1
|
Tao L, Huang W, Li Z, Wang W, Lei X, Chen J, Song X, Lu F, Fan S, Zhang L. Transcriptome Analysis of Differentially Expressed Genes and Molecular Pathways Involved in C2C12 Cells Myogenic Differentiation. Mol Biotechnol 2024:10.1007/s12033-024-01259-7. [PMID: 39289290 DOI: 10.1007/s12033-024-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Muscles are essential tissues responsible for movement, stability, and metabolism, playing a crucial role in human health and well-being. A comprehensive understanding of muscle differentiation processes is imperative for combating muscle degenerative diseases such as muscular dystrophy. In this study, C2C12 cells were induced to differentiate into myotubes in vitro. Phenotypic changes were observed utilizing Gimsa and immunofluorescent staining techniques. RNA sequencing was conducted at distinct time points (0, 2, 4, and 7 days) during the differentiation process. To elucidate the underlying molecular mechanisms, differential expression analysis, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis (GSEA) were performed. Soft clustering of time series gene expression was employed to establish the expression patterns of differentially expressed genes (DEGs) at various time points during myogenesis. Additionally, quantitative reverse transcription PCR was utilized to validate gene expression from RNA-seq data at the mRNA level. Throughout the myogenic differentiation of C2C12 cells, notable morphological changes were observed, with myoblasts forming multinucleated myotubes by day 4 and plump elongated structures by day 7. Gene expression analysis revealed a substantial increase in DEGs as differentiation progressed, with a significant rise in DEGs from day 0 to day 7. Enrichment analysis highlighted key biological processes and pathways involved, including signal transduction and immune system processes, as well as pathways like chemokine and calcium signaling. Noise-robust soft clustering identified distinct temporal gene expression patterns, categorizing genes into upregulated, downregulated, and biphasic response clusters. The MYH family exhibited diverse expression changes, with Myh3, Myh13, Myh6, Myh7, Myh2, Myh8, Myh14, Myh7b, Myh1, and Myh4 upregulated, Myh10, Myh9, and Myh12 downregulated. Key transcription factors displayed dynamic expression patterns, which was crucial for the regulation of myoblast differentiation. A comprehensive and dynamic transcriptomic analysis of the C2C12 myoblast differentiation process has significantly enhanced our understanding of the key genes and biological pathways involved in myogenesis.
Collapse
Affiliation(s)
- Lingjian Tao
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Weixing Huang
- General Surgical Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, 317000, China
- Department of Nursing, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310000, China
| | - Zhiyan Li
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Wei Wang
- Department of Nursing, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310000, China
| | - Xinhuan Lei
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Jiangjie Chen
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Xiaoting Song
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Fangying Lu
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China
| | - Shaohua Fan
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China.
| | - Liwei Zhang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Zhejiang University, Ximen Street 150#, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
2
|
Ahlawat S, Arora R, Sharma R, Chhabra P, Kumar A, Kaur M, Lal SB, Mishra DC, Farooqi MS, Srivastava S. Revelation of genes associated with energy generating metabolic pathways in the fighter type Aseel chicken of India through skeletal muscle transcriptome sequencing. Anim Biotechnol 2023; 34:4989-5000. [PMID: 37288785 DOI: 10.1080/10495398.2023.2219718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, comparative analysis of skeletal muscle transcriptome was carried out for four biological replicates of Aseel, a fighter type breed and Punjab Brown, a meat type breed of India. The profusely expressed genes in both breeds were related to muscle contraction and motor activity. Differential expression analysis identified 961 up-regulated and 979 down-regulated genes in Aseel at a threshold of log2 fold change ≥ ±2.0 (padj<0.05). Significantly enriched KEGG pathways in Aseel included metabolic pathways and oxidative phosphorylation, with higher expression of genes associated with fatty acid beta-oxidation, formation of ATP by chemiosmotic coupling, response to oxidative stress, and muscle contraction. The highly connected hub genes identified through gene network analysis in the Aseel gamecocks were HNF4A, APOA2, APOB, APOC3, AMBP, and ACOT13, which are primarily associated with energy generating metabolic pathways. The up-regulated genes in Punjab Brown chicken were found to be related to muscle growth and differentiation. There was enrichment of pathways such as focal adhesion, insulin signaling pathway and ECM receptor interaction in these birds. The results presented in this study help to improve our understanding of the molecular mechanisms associated with fighting ability and muscle growth in Aseel and Punjab Brown chicken, respectively.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Shashi Bhushan Lal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
3
|
The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy. Cells 2022; 11:cells11152291. [PMID: 35892588 PMCID: PMC9332450 DOI: 10.3390/cells11152291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.
Collapse
|
4
|
Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett 2022; 525:131-145. [PMID: 34742870 DOI: 10.1016/j.canlet.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Impairment of the prominent tumor suppressor p53, well known for its canonical role as the "guardian of the genome", is found in almost half of human cancers. More recently, p53 has been suggested to be a crucial regulator of stemness, orchestrating the differentiation of embryonal and adult stem cells, suppressing reprogramming into induced pluripotent stem cells, or inhibiting cancer stemness (i.e., cancer stem cells, CSCs), which underlies the development of therapy-resistant tumors. This review addresses these noncanonical roles of p53 and their implications in sarcoma initiation and progression. Indeed, dysregulation of p53 family proteins is a common event in sarcomas and is associated with poor survival. Additionally, emerging studies have demonstrated that loss of wild-type p53 activity hinders the terminal differentiation of mesenchymal stem cells and leads to the development of aggressive sarcomas. This review summarizes recent findings on the roles of aberrant p53 in sarcoma development and stemness and further describes therapeutic approaches to restore normal p53 activity as a promising anti-CSC strategy to treat refractory sarcomas.
Collapse
|
5
|
Carlsen L, El-Deiry WS. Differential p53-Mediated Cellular Responses to DNA-Damaging Therapeutic Agents. Int J Mol Sci 2021; 22:ijms222111828. [PMID: 34769259 PMCID: PMC8584119 DOI: 10.3390/ijms222111828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
The gene TP53, which encodes the tumor suppressor protein p53, is mutated in about 50% of cancers. In response to cell stressors like DNA damage and after treatment with DNA-damaging therapeutic agents, p53 acts as a transcription factor to activate subsets of target genes which carry out cell fates such as apoptosis, cell cycle arrest, and DNA repair. Target gene selection by p53 is controlled by a complex regulatory network whose response varies across contexts including treatment type, cell type, and tissue type. The molecular basis of target selection across these contexts is not well understood. Knowledge gained from examining p53 regulatory network profiles across different DNA-damaging agents in different cell types and tissue types may inform logical ways to optimally manipulate the network to encourage p53-mediated tumor suppression and anti-tumor immunity in cancer patients. This may be achieved with combination therapies or with p53-reactivating targeted therapies. Here, we review the basics of the p53 regulatory network in the context of differential responses to DNA-damaging agents; discuss recent efforts to characterize differential p53 responses across treatment types, cell types, and tissue types; and examine the relevance of evaluating these responses in the tumor microenvironment. Finally, we address open questions including the potential relevance of alternative p53 transcriptional functions, p53 transcription-independent functions, and p53-independent functions in the response to DNA-damaging therapeutics.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Medicine, Hematology-Oncology Division, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
- Correspondence:
| |
Collapse
|
6
|
Russell KL, Downie JM, Gibson SB, Tsetsou S, Keefe MD, Duran JA, Figueroa KP, Bromberg MB, Murtaugh LC, Bonkowsky JL, Pulst SM, Jorde LB. Pathogenic Effect of TP73 Gene Variants in People With Amyotrophic Lateral Sclerosis. Neurology 2021; 97:e225-e235. [PMID: 34135078 PMCID: PMC8302149 DOI: 10.1212/wnl.0000000000012285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify novel disease associated loci for amyotrophic lateral sclerosis (ALS), we used sequencing data and performed in vitro and in vivo experiments to demonstrate pathogenicity of mutations identified in TP73. METHODS We analyzed exome sequences of 87 patients with sporadic ALS and 324 controls, with confirmatory sequencing in independent ALS cohorts of >2,800 patients. For the top hit, TP73, a regulator of apoptosis and differentiation and a binding partner and homolog of the tumor suppressor gene TP53, we assayed mutation effects using in vitro and in vivo experiments. C2C12 myoblast differentiation assays, characterization of myotube appearance, and immunoprecipitation of p53-p73 complexes were performed in vitro. In vivo, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 targeting of zebrafish tp73 to assay motor neuron number and axon morphology. RESULTS Four heterozygous rare, nonsynonymous mutations in TP73 were identified in our sporadic ALS cohort. In independent ALS cohorts, we identified an additional 19 rare, deleterious variants in TP73. Patient TP73 mutations caused abnormal differentiation and increased apoptosis in the myoblast differentiation assay, with abnormal myotube appearance. Immunoprecipitation of mutant ΔN-p73 demonstrated that patient mutations hinder the ability of ΔN-p73 to bind p53. CRISPR/Cas9 knockout of tp73 in zebrafish led to impaired motor neuron development and abnormal axonal morphology, concordant with ALS pathology. CONCLUSION Together, these results strongly suggest that variants in TP73 correlate with risk for ALS and indicate a role for apoptosis in ALS disease pathology.
Collapse
Affiliation(s)
- Kristi L Russell
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT.
| | - Jonathan M Downie
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Summer B Gibson
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Spyridoula Tsetsou
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Matthew D Keefe
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Jerry A Duran
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Karla P Figueroa
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Mark B Bromberg
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - L Charles Murtaugh
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Joshua L Bonkowsky
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Stefan M Pulst
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| | - Lynn B Jorde
- From the Departments of Human Genetics (K.L.R., J.A.D., L.C.M., L.B.J.), Neurology (S.B.G., K.P.F., M.B.B., S.M.P.), and Pediatrics (M.D.K., J.L.B.), University of Utah School of Medicine, Salt Lake City; Department of Medicine (J.M.D.), Massachusetts General Hospital, Boston; Department of Neurosurgery (S.T.), Mount Sinai Hospital, Icahn School of Medicine, New York, NY; and Brain and Spine Center (J.L.B.), Primary Children's Hospital, Salt Lake City, UT
| |
Collapse
|
7
|
Lu S, Sun C, Chen H, Zhang C, Li W, Wu L, Zhu J, Sun F, Huang J, Wang J, Zhen Z, Cai R, Sun X, Zhang Y, Zhang X. Bioinformatics Analysis and Validation Identify CDK1 and MAD2L1 as Prognostic Markers of Rhabdomyosarcoma. Cancer Manag Res 2020; 12:12123-12136. [PMID: 33273853 PMCID: PMC7705535 DOI: 10.2147/cmar.s265779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose The goal of the current study was to identify potential prognostic biomarkers of rhabdomyosarcoma (RMS). Materials and Methods We screened chip sequencing datasets of RMS through the gene expression omnibus (GEO) database. A total of 74 RMS patient tissues and 39 normal muscle cell tissues were analyzed. Limma R software was used to identify the differentially expressed genes (DEGs) between RMS tissues and normal controls. The GO plot R package was used to visualize the results of the GO analysis. We screened for pathaffy package enrichment of DEGs by the Kyoto Encyclopedia of Genes and Genomes (KEGG). The cutoff criterion was a P-value <0.05. Immunohistochemistry (IHC) was applied to validate the expression of CDK1 (cyclin-dependent kinases 1) and MAD2L1 (Mitotic Arrest Deficient 2 Like 1) in RMS. Results We obtained a total of 498 up- and 480 down-regulated DEGs. The hub genes are mainly involved in the cell cycle and P53 singling pathway. CDK1 expression was associated with tumor size and COG-STS (Children's Oncology Group-soft tissue sarcoma) staging of RMS. For the low CDK1 expression group and high CDK1 expression group, the 5-year overall survival (OS) rate was 83.0% vs 63.5% (P = 0.004), and the 5-year event-free survival (EFS) rate was 47.5% vs 27.5% (P = 0.049) respectively. When compared low MAD2L1 expression group with high MAD2L1 expression group, the 5-year OS rate was 80.0% vs 43.2% (P = 0.001), and the 5-year EFS rate was 45.1% vs 21.8% (P = 0.038), respectively. If patients were divided into three groups: low CDK1 and low MAD2L1 expression group, high CDK1 or high MAD2L1 expression group, and high CDK1 and high MAD2L1 expression group, the 5-year OS rate was 87.1%, 58.6%, 39.6% (P = 0.001), while the 5-year EFS rate of RMS patients was 54.2%, 23.2%, 21.7% (P = 0.028), respectively. Conclusion This study has identified that CDK1 and MAD2L1 were adverse prognostic factors of RMS.
Collapse
Affiliation(s)
- Suying Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Chengtao Sun
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Huimou Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Wei Li
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liuhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Ruiqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Xiaofei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Medical Melanoma and Sarcoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| |
Collapse
|
8
|
Ciuffoli V, Lena AM, Gambacurta A, Melino G, Candi E. Myoblasts rely on TAp63 to control basal mitochondria respiration. Aging (Albany NY) 2019; 10:3558-3573. [PMID: 30487319 PMCID: PMC6286837 DOI: 10.18632/aging.101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation of the function of the retinoblastoma protein and by direct activation of p21Cip/Waf1 and p57Kip2, promoting cell cycle exit. In previous studies, we have demonstrated that the TAp63γ isoform is the only member of the p53 family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube fusion. To better dissect the role of TAp63γ in myoblast physiology, we have generated both sh-p63 and Tet-On inducible TAp63γ clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a higher proliferation rate and that, conversely, TAp63γ ectopic expression decreases myoblasts proliferation, indicating that TAp63γ specifically contributes to myoblasts proliferation, independently of p53 and p73. In addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory capacity and a decrease in complex I, IV protein levels. These results demonstrated that, beside contributing to cell cycle exit, TAp63γ participates to myoblasts metabolism control.
Collapse
Affiliation(s)
- Veronica Ciuffoli
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Biochemistry laboratory, Rome, Italy
| |
Collapse
|
9
|
Smirnov A, Cappello A, Lena AM, Anemona L, Mauriello A, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G, Candi E. ZNF185 is a p53 target gene following DNA damage. Aging (Albany NY) 2019; 10:3308-3326. [PMID: 30446632 PMCID: PMC6286825 DOI: 10.18632/aging.101639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
The transcription factor p53 is a key player in the tumour suppressive DNA damage response and a growing number of target genes involved in these pathways has been identified. p53 has been shown to be implicated in controlling cell motility and its mutant form enhances metastasis by loss of cell directionality, but the p53 role in this context has not yet being investigated. Here, we report that ZNF185, an actin cytoskeleton-associated protein from LIM-family of Zn-finger proteins, is induced following DNA-damage. ChIP-seq analysis, chromatin crosslinking immune-precipitation experiments and luciferase assays demonstrate that ZNF185 is a bona fide p53 target gene. Upon genotoxic stress, caused by DNA-damaging drug etoposide and UVB irradiation, ZNF185 expression is up-regulated and in etoposide-treated cells, ZNF185 depletion does not affect cell proliferation and apoptosis, but interferes with actin cytoskeleton remodelling and cell polarization. Bioinformatic analysis of different types of epithelial cancers from both TCGA and GTEx databases showed a significant decrease in ZNF185 mRNA level compared to normal tissues. These findings are confirmed by tissue micro-array IHC staining. Our data highlight the involvement of ZNF185 and cytoskeleton changes in p53-mediated cellular response to genotoxic stress and indicate ZNF185 as potential biomarker for epithelial cancer diagnosis.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Angela Cappello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,Istituto Dermopatico dell'Immacolata-IRCCS, Rome 00163, Italy
| |
Collapse
|
10
|
Tang X, Chen Z, Deng M, Wang L, Nie Q, Xiang JW, Xiao Y, Yang L, Liu Y, Li DWC. The Sumoylation Modulated Tumor Suppressor p53 Regulates Cell Cycle Checking Genes to Mediate Lens Differentiation. Curr Mol Med 2019; 18:556-565. [PMID: 30636605 DOI: 10.2174/1566524019666190111154450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Furthermore, we have recently demonstrated that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. In addition, we have also shown that p53 controls both transcription factors, C-Maf and Prox-1 as well as lens crystallin genes, αA, β- and γ-crystallins. Here, we have examined whether p53 also regulates other known target genes during its modulation of lens differentiation. The human and mouse lens epithelial cells, FHL124 and αTN4-1 were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. METHODS Mice used in this study were handled in compliance with the "Protocol for the Care and Use of Laboratory Animals" (Sun Yat-sen University). Adult mice were used for the collection of lens cells. These samples were used for extraction of total proteins. A total of 32 embryonic mice {8 at 14.5 ED, 8 at 17.5 ED and 8 newborns for wild type} were used for immunohistochemistry, which were used for co-localization study. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS Immunohistochemistry revealed that both the cell cycle checking genes, p21 and Gadd45α and the apoptotic genes, Bcl-2 and PUMA, display developmental changes associated with p53 during mouse lens development. Knockdown of p53 in the mouse lens epithelial cells caused inhibition of lens differentiation. Associated with this inhibition, the cell cycle genes displayed significant downreglation, the apoptotic genes was also attenuated but to a much less degree. In addition, we found that bFGF can induce dose-dependent upregulation of the upstream kinases, CHK1/2 and ERK1/2, both known to phosphorylate p53 and activate the later. Furthermore, We showed that in both developing lens and human lens epithelial cells, p53 can be co-localized with the catalytic subunit of the protein phoshphatase-1 (PP-1), suggesting that PP-1 regulates p53 phosphorylation status both in vivo and in vitro. CONCLUSION Taken together, our results suggest that during mouse lens development, p53 activity is regulated by ERK and CHK kinases-mediated activation, and by PP-1-mediated inactivation. p53 can regulate multiple groups of genes to mediate lens differentiation.
Collapse
Affiliation(s)
- Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Mi Deng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
11
|
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther 2019; 202:149-164. [PMID: 31276706 DOI: 10.1016/j.pharmthera.2019.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Amanda Curl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Tomoo Iwakuma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Translational Laboratory Oncology Research, Children's Mercy Research Institute, Kansas City, MO 64108, USA.
| |
Collapse
|
12
|
Luo W, Ren X, Chen J, Li L, Lu S, Chen T, Nie Q, Zhang X. TP63 Transcripts Play Opposite Roles in Chicken Skeletal Muscle Differentiation. Front Physiol 2018; 9:1298. [PMID: 30283353 PMCID: PMC6157316 DOI: 10.3389/fphys.2018.01298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
Tumor protein 63 (TP63) comprises multiple isoforms and plays an important role during embryonic development. It has been shown that TP63 knockdown inhibits myogenic differentiation, but which isoform is involved in the underlying myogenic regulation remains uncertain. Here, we found that two transcripts of TP63, namely, TAp63α and ΔNp63α, are expressed in chicken skeletal muscle. These two transcripts have distinct expression patterns and opposite functions in skeletal muscle development. TAp63 has higher expression in skeletal muscle than in other tissues, and its expression is gradually upregulated during chicken primary myoblast differentiation. ΔNp63 can be expressed in multiple tissues and exhibits stable expression during myoblast differentiation. TAp63α overexpression inhibits myoblast proliferation, induces cell cycle arrest, and enhances myoblast differentiation. However, although ΔNp63α has no significant effect on cell proliferation, the overexpression of ΔNp63α inhibits myoblast differentiation. Using isoform-specific overexpression assays following RNA-sequencing, we identified potential downstream genes of TAp63α and ΔNp63α in myoblast. Bioinformatics analyses and experimental verification results showed that the differentially expressed genes (DEGs) between the TAp63α and control groups were enriched in the cell cycle pathway, whereas the DEGs between the ΔNp63α and control groups were enriched in muscle system process, muscle contraction, and myopathy. These findings provide new insights into the function and expression of TP63 during skeletal muscle development, and indicate that one gene may play two opposite roles during a single cellular process.
Collapse
Affiliation(s)
- Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xueyi Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Limin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shiyi Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tian Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Le Magnen C, Shen MM, Abate-Shen C. Lineage Plasticity in Cancer Progression and Treatment. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:271-289. [PMID: 29756093 PMCID: PMC5942183 DOI: 10.1146/annurev-cancerbio-030617-050224] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Historically, it has been widely presumed that differentiated cells are determined during development and become irreversibly committed to their designated fates. In certain circumstances, however, differentiated cells can display plasticity by changing their identity, either by dedifferentiation to a progenitor-like state or by transdifferentiation to an alternative differentiated cell type. Such cellular plasticity can be triggered by physiological or oncogenic stress, or it can be experimentally induced through cellular reprogramming. Notably, physiological stresses that promote plasticity, such as severe tissue damage, inflammation, or senescence, also represent hallmarks of cancer. Furthermore, key drivers of cellular plasticity include major oncogenic and tumor suppressor pathways and can be exacerbated by drug treatment. Thus, plasticity may help cancer cells evade detection and treatment. We propose that cancer can be considered as a disease of excess plasticity, a notion that has important implications for intervention and treatment.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Bailon-Moscoso N, Tinitana F, Martínez-Espinosa R, Jaramillo-Velez A, Palacio-Arpi A, Aguilar-Hernandez J, Romero-Benavides JC. Cytotoxic, antioxidative, genotoxic and antigenotoxic effects of Horchata, beverage of South Ecuador. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:539. [PMID: 29258490 PMCID: PMC5735544 DOI: 10.1186/s12906-017-2048-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND "Horchata" is an herbal mixture infusion consumed in Southern Ecuador; 66% of its plants are anti-inflammatory medicinal plant, and 51% are analgesics. Anti-inflammatory substances can prevent carcinogenesis mediated by cytotoxic effects and can prevent DNA damage. The aim of this study was to evaluate the cytotoxicity and apoptotic/antigenotoxic effects of horchata as well as its mechanism. METHODS Nine different varieties of horchata were prepared in the traditional way and then freeze-dried. Phytochemical screening tested for the presence of secondary metabolites using standard procedures and antioxidant activities. The cytotoxic activity was evaluated on cerebral astrocytoma (D-384), prostate cancer (PC-3), breast cancer (MCF-7), colon cancer (RKO), lung cancer (A-549), immortalized Chinese hamster ovary cells (CHO-K1), and human peripheral blood lymphocytes via a MTS assay. The pro-apoptotic effects were evaluated with Anexin V/Propidium Iodide and western blot of Bax, Bcl-2, TP53, and TP73. Induction and reduction of ROS were assessed by fluorimetry. Genotoxic and antigenotoxic effects were evaluated with a comet assay and micronuclei on binucleated cells. RESULTS Five of nine horchatas had cytotoxic effects against D-384 while not affecting normal cells. These horchatas induce cell death by apoptosis modulated by p53/p73. In CHO-K1 cells, the horchatas decrease the damage induced by hydrogen peroxide and Mitomycin C measured in the comet and micronucleus assay respectively. CONCLUSIONS The IC50 range of effective horchatas in D-384 was 41 to 122 μg·mL-1. This effect may be related to its use in traditional medicine (brain tonic). On the other hand, immortalized Chinese hamster ovary cells (CHO-K1) and lymphocytes did not show a cytotoxic effect. The most potent horchata induced apoptosis via a p53/p73-mediated mechanism. The horchatas present antigenotoxic properties, which may be related to the antioxidant capacity. Future studies on horchata components are necessary to understand the interactions and beneficial properties.
Collapse
Affiliation(s)
- Natalia Bailon-Moscoso
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Fani Tinitana
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Ruth Martínez-Espinosa
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Andrea Jaramillo-Velez
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Alejandra Palacio-Arpi
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | |
Collapse
|
15
|
Stocks B, Dent JR, Joanisse S, McCurdy CE, Philp A. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity. Front Physiol 2017; 8:941. [PMID: 29255419 PMCID: PMC5723034 DOI: 10.3389/fphys.2017.00941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
Tumour protein 53 (p53) has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO) and floxed littermate controls (WT) under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1), fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL), carbohydrate metabolism (HKII, PDH), energy sensing (AMPKα2, AMPKβ2), and gene transcription (NRF1, PGC-1α, and TFAM) were comparable in p53 mKO and WT mice (p > 0.05). Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05). Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.
Collapse
Affiliation(s)
- Ben Stocks
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jessica R Dent
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie Joanisse
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging. Aging (Albany NY) 2017; 8:3450-3467. [PMID: 28025407 PMCID: PMC5270679 DOI: 10.18632/aging.101139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023]
Abstract
p53 transcriptional activity has been proposed to regulate both homeostasis and sarcopenia of skeletal muscle during aging. However, the exact molecular function of p53 remains to be clearly defined. We demonstrated a requirement of nuclear p53 S-nitrosylation in inducing a nitric oxide/PGC-1α-mediated antioxidant pathway in skeletal muscle. Importantly, mutant form of p53-DNA binding domain (C124S) did not undergo nuclear S-nitrosylation and failed in inducing the expression of antioxidant genes (i.e. SOD2 and GCLC). Moreover, we found that during aging the nuclear S-nitrosylation of p53 significantly declines in gastrocnemius/soleus leading to an impairment of redox homeostasis of skeletal muscle. We suggested that decreased level of nuclear neuronal nitric oxide synthase (nNOS)/Syntrophin complex, which we observed during aging, could be responsible for impaired nuclear S-nitrosylation. Taken together, our data indicate that altered S-nitrosylation of p53 during aging could be a contributing factor of sarcopenia condition and of other skeletal muscle pathologies associated with oxidative/nitrosative stress.
Collapse
|
17
|
Slemmons KK, Crose LES, Riedel S, Sushnitha M, Belyea B, Linardic CM. A Novel Notch-YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma. Mol Cancer Res 2017; 15:1777-1791. [PMID: 28923841 DOI: 10.1158/1541-7786.mcr-17-0004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS), a cancer characterized by skeletal muscle features, is the most common soft-tissue sarcoma of childhood. While low- and intermediate-risk groups have seen improved outcomes, high-risk patients still face a 5-year survival rate of <30%, a statistic that has not changed in over 40 years. Understanding the biologic underpinnings of RMS is critical. The developmental pathways of Notch and YAP have been identified as potent but independent oncogenic signals that support the embryonal variant of RMS (eRMS). Here, the cross-talk between these pathways and the impact on eRMS tumorigenesis is reported. Using human eRMS cells grown as three-dimensional (3D) rhabdospheres, which enriches in stem cells, it was found that Notch signaling transcriptionally upregulates YAP1 gene expression and YAP activity. Reciprocally, YAP transcriptionally upregulates the Notch ligand genes JAG1 and DLL1 and the core Notch transcription factor RBPJ This bidirectional circuit boosts expression of key stem cell genes, including SOX2, which is functionally required for eRMS spheres. Silencing this circuit for therapeutic purposes may be challenging, because the inhibition of one node (e.g., pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Finally, supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases Notch signaling and SOX2 expression.Implications: This study identifies a novel oncogenic signaling circuit driving eRMS stemness and tumorigenesis, and provides evidence and rationale for combination therapies co-targeting Notch and YAP. Mol Cancer Res; 15(12); 1777-91. ©2017 AACR.
Collapse
Affiliation(s)
- Katherine K Slemmons
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Lisa E S Crose
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Stefan Riedel
- Duke Summer Research Opportunity Program, Duke University Graduate School, Durham, North Carolina
| | - Manuela Sushnitha
- Summer Undergraduate Research in Pharmacology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Brian Belyea
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Corinne M Linardic
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
18
|
Bhandari PN, Cui Y, Elzey BD, Goergen CJ, Long CM, Irudayaraj J. Oxygen nanobubbles revert hypoxia by methylation programming. Sci Rep 2017; 7:9268. [PMID: 28839175 PMCID: PMC5570893 DOI: 10.1038/s41598-017-08988-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/14/2017] [Indexed: 01/12/2023] Open
Abstract
Targeting the hypoxic tumor microenvironment has a broad impact in cancer epigenetics and therapeutics. Oxygen encapsulated nanosize carboxymethyl cellulosic nanobubbles were developed for mitigating the hypoxic regions of tumors to weaken the hypoxia-driven pathways and inhibit tumor growth. We show that 5-methylcytosine (5mC) hypomethylation in hypoxic regions of a tumor can be reverted to enhance cancer treatment by epigenetic regulation, using oxygen nanobubbles in the sub-100 nm size range, both, in vitro and in vivo. Oxygen nanobubbles were effective in significantly delaying tumor progression and improving survival rates in mice models. Further, significant hypermethylation was observed in promoter DNA region of BRCA1 due to oxygen nanobubble (ONB) treatment. The nanobubbles can also reprogram several hypoxia associated and tumor suppressor genes such as MAT2A and PDK-1, in addition to serving as an ultrasound contrast agent. Our approach to develop nanosized oxygen encapsulated bubbles as an ultrasound contrast agent for methylation reversal is expected to have a significant impact in epigenetic programming and to serve as an adjuvant to cancer treatment.
Collapse
Affiliation(s)
- Pushpak N Bhandari
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| | - Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Christopher M Long
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA.
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
19
|
Yu Y, Fu L, Wang S, Jin Y, Han S, Chu P, Lu J, Guo Y, He L, Ni X. Investigation of IGF2, IGFBP2 and p63 proteins in rhabdomyosarcoma tumors. Growth Horm IGF Res 2017; 33:17-22. [PMID: 28129571 DOI: 10.1016/j.ghir.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED Many efforts have been made to address involvement of the insulin-like growth-factor (IGF) pathway in rhabdomyosarcoma (RMS) pathogenesis, but the actual role of IGF in RMS is still controversial. OBJECTIVE To investigate the implications of IGF2, IGFBP2 and p63 in RMS, and further explored their potential interaction. DESIGN A total of 114 specimens of RMS along with clinic-pathologic characteristics were collected from the year of 2003 to 2013. Protein abundance was detected by immunohistochemical staining, potential relationships between protein levels and clinic-pathological parameters were applied using correlation analysis. RESULTS The results showed positive correlation between IGFBP2 and p63 (r=0.271, p=0.003), suggesting that the interaction of IGFBP2 and p63 might account for the pathogenesis of RMS. In the subtype analysis, positive correlation was still found in embryonal rhabdomyosarcoma (ERMS, r=0.214, p=0.034) and alveolar rhabdomyosarcoma (ARMS, r=0.498, p=0.048). By focusing on the interaction of IGF pathway and p63, our results reveal additional signs to elucidate difference of pathogenesis and severity between ERMS and ARMS. CONCLUSIONS The present study provides novel evidence to elucidate RMS pathogenesis and may be beneficial to clinical diagnosis and therapy for RMS.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Libing Fu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shen Wang
- Clinical Diagnostic Center, 302nd Hospital of the People's Liberation Army, Beijing, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Abstract
Rhabdomyosarcoma (RMS) is a myogenic tumor classified as the most frequent soft tissue sarcoma affecting children and adolescents. The histopathological classification includes 5 different histotypes, with 2 most predominant referred as to embryonal and alveolar, the latter being characterized by adverse outcome. The current molecular classification identifies 2 major subsets, those harboring the fused Pax3-Foxo1 transcription factor generating from a recurrent specific translocation (fusion-positive RMS), and those lacking this signature but harboring mutations in the RAS/PI3K/AKT signaling axis (fusion-negative RMS). Since little attention has been devoted to RMS metabolism until now, in this review we summarize the "state of art" of metabolism and discuss how some of the molecular signatures found in this cancer, as observed in other more common tumors, can predict important metabolic challenges underlying continuous cell growth, oxidative stress resistance and metastasis, which could be the subject of future targeted therapies.
Collapse
Affiliation(s)
- Eugenio Monti
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Alessandro Fanzani
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy.,b Interuniversity Institute of Myology , Rome , Italy
| |
Collapse
|
21
|
Abstract
Unlike the rather stereotypic image by which it was portrayed until not too many years ago, p53 is now increasingly emerging as a multifaceted transcription factor that can sometimes exert opposing effects on biological processes. This includes pro-survival activities that seem to contradict p53's canonical proapoptotic features, as well as opposing effects on cell migration, metabolism, and differentiation. Such antagonistic bifunctionality (balancing both positive and negative signals) bestows p53 with an ideal attribute to govern homeostasis. The molecular mechanisms underpinning the paradoxical activities of p53 may be related to a protein conformational spectrum (from canonical wild-type to "pseudomutant"), diversity of DNA response elements, and/or higher-order chromatin configuration. Altogether, this functional flexibility positions p53 as a transcriptional "super hub" that dictates cell homeostasis, and ultimately cell fate, by governing a hierarchy of other functional hubs. Deciphering the mechanisms by which p53 determines which hubs to engage, and how one might modulate the preferences of p53, remains a major challenge for both basic science and translational cancer medicine.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Fortini P, Iorio E, Dogliotti E, Isidoro C. Coordinated Metabolic Changes and Modulation of Autophagy during Myogenesis. Front Physiol 2016; 7:237. [PMID: 27378945 PMCID: PMC4909729 DOI: 10.3389/fphys.2016.00237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/03/2016] [Indexed: 12/03/2022] Open
Abstract
Autophagy undergoes a fine tuning during tissue differentiation and organ remodeling in order to meet the dynamic changes in the metabolic needs. While the involvement of autophagy in the homeostasis of mature muscle tissues has been intensively studied, no study has so far addressed the regulation of autophagy in relation to the metabolic state during the myogenic differentiation. In our recently published study (Fortini et al., 2016) we investigated the metabolic profile and regulation of autophagy that accompany the differentiation process of mouse skeletal muscle satellite cells (MSC)-derived myoblasts into myotubes. Here, we briefly present these findings also in the light of similar studies conducted by other authors. We show that during myogenic differentiation mitochondrial function and activity are greatly increased, and the activation of autophagy accompanies the transition from myoblasts to myotube. Autophagy is mTORC1 inactivation-independent and, remarkably, is required to allow the myocyte fusion process, as shown by impaired cell fusion when the autophagic flux is inhibited either by genetic or drug manipulation. Further, we found that myoblasts derived from p53 null mice show defective terminal differentiation into myotubes and reduced activation of basal autophagy. Of note, glycolysis prevails and mitochondrial biogenesis is strongly impaired in p53-null myoblasts. Thus, autophagy, mitochondrial homeostasis, and differentiation are finely tuned in a coordinate manner during muscle biogenesis.
Collapse
Affiliation(s)
- Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità Rome, Italy
| | - Ciro Isidoro
- Università degli Studi del Piemonte Orientale "Amedeo Avogadro" Novara, Italy
| |
Collapse
|
23
|
McKinnon T, Venier R, Dickson BC, Kabaroff L, Alkema M, Chen L, Shern JF, Yohe ME, Khan J, Gladdy RA. Kras activation in p53-deficient myoblasts results in high-grade sarcoma formation with impaired myogenic differentiation. Oncotarget 2016; 6:14220-32. [PMID: 25992772 PMCID: PMC4546462 DOI: 10.18632/oncotarget.3856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022] Open
Abstract
While genomic studies have improved our ability to classify sarcomas, the molecular mechanisms involved in the formation and progression of many sarcoma subtypes are unknown. To better understand developmental origins and genetic drivers involved in rhabdomyosarcomagenesis, we describe a novel sarcoma model system employing primary murine p53-deficient myoblasts that were isolated and lentivirally transduced with KrasG12D. Myoblast cell lines were characterized and subjected to proliferation, anchorage-independent growth and differentiation assays to assess the effects of transgenic KrasG12D expression. KrasG12D overexpression transformed p53−/− myoblasts as demonstrated by an increased anchorage-independent growth. Induction of differentiation in parental myoblasts resulted in activation of key myogenic regulators. In contrast, Kras-transduced myoblasts had impaired terminal differentiation. p53−/− myoblasts transformed by KrasG12D overexpression resulted in rapid, reproducible tumor formation following orthotopic injection into syngeneic host hindlimbs. Pathological analysis revealed high-grade sarcomas with myogenic differentiation based on the expression of muscle-specific markers, such as Myod1 and Myog. Gene expression patterns of murine sarcomas shared biological pathways with RMS gene sets as determined by gene set enrichment analysis (GSEA) and were 61% similar to human RMS as determined by metagene analysis. Thus, our novel model system is an effective means to model high-grade sarcomas along the RMS spectrum.
Collapse
Affiliation(s)
- Timothy McKinnon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Brendan C Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Manon Alkema
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Li Chen
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Marielle E Yohe
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Ontario Institute for Cancer Research, Cancer Stem Cell Program, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
The fine tuning of metabolism, autophagy and differentiation during in vitro myogenesis. Cell Death Dis 2016; 7:e2168. [PMID: 27031965 PMCID: PMC4823951 DOI: 10.1038/cddis.2016.50] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/12/2016] [Accepted: 01/22/2016] [Indexed: 01/07/2023]
Abstract
Although the mechanisms controlling skeletal muscle homeostasis have been identified, there is a lack of knowledge of the integrated dynamic processes occurring during myogenesis and their regulation. Here, metabolism, autophagy and differentiation were concomitantly analyzed in mouse muscle satellite cell (MSC)-derived myoblasts and their cross-talk addressed by drug and genetic manipulation. We show that increased mitochondrial biogenesis and activation of mammalian target of rapamycin complex 1 inactivation-independent basal autophagy characterize the conversion of myoblasts into myotubes. Notably, inhibition of autophagic flux halts cell fusion in the latest stages of differentiation and, conversely, when the fusion step of myocytes is impaired the biogenesis of autophagosomes is also impaired. By using myoblasts derived from p53 null mice, we show that in the absence of p53 glycolysis prevails and mitochondrial biogenesis is strongly impaired. P53 null myoblasts show defective terminal differentiation and attenuated basal autophagy when switched into differentiating culture conditions. In conclusion, we demonstrate that basal autophagy contributes to a correct execution of myogenesis and that physiological p53 activity is required for muscle homeostasis by regulating metabolism and by affecting autophagy and differentiation.
Collapse
|
25
|
von Grabowiecki Y, Abreu P, Blanchard O, Palamiuc L, Benosman S, Mériaux S, Devignot V, Gross I, Mellitzer G, Gonzalez de Aguilar JL, Gaiddon C. Transcriptional activator TAp63 is upregulated in muscular atrophy during ALS and induces the pro-atrophic ubiquitin ligase Trim63. eLife 2016; 5. [PMID: 26919175 PMCID: PMC4786414 DOI: 10.7554/elife.10528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Paula Abreu
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Orphee Blanchard
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Lavinia Palamiuc
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Samir Benosman
- Sanford Burnham Medical Research Institute, San Diego, United States
| | - Sophie Mériaux
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Véronique Devignot
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Isabelle Gross
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Georg Mellitzer
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - José L Gonzalez de Aguilar
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Institut national de la santé et de la recherche médicale, Laboratoire SMN, Strasbourg, France
| | - Christian Gaiddon
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| |
Collapse
|
26
|
Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016; 73:617-35. [PMID: 26211463 PMCID: PMC11108386 DOI: 10.1007/s00018-015-1994-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle repair by inducing the expansion of satellite stem cells as well as myofiber hypertrophy. Here, we describe that the obestatin/GPR39 system acts as autocrine/paracrine factor on human myogenesis. Obestatin regulated multiple steps of myogenesis: myoblast proliferation, cell cycle exit, differentiation and recruitment to fuse and form multinucleated hypertrophic myotubes. Obestatin-induced mitogenic action was mediated by ERK1/2 and JunD activity, being orchestrated by a G-dependent mechanism. At a later stage of myogenesis, scaffolding proteins β-arrestin 1 and 2 were essential for the activation of cell cycle exit and differentiation through the transactivation of the epidermal growth factor receptor (EGFR). Upon obestatin stimulus, β-arrestins are recruited to the membrane, where they functionally interact with GPR39 leading to Src activation and signalplex formation to EGFR transactivation by matrix metalloproteinases. This signalplex regulated the mitotic arrest by p21 and p57 expression and the mid- to late stages of differentiation through JNK/c-Jun, CAMKII, Akt and p38 pathways. This finding not only provides the first functional activity for β-arrestins in myogenesis but also identify potential targets for therapeutic approaches by triggering specific signaling arms of the GPR39 signaling involved in myogenesis.
Collapse
Affiliation(s)
- Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Tania Cid-Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Gabriela Figueroa
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Mónica Bouzo-Lorenzo
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Vincent Mouly
- Institut de Myologie, INSERM, and Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Velletri T, Xie N, Wang Y, Huang Y, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Cao G, Melino G, Shi Y. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis 2016; 7:e2015. [PMID: 26775693 PMCID: PMC4816167 DOI: 10.1038/cddis.2015.367] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS.
Collapse
Affiliation(s)
- T Velletri
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - P Shou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Melino
- Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Soochow Institutes for Translational Medicine, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Cefalù S, Lena AM, Vojtesek B, Musarò A, Rossi A, Melino G, Candi E. TAp63gamma is required for the late stages of myogenesis. Cell Cycle 2015; 14:894-901. [PMID: 25790093 DOI: 10.4161/15384101.2014.988021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
p53 family members, p63 and p73, play a role in controlling early stage of myogenic differentiation. We demonstrated that TAp63gamma, unlike the other p53 family members, is markedly up-regulated during myogenic differentiation in murine C2C7 cell line. We also found that myotubes formation was inhibited upon TAp63gamma knock-down, as also indicated by atrophyic myotubes and reduction of myoblasts fusion index. Analysis of TAp63gamma-dependend transcripts identified several target genes involved in skeletal muscle contractility energy metabolism, myogenesis and skeletal muscle autocrine signaling. These results indicate that TAp63gamma is a late marker of myogenic differentiation and, by controlling different sub-sets of target genes, it possibly contributes to muscle growth, remodeling, functional differentiation and tissue homeostasis.
Collapse
Affiliation(s)
- S Cefalù
- a Istututo Dermopatico dell'Immacolata ; IDI-IRCCS ; Rome , Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ 2014; 22:560-73. [PMID: 25501595 DOI: 10.1038/cdd.2014.189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022] Open
Abstract
Acute muscle injury and physiological stress from chronic muscle diseases and aging lead to impairment of skeletal muscle function. This raises the question of whether p53, a cellular stress sensor, regulates muscle tissue repair under stress conditions. By investigating muscle differentiation in the presence of genotoxic stress, we discovered that p53 binds directly to the myogenin promoter and represses transcription of myogenin, a member of the MyoD family of transcription factors that plays a critical role in driving terminal muscle differentiation. This reduction of myogenin protein is observed in G1-arrested cells and leads to decreased expression of late but not early differentiation markers. In response to acute genotoxic stress, p53-mediated repression of myogenin reduces post-mitotic nuclear abnormalities in terminally differentiated cells. This study reveals a mechanistic link previously unknown between p53 and muscle differentiation, and suggests new avenues for managing p53-mediated stress responses in chronic muscle diseases or during muscle aging.
Collapse
|
30
|
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 2014; 34:4287-99. [PMID: 25381823 DOI: 10.1038/onc.2014.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.
Collapse
Affiliation(s)
- D Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - C Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - V Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - B M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
31
|
Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q, Zhang X. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis 2014; 5:e1347. [PMID: 25032870 PMCID: PMC4123083 DOI: 10.1038/cddis.2014.289] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-203 is also expressed in embryonic skeletal muscle and myoblasts. In this study, we found that miR-203 was transiently upregulated in chicken embryos on days 10 to 16 (E10-E16) and was sharply downregulated and even not expressed after E16 in chicken embryonic skeletal muscle. Histological profiles and weight variations of embryo skeletal muscle revealed that miR-203 expression is correlated with muscle development. In vitro experiments showed that miR-203 exhibited downregulated expression during myoblast differentiation into myotubes. miR-203 overexpression inhibited myoblast proliferation and differentiation, whereas its loss-of-function increased myoblast proliferation and differentiation. During myogenesis, miR-203 can target and inhibit the expression of c-JUN and MEF2C, which were important for cell proliferation and muscle development, respectively. The overexpression of c-JUN significantly promoted myoblast proliferation. Conversely, knockdown of c-JUN by siRNA suppressed myoblast proliferation. In addition, the knockdown of MEF2C by siRNA significantly inhibited myoblast differentiation. Altogether, these data not only suggested that the expression of miR-203 is transitory during chicken skeletal muscle development but also showed a novel role of miR-203 in inhibiting skeletal muscle cell proliferation and differentiation by repressing c-JUN and MEF2C, respectively.
Collapse
Affiliation(s)
- W Luo
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - H Wu
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Y Ye
- Department of Veterinary Biomedicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Z Li
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Hao
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - L Kong
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Zheng
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Lin
- Department of Animal Science, College of Life Science, Foshan University, Foshan, Guangdong 528231, China
| | - Q Nie
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Zhang
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
32
|
Costanzo A, Pediconi N, Narcisi A, Guerrieri F, Belloni L, Fausti F, Botti E, Levrero M. TP63 and TP73 in cancer, an unresolved "family" puzzle of complexity, redundancy and hierarchy. FEBS Lett 2014; 588:2590-9. [PMID: 24983500 DOI: 10.1016/j.febslet.2014.06.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022]
Abstract
TP53 belongs to a small gene family that includes, in mammals, two additional paralogs, TP63 and TP73. The p63 and p73 proteins are structurally and functionally similar to p53 and their activity as transcription factors is regulated by a wide repertoire of shared and unique post-translational modifications and interactions with regulatory cofactors. p63 and p73 have important functions in embryonic development and differentiation but are also involved in tumor suppression. The biology of p63 and p73 is complex since both TP63 and TP73 genes are transcribed into a variety of different isoforms that give rise to proteins with antagonistic properties, the TA-isoforms that act as tumor-suppressors and DN-isoforms that behave as proto-oncogenes. The p53 family as a whole behaves as a signaling "network" that integrates developmental, metabolic and stress signals to control cell metabolism, differentiation, longevity, proliferation and death. Despite the progress of our knowledge, the unresolved puzzle of complexity, redundancy and hierarchy in the p53 family continues to represent a formidable challenge.
Collapse
Affiliation(s)
- Antonio Costanzo
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Natalia Pediconi
- Laboratory of Molecular Oncology, Department of Molecular Medicine, Sapienza University of Rome, Italy; Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy
| | - Alessandra Narcisi
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Francesca Guerrieri
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy
| | - Laura Belloni
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy
| | - Francesca Fausti
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Elisabetta Botti
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Massimo Levrero
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy.
| |
Collapse
|
33
|
Antagonism between the Master Regulators of Differentiation Ensures the Discreteness and Robustness of Cell Fates. Mol Cell 2014; 54:526-35. [DOI: 10.1016/j.molcel.2014.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/21/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022]
|
34
|
Shetzer Y, Solomon H, Koifman G, Molchadsky A, Horesh S, Rotter V. The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis 2014; 35:1196-208. [PMID: 24658181 DOI: 10.1093/carcin/bgu073] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that expression of mutant p53 involves the gain of oncogenic-specific activities accentuating the malignant phenotype. Depending on the specific cancer type, mutant p53 can contribute to either the early or the late events of the multiphase process underlying the transformation of a normal cell into a cancerous one. This multifactorial system is evident in ~50% of human cancers. Mutant p53 was shown to interfere with a variety of cellular functions that lead to augmented cell survival, cellular plasticity, aberration of DNA repair machinery and other effects. All these effects culminate in the acquisition of drug resistance often seen in cancer cells. Interestingly, drug resistance has also been suggested to be associated with cancer stem cells (CSCs), which reside within growing tumors. The notion that p53 plays a regulatory role in the life of stem cells, coupled with the observations that p53 mutations may contribute to the evolvement of CSCs makes it challenging to speculate that drug resistance and cancer recurrence are mediated by CSCs expressing mutant p53.
Collapse
Affiliation(s)
- Yoav Shetzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gabriela Koifman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Stav Horesh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
35
|
Rodhe J, Kavanagh E, Joseph B. TAp73β-mediated suppression of cell migration requires p57Kip2 control of actin cytoskeleton dynamics. Oncotarget 2014; 4:289-97. [PMID: 23470527 PMCID: PMC3712574 DOI: 10.18632/oncotarget.833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The TP73 gene, a member of the p53 family, due to the use of different promoters and alternative splicing, is transcribed into different isoforms with contrasting attributes and which contribute to its functional diversity. Considerable efforts are made to identify the functional diversity of the p73 splicing variants during tumorigenesis.TAp73α and TAp73β isoforms have been shown to differentially regulate cell cycle progression, differentiation and apoptosis. Interestingly, a particular increase in expression of the TAp73 isoform, in favor of the α splicing variant, has been reported in multiple tumour types. Here, we report a distinctive role for TAp73β isoform in the control of cell migration and invasion. In fact, TAp73β-dependent induction of p57Kip2 expression accounted for inhibitory effects on the actin cytoskeleton dynamics and thereby cancer cell motility. In contrast, TAp73α is not able to induce p57Kip2 expression, and exhibits a positive effect on actin cytoskeleton dynamics as well as cell migration and invasion. In conclusion, the inhibitory effect on cell migration and invasion of TAp73β would qualify this distinct p73 isoform as tumor suppressor gene. In contrast, the promoting effect of TAp73α on cell motility and invasion strengthens the potential oncogenic activities of this p73 isoform.
Collapse
Affiliation(s)
- Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
36
|
Idogawa M, Ohashi T, Sasaki Y, Maruyama R, Kashima L, Suzuki H, Tokino T. Identification and analysis of large intergenic non-coding RNAs regulated by p53 family members through a genome-wide analysis of p53-binding sites. Hum Mol Genet 2014; 23:2847-57. [PMID: 24403050 DOI: 10.1093/hmg/ddt673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
p53 is one of the most important known tumor suppressor genes, and it is inactivated in approximately half of human cancers. p53 family members execute various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. Therefore, the direct transcriptional targets of the p53 family must be explored to elucidate the functional mechanisms of family members. To identify the direct transcriptional targets of p53 family members, we performed chromatin immunoprecipitation together with next-generation sequencing (ChIP-seq) and searched for p53-binding motifs across the entire human genome. Among the identified ChIP-seq peaks, approximately half were located in an intergenic region. Therefore, we assumed large intergenic non-coding RNAs (lincRNAs) to be major targets of the p53 family. Recent reports have revealed that lincRNAs play an important role in various biological and pathological processes, such as development, differentiation, stemness and carcinogenesis. Through a combination of ChIP-seq and in silico analyses, we found 23 lincRNAs that are upregulated by the p53 family. Additionally, knockdown of specific lincRNAs modulated p53-induced apoptosis and promoted the transcription of a gene cluster. Our results suggest that p53 family members, and lincRNAs constitute a complex transcriptional network involved in various biological functions and tumor suppression.
Collapse
Affiliation(s)
- Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine and
| | | | | | | | | | | | | |
Collapse
|
37
|
Couture O, Lombardi E, Davis K, Hays E, Chandar N. Gene expression profiles resulting from stable loss of p53 mirrors its role in tissue differentiation. PLoS One 2013; 8:e82494. [PMID: 24312426 PMCID: PMC3842970 DOI: 10.1371/journal.pone.0082494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/25/2013] [Indexed: 01/24/2023] Open
Abstract
The tumor suppressor gene p53 is involved in a variety of cellular activities such as cellular stress responses, cell cycle regulation and differentiation. In our previous studies we have shown p53’s transcription activating role to be important in osteoblast differentiation. There is still a debate in the literature as to whether p53 inhibits or promotes differentiation. We have found p53 heterozygous mice to show a p53 dependency on some bone marker gene expression that is absent in knockout mice. Mice heterozygous for p53 also show a higher incidence of osteosarcomas than p53 knockout mice. This suggests that p53 is able to modify the environment within osteoblasts. In this study we compare changes in gene expression resulting after either a transient or stable reduction in p53. Accordingly we reduced p53 levels transiently and stably in C2C12 cells, which are capable of both myoblast and osteoblast differentiation, and compared the changes in gene expression of candidate genes regulated by the p53 pathway. Using a PCR array to assay for p53 target genes, we have found different expression profiles when comparing stable versus transient knockdown of p53. As expected, several genes with profound changes after transient p53 loss were related to apoptosis and cell cycle regulation. In contrast, stable p53 loss produced a greater change in MyoD and other transcription factors with tissue specific roles, suggesting that long term loss of p53 affects tissue homeostasis to a greater degree than changes resulting from acute loss of p53. These differences in gene expression were validated by measuring promoter activity of different pathway specific genes involved in differentiation. These studies suggest that an important role for p53 is context dependent, with a stable reduction in p53 expression affecting normal tissue physiology more than acute loss of p53.
Collapse
Affiliation(s)
- Oliver Couture
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Eric Lombardi
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Kendra Davis
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Emily Hays
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Nalini Chandar
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kikuchi K, Taniguchi E, Chen HIH, Svalina MN, Abraham J, Huang ET, Nishijo K, Davis S, Louden C, Zarzabal LA, Recht O, Bajwa A, Berlow N, Suelves M, Perkins SL, Meltzer PS, Mansoor A, Michalek JE, Chen Y, Rubin BP, Keller C. Rb1 loss modifies but does not initiate alveolar rhabdomyosarcoma. Skelet Muscle 2013; 3:27. [PMID: 24274149 PMCID: PMC4177545 DOI: 10.1186/2044-5040-3-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/23/2013] [Indexed: 01/31/2023] Open
Abstract
Background Alveolar rhabdomyosarcoma (aRMS) is a myogenic childhood sarcoma frequently associated with a translocation-mediated fusion gene, Pax3:Foxo1a. Methods We investigated the complementary role of Rb1 loss in aRMS tumor initiation and progression using conditional mouse models. Results Rb1 loss was not a necessary and sufficient mutational event for rhabdomyosarcomagenesis, nor a strong cooperative initiating mutation. Instead, Rb1 loss was a modifier of progression and increased anaplasia and pleomorphism. Whereas Pax3:Foxo1a expression was unaltered, biomarkers of aRMS versus embryonal rhabdomyosarcoma were both increased, questioning whether these diagnostic markers are reliable in the context of Rb1 loss. Genome-wide gene expression in Pax3:Foxo1a,Rb1 tumors more closely approximated aRMS than embryonal rhabdomyosarcoma. Intrinsic loss of pRb function in aRMS was evidenced by insensitivity to a Cdk4/6 inhibitor regardless of whether Rb1 was intact or null. This loss of function could be attributed to low baseline Rb1, pRb and phospho-pRb expression in aRMS tumors for which the Rb1 locus was intact. Pax3:Foxo1a RNA interference did not increase pRb or improve Cdk inhibitor sensitivity. Human aRMS shared the feature of low and/or heterogeneous tumor cell pRb expression. Conclusions Rb1 loss from an already low pRb baseline is a significant disease modifier, raising the possibility that some cases of pleomorphic rhabdomyosarcoma may in fact be Pax3:Foxo1a-expressing aRMS with Rb1 or pRb loss of function.
Collapse
Affiliation(s)
- Ken Kikuchi
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Eri Taniguchi
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hung-I Harry Chen
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Matthew N Svalina
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Jinu Abraham
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Elaine T Huang
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Koichi Nishijo
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sean Davis
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Christopher Louden
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Lee Ann Zarzabal
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Olivia Recht
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Ayeza Bajwa
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Noah Berlow
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Mònica Suelves
- Institut de Medicina Predictiva i Personalitzada del Càncer, Ctra. de Can Ruti, Barcelona 08916, Spain
| | - Sherrie L Perkins
- ARUP Laboratories and Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul S Meltzer
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Atiya Mansoor
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joel E Michalek
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Yidong Chen
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA.,Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Brian P Rubin
- Departments of Anatomic Pathology and Molecular Genetics, Taussig Cancer Center and Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Charles Keller
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| |
Collapse
|
39
|
Ohashi T, Idogawa M, Sasaki Y, Suzuki H, Tokino T. AKR1B10, a Transcriptional Target of p53, Is Downregulated in Colorectal Cancers Associated with Poor Prognosis. Mol Cancer Res 2013; 11:1554-63. [DOI: 10.1158/1541-7786.mcr-13-0330-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Abstract
Extensive regeneration of the vertebrate body plan is found in salamander and fish species. In these organisms, regeneration takes place through reprogramming of differentiated cells, proliferation, and subsequent redifferentiation of adult tissues. Such plasticity is rarely found in adult mammalian tissues, and this has been proposed as the basis of their inability to regenerate complex structures. Despite their importance, the mechanisms underlying the regulation of the differentiated state during regeneration remain unclear. Here, we analyzed the role of the tumor-suppressor p53 during salamander limb regeneration. The activity of p53 initially decreases and then returns to baseline. Its down-regulation is required for formation of the blastema, and its up-regulation is necessary for the redifferentiation phase. Importantly, we show that a decrease in the level of p53 activity is critical for cell cycle reentry of postmitotic, differentiated cells, whereas an increase is required for muscle differentiation. In addition, we have uncovered a potential mechanism for the regulation of p53 during limb regeneration, based on its competitive inhibition by ΔNp73. Our results suggest that the regulation of p53 activity is a pivotal mechanism that controls the plasticity of the differentiated state during regeneration.
Collapse
|
41
|
Soldevilla B, Millán CS, Bonilla F, Domínguez G. The TP73 complex network: ready for clinical translation in cancer? Genes Chromosomes Cancer 2013; 52:989-1006. [PMID: 23913810 DOI: 10.1002/gcc.22095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/28/2013] [Indexed: 01/05/2023] Open
Abstract
TP73 is a member of the TP53 family, whose deregulated expression has been reported in a wide variety of cancers and linked to patients' outcome. The fact that TP73 encodes a complex number of isoforms (TAp73 and ΔTAp73) with opposing functions and the cross-talk with other members of the family (TP53 and TP63) make it difficult to determine its clinical relevance. Here, we review the molecular mechanisms driving TAp73 and ΔTAp73 expression and how these variants inhibit or promote carcinogenesis. We also highlight the intricate interplay between TP53 family members. In addition, we comment on current pharmacological approaches targeting the TP73 pathway and those affecting the TAp73/ΔTAp73 ratio. Finally, we discuss the current data available in the literature that provide evidence on the role of TP73 variants in predicting prognosis. To date, most of the studies that evaluate the status levels of TP73 isoforms have been based on limited-size series. Despite this limitation, these publications highlight the correlation between high levels of the oncogenic forms and failure to respond to chemotherapy and/or shorter survival. Finally, we emphasize the need for studies to evaluate the significance of combining the deregulation of various members of the TP53 family in order to define patient outcome or their responsiveness to specific therapies.
Collapse
Affiliation(s)
- Beatriz Soldevilla
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Keller C, Guttridge DC. Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J 2013; 280:4323-34. [PMID: 23822136 DOI: 10.1111/febs.12421] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood, with presumed skeletal muscle origins, because of its myogenic phenotype. RMS is composed of two main subtypes, embryonal RMS (eRMS) and alveolar RMS (aRMS). Whereas eRMS histologically resembles embryonic skeletal muscle, the aRMS subtype is more aggressive and has a poorer prognosis. In addition, whereas the genetic profile of eRMS is not well established, aRMS is commonly associated with distinct chromosome translocations that fuse domains of the transcription factors Pax3 and Pax7 to the forkhead family member FOXO1A. Both eRMS and aRMS tumor cells express myogenic markers such as MyoD, but their ability to complete differentiation is impaired. How this impairment occurs is the subject of this review, which will focus on several themes, including signaling pathways that converge on Pax-forkhead gene targets, alterations in MyoD function, epigenetic modifications of myogenic promoters, and microRNAs whose expression patterns in RMS alter key regulatory circuits to help maintain tumor cells in an opportunistically less differentiated state.
Collapse
Affiliation(s)
- Charles Keller
- Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
43
|
Di C, Yang L, Zhang H, Ma X, Zhang X, Sun C, Li H, Xu S, An L, Li X, Bai Z. Mechanisms, function and clinical applications of DNp73. Cell Cycle 2013; 12:1861-7. [PMID: 23708520 DOI: 10.4161/cc.24967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
p73, has two distinct promoters, which allow the formation of two protein isoforms: full-length transactivating (TA) p73 and an N-terminally truncated p73 species (referred to as DNp73) that lacks the N-terminal transactivating domain. Although the exact cellular function of DNp73 is unclear, the high expression levels of the genes have been observed in a variety of human cancers and cancer cell lines and have been connected to pro-tumor activities. Hence the aim of this review is to summarize DNp73 expression status in cancer in the current literature. Furthermore, we also focused on recent findings of DNp73 related to the biological functions from apoptosis, chemosensitivity, radiosensitibity, differentiation, development, etc. Thus this review highlights the significance of DNp73 as a marker for disease severity in patients and as target for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sokolowski E, Turina CB, Kikuchi K, Langenau DM, Keller C. Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma. Oncogene 2013; 33:1877-89. [PMID: 23665679 DOI: 10.1038/onc.2013.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
Rare diseases typically affect fewer than 200,000 patients annually, yet because thousands of rare diseases exist, the cumulative impact is millions of patients worldwide. Every form of childhood cancer qualifies as a rare disease-including the childhood muscle cancer, rhabdomyosarcoma (RMS). The next few years promise to be an exceptionally good era of opportunity for public-private collaboration for rare and childhood cancers. Not only do certain governmental regulation advantages exist, but these advantages are being made permanent with special incentives for pediatric orphan drug-product development. Coupled with a growing understanding of sarcoma tumor biology, synergy with pharmaceutical muscle disease drug-development programs, and emerging publically available preclinical and clinical tools, the outlook for academic-community-industry partnerships in RMS drug development looks promising.
Collapse
Affiliation(s)
- E Sokolowski
- Department of Student Affairs, Oregon State University, Corvallis, OR, USA
| | - C B Turina
- 1] Department of Student Affairs, Oregon State University, Corvallis, OR, USA [2] Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - K Kikuchi
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - D M Langenau
- 1] Division of Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA [2] Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - C Keller
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
45
|
Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells. PLoS One 2013; 8:e53698. [PMID: 23341978 PMCID: PMC3544874 DOI: 10.1371/journal.pone.0053698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.
Collapse
|
46
|
Identification and functional annotation of genome-wide ER-regulated genes in breast cancer based on ChIP-Seq data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:568950. [PMID: 23346221 PMCID: PMC3546463 DOI: 10.1155/2012/568950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being fully understood. ChIP-Seq is an important assay for the genome-wide study of protein-DNA interactions. In this paper, we explored the genome-wide chromatin localization of ER-DNA binding regions by analyzing ChIP-Seq data from MCF-7 breast cancer cell line. By integrating three peak detection algorithms and two datasets, we localized 933 ER binding sites, 92% among which were located far away from promoters, suggesting long-range control by ER. Moreover, 489 genes in the vicinity of ER binding sites were identified as estrogen response elements by comparison with expression data. In addition, 836 single nucleotide polymorphisms (SNPs) in or near 157 ER-regulated genes were found in the vicinity of ER binding sites. Furthermore, we annotated the function of the nearest-neighbor genes of these binding sites using Gene Ontology (GO), KEGG, and GeneGo pathway databases. The results revealed novel ER-regulated genes pathways for further experimental validation. ER was found to affect every developed stage of breast cancer by regulating genes related to the development, progression, and metastasis. This study provides a deeper understanding of the regulatory mechanisms of ER and its associated genes.
Collapse
|
47
|
Zanola A, Rossi S, Faggi F, Monti E, Fanzani A. Rhabdomyosarcomas: an overview on the experimental animal models. J Cell Mol Med 2012; 16:1377-91. [PMID: 22225829 PMCID: PMC3823208 DOI: 10.1111/j.1582-4934.2011.01518.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression.
Collapse
Affiliation(s)
- Alessandra Zanola
- Department of Biomedical Sciences and Biotechnologies, Interuniversity Institute of Myology (IIM), University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
48
|
Abstract
Neoplasms of striated and smooth muscle in children are a diverse group of neoplasms that have some unique aspects in contrast to these tumors in adults. Rhabdomyosarcoma is the most common soft tissue sarcoma of infancy and childhood and is relatively common in adolescents. In contrast, smooth muscle tumors are relatively rare, and the various types of rhabdomyoma and smooth and skeletal muscle hamartomas are very uncommon. In recent years, the understanding of the pathologic and genetic aspects of rhabdomyosarcoma has been enhanced by adjunct techniques, such as immunohistochemistry and cytogenetic or molecular genetic analysis. The current classification of rhabdomyosarcoma emphasizes the histologic-prognostic correlations. This article reviews the clinicopathologic features of striated and smooth muscle tumors with an emphasis on the unique aspects of these neoplasms in children and adolescents and the differential diagnosis.
Collapse
Affiliation(s)
- David M Parham
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | | |
Collapse
|
49
|
O'Brien D, Jacob AG, Qualman SJ, Chandler DS. Advances in pediatric rhabdomyosarcoma characterization and disease model development. Histol Histopathol 2012; 27:13-22. [PMID: 22127592 DOI: 10.14670/hh-27.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rhabdomyosarcoma (RMS), a form of soft tissue sarcoma, is one of the most common pediatric malignancies. A complex disease with at least three different subtypes, it is characterized by perturbations in a number of signaling pathways and genetic abnormalities. Extensive clinical studies have helped classify these tumors into high and low risk groups to facilitate different treatment regimens. Research into the etiology of the disease has helped uncover numerous potential therapeutic intervention points which can be tested on various animal models of RMS; both genetically modified models and tumor xenograft models. Taken together, there has been a marked increase in the survival rate of RMS patients but the highly invasive, metastatic forms of the disease continue to baffle researchers. This review aims to highlight and summarize some of the most important developments in characterization and in vivo model generation for RMS research, in the last few decades.
Collapse
Affiliation(s)
- D O'Brien
- The Center for Childhood Cancer, Columbus Children's Research Institute and the Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
50
|
Matsuura T, Kawata VKS, Nagoshi H, Tomooka Y, Sasaki K, Ikawa S. Regulation of proliferation and differentiation of mouse tooth germ epithelial cells by distinct isoforms of p51/p63. Arch Oral Biol 2012; 57:1108-15. [PMID: 22440406 DOI: 10.1016/j.archoralbio.2012.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/21/2012] [Accepted: 02/26/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVES p51/p63 gene, one of the p53 families, is specifically expressed in tooth germ epithelial cells and is essential for tooth development. This study aims to elucidate roles of p51/p63 in ameloblastic cell differentiation. MATERIALS AND METHODS We determined expression pattern of each of p51/p63 isoforms by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting using emtg (epithelium of molar tooth germ)-1, -2, -3, -4, and -5 cell lines established from a mandibular molar tooth germ of p53-deficient mice and SF2 cells which differentiates into ameloblasts upon exposure to NT4. Furthermore, we investigated the function of p51/p63 in these cells by Tet system, which enables inducible expression and knock down of the target genes of interest by exposing cells to doxycycline. RESULTS The expression of ΔNp51B/ΔNp63α, an isoform without transactivation domain, was detected at high level in immature cells, while the expression of TAp51/TAp63 isoforms, isoforms of with the transactivation domain, was detected at high level in mature cells. Moreover, induction of TAp51A/TAp63γ expression led to down-regulation of ΔNp51B/ΔNp63α expression and cell proliferation. Interestingly, this also led to up-regulation of ameloblastin expression, a differentiation marker of amelogenesis. CONCLUSIONS The results suggested that p51/p63 might regulate the cell proliferation and differentiation of tooth germ epithelial cells.
Collapse
Affiliation(s)
- Takashi Matsuura
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|