICS can contribute to potentially deleterious airway microbiota changes by increasing bacterial load and the abundance of potentially pathogenic taxa such as Streptococcus and Haemophilus. Here, we explore the relationship between microbiome, inflammation, ICS use and disease phenotype. This relationship may inform the benefit:risk assessment of ICS use in patients with COPD and lead to more personalised pharmacological management.
Collapse
|
11
|
Jamal Jameel K, Gallert WJ, Yanik SD, Panek S, Kronsbein J, Jungck D, Koch A, Knobloch J. Biomarkers for Comorbidities Modulate the Activity of T-Cells in COPD. Int J Mol Sci 2021; 22:ijms22137187. [PMID: 34281240 PMCID: PMC8269158 DOI: 10.3390/ijms22137187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
In smoking-induced chronic obstructive pulmonary disease (COPD), various comorbidities are linked to systemic inflammation and infection-induced exacerbations. The underlying mechanisms are unclear but might provide therapeutic targets. T-cell activity is central in systemic inflammation and for infection-defense mechanisms and might be influenced by comorbidities. Hypothesis: Circulating biomarkers of comorbidities modulate the activity of T-cells of the T-helper type 1 (Th1) and/or T-cytotoxic type 1 (Tc1). T-cells in peripheral blood mononuclear cells (PBMCs) from non-smokers (NS), current smokers without COPD (S), and COPD subjects (total n = 34) were ex vivo activated towards Th1/Tc1 and were then stimulated with biomarkers for metabolic and/or cardiovascular comorbidities (Brain Natriuretic Peptide, BNP; chemokine (C-C motif) ligand 18, CCL18; C-X3-C motif chemokine ligand 1, CX3CL1; interleukin-18, IL-18) or for asthma- and/or cancer-related comorbidities (CCL22; epidermal growth factor, EGF; IL-17; periostin) each at 10 or 50 ng/mL. The Th1/Tc1 activation markers interferon-γ (IFNγ), tumor necrosis factor-α (TNFα), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were analyzed in culture supernatants by Enzyme-Linked Immunosorbent Assay (ELISA). Ex-vivo activation induced IFNγ and TNFα without differences between the groups but GM-CSF more in S vs. NS. At 10 ng/mL, the different biomarkers increased or reduced the T-cell activation markers without a clear trend for one direction in the different categories of comorbidities or for the different T-cell activation markers. At 50 ng/mL, there was a clear shift towards suppressive effects, particularly for the asthma— and cancer-related biomarkers and in cells of S and COPD. Comorbidities might suppress T-cell immunity in COPD. This could explain the association of comorbidities with frequent exacerbations.
Collapse
Affiliation(s)
- Kaschin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Willem-Jakob Gallert
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Sarah D. Yanik
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Susanne Panek
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - David Jungck
- Department of Internal Medicine II, Pneumology, Allergology and Respiratory Medicine, Bethel Teaching Hospital, 12207 Berlin, Germany;
| | - Andrea Koch
- Pyhrn-Eisenwurzen-Klinikum Steyr, Klinik für Pneumologie, Lehrkrankenhaus der Uniklinik Linz, Sierninger Str. 170, 4400 Steyr, Austria;
- Ludwig-Maximilians-University of Munich (LMU) and DZL (German Center of Lung Science), 81377 Munich, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
- Correspondence: ; Tel.: +49-234-302-3404; Fax: +49-234-302-6420
| |
Collapse
|
12
|
Seo H, Cha SI, Shin KM, Lim JK, Lee WK, Park JE, Park S, Choi SH, Lee YH, Yoo SS, Lee SY, Lee J, Kim CH, Park JY. Clinical relevance of emphysema in patients hospitalized with community-acquired pneumonia: Clinical features and prognosis. CLINICAL RESPIRATORY JOURNAL 2021; 15:826-834. [PMID: 33826807 DOI: 10.1111/crj.13370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Few studies have investigated the influence of emphysema on clinical features of patients presenting with community-acquired pneumonia (CAP). OBJECTIVES The aim of this study was to examine the clinical and microbiological features of patients with both CAP and emphysema. METHODS This retrospective study included patients with CAP who underwent computed tomography (CT) scan at the time of presentation. Patients were allocated into emphysema and control groups, and clinical variables were compared between the two groups. The emphysema group was further divided into three subgroups (mild, moderate, and severe) according to the extent of emphysema on CT scan. The clinical variables of each subgroup were compared with the control group. RESULTS Of 1676 patients, 431 patients (25.7%) were classified into the emphysema group. CAP patients with emphysema were more likely to have a high CURB-65 score and pneumonia severity index and a lower incidence of complicated parapneumonic effusion or empyema. The emphysema group exhibited longer hospital stay. In addition, 30-day mortality in the severe emphysema group was significantly higher compared with the control group. As etiological agents, Streptococcus pneumoniae, Pseudomonas aeruginosa, Enterobacteriaceae, and multidrug-resistant pathogens were significantly more common in the emphysema group compared with the control group. CONCLUSIONS The presence of emphysema in CAP patients was associated with a more severe form of CAP, a longer hospital stay, and a lower incidence of complicated parapneumonic effusion or empyema. Moreover, CAP patients with severe emphysema exhibited higher 30-day mortality than those without emphysema.
Collapse
Affiliation(s)
- Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seung-Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae Kwang Lim
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center, Kyungpook National University, Daegu, Korea
| | - Ji-Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sunji Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yong-Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seung-Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Shin-Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang-Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Consensus document on the diagnosis and treatment of chronic bronchial infection in chronic obstructive pulmonary disease. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.arbr.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
de la Rosa Carrillo D, López-Campos JL, Alcázar Navarrete B, Calle Rubio M, Cantón Moreno R, García-Rivero JL, Máiz Carro L, Olveira Fuster C, Martínez-García MÁ. Consensus Document on the Diagnosis and Treatment of Chronic Bronchial Infection in Chronic Obstructive Pulmonary Disease. Arch Bronconeumol 2020; 56:651-664. [PMID: 32540279 DOI: 10.1016/j.arbres.2020.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Although the chronic presence of microorganisms in the airways of patients with stable chronic obstructive pulmonary disease (COPD) confers a poor outcome, no recommendations have been established in disease management guidelines on how to diagnose and treat these cases. In order to guide professionals, the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) has prepared a document which aims to answer questions on the clinical management of COPD patients in whom microorganisms are occasionally or habitually isolated. Since the available scientific evidence is too heterogeneous to use in the creation of a clinical practice guideline, we have drawn up a document based on existing scientific literature and clinical experience, addressing the definition of different clinical situations and their diagnosis and management. The text was drawn up by consensus and approved by a large group of respiratory medicine experts with extensive clinical and scientific experience in the field, and has been endorsed by the SEPAR Scientific Committee.
Collapse
Affiliation(s)
| | - José Luís López-Campos
- Servicio de Neumología, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - Bernardino Alcázar Navarrete
- Servicio de Neumología, Hospital Regional Universitario de Málaga. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, España
| | - Myriam Calle Rubio
- Servicio de Neumología, Hospital de Alta Resolución de Loja, Loja, Granada, España
| | - Rafael Cantón Moreno
- Servicio de Neumología, Unidad de Infección Bronquial Crónica, Fibrosis Quística y Bronquiectasias, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Juan Luis García-Rivero
- Servicio de Neumología, Hospital Clínico San Carlos. Departamento de Medicina, Facultad de Medicina, UCM, Madrid, España
| | - Luís Máiz Carro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| | | | | |
Collapse
|
15
|
Crisafulli E, Manco A, Ferrer M, Huerta A, Micheletto C, Girelli D, Clini E, Torres A. Pneumonic versus Nonpneumonic Exacerbations of Chronic Obstructive Pulmonary Disease. Semin Respir Crit Care Med 2020; 41:817-829. [PMID: 32726837 DOI: 10.1055/s-0040-1702196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) often suffer acute exacerbations (AECOPD) and community-acquired pneumonia (CAP), named nonpneumonic and pneumonic exacerbations of COPD, respectively. Abnormal host defense mechanisms may play a role in the specificity of the systemic inflammatory response. Given the association of this aspect to some biomarkers at admission (e.g., C-reactive protein), it can be used to help to discriminate AECOPD and CAP, especially in cases with doubtful infiltrates and advanced lung impairment. Fever, sputum purulence, chills, and pleuritic pain are typical clinical features of CAP in a patient with COPD, whereas isolated dyspnea at admission has been reported to predict AECOPD. Although CAP may have a worse outcome in terms of mortality (in hospital and short term), length of hospitalization, and early readmission rates, this has only been confirmed in a few prospective studies. There is a lack of methodologically sound research confirming the impact of severe AECOPD and COPD + CAP. Here, we review studies reporting head-to-head comparisons between AECOPD and CAP + COPD in hospitalized patients. We focus on the epidemiology, risk factors, systemic inflammatory response, clinical and microbiological characteristics, outcomes, and treatment approaches. Finally, we briefly discuss some proposals on how we should orient research in the future.
Collapse
Affiliation(s)
- Ernesto Crisafulli
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.,Department of Medicine, Section of Internal Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Alessandra Manco
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Miquel Ferrer
- Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERES (CB06/06/0028), University of Barcelona, Barcelona, Spain
| | - Arturo Huerta
- Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERES (CB06/06/0028), University of Barcelona, Barcelona, Spain
| | - Claudio Micheletto
- Department of Cardiovascular and Thoracic, Pneumology Unit, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Enrico Clini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia and University Hospital of Modena Policlinico, Modena, Italy
| | - Antoni Torres
- Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERES (CB06/06/0028), University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
López-López N, Euba B, Hill J, Dhouib R, Caballero L, Leiva J, Hosmer J, Cuesta S, Ramos-Vivas J, Díez-Martínez R, Schirra HJ, Blank LM, Kappler U, Garmendia J. Haemophilus influenzae Glucose Catabolism Leading to Production of the Immunometabolite Acetate Has a Key Contribution to the Host Airway-Pathogen Interplay. ACS Infect Dis 2020; 6:406-421. [PMID: 31933358 DOI: 10.1021/acsinfecdis.9b00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammatory responses and impaired airway immunity, which provides an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. Clinical evidence supports that the COPD airways present increased concentrations of glucose, which may facilitate proliferation of pathogenic bacteria able to use glucose as a carbon source. NTHi metabolizes glucose through respiration-assisted fermentation, leading to the excretion of acetate, formate, and succinate. We hypothesized that such specialized glucose catabolism may be a pathoadaptive trait playing a pivotal role in the NTHi airway infection. To find out whether this is true, we engineered and characterized bacterial mutant strains impaired to produce acetate, formate, or succinate by inactivating the ackA, pflA, and frdA genes, respectively. While the inactivation of the pflA and frdA genes only had minimal physiological effects, the inactivation of the ackA gene affected acetate production and led to reduced bacterial growth, production of lactate under low oxygen tension, and bacterial attenuation in vivo. Moreover, bacterially produced acetate was able to stimulate the expression of inflammatory genes by cultured airway epithelial cells. These results back the notion that the COPD lung supports NTHi growth on glucose, enabling production of fermentative end products acting as immunometabolites at the site of infection. Thus, glucose catabolism may contribute not only to NTHi growth but also to bacterially driven airway inflammation. This information has important implications for developing nonantibiotic antimicrobials, given that airway glucose homeostasis modifying drugs could help prevent microbial infections associated with chronic lung disease.
Collapse
Affiliation(s)
| | - Begoña Euba
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Julian Hill
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rabeb Dhouib
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lucı́a Caballero
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
| | - José Leiva
- Servicio de Microbiologı́a, Clı́nica Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Jennifer Hosmer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergio Cuesta
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
| | - José Ramos-Vivas
- Servicio Microbiologı́a, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
- Red Española de Investigación en Patologı́a Infecciosa (REIPI), ISCIII, Madrid, Spain
| | - Roberto Díez-Martínez
- Telum Therapeutics, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noáin, Spain
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Lars M. Blank
- Institute of Applied Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Junkal Garmendia
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
17
|
Crisafulli E, Manco A, Torres A. How may we improve clinical outcomes for patients hospitalized with acute exacerbations of chronic obstructive pulmonary disease? A narrative review about possible therapeutic and preventive strategies. Expert Rev Respir Med 2020; 14:493-500. [PMID: 32077337 DOI: 10.1080/17476348.2020.1732823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: In a subset of chronic obstructive pulmonary disease (COPD)patients the course of the disease is complicated by a severe acute exacerbations (AECOPD) that may require hospitalization, at which time negative outcomes may occur up to 30 days after discharge. Several predictors of negative outcomes have been documented.Areas covered: We considered five negative outcomes related to patients hospitalized with AECOPD: treatment failure, noninvasive mechanical ventilation (NIMV) failure, prolonged length of hospital stay (LHS), short-term mortality (≤ 90 days from admission and including the in-hospital mortality), and early readmission (≤30 days from discharge). Possible therapeutic and preventive strategies to improve these outcomes are outlined and discussed.Expert opinion: Several strategies have been proposed to improve outcomes. Among these, steroid or antibiotic use may reduce the risks of treatment failure or of prolonged hospital stay. We note that operator-related factors may influence the outcome of NIMV. However, little has been documented about the short-term mortality or early readmission rates. In general, few interventions consistently improve negative outcomes and prognosis of AECOPD.
Collapse
Affiliation(s)
- Ernesto Crisafulli
- Department of Medicine, Respiratory Medicine Unit and Section of Internal Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Alessandra Manco
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Antoni Torres
- Pneumology Department, Clinic Institute of Thorax (ICT), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - University of Barcelona - Ciber de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
18
|
Preclinical Evaluation of the Antimicrobial-Immunomodulatory Dual Action of Xenohormetic Molecules against Haemophilus influenzae Respiratory Infection. Biomolecules 2019; 9:biom9120891. [PMID: 31861238 PMCID: PMC6995536 DOI: 10.3390/biom9120891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin’s effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.
Collapse
|
19
|
Parris BA, O'Farrell HE, Fong KM, Yang IA. Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J Thorac Dis 2019; 11:S2155-S2172. [PMID: 31737343 DOI: 10.21037/jtd.2019.10.54] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer comprise the leading causes of lung disease-related mortality worldwide. Exposure to tobacco smoke is a mutual aetiology underlying the two diseases, accounting for almost 90% of cases. There is accumulating evidence supporting the role of immune dysfunction, the lung microbiome, extracellular vesicles and underlying genetic susceptibility in the development of COPD and lung cancer. Further, epigenetic factors, involving DNA methylation and microRNA expression, have been implicated in both diseases. Chronic inflammation is a key feature of COPD and could be a potential driver of lung cancer development. Using next generation technologies, further studies investigating the genomics, epigenetics and gene-environment interaction in key molecular pathways will continue to elucidate the pathogenic mechanisms underlying the development of COPD and lung cancer, and contribute to the development of novel diagnostic and prognostic tools for early intervention and personalised therapeutic strategies.
Collapse
Affiliation(s)
- Brielle A Parris
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, The Prince Charles Hospital, University of Queensland, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
20
|
Dela Cruz CS, Wunderink RG, Christiani DC, Cormier SA, Crothers K, Doerschuk CM, Evans SE, Goldstein DR, Khatri P, Kobzik L, Kolls JK, Levy BD, Metersky ML, Niederman MS, Nusrat R, Orihuela CJ, Peyrani P, Prince AS, Ramírez JA, Ridge KM, Sethi S, Suratt BT, Sznajder JI, Tsalik EL, Walkey AJ, Yende S, Aggarwal NR, Caler EV, Mizgerd JP. Future Research Directions in Pneumonia. NHLBI Working Group Report. Am J Respir Crit Care Med 2019; 198:256-263. [PMID: 29546996 DOI: 10.1164/rccm.201801-0139ws] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group's specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- 1 Pulmonary, Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Richard G Wunderink
- 2 Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David C Christiani
- 3 Department of Environmental Health, Harvard T. H. Chan School of Public Health, and.,4 Pulmonary and Critical Care Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Stephania A Cormier
- 5 Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Kristina Crothers
- 6 Department of Medicine, University of Washington, Seattle, Washington
| | - Claire M Doerschuk
- 7 Marsico Lung Institute and.,8 Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Scott E Evans
- 9 Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel R Goldstein
- 10 Department of Internal Medicine.,11 Department of Microbiology and Immunology, and.,12 Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - Purvesh Khatri
- 13 Center for Biomedical Information Research, Stanford University, Stanford, California
| | - Lester Kobzik
- 3 Department of Environmental Health, Harvard T. H. Chan School of Public Health, and
| | - Jay K Kolls
- 14 Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana
| | - Bruce D Levy
- 15 Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mark L Metersky
- 16 Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Michael S Niederman
- 17 Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Roomi Nusrat
- 18 Department of Medicine, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Carlos J Orihuela
- 19 Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paula Peyrani
- 20 Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Alice S Prince
- 21 Department of Pediatrics, Columbia University, New York, New York
| | - Julio A Ramírez
- 20 Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Karen M Ridge
- 2 Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sanjay Sethi
- 22 Pulmonary, Critical Care and Sleep Medicine, Jacobs School of Medicine, University at Buffalo, State University of New York, Buffalo, New York
| | - Benjamin T Suratt
- 23 Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Jacob I Sznajder
- 2 Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ephraim L Tsalik
- 24 Emergency Medicine Service, Durham Veterans Affairs Health Care System, Durham, North Carolina.,25 Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Allan J Walkey
- 26 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Sachin Yende
- 27 Department of Critical Care Medicine, Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,28 Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania; and
| | - Neil R Aggarwal
- 29 Division of Lung Diseases, NHLBI, NIH, Bethesda, Maryland
| | | | - Joseph P Mizgerd
- 26 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Serré J, Mathyssen C, Ajime TT, Korf H, Maes K, Heulens N, Gysemans C, Mathieu C, Vanaudenaerde B, Janssens W, Gayan-Ramirez G. Airway infection with Nontypeable Haemophilus influenzae is more rapidly eradicated in vitamin D deficient mice. J Steroid Biochem Mol Biol 2019; 187:42-51. [PMID: 30399417 DOI: 10.1016/j.jsbmb.2018.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), which is characterized by an excessive inflammatory response of the airways, is often complicated by exacerbations. Vitamin D deficiency has been associated with an increased risk for COPD and may predispose COPD patients to a higher exacerbation rate, particularly during smoking. In the current study, we investigated the effect of vitamin D deficiency and cigarette smoke (CS)-exposure on lung inflammation and bacterial clearance after an acute infection with Nontypeable Haemophilus influenzae (NTHi). Vitamin D deficient or sufficient mice were exposed to nose-only CS or ambient air for 6 weeks and oropharyngeally instilled with 106 NTHi. Residual viable NTHi were measured at different time points post-infection. Mechanisms of bacterial clearance (e.g. phagocytosis, pattern recognition receptors, antimicrobial peptides, surfactant proteins and mucin) and lung remodeling (e.g. metalloproteinases, MMP's) were assessed. Although smoking resulted in reduced phagocytosis capacity of macrophages and neutrophils, bacterial clearance was similar to control mice. By contrast and independent of smoking, bacterial clearance was significantly accelerated in vitamin D deficient mice already from 24 h post-infection (p = 0.0087). This faster and complete eradication was associated with a more rapid resolution of cytokines and neutrophils 72 h post-infection and dominated by an upregulation of cathelicidin-related antimicrobial peptide (CRAMP) mRNA during infection (p = 0.026). However, vitamin D deficiency also resulted in more MMP12 protein in broncho-alveolar lavage and a shift in mRNA expression of MMP12/TIMP1 (p = 0.038) and MMP9/TIMP1 (p = 0.024) ratio towards more protease activity. Overall, vitamin D deficient mice resolved NTHi infection faster with a faster resolution of local lung inflammation, possibly through upregulation of CRAMP. This was associated with a disruption of the protease/anti-protease balance, which may potentially scale towards a higher extracellular matrix breakdown.
Collapse
Affiliation(s)
- Jef Serré
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Carolien Mathyssen
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Nele Heulens
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Alotaibi NM, Chen V, Hollander Z, Leipsic JA, Hague CJ, Murphy DT, DeMarco ML, FitzGerald JM, McManus BM, Ng RT, Sin DD. Phenotyping and outcomes of hospitalized COPD patients using rapid molecular diagnostics on sputum samples. Int J Chron Obstruct Pulmon Dis 2019; 14:311-319. [PMID: 30774328 PMCID: PMC6350828 DOI: 10.2147/copd.s188186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Etiologies of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are heterogeneous. We phenotyped severe AECOPD based on molecular pathogen detection of sputum samples collected at hospitalization of COPD patients and determined their outcomes. Methods We phenotyped 72 sputum samples of COPD patients who were hospitalized with a primary diagnosis of AECOPD using a molecular array that detected common bacterial and viral respiratory pathogens. Based on these results, the patients were classified into positive or negative pathogen groups. The pathogen-positive group was further divided into virus or bacteria subgroups. Admission day 1 blood samples were assayed for N-terminal prohormone brain natriuretic peptide, CRP, and complete blood counts. Results A total of 52 patients had a positive result on the array, while 20 patients had no pathogens detected. The most common bacterial pathogen detected was Haemophilus influenzae and the most common virus was rhinovirus. The pathogen-negative group had the worse outcomes with longer hospital stays (median 6.5 vs 5 days for bacteria-positive group, P=0.02) and a trend toward increased 1-year mortality (P=0.052). The bacteria-positive group had the best prognosis, whereas the virus-positive group had outcomes somewhere in between the bacteria-positive and pathogen-negative groups. Conclusion Molecular diagnostics on sputum can rapidly phenotype serious AECOPD into bacteria-, virus-, or pathogen-negative groups. The bacteria-positive group appears to have the best prognosis, while pathogen-negative group has the worst. These data suggest that AECOPD is a heterogeneous event and that accurate phenotyping of AECOPD may lead to novel management strategies that are personalized and more precise.
Collapse
Affiliation(s)
- Nawaf M Alotaibi
- Centre for Heart Lung Innovation, James Hogg Research Centre, St Paul's Hospital, Vancouver, BC, Canada, .,Department of Medicine, Division of Pulmonary Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Virginia Chen
- Centre for Heart Lung Innovation, James Hogg Research Centre, St Paul's Hospital, Vancouver, BC, Canada, .,Institute for Heart and Lung Health, Vancouver, BC, Canada, .,PROOF Centre of Excellence, Vancouver, BC, Canada
| | - Zsuzsanna Hollander
- Centre for Heart Lung Innovation, James Hogg Research Centre, St Paul's Hospital, Vancouver, BC, Canada, .,Institute for Heart and Lung Health, Vancouver, BC, Canada, .,PROOF Centre of Excellence, Vancouver, BC, Canada
| | | | - Cameron J Hague
- Department of Radiology, St Paul's Hospital, Vancouver, BC, Canada
| | - Darra T Murphy
- Department of Radiology, St Paul's Hospital, Vancouver, BC, Canada
| | - Mari L DeMarco
- Centre for Heart Lung Innovation, James Hogg Research Centre, St Paul's Hospital, Vancouver, BC, Canada, .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - J M FitzGerald
- Institute for Heart and Lung Health, Vancouver, BC, Canada, .,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, .,The Lung Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Bruce M McManus
- Centre for Heart Lung Innovation, James Hogg Research Centre, St Paul's Hospital, Vancouver, BC, Canada, .,Institute for Heart and Lung Health, Vancouver, BC, Canada, .,PROOF Centre of Excellence, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Raymond T Ng
- PROOF Centre of Excellence, Vancouver, BC, Canada.,Department of Computer Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, James Hogg Research Centre, St Paul's Hospital, Vancouver, BC, Canada, .,Institute for Heart and Lung Health, Vancouver, BC, Canada, .,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada,
| |
Collapse
|
23
|
Fischer K, Doehn JM, Herr C, Lachner C, Heinrich A, Kershaw O, Voss M, Jacobson MH, Gruber AD, Clauss M, Witzenrath M, Bals R, Gutbier B, Slevogt H. Acute Moraxella catarrhalis Airway Infection of Chronically Smoke-Exposed Mice Increases Mechanisms of Emphysema Development: A Pilot Study. Eur J Microbiol Immunol (Bp) 2018; 8:128-134. [PMID: 30719329 PMCID: PMC6348706 DOI: 10.1556/1886.2018.00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD), acute exacerbations and emphysema development are characteristics for disease pathology. COPD is complicated by infectious exacerbations with acute worsening of respiratory symptoms with Moraxella catarrhalis as one of the most frequent pathogens. Although cigarette smoke (CS) is the primary risk factor, additional molecular mechanisms for emphysema development induced by bacterial infections are incompletely understood. We investigated the impact of M. catarrhalis on emphysema development in CS exposed mice and asked whether an additional infection would induce a solubilization of pro-apoptotic and pro-inflammatory endothelial monocyte-activating-protein-2 (EMAPII) to exert its activities in the pulmonary microvas-culature and other parts of the lungs not exposed directly to CS. Mice were exposed to smoke (6 or 9 months) and/or infected with M. catarrhalis. Lungs, bronchoalveolar lavage fluid (BALF), and plasma were analyzed. CS exposure reduced ciliated area, caused rarefaction of the lungs, and induced apoptosis. EMAPII was increased independent of prior smoke exposure in BALF of infected mice. Importantly, acute M. catarrhalis infection increased release of matrixmetalloproteases-9 and -12, which are involved in emphysema development and comprise a mechanism of EMAPII release. Our data suggest that acute M. catarrhalis infection represents an independent risk factor for emphysema development in smoke-exposed mice.
Collapse
Affiliation(s)
- Katja Fischer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jan-Moritz Doehn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, University of the Saarland, Homburg Saar, Germany
| | - Carolin Lachner
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Annina Heinrich
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, University of the Saarland, Homburg Saar, Germany
| | - Max H Jacobson
- Pathology and Laboratory Medicine, IU School of Medicine, Indianapolis, Indiana, USA
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Matthias Clauss
- Indiana Center for Vascular Biology and Medicine and Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana, USA
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Pulmonary Inflammation, Berlin, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, University of the Saarland, Homburg Saar, Germany
| | - Birgitt Gutbier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Pulmonary Inflammation, Berlin, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
24
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
25
|
Huang WC, Lee CH, Wu MF, Huang CC, Hsu CH, Chen HC, Hsu JY, Huang CC. Clinical features, bacteriology of endotracheal aspirates and treatment outcomes of patients with chronic obstructive pulmonary disease and community-acquired pneumonia in an intensive care unit in Taiwan with an emphasis on eosinophilia versus non-eosinophilia: a retrospective case-control study. BMJ Open 2018; 8:e020341. [PMID: 30206074 PMCID: PMC6144339 DOI: 10.1136/bmjopen-2017-020341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/20/2018] [Accepted: 07/27/2018] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES The clinical implications of blood eosinophil level in patients with chronic obstructive pulmonary disease (COPD) and community-acquired pneumonia (CAP) requiring invasive mechanical ventilation (IMV) and intensive care unit (ICU) admission are still unknown. Thus, this study aimed to compare the features of such patients with and without blood eosinophilia. DESIGN This was a retrospective case-control study. SETTING An ICU of a medical centre in central Taiwan. PARTICIPANTS A total of 262 patients with COPD and CAP requiring IMV and ICU admission. RESULTS Of all participants (n=262), 32 (12.2%) had an eosinophil percentage (EP) >2% and 169 (64.5%) had an absolute eosinophil count (AEC) >300 cells/µL. Regardless of whether 2% or 300 cells/µL was used as a cut-off value, the eosinophilia group were slightly older (years) (82.9±5.4 vs 78.1±9.1, p=0.000 and 79.2±8.4 vs 77.6±9.6, p=0.246, respectively), and had a higher forced expiratory volume in 1 s/forced vital capacity (%) (56.0±8.0 vs 51.3±11.6, p=0.005 and 53.1±11.2 vs 49.5±11.2, p=0.013, respectively), less severe spirometric classification (p=0.008 and p=0.001, respectively), and lower white cell count 109/L (8.8±3.2 vs 11.1±4.9, p=0.009 and 10.3±4.4 vs 11.8±5.3, p=0.017, respectively) than the non-eosinophilia group. The bacteriology of endotracheal aspirates showed that Pseudomonas aeruginosa and other gram-negative bacilli were the most common organisms in all study groups. Participants with an EP >2% had a shorter ICU length of stay (OR=12.13, p=0.001) than those with an EP ≤2%, while an AEC >300 cells/µL was not associated with any in-ICUoutcomes. CONCLUSIONS The results of this study have significant clinical implications and should be considered when making treatment decisions for the management of patients with COPD and CAP requiring IMV and ICU admission.
Collapse
Affiliation(s)
- Wei-Chang Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ming-Feng Wu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chen-Cheng Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Cheng-Hui Hsu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hui-Chen Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Yuan Hsu
- Division of Clinical Research, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- School of Physical Therapy, Chung-Shan Medical University, Taichung, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
26
|
Liu DS, Han XD, Liu XD. Current Status of Community-Acquired Pneumonia in Patients with Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2018; 131:1086-1091. [PMID: 29692381 PMCID: PMC5937318 DOI: 10.4103/0366-6999.230727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Worldwide, community-acquired pneumonia (CAP) is a common infection that occurs in older adults, who may have pulmonary comorbidities, including chronic obstructive pulmonary disease (COPD). Although there have been clinical studies on the coexistence of CAP with COPD, there remain some controversial findings. This review presents the current status of COPD in CAP patients, including the disease burden, clinical characteristics, risk factors, microbial etiology, and antibiotic treatment. DATA SOURCES A literature review included full peer-reviewed publications up to January 2018 derived from the PubMed database, using the keywords "community-acquired pneumonia" and "chronic obstructive pulmonary disease". STUDY SELECTION Papers in English were reviewed, with no restriction on study design. RESULTS COPD patients who are treated with inhaled corticosteroids are at an increased risk of CAP and have a worse prognosis, but data regarding the increased mortality remains unclear. Although Streptococcus pneumoniae is still regarded as the most common bacteria isolated from patients with CAP and COPD, Pseudomonas aeruginosa is also important, and physicians should pay close attention to the occurrence of antimicrobial resistance, particularly in these two organisms. CONCLUSIONS COPD is a common and important predisposing comorbidity in patients who develop CAP. COPD often aggravates the clinical symptoms of patients with CAP, complicating treatment, but generally does not appear to affect prognosis.
Collapse
Affiliation(s)
- De-Shun Liu
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Xiu-Di Han
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Xue-Dong Liu
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| |
Collapse
|
27
|
Affiliation(s)
- Jane S Kaufman
- Jane S. Kaufman is an advanced senior lecturer at the University of Pennsylvania School of Nursing, Philadelphia, Pa
| |
Collapse
|
28
|
Vij N. Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases. Expert Opin Drug Deliv 2016; 14:483-489. [PMID: 27561233 DOI: 10.1080/17425247.2016.1223040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION ΔF508-CFTR (cystic fibrosis transmembrane conductance regulator) is a common CF-mutation that is known to induce oxidative-inflammatory stress through activation of reactive oxygen species (ROS), which induces autophagy-impairment resulting in accumulation of CFTR in aggresome-bodies. Cysteamine, the reduced form of cystamine, is a FDA-approved drug that has anti-oxidant, anti-bacterial, and mucolytic properties. This drug has been shown in a recent clinical trial to decrease lung inflammation and improve lung function in CF patients by potentially restoring autophagy and allowing CFTR to be trafficked to the cell membrane. Areas covered: The delivery of cysteamine to airway epithelia of chronic subjects prerequisite the need for a delivery system to allow rescue of dysfunctional autophagy. Expert opinion: We anticipate based on our ongoing studies that PLGA-PEG- or Dendrimer-mediated cysteamine delivery could allow sustained airway delivery over standard cysteamine tablets or delay release capsules that are currently used for systemic treatment. In addition, proposed nano-based autophagy induction strategy can also allow rescue of cigarette smoke (CS) induced acquired-CFTR dysfunction seen in chronic obstructive pulmonary disease (COPD)-emphysema subjects. The CS induced acquired-CFTR dysfunction involves CFTR-accumulation in aggresome-bodies that can be rescued by an autophagy-inducing antioxidant drug, cysteamine. Moreover, chronic CS-exposure generates ROS that induces overall protein-misfolding and aggregation of ubiquitinated-proteins as aggresome-bodies via autophagy-impairment that can be also be resolved by treatment with autophagy-inducing antioxidant drug, cysteamine.
Collapse
Affiliation(s)
- Neeraj Vij
- a College of Medicine , Central Michigan University , Mount Pleasant , MI , USA.,b Department of Pediatric Respiratory Sciences , The Johns Hopkins School of Medicine , Baltimore , MD , USA
| |
Collapse
|
29
|
Lee SW, Kuan CS, Wu LSH, Weng JTY. Metagenome and Metatranscriptome Profiling of Moderate and Severe COPD Sputum in Taiwanese Han Males. PLoS One 2016; 11:e0159066. [PMID: 27428540 PMCID: PMC4948834 DOI: 10.1371/journal.pone.0159066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disorder characterized by the progressive obstruction of airflow and is currently the fourth leading cause of death in the world. The pathogenesis of COPD is thought to involve bacterial infections and inflammations. Owing to advancement in sequencing technology, evidence is emerging that supports an association between the lung microbiome and COPD. However, few studies have looked into the expression profile of the bacterial communities in the COPD lungs. In this study, we analyzed the sputum microbiome of four moderate and four severe COPD male patients both at the DNA and RNA level, using next generation sequencing technology. We found that bacterial composition determined by 16S rRNA gene sequencing may not directly translate to the set of actively expressing bacteria as defined by transcriptome sequencing. The two sequencing data agreed on Prevotella, Rothia, Neisseria, Porphyromonas, Veillonella, Fusobacterium and Streptococcus being among the most differentially abundant genera between the moderate and severe COPD samples, supporting their association with COPD severity. However, the two sequencing analyses disagreed on the relative abundance of these bacteria in the two COPD groups, implicating the importance of studying the actively expressing bacteria for enriching our understanding of COPD. Though we have described the metatranscriptome profiles of the lung microbiome in moderate and severe COPD, further investigations are required to determine the functional basis underlying the relationship between the microbial species in the lungs and pathogenesis of COPD.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacterial Infections/complications
- Bacterial Infections/microbiology
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Genome, Bacterial
- Humans
- Lung/microbiology
- Male
- Metagenome
- Microbiota
- Middle Aged
- Pulmonary Disease, Chronic Obstructive/epidemiology
- Pulmonary Disease, Chronic Obstructive/microbiology
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- Sputum/microbiology
- Taiwan/epidemiology
- Transcriptome
Collapse
Affiliation(s)
- Shih-Wei Lee
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chin-Sheng Kuan
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
| | | | - Julia Tzu-Ya Weng
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
- Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
30
|
Mammen MJ, Sethi S. COPD and the microbiome. Respirology 2016; 21:590-9. [DOI: 10.1111/resp.12732] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Manoj J. Mammen
- Divisions of Pulmonary, Critical Care, and Sleep Medicine; State University of New York at Buffalo School of Medicine; Buffalo New York USA
- Department of Biomedical Informatics; State University of New York at Buffalo School of Medicine; Buffalo New York USA
| | - Sanjay Sethi
- Divisions of Pulmonary, Critical Care, and Sleep Medicine; State University of New York at Buffalo School of Medicine; Buffalo New York USA
- Veterans Affairs Western New York Healthcare System; Buffalo New York USA
| |
Collapse
|
31
|
Rowell TR, Tarran R. Will chronic e-cigarette use cause lung disease? Am J Physiol Lung Cell Mol Physiol 2015; 309:L1398-409. [PMID: 26408554 PMCID: PMC4683316 DOI: 10.1152/ajplung.00272.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Chronic tobacco smoking is a major cause of preventable morbidity and mortality worldwide. In the lung, tobacco smoking increases the risk of lung cancer, and also causes chronic obstructive pulmonary disease (COPD), which encompasses both emphysema and chronic bronchitis. E-cigarettes (E-Cigs), or electronic nicotine delivery systems, were developed over a decade ago and are designed to deliver nicotine without combusting tobacco. Although tobacco smoking has declined since the 1950s, E-Cig usage has increased, attracting both former tobacco smokers and never smokers. E-Cig liquids (e-liquids) contain nicotine in a glycerol/propylene glycol vehicle with flavorings, which are vaporized and inhaled. To date, neither E-Cig devices, nor e-liquids, are regulated by the Food and Drug Administration (FDA). The FDA has proposed a deeming rule, which aims to initiate legislation to regulate E-Cigs, but the timeline to take effect is uncertain. Proponents of E-Cigs say that they are safe and should not be regulated. Opposition is varied, with some opponents proposing that E-Cig usage will introduce a new generation to nicotine addiction, reversing the decline seen with tobacco smoking, or that E-Cigs generally may not be safe and will trigger diseases like tobacco. In this review, we shall discuss what is known about the effects of E-Cigs on the mammalian lung and isolated lung cells in vitro. We hope that collating this data will help illustrate gaps in the knowledge of this burgeoning field, directing researchers toward answering whether or not E-Cigs are capable of causing disease.
Collapse
Affiliation(s)
- Temperance R Rowell
- Marsico Lung Institute and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Marsico Lung Institute and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Lin KY, Wang CC, Lin CH, Sheng WH, Chang SC. Fluoroquinolones versus β-Lactam/β-Lactamase Inhibitors in Outpatients with Chronic Obstructive Pulmonary Disease and Pneumonia: A Nationwide Population-Based Study. PLoS One 2015; 10:e0136232. [PMID: 26305908 PMCID: PMC4549331 DOI: 10.1371/journal.pone.0136232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022] Open
Abstract
Background Studies on the association between antibiotic treatment and outcomes in outpatients with chronic obstructive pulmonary disease (COPD) and pneumonia are scarce. This study aimed to evaluate the effectiveness of fluoroquinolones and β-lactam/β-lactamase inhibitors for pneumonia in COPD outpatients. Methods We conducted a retrospective cohort study and identified 4,851 episodes of pneumonia among COPD outpatients treated with fluoroquinolones or β-lactam/β-lactamase inhibitors from the Taiwan National Health Insurance Research Database during 2002–2011. Using the propensity score analysis, 1,296 pairs of episodes were matched for the demographic and clinical characteristics. The primary outcome was pneumonia/empyema-related hospitalization or emergency department (ED) visits, and the secondary outcomes were treatment failure, all-cause mortality and medical costs within 30 days. Results Compared with episodes treated with β-lactam/β-lactamase inhibitors, episodes treated with fluoroquinolones had similar clinical outcomes. The rates of pneumonia/empyema-related hospitalization or ED visits were 3.9% and 3.5% in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively (adjusted hazard ratio [aHR], 1.11; 95% confidence interval [CI], 0.74–1.66). The percentage of treatment failure and all-cause mortality were 28.2% versus 31.3% (adjusted odds ratio, 0.86; 95% CI, 0.73–1.02) and 0.5% versus 0.4% (aHR, 1.40; 95% CI, 0.45–4.41) in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively. The medical expenditures, including total medical costs (528 versus 455 US dollars) and pneumonia-related costs (202 vs. 155 USD) were also balanced between the two treatment groups (both P >0.05). Conclusions For pneumonia in COPD outpatients, fluoroquinolones were associated with similar clinical outcomes and medical expenditures compared with β-lactam/β-lactamase inhibitors.
Collapse
Affiliation(s)
| | - Chi-Chuan Wang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Chia-Hui Lin
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Huei Sheng
- Departments of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shan-Chwen Chang
- Departments of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
33
|
Lopez-Campos JL, Agustí A. Heterogeneity of chronic obstructive pulmonary disease exacerbations: a two-axes classification proposal. THE LANCET RESPIRATORY MEDICINE 2015; 3:729-734. [PMID: 26165134 DOI: 10.1016/s2213-2600(15)00242-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 12/24/2022]
Abstract
Exacerbations of chronic obstructive pulmonary disease (COPD) are clinically relevant events with therapeutic and prognostic implications. Yet, they are heterogeneous and can need different therapeutic strategies. In this Viewpoint, we propose an admittedly crude approach to a COPD exacerbation classification that might eventually help to define the most appropriate pharmacological treatment and clinical treatment setting for these patients. Our suggestion is to combine a pathobiological axis (biomarkers) to guide treatment decisions (use of antibiotics, steroids, or both) with a clinical axis (severity score) to decide the organisational context in which to optimally treat the patient. Needless to say, this proposal needs to be researched and eventually validated, refined, or disproved, but we hope that this process will contribute to the improvement of personalised treatment for patients with COPD exacerbations.
Collapse
Affiliation(s)
- Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/Universidad de Sevilla, Seville, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alvar Agustí
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Thorax Institute, Hospital Clinic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Gutbier B, Fischer K, Doehn JM, von Lachner C, Herr C, Klaile E, Frischmann U, Singer BB, Riesbeck K, Zimmermann W, Suttorp N, Bachmann S, Bals R, Witzenrath M, Slevogt H. Moraxella catarrhalis induces an immune response in the murine lung that is independent of human CEACAM5 expression and long-term smoke exposure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L250-61. [PMID: 26047639 DOI: 10.1152/ajplung.00265.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/29/2015] [Indexed: 01/09/2023] Open
Abstract
In patients with chronic obstructive pulmonary disease (COPD), Moraxella catarrhalis infection of the lower airways is associated with chronic colonization and inflammation during stable disease and acute exacerbations. Chronic smoke exposure induces chronic inflammation and impairs mucociliary clearance, thus contributing to bacterial colonization of the lower airways in COPD patients. The human-specific carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 5, expressed in human airways, has been shown to contribute to epithelial colonization of CEACAM-binding pathogens. To investigate the impact of CEACAM5 expression on pulmonary M. catarrhalis colonization, we infected mice transgenic for human CEACAM5 (hCEACAM5) and wild type mice intratracheally with M. catarrhalis with or without preceding smoke exposure and analyzed bacterial colonization and local and systemic inflammation. Our results show that airway infection with M. catarrhalis accelerated acute local but not systemic inflammation, albeit independent of hCEACAM5 expression. Long-term smoke exposure alone or prior to M. catarrhalis infection did not contribute to increased local or systemic inflammation. No difference was found in pulmonary clearance of M. catarrhalis in hCEACAM5-transgenic mice compared with wild-type mice. Smoke exposure neither altered time nor extent of persistence of M. catarrhalis in the lungs of both genotypes. In conclusion, M. catarrhalis induced a local acute immune response in murine airways. Neither hCEACAM5 expression nor chronic smoke exposure nor a combination of both was sufficient as prerequisites for the establishment of chronic M. catarrhalis colonization. Our results demonstrate the difficulties in mirroring conditions of chronic airways colonization of M. catarrhalis in a murine model.
Collapse
Affiliation(s)
- Birgitt Gutbier
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katja Fischer
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jan-Moritz Doehn
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, University of the Saarland, Homburg Saar, Germany
| | - Esther Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | | | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine Malmö, Lund University, Malmö, Sweden
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE-Center, Klinikum Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, University of the Saarland, Homburg Saar, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany;
| |
Collapse
|
35
|
Millares L, Pérez-Brocal V, Ferrari R, Gallego M, Pomares X, García-Núñez M, Montón C, Capilla S, Monsó E, Moya A. Functional Metagenomics of the Bronchial Microbiome in COPD. PLoS One 2015; 10:e0144448. [PMID: 26632844 PMCID: PMC4669145 DOI: 10.1371/journal.pone.0144448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023] Open
Abstract
The course of chronic obstructive pulmonary disease (COPD) is frequently aggravated by exacerbations, and changes in the composition and activity of the microbiome may be implicated in their appearance. The aim of this study was to analyse the composition and the gene content of the microbial community in bronchial secretions of COPD patients in both stability and exacerbation. Taxonomic data were obtained by 16S rRNA gene amplification and pyrosequencing, and metabolic information through shotgun metagenomics, using the Metagenomics RAST server (MG-RAST), and the PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) programme, which predict metagenomes from 16S data. Eight severe COPD patients provided good quality sputum samples, and no significant differences in the relative abundance of any phyla and genera were found between stability and exacerbation. Bacterial biodiversity (Chao1 and Shannon indexes) did not show statistical differences and beta-diversity analysis (Bray-Curtis dissimilarity index) showed a similar microbial composition in the two clinical situations. Four functional categories showed statistically significant differences with MG-RAST at KEGG level 2: in exacerbation, Cell growth and Death and Transport and Catabolism decreased in abundance [1.6 (0.2-2.3) vs 3.6 (3.3-6.9), p = 0.012; and 1.8 (0-3.3) vs 3.6 (1.8-5.1), p = 0.025 respectively], while Cancer and Carbohydrate Metabolism increased [0.8 (0-1.5) vs 0 (0-0.5), p = 0.043; and 7 (6.4-9) vs 5.9 (6.3-6.1), p = 0.012 respectively]. In conclusion, the bronchial microbiome as a whole is not significantly modified when exacerbation symptoms appear in severe COPD patients, but its functional metabolic capabilities show significant changes in several pathways.
Collapse
Affiliation(s)
- Laura Millares
- Fundació Parc Taulí, Sabadell, Spain
- CIBER de Enfermedades Respiratorias, CIBERES, Bunyola, Spain
- Universitat Autònoma de Barcelona, Esfera UAB, Barcelona, Spain
- Fundació Insitut d’Investigació Germans Trias i Pujol, Badalona, Spain
- * E-mail:
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Valencia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Evolutionary Genetics Unit, Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
| | - Rafaela Ferrari
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Valencia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Evolutionary Genetics Unit, Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
| | - Miguel Gallego
- Department of Respiratory Medicine, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Xavier Pomares
- CIBER de Enfermedades Respiratorias, CIBERES, Bunyola, Spain
- Department of Respiratory Medicine, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Marian García-Núñez
- Fundació Parc Taulí, Sabadell, Spain
- CIBER de Enfermedades Respiratorias, CIBERES, Bunyola, Spain
- Universitat Autònoma de Barcelona, Esfera UAB, Barcelona, Spain
- Fundació Insitut d’Investigació Germans Trias i Pujol, Badalona, Spain
| | - Concepción Montón
- CIBER de Enfermedades Respiratorias, CIBERES, Bunyola, Spain
- Department of Respiratory Medicine, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Silvia Capilla
- Department of Microbiology, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Eduard Monsó
- CIBER de Enfermedades Respiratorias, CIBERES, Bunyola, Spain
- Universitat Autònoma de Barcelona, Esfera UAB, Barcelona, Spain
- Department of Respiratory Medicine, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Andrés Moya
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Valencia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Evolutionary Genetics Unit, Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
| |
Collapse
|
36
|
Shaw JG, Vaughan A, Dent AG, O'Hare PE, Goh F, Bowman RV, Fong KM, Yang IA. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis 2014; 6:1532-47. [PMID: 25478195 DOI: 10.3978/j.issn.2072-1439.2014.11.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/21/2014] [Indexed: 01/02/2023]
Abstract
Disease progression of chronic obstructive pulmonary disease (COPD) is variable, with some patients having a relatively stable course, while others suffer relentless progression leading to severe breathlessness, frequent acute exacerbations of COPD (AECOPD), respiratory failure and death. Radiological markers such as CT emphysema index, bronchiectasis and coronary artery calcification (CAC) have been linked with increased mortality in COPD patients. Molecular changes in lung tissue reflect alterations in lung pathology that occur with disease progression; however, lung tissue is not routinely accessible. Cell counts (including neutrophils) and mediators in induced sputum have been associated with lung function and risk of exacerbations. Examples of peripheral blood biological markers (biomarkers) include those associated with lung function (reduced CC-16), emphysema severity (increased adiponectin, reduced sRAGE), exacerbations and mortality [increased CRP, fibrinogen, leukocyte count, IL-6, IL-8, and tumor necrosis factor α (TNF-α)] including increased YKL-40 with mortality. Emerging approaches to discovering markers of gene-environment interaction include exhaled breath analysis [volatile organic compounds (VOCs), exhaled breath condensate], cellular and systemic responses to exposure to air pollution, alterations in the lung microbiome, and biomarkers of lung ageing such as telomere length shortening and reduced levels of sirtuins. Overcoming methodological challenges in sampling and quality control will enable more robust yet easily accessible biomarkers to be developed and qualified, in order to optimise personalised medicine in patients with COPD.
Collapse
Affiliation(s)
- Janet G Shaw
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Annalicia Vaughan
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Annette G Dent
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Phoebe E O'Hare
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Felicia Goh
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Rayleen V Bowman
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Ian A Yang
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| |
Collapse
|
37
|
Community-Acquired Pneumonia in Patients with Chronic Obstructive Pulmonary Disease. Curr Infect Dis Rep 2014; 17:444. [DOI: 10.1007/s11908-014-0444-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Werner JL, Steele C. Innate receptors and cellular defense against pulmonary infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3842-50. [PMID: 25281754 PMCID: PMC4185409 DOI: 10.4049/jimmunol.1400978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the United States, lung infections consistently rank in the top 10 leading causes of death, accounting for >50,000 deaths annually. Moreover, >140,000 deaths occur annually as a result of chronic lung diseases, some of which may be complicated by an infectious process. The lung is constantly exposed to the environment and is susceptible to infectious complications caused by bacterial, viral, fungal, and parasitic pathogens. Indeed, we are continually faced with the threat of morbidity and mortality associated with annual influenza virus infections, new respiratory viruses (e.g., SARS-CoV), and lung infections caused by antibiotic-resistant "ESKAPE pathogens" (three of which target the lung). This review highlights innate immune receptors and cell types that function to protect against infectious challenges to the respiratory system yet also may be associated with exacerbations in chronic lung diseases.
Collapse
Affiliation(s)
- Jessica L Werner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
39
|
Liapikou A, Adamantia L, Torres A, Torres A. Pharmacotherapy for lower respiratory tract infections. Expert Opin Pharmacother 2014; 15:2307-18. [PMID: 25216725 DOI: 10.1517/14656566.2014.959927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Bacterial infections play an important role as etiological agents in acute exacerbations of chronic obstructive pulmonary disease (AECOPD), and exacerbations of non-cystic fibrosis (CF) bronchiectasis. In acute bronchitis and asthma exacerbations their role is less well defined than with patients with COPD. The clinical features, causative pathogens and therapies of common acute respiratory tract infections are detailed in this review. AREAS COVERED This article covers medical literature published in any language from 2000 to 2014, on 'lower respiratory tract infections', identified using PubMed, MEDLINE and ClinicalTrial.gov. The search terms used were 'COPD exacerbations', 'bronchiectasis', 'macrolides' and 'inhaled antibiotics'. EXPERT OPINION Given that almost half of AECOPD are caused by bacteria, administration of antibacterial agents is recommended for patients with severe exacerbations or severe underlying COPD. Chronic prophylactic use of macrolides seems to be of benefit, particularly in patients with bronchiectasis and chronic mucous hypersecretion. In an effort to manage chronic airway infection non-CF bronchiectasis due to drug-resistant pathogens, aerosolized antibiotics may be of value, and the data from recent studies are examined to demonstrate the potential value of this therapy, which is often used as an adjunctive measure to systemic antimicrobial therapy.
Collapse
Affiliation(s)
| | - Liapikou Adamantia
- Sotiria Hospital, 6th Respiratory Department , Mesogion 152, 11527, Athens , Greece +30 2107763458 ;
| | | | | |
Collapse
|
40
|
Root MM, Houser SM, Anderson JJB, Dawson HR. Healthy Eating Index 2005 and selected macronutrients are correlated with improved lung function in humans. Nutr Res 2014; 34:277-84. [PMID: 24774063 DOI: 10.1016/j.nutres.2014.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 12/19/2022]
Abstract
A number of dietary components have been associated with lung function. However, a comprehensive measure of a healthy diet has not been compared with lung function. Herein, we test the hypothesis that a healthy overall diet, as assessed by the Healthy Eating Index 2005 (HEI-2005), will be associated with increased lung function. This is an investigation using the Atherosclerosis Risk in Communities Research Materials obtained from the National Heart Lung Blood Institute. The study surveyed dietary habits of 15 567 American subjects from 4 communities in 1987 to 1990. Spirometric measures of lung function were also taken at entry to the study and a second time 3 years later. Based on food and nutritional data collected by food frequency questionnaire, an HEI-2005 score was calculated for each subject. This total score, together with its 12 components scores and associated macronutrient, was compared with lung function results by linear regression. Models were controlled for smoking behavior, demographics, and other important covariates. The HEI-2005 total scores were positively associated with forced expiratory volume in 1 second per forced vital capacity (FEV(1)/FVC) at visit 1 (β = .101 per increase in 1 quintile of HEI-2005) and visit 2 (β = .140), and FEV(1) as percentage of the predicted FEV(1) at visit 2 (β = .215) (P < .05). In addition, HEI-2005 component scores that represented high intakes of whole grains (β = .127 and .096); saturated fats (β = -.091); and solid fats, alcohol, and added sugar (β = -.109 and -.131) were significantly associated with FEV(1)/FVC at either visit 1 or visit 2. Intakes of total calories (β =-.082 at visit 1) and saturated fatty acids (β = -.085 at visit 2) were negatively associated with FEV(1)/FVC. Dietary polyunsaturated fatty acids (β = .085 and .116) and long-chain omega-3 fatty acids (β = .109 and .103), animal protein (β = .132 and .093), and dietary fiber (β = .129) were positively associated with lung health. An overall healthy diet is associated with higher lung function.
Collapse
Affiliation(s)
- Martin M Root
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC.
| | - Shannon M Houser
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC
| | | | - Hannah R Dawson
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC
| |
Collapse
|