1
|
Zhu Q, Zhu Z, Renaud SJ, Hu L, Guo Y. The Oncogenic Role of Cyclin-Dependent Kinase Inhibitor 2C in Lower-Grade Glioma. J Mol Neurosci 2023; 73:327-344. [PMID: 37223854 DOI: 10.1007/s12031-023-02120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Lower-grade gliomas (LGGs) are slow-growing, indolent tumors that usually affect younger patients and present a therapeutic challenge due to the heterogeneity of their clinical presentation. Dysregulation of cell cycle regulatory factors is implicated in the progression of many tumors, and drugs that target cell cycle machinery have shown efficacy as promising therapeutic approaches. To date, however, no comprehensive study has examined how cell cycle-related genes affect LGG outcomes. The cancer genome atlas (TCGA) data were used as the training set for differential analysis of gene expression and patient outcomes; the Chinese glioma genome atlas (CGGA) was used for validation. Levels of one candidate protein, cyclin-dependent kinase inhibitor 2C (CDKN2C), and its relationship to clinical prognosis were determined using a tissue microarray containing 34 LGG tumors. A nomogram was constructed to model the putative role of candidate factors in LGG. Cell type proportion analysis was performed to evaluate immune cell infiltration in LGG. Various genes encoding cell cycle regulatory factors showed increased expression in LGG and were significantly related to isocitrate dehydrogenase and chromosome arms 1p and 19q mutation status. CDKN2C expression independently predicted the outcome of LGG patients. High M2 macrophage values along with elevated CDKN2C expression were associated with poorer prognosis in LGG patients. CDKN2C plays an oncogenic role in LGG, which is associated with M2 macrophages.
Collapse
Affiliation(s)
- Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhimin Zhu
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China.
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| |
Collapse
|
2
|
PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat Commun 2022; 13:1627. [PMID: 35338151 PMCID: PMC8956581 DOI: 10.1038/s41467-022-29309-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
PUMILIO (PUM) proteins belong to the highly conserved PUF family post-transcriptional regulators involved in diverse biological processes. However, their function in carcinogenesis remains under-explored. Here, we report that Pum1 and Pum2 display increased expression in human colorectal cancer (CRC). Intestine-specific knockout of Pum1 and Pum2 in mice significantly inhibits the progression of colitis-associated cancer in the AOM/DSS model. Knockout or knockdown of Pum1 and/or Pum2 in human CRC cells result in a significant decrease in the tumorigenicity and delayed G1/S transition. We identify p21/Cdkn1a as a direct target of PUM1. Abrogation of the PUM1 binding site in the p21 mRNA also results in decreased cancer cell growth and delayed G1/S transition. Furthermore, intravenous injection of nanoparticle-encapsulated anti-Pum1 and Pum2 siRNAs reduces colorectal tumor growth in murine orthotopic colon cancer models. These findings reveal the requirement of PUM proteins for CRC progression and their potential as therapeutic targets. RNA binding proteins can contribute to colorectal cancer (CRC) initiation and development. Here the authors show that PUMILIO proteins, PUM1 and PUM2 contribute to CRC growth by inhibiting p21 expression.
Collapse
|
3
|
Kidney inflammaging is promoted by CCR2 + macrophages and tissue-derived micro-environmental factors. Cell Mol Life Sci 2020; 78:3485-3501. [PMID: 33313981 PMCID: PMC8038964 DOI: 10.1007/s00018-020-03719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The incidence of disorders associated with low inflammatory state, such as chronic kidney disease, increases in the elderly. The accumulation of senescent cells during aging and the senescence-associated secretory phenotype, which leads to inflammaging, is known to be deleterious and account for progressive organ dysfunction. To date, the cellular actors implicated in chronic inflammation in the kidney during aging are still not well characterized. Using the DECyt method, based on hierarchical clustering of flow cytometry data, we showed that aging was associated with significant changes in stromal cell diversity in the kidney. In particular, we identified two cell populations up-regulated with aging, the mesenchymal stromal cell subset (kMSC) expressing CD73 and the monocyte-derived Ly6C+ CCR2+ macrophage subset expressing pro-inflammatory cytokines. Aged CD73+ kMSCs depicted senescence associated features with low proliferation rate, increased DNA damage foci and Ccl2 expression. Using co-cultures experiments, we showed that aged CD73+ kMSC promoted monocyte activation and secretion of inflammatory cytokines albeit less efficiently than young CD73+ kMSCs. In the context of ageing, increased frequency of CD73+ kMSC subpopulations could provide additional niche factors to newly recruited monocytes favoring a positive regulatory loop in response to local inflammation. Interfering with such partnership during aging could be a valuable approach to regulate kidney inflammaging and to limit the risk of developing chronic kidney disease in the elderly.
Collapse
|
4
|
Xia Q, Zhang H, Zhang P, Li Y, Xu M, Li X, Li X, Dong L. Oncogenic Smurf1 promotes PTEN wild-type glioblastoma growth by mediating PTEN ubiquitylation. Oncogene 2020; 39:5902-5915. [PMID: 32737433 DOI: 10.1038/s41388-020-01400-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
PI3K/Akt/mTOR signaling pathway activity is highly elevated in glioblastoma (GBM). Although rapamycin is known to inhibit this pathway, GBM patients are resistant to rapamycin monotherapy. This may be related to mutations of tumor suppressor phosphatase and tensin homolog (PTEN). Here, we show that higher expression of E3 ligase Smad ubiquitylation regulatory factor 1 (Smurf1) in GBM is correlated with poor prognosis. Smurf1 promotes cell growth and colony formation by accelerating cell cycle and aberrant signaling pathways. In addition, we show that Smurf1 ubiquitylates and degrades PTEN. We further demonstrate that the oncogenic role of Smurf1 is dependent on PTEN. Upregulated Smurf1 impairs PTEN activity, leading to consistent activation of PI3K/Akt/mTOR signaling pathway; and depletion of Smurf1 dramatically inhibits cell proliferation and tumor growth. Moreover, loss of Smurf1 abolishes the aberrant regulation of PTEN, causing negative feedback on PI3K/Akt/mTOR signaling pathway, and thus leading to rescue of tumor sensitivity to rapamycin in an orthotopic GBM model. Taken together, we show that Smurf1 promotes tumor progression via PTEN, and combined treatment of Smurf1 knockdown with mammalian target of rapamycin (mTOR) inhibition reduces tumor progression. These results identify a unique role of Smurf1 in mTOR inhibitor resistance and provide a strong rationale for combined therapy targeting GBM.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hanwen Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaobo Li
- Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
5
|
Whitaker RH, Placzek WJ. MCL1 binding to the reverse BH3 motif of P18INK4C couples cell survival to cell proliferation. Cell Death Dis 2020; 11:156. [PMID: 32111816 PMCID: PMC7048787 DOI: 10.1038/s41419-020-2351-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Commitment to cell cycle entry and cellular duplication is a tightly coordinated and regulated process. Once initiated, a series of multiple checkpoints ensure both accurate genomic replication and chromosomal separation. In the event of unsuccessful cell division, parallel pathways exist that induce the cell to undergo programmed cell death, or apoptosis. At the center of such stress-induced, intrinsic apoptotic regulation lies the BCL2 family of pro- and anti-apoptotic regulatory proteins. In a proliferative state the balance of pro- and anti-apoptotic signaling proteins would be expected to favor an excess population of anti-apoptotic members. While the anti-apoptotic BCL2 family member, MCL1, has been identified to oversee mitotic progression, direct communication between the BCL2 family and cell proliferation has not been observed. In this study, we demonstrate a direct protein–protein interaction between MCL1 and the G1/S checkpoint protein, P18INK4C. This interaction is mediated by a reverse BH3 (rBH3) motif located in P18INK4C’s C-terminal ankyrin repeat. MCL1 is further shown to decrease P18INK4C expression and thereby regulate cell cycle entry in a retinoblastoma (RB1)-dependent manner. Our findings establish a mechanism for translation independent and direct communication between the BCL2 family regulation of apoptosis and CDK4/6-RB regulation of early G1/S transition during cellular division/growth.
Collapse
Affiliation(s)
- Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
González-Tablas M, Arandia D, Jara-Acevedo M, Otero Á, Vital AL, Prieto C, González-Garcia N, Nieto-Librero AB, Tao H, Pascual D, Ruiz L, Sousa P, Galindo-Villardón P, Orfao A, Tabernero MD. Heterogeneous EGFR, CDK4, MDM4, and PDGFRA Gene Expression Profiles in Primary GBM: No Association with Patient Survival. Cancers (Basel) 2020; 12:cancers12010231. [PMID: 31963499 PMCID: PMC7016708 DOI: 10.3390/cancers12010231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The prognostic impact of the expression profile of genes recurrently amplified in glioblastoma multiforme (GBM) remains controversial. METHODS We investigated the RNA gene expression profile of epidermal growth factor receptor (EGFR), cyclin-dependent kinase 4 (CDK4), murine doble minute 4 (MDM4), and platelet derived growth factor receptor alpha (PDGFRA) in 83 primary GBM tumors vs. 42 normal brain tissue samples. Interphase FISH (iFISH) analysis for the four genes, together with analysis of intragenic deletions in EGFR and PDGFRA, were evaluated in parallel at the DNA level. As validation cohort, publicly available RNA gene expression data on 293 samples from 10 different GBM patient series were also studied. RESULTS At the RNA level, CDK4 was the most frequently overexpressed gene (90%) followed by EGFR (58%) and PDGFRA (58%). Chromosome 7 copy number alterations, i.e., trisomy (49%) and polysomy (44%), showed no clear association with EGFR gene expression levels. In turn, intragenic EGFR deletions were found in 39 patients (47%), including EGFRvIII (46%) in association with EGFRvIVa (4%), EGFRvII (2%) or other EGFR deletions (3%) and PDGFRA deletion of exons 8-9 was found in only two tumors (2%). CONCLUSIONS Overall, none of the gene expression profiles and/or intragenic EGFR deletions showed a significant impact on overall survival of GBM supporting the notion that other still unraveled features of the disease might play a more relevant prognostic role in GBM.
Collapse
Affiliation(s)
- María González-Tablas
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Daniel Arandia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - María Jara-Acevedo
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Sequencing DNA Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Ana-Luisa Vital
- Centre for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-561 Coimbra, Portugal;
| | - Carlos Prieto
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Bioinformatics Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Nerea González-Garcia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Ana Belén Nieto-Librero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Herminio Tao
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal;
| | - Daniel Pascual
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Laura Ruiz
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Pablo Sousa
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL-IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| |
Collapse
|
7
|
The Genetic Landscape of Human Glioblastoma and Matched Primary Cancer Stem Cells Reveals Intratumour Similarity and Intertumour Heterogeneity. Stem Cells Int 2019; 2019:2617030. [PMID: 30984267 PMCID: PMC6431486 DOI: 10.1155/2019/2617030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant human brain tumour, characterized by rapid progression, invasion, intense angiogenesis, high genomic instability, and resistance to therapies. Despite countless experimental researches for new therapeutic strategies and promising clinical trials, the prognosis remains extremely poor, with a mean survival of less than 14 months. GBM aggressive behaviour is due to a subpopulation of tumourigenic stem-like cells, GBM stem cells (GSCs), which hierarchically drive onset, proliferation, and tumour recurrence. The morbidity and mortality of this disease strongly encourage exploring genetic characteristics of GSCs. Here, using array-CGH platform, we investigated genetic and genomic aberration profiles of GBM parent tumour (n = 10) and their primarily derived GSCs. Statistical analysis was performed by using R software and complex heatmap and corrplot packages. Pearson correlation and K-means algorithm were exploited to compare genetic alterations and to group similar genetic profiles in matched pairs of GBM and derived GSCs. We identified, in both GBM and matched GSCs, recurrent copy number alterations, as chromosome 7 polysomy, chromosome 10 monosomy, and chromosome 9p21deletions, which are typical features of primary GBM, essential for gliomagenesis. These observations suggest a condition of strong genomic instability both in GBM as GSCs. Our findings showed the robust similarity between GBM mass and GSCs (Pearson corr.≥0.65) but also highlighted a marked variability among different patients. Indeed, the heatmap reporting Gain/Loss State for 21022 coding/noncoding genes demonstrated high interpatient divergence. Furthermore, K-means algorithm identified an impairment of pathways related to the development and progression of cancer, such as angiogenesis, as well as pathways related to the immune system regulation, such as T cell activation. Our data confirmed the preservation of the genomic landscape from tumour tissue to GSCs, supporting the relevance of this cellular model to test in vitro new target therapies for GBM.
Collapse
|
8
|
A new method of identifying glioblastoma subtypes and creation of corresponding animal models. Oncogene 2018; 37:4781-4791. [PMID: 29769617 DOI: 10.1038/s41388-018-0305-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) accounts for up to 50% of brain parenchymal tumors. It is the most malignant type of brain cancer with very poor survival and limited remedies. Cancer subtyping is important for cancer research and therapy. Here, we report a new subtyping method for GBM based on the genetic alterations of CDKN2A and TP53 genes. CDKN2A and TP53 are the most frequently mutated genes with mutation rates of 60 and 30%, respectively. We found that patients with deletion of CDKN2A possess worse survival than those with TP53 mutation. Interestingly, survival of patients with both TP53 mutation and CDKN2A deletion is no worse than for those with only one of these genetic alterations, but similar to those with TP53 mutation alone. Next, we investigated differences in the gene expression profile between TP53 and CDKN2A samples. Consistent with the survival data, the samples with both TP53 mutation and CDKN2A deletion showed a gene expression profile similar to those samples with TP53 mutation alone. Finally, we found that activation of RAS pathway plus Cdkn2a/b silencing can induce GBM, in a similar way to tumor induction by RAS activation plus TP53 silencing. In conclusion, we show that the genetic alterations of CDKN2A and TP53 may be used to stratify GBM, and the new animal models matching this stratification method were generated.
Collapse
|
9
|
|
10
|
Poi MJ, Knobloch TJ, Li J. Deletion of RD INK4/ARF enhancer: A novel mutation to "inactivate" the INK4-ARF locus. DNA Repair (Amst) 2017; 57:50-55. [PMID: 28688373 DOI: 10.1016/j.dnarep.2017.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022]
Abstract
The presence of an enhancer element, RDINK4/ARF (RD), in the prominent INK4-ARF locus provides a novel en bloc mechanism to simultaneously regulate the transcription of the p15INK4B (p15), p16INK4A (p16), and p14ARF tumor suppressor genes. While genetic inactivation of p15, p16, and p14ARF in human cancers has been extensively studied, little is known about RD alteration and its potential contributions to cancer progression. In this review, we discuss recent developments in RD alteration and its association with p15, p16, and p14ARF alterations in human cancers, and demonstrate that RD deletion may represent a novel mechanism to simultaneously down-regulate p15, p16, and p14ARF, thus promoting carcinogenesis.
Collapse
Affiliation(s)
- Ming J Poi
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA; The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Thomas J Knobloch
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Junan Li
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Ji T, Zhang X, Li W. microRNA-205 acts as a tumor suppressor and directly targets YAP1 in glioma. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Zhang L, Yuan Y, Lu KH, Zhang L. Identification of recurrent focal copy number variations and their putative targeted driver genes in ovarian cancer. BMC Bioinformatics 2016; 17:222. [PMID: 27230211 PMCID: PMC4881176 DOI: 10.1186/s12859-016-1085-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/14/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genomic regions with recurrent DNA copy number variations (CNVs) are generally believed to encode oncogenes and tumor suppressor genes (TSGs) that drive cancer growth. However, it remains a challenge to delineate the key cancer driver genes from the regions encoding a large number of genes. RESULTS In this study, we developed a new approach to CNV analysis based on spectral decomposition of CNV profiles into focal CNVs and broad CNVs. We performed an analysis of CNV data of 587 serous ovarian cancer samples on multiple platforms. We identified a number of novel focal regions, such as focal gain of ESR1, focal loss of LSAMP, prognostic site at 3q26.2 and losses of sub-telomere regions in multiple chromosomes. Furthermore, we performed network modularity analysis to examine the relationships among genes encoded in the focal CNV regions. Our results also showed that the recurrent focal gains were significantly associated with the known oncogenes and recurrent losses associated with TSGs and the CNVs had a greater effect on the mRNA expression of the driver genes than that of the non-driver genes. CONCLUSIONS Our results demonstrate that spectral decomposition of CNV profiles offers a new way of understanding the role of CNVs in cancer.
Collapse
Affiliation(s)
- Liangcai Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1410, Houston, TX, 77401, USA
- Department of Statistics, Rice University, Houston, TX, USA
- Department of Biophysics, College of Bioinformatics Sciences and Technology, Harbin Medical University, Harbin, China
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1410, Houston, TX, 77401, USA
- Department of Statistics, Rice University, Houston, TX, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1410, Houston, TX, 77401, USA.
| |
Collapse
|
13
|
Gu JJ, Zhang JH, Chen HJ, Wang SS. MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells. Int J Mol Med 2016; 37:1587-93. [PMID: 27122306 PMCID: PMC4866956 DOI: 10.3892/ijmm.2016.2580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-130b (miR-130b) is a novel tumor-related miRNA that has been found to be involved in several biological processes. However, there is limited evidence regarding the role of miR-130b in the tumorigenesis of human gliomas. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to quantify miR-130b expression levels in human glioma tissues and glioma cell lines (U251, U87, SNB19 and LN229). The expression level of miR-130b was found to be markedly higher in human glioma tissues than in non-neoplastic brain specimens. Specifically, higher expression levels of miR-130b were observed in the glioma cell lines, compared with those in normal human astrocytes (NHA). We also confirmed that miR-130b interacted with the 3′-untranslated region of peroxisome proliferator-activated receptor-γ (PPAR-γ), which negatively affected the protein levels of E-cadherin. Furthermore, its effects on cell proliferation and invasion were examined using CCK8, colony formation, cell cycle and Transwell assays. We found that the upregulation of miR-130b induced cell proliferation, decreased the percentage of cells in the G0/G1 phase and enhanced the invasiveness of U251 glioma cells whereas the downregulation of miR-130b exerted opposing effects. Moreover, it was demonstrated that the downregulation of miR-130b in U251 glioma cells restored the expression of PPAR-γ and E-cadherin, and inhibited the expression of β-catenin. Notably, PPAR-γ knockdown abolished the inhibitory effect of miR-130b inhibitor on the proliferation and invasivness of U251 cells. Taken together, these findings suggest that miR-130b promotes the proliferation and invasion of U251 glioma cells by inhibiting PPAR-γ.
Collapse
Affiliation(s)
- Jian-Jun Gu
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Jian-He Zhang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Hong-Jie Chen
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
14
|
Aum DJ, Kim DH, Beaumont TL, Leuthardt EC, Dunn GP, Kim AH. Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurg Focus 2015; 37:E11. [PMID: 25434380 DOI: 10.3171/2014.9.focus14521] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.
Collapse
|
15
|
Abstract
'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal senescence-associated biomarkers, expressed either alone or in combination. We advocate that more-specific descriptors be substituted for the now broadly applied umbrella term 'senescence' in defining the suite of diverse physiological responses to cellular stress.
Collapse
Affiliation(s)
- Norman E Sharpless
- Department of Medicine and Genetics and The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7295, USA
| | - Charles J Sherr
- Department of Tumor Cell Biology and The Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
16
|
Imamura T, Uesaka M, Nakashima K. Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0511. [PMID: 25135972 DOI: 10.1098/rstb.2013.0511] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the mammalian brain, epigenetic mechanisms are clearly involved in the regulation of self-renewal of neural stem cells and the derivation of their descendants, i.e. neurons, astrocytes and oligodendrocytes, according to the developmental timing and the microenvironment, the 'niche'. Interestingly, local epigenetic changes occur, concomitantly with genome-wide level changes, at a set of gene promoter regions for either down- or upregulation of the gene. In addition, intergenic regions also sensitize the availability of epigenetic modifiers, which affects gene expression through a relatively long-range chromatinic interaction with the transcription regulatory machineries including non-coding RNA (ncRNA) such as promoter-associated ncRNA and enhancer ncRNA. We show that such an epigenetic landscape in a neural cell is statically but flexibly formed together with a variable combination of generally and locally acting nuclear molecules including master transcription factors and cell-cycle regulators. We also discuss the possibility that revealing the epigenetic regulation by the local DNA-RNA-protein assemblies would promote methodological innovations, e.g. neural cell reprogramming, engineering and transplantation, to manipulate neuronal and glial cell fates for the purpose of medical use of these cells.
Collapse
Affiliation(s)
- Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Uesaka
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Department of Biophysics, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Bauer C, Stec K, Glintschert A, Gruden K, Schichor C, Or-Guil M, Selbig J, Schuchhardt J. BioMiner: Paving the Way for Personalized Medicine. Cancer Inform 2015; 14:55-63. [PMID: 26005322 PMCID: PMC4406277 DOI: 10.4137/cin.s20910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/17/2014] [Accepted: 12/25/2014] [Indexed: 01/03/2023] Open
Abstract
Personalized medicine is promising a revolution for medicine and human biology in the 21st century. The scientific foundation for this revolution is accomplished by analyzing biological high-throughput data sets from genomics, transcriptomics, proteomics, and metabolomics. Currently, access to these data has been limited to either rather simple Web-based tools, which do not grant much insight or analysis by trained specialists, without firsthand involvement of the physician. Here, we present the novel Web-based tool “BioMiner,” which was developed within the scope of an international and interdisciplinary project (SYSTHER†) and gives access to a variety of high-throughput data sets. It provides the user with convenient tools to analyze complex cross-omics data sets and grants enhanced visualization abilities. BioMiner incorporates transcriptomic and cross-omics high-throughput data sets, with a focus on cancer. A public instance of BioMiner along with the database is available at http://systherDB.microdiscovery.de/, login and password: “systher”; a tutorial detailing the usage of BioMiner can be found in the Supplementary File.
Collapse
Affiliation(s)
- Chris Bauer
- Research and Development, MicroDiscovery GmbH, Berlin, Germany
| | - Karol Stec
- Research and Development, MicroDiscovery GmbH, Berlin, Germany
| | | | - Kristina Gruden
- Department for Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Christian Schichor
- Department of Neurosurgery, Klinikum der Ludwig-Maximilian-Universität München, Munich, Germany
| | - Michal Or-Guil
- Systems Immunology Lab, Department of Biology, Humboldt University, Berlin, Germany. ; Research Center ImmunoSciences, Charité University of Medicine Berlin, Berlin, Germany
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
18
|
Rivera-Díaz M, Miranda-Román MA, Soto D, Quintero-Aguilo M, Ortiz-Zuazaga H, Marcos-Martinez MJ, Vivas-Mejía PE. MicroRNA-27a distinguishes glioblastoma multiforme from diffuse and anaplastic astrocytomas and has prognostic value. Am J Cancer Res 2014; 5:201-18. [PMID: 25628931 PMCID: PMC4300691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that bind to 3'-untranslated (UTR) regions of target messenger RNAs to regulate protein synthesis. Reports have suggested that a set of specific miRNAs may be used as diagnostic and/or prognostic markers for astrocytoma grading. However, there are few studies of the specific miRNAs differentially expressed in each astrocytoma grade. MiRNA-containing total RNA was isolated from archived formalin-fixed, paraffin-embedded (FFPE) samples from WHO grade II-IV astrocytoma patients. The RNA was labeled and hybridized to Affymetrix miRNA 2.0 arrays. Statistical analysis identified several miRNAs differentially expressed in each astrocytoma grade. In particular, miR-27a, miR-210, and miR-1225-5p expression levels were able to differentiate grade IV from grade II and III astrocytomas as confirmed by real-time PCR. Kaplan-Meier survival analysis showed that disease progression occurred faster for Glioblastoma Multiforme (GBM) patients with a lower miR-27a expression level. Transfection of CRL-1690 GBM human cancer cells with a miR-27a oligonucleotide inhibitor followed by Real-time PCR identified six potential miR-27a target genes. Furthermore, the miR-27a oligonucleotide inhibitor induced CRL-1690 cell apoptosis. Taken together, our results provide additional miRNA signatures for distinguishing GBM from lower astrocytoma grades and suggest miR-27a as a prognostic and therapeutic target for GBM.
Collapse
Affiliation(s)
- Mónica Rivera-Díaz
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
- Department of Biochemistry, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
| | - Miguel A Miranda-Román
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan, Puerto Rico 00927
| | - Daniel Soto
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan, Puerto Rico 00927
| | - Mario Quintero-Aguilo
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
- Department of Pathology and Laboratory Medicine, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico, Rio Piedras CampusSan Juan, Puerto Rico 00927
| | - María J Marcos-Martinez
- Department of Pathology and Laboratory Medicine, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
- Department of Biochemistry, Medical Sciences Campus, University of Puerto RicoSan Juan, Puerto Rico 00935
| |
Collapse
|
19
|
Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide. Metabolites 2014; 4:807-30. [PMID: 25222834 PMCID: PMC4192694 DOI: 10.3390/metabo4030807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/20/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC) inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT). The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects.
Collapse
|
20
|
Cdk4 and Cdk6 cooperate in counteracting the INK4 family of inhibitors during murine leukemogenesis. Blood 2014; 124:2380-90. [PMID: 25157181 DOI: 10.1182/blood-2014-02-555292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cdk4 and Cdk6 are related protein kinases that bind d-type cyclins and regulate cell-cycle progression. Cdk4/6 inhibitors are currently being used in advanced clinical trials and show great promise against many types of tumors. Cdk4 and Cdk6 are inhibited by INK4 proteins, which exert tumor-suppressing functions. To test the significance of this inhibitory mechanism, we generated knock-in mice that express a Cdk6 mutant (Cdk6 R31C) insensitive to INK4-mediated inhibition. Cdk6(R/R) mice display altered development of the hematopoietic system without enhanced tumor susceptibility, either in the presence or absence of p53. Unexpectedly, Cdk6 R31C impairs the potential of hematopoietic progenitors to repopulate upon adoptive transfer or after 5-fluorouracil-induced damage. The defects are overcome by eliminating sensitivity of cells to INK4 inhibitors by introducing the INK4-insensitive Cdk4 R24C allele, and INK4-resistant mice are more susceptible to hematopoietic and endocrine tumors. In BCR-ABL-transformed hematopoietic cells, Cdk6 R31C causes increased binding of p16(INK4a) to wild-type Cdk4, whereas cells harboring Cdk4 R24C and Cdk6 R31C are fully insensitive to INK4 inhibitors, resulting in accelerated disease onset. Our observations reveal that Cdk4 and Cdk6 cooperate in hematopoietic tumor development and suggest a role for Cdk6 in sequestering INK4 proteins away from Cdk4.
Collapse
|
21
|
Jarry M, Lecointre C, Malleval C, Desrues L, Schouft MT, Lejoncour V, Liger F, Lyvinec G, Joseph B, Loaëc N, Meijer L, Honnorat J, Gandolfo P, Castel H. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis. Neuro Oncol 2014; 16:1484-98. [PMID: 24891448 DOI: 10.1093/neuonc/nou102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glioblastomas are the most frequent and most aggressive primary brain tumors in adults. The median overall survival is limited to a few months despite surgery, radiotherapy, and chemotherapy. It is now clearly established that hyperactivity of cyclin-dependent kinases (CDKs) is one of the processes underlying hyperproliferation and tumoral growth. The marine natural products meridianins and variolins, characterized as CDK inhibitors, display a kinase-inhibitory activity associated with cytotoxic effects. In order to improve selectivity and efficiency of these CDK inhibitors, a series of hybrid compounds called meriolins have been synthesized. METHODS The potential antitumoral activity of meriolins was investigated in vitro on glioma cell lines (SW1088 and U87), native neural cells, and a human endothelial cell line (HUV-EC-C). The impact of intraperitoneal or intratumoral administrations of meriolin 15 was evaluated in vivo on 2 different nude mice-xenografted glioma models. RESULTS Meriolins 3, 5, and 15 exhibited antiproliferative properties with nanomolar IC50 and induced cell-cycle arrest and CDK inhibition associated with apoptotic events in human glioma cell lines. These meriolins blocked the proliferation rate of HUV-EC-C through cell cycle arrest and apoptosis. In vivo, meriolin 15 provoked a robust reduction in tumor volume in spite of toxicity for highest doses, associated with inhibition of cell division, activation of caspase 3, reduction of CD133 cells, and modifications of the vascular architecture. CONCLUSION Meriolins, and meriolin 15 in particular, exhibit antiproliferative and proapoptotic activities on both glioma and intratumoral endothelial cells, constituting key promising therapeutic lead compounds for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Marie Jarry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Céline Lecointre
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Céline Malleval
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Laurence Desrues
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Marie-Thérèse Schouft
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Vadim Lejoncour
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - François Liger
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Gildas Lyvinec
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Benoît Joseph
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Nadège Loaëc
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Laurent Meijer
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Jérôme Honnorat
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Pierrick Gandolfo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| | - Hélène Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), PRES Normandy, TC2N network, University of Rouen, Mont-Saint-Aignan, France (M.J., C.L., L.D., M.-T.S., V.L., P.G., H.C.); Neuro-oncology department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France (C.M., J.H.); Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon, France (C.M., J.H.); University of Claude Bernard - Lyon 1, Villeurbanne, France (C.M., J.H.); Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, University of Claude Bernard - Lyon 1, Villeurbanne, France (F.L., G.L., B.J., N.L.); Protein Phosphorylation & Human Disease Group & USR3151, Station Biologique, Roscoff, France (N.L., L.M.); ManRos Therapeutics, Roscoff, France (L.M.)
| |
Collapse
|
22
|
Quantitative assessment of intragenic receptor tyrosine kinase deletions in primary glioblastomas: their prevalence and molecular correlates. Acta Neuropathol 2014; 127:747-59. [PMID: 24292886 PMCID: PMC3984672 DOI: 10.1007/s00401-013-1217-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 01/14/2023]
Abstract
Intragenic deletion is the most common form of activating mutation among receptor tyrosine kinases (RTK) in glioblastoma. However, these events are not detected by conventional DNA sequencing methods commonly utilized for tumor genotyping. To comprehensively assess the frequency, distribution, and expression levels of common RTK deletion mutants in glioblastoma, we analyzed RNA from a set of 192 glioblastoma samples from The Cancer Genome Atlas for the expression of EGFRvIII, EGFRvII, EGFRvV (carboxyl-terminal deletion), and PDGFRAΔ8,9. These mutations were detected in 24, 1.6, 4.7, and 1.6 % of cases, respectively. Overall, 29 % (55/189) of glioblastomas expressed at least one RTK intragenic deletion transcript in this panel. For EGFRvIII, samples were analyzed by both quantitative real-time PCR (QRT-PCR) and single mRNA molecule counting on the Nanostring nCounter platform. Nanostring proved to be highly sensitive, specific, and linear, with sensitivity comparable or exceeding that of RNA seq. We evaluated the prognostic significance and molecular correlates of RTK rearrangements. EGFRvIII was only detectable in tumors with focal amplification of the gene. Moreover, we found that EGFRvIII expression was not prognostic of poor outcome and that neither recurrent copy number alterations nor global changes in gene expression differentiate EGFRvIII-positive tumors from tumors with amplification of wild-type EGFR. The wide range of expression of mutant alleles and co-expression of multiple EGFR variants suggests that quantitative RNA-based clinical assays will be important for assessing the relative expression of intragenic deletions as therapeutic targets and/or candidate biomarkers. To this end, we demonstrate the performance of the Nanostring assay in RNA derived from routinely collected formalin-fixed paraffin-embedded tissue.
Collapse
|
23
|
Abstract
Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.
Collapse
|
24
|
p19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation. Biochim Biophys Acta Gen Subj 2014; 1840:2171-83. [PMID: 24667034 DOI: 10.1016/j.bbagen.2014.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND During evolution, organisms with renewable tissues have developed mechanisms to prevent tumorigenesis, including cellular senescence and apoptosis. Cellular senescence is characterized by a permanent cell cycle arrest triggered by both endogenous stress and exogenous stress. The p19INK4d, a member of the family of cyclin-dependent kinase inhibitors (INK4), plays an important role on cell cycle regulation and in the cellular DNA damage response. We hypothesize that p19INK4d is a potential factor involved in the onset and/or maintenance of the senescent state. METHODS Senescence was confirmed by measuring the cell cycle arrest and the senescence-associated β-galactosidase activity. Changes in p19INK4d expression and localization during senescence were determined by Western blot and immunofluorescence assays. Chromatin condensation was measured by microccocal nuclease digestion and histone salt extraction. RESULTS The data presented here show for the first time that p19INK4d expression is up-regulated by different types of senescence. Changes in senescence-associated hallmarks were driven by modulation of p19 expression indicating a direct link between p19INK4d induction and the establishment of cellular senescence. Following a senescence stimulus, p19INK4d translocates to the nucleus and tightly associates with chromatin. Moreover, reduced levels of p19INK4d impair senescence-related global genomic heterochromatinization. Analysis of p19INK4d mRNA and protein levels in tissues from differently aged mice revealed an up-regulation of p19INK4d that correlates with age. CONCLUSION We propose that p19INK4d participates in the cellular mechanisms that trigger senescence by contributing to chromatin compaction. GENERAL SIGNIFICANCE This study provides novel insights into the dynamics process of cellular senescence, a central tumor suppressive mechanism.
Collapse
|
25
|
Carvalho D, Mackay A, Bjerke L, Grundy RG, Lopes C, Reis RM, Jones C. The prognostic role of intragenic copy number breakpoints and identification of novel fusion genes in paediatric high grade glioma. Acta Neuropathol Commun 2014; 2:23. [PMID: 24548782 PMCID: PMC3938307 DOI: 10.1186/2051-5960-2-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/11/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paediatric high grade glioma (pHGG) is a distinct biological entity to histologically similar tumours arising in older adults, and has differing copy number profiles and driver genetic alterations. As functionally important intragenic copy number aberrations (iCNA) and fusion genes begin to be identified in adult HGG, the same has not yet been done in the childhood setting. We applied an iCNA algorithm to our previously published dataset of DNA copy number profiling in pHGG with a view to identify novel intragenic breakpoints. RESULTS We report a series of 288 iCNA events in pHGG, with the presence of intragenic breakpoints itself a negative prognostic factor. We identified an increased number of iCNA in older children compared to infants, and increased iCNA in H3F3A K27M mutant tumours compared to G34R/V and wild-type. We observed numerous gene disruptions by iCNA due to both deletions and amplifications, targeting known HGG-associated genes such as RB1 and NF1, putative tumour suppressors such as FAF1 and KIDINS220, and novel candidates such as PTPRE and KCND2. We further identified two novel fusion genes in pHGG - CSGALNACT2:RET and the complex fusion DHX57:TMEM178:MAP4K3. The latter was sequence-validated and appears to be an activating event in pHGG. CONCLUSIONS These data expand upon our understanding of the genomic events driving these tumours and represent novel targets for therapeutic intervention in these poor prognosis cancers of childhood.
Collapse
Affiliation(s)
- Diana Carvalho
- />Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG UK
- />University of Coimbra, Palácio dos Grilos, R. da Ilha, Coimbra, 3000-214 Portugal
- />Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, and ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alan Mackay
- />Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG UK
| | - Lynn Bjerke
- />Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG UK
| | - Richard G Grundy
- />Childhood Brain Tumour Research Centre, University of Nottingham, Kings Meadow Campus, Lenton Lane, Nottingham, NG7 2NR UK
| | - Celeste Lopes
- />University of Coimbra, Palácio dos Grilos, R. da Ilha, Coimbra, 3000-214 Portugal
| | - Rui M Reis
- />Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, and ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- />Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP Brazil
| | - Chris Jones
- />Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG UK
| |
Collapse
|
26
|
Sherr CJ. Ink4-Arf locus in cancer and aging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:731-41. [PMID: 22960768 PMCID: PMC3434949 DOI: 10.1002/wdev.40] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three tumor suppressor genes at the small (<50 kb) INK4-ARF (CDKN2A/B) locus on human chromosome 9p21 coordinate a signaling network that depends on the activities of the retinoblastoma (RB) protein and the p53 transcription factor. Disruption of this circuitry, frequently by codeletion of INK4-ARF, is a hallmark of cancer, begging the question of why the intimate genetic linkage of these tumor suppressor genes has been maintained in mammals despite the risk of their coinactivation. The INK4-ARF locus is not highly expressed under normal physiologic conditions in young mammals, but its induction becomes more pronounced as animals age. Notably, INK4-ARF is actively silenced en bloc in embryonic, fetal, and adult stem cells but becomes poised to respond to oncogenic stress signals as stem cells lose their self-renewal capacity and differentiate, thereby providing a potent barrier to tumor formation. Epigenetic remodeling of the locus as a whole provides a mechanism for coordinating the activities of RB and p53. A hypothesis is that the INK4-ARF locus may have evolved to physiologically restrict the self-renewal capacities and numbers of stem and progenitor cells with the attendant consequence of limiting tissue regenerative capacity, particularly as animals age. Deletion of INK4-ARF contributes to the aberrant self-renewal capacity of tumor cells and occurs frequently in many forms of human cancer.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
27
|
Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L. The somatic genomic landscape of glioblastoma. Cell 2013; 155:462-77. [PMID: 24120142 DOI: 10.1016/j.cell.2013.09.034] [Citation(s) in RCA: 3507] [Impact Index Per Article: 318.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/28/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
Abstract
We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.
Collapse
Affiliation(s)
- Cameron W Brennan
- Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, Department of Neurological Surgery, Weill Cornell Medical Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Poi MJ, Knobloch TJ, Sears MT, Warner BM, Uhrig LK, Weghorst CM, Li J. Alterations in RD(INK4/ARF) -mediated en bloc regulation of the INK4-ARF locus in human squamous cell carcinoma of the head and neck. Mol Carcinog 2013; 54:532-42. [PMID: 24302590 DOI: 10.1002/mc.22119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 01/24/2023]
Abstract
The presence of RD(INK4/ARF) (RD) enhancer in the INK4-ARF locus provides a novel mechanism to simultaneously increase the transcription of p15(INK4b) (p15), p14ARF (p14), and p16(INK4a) (p16). While such upregulation can be repressed through interactions between RD and oncoproteins CDC6 and BMI1, little is known about the involvement of RD in cancer. In this study we investigated RD deletions in 30 squamous cell carcinoma of the head and neck (SCCHN) and the patient-matched High At-Risk Mucosa specimens (HARM, "phenotypically normal" tissues neighboring SCCHN foci but beyond the surgical resection margin). RD was deleted (homozygously/heterozygously) in SCCHN and HARM at the incidence of 36.7% (11/30) and 13.3% (4/30), respectively. In comparison, no RD deletion was detected in 26 oral buccal brush biopsy specimens from healthy donors. Both p16 and p14 were lowly expressed in SCCHN and HARM, and their mRNA expression levels were positively associated with each other (P < 0.01). Moreover, BMI1 was highly expressed in both SCCHN and HARM, and BMI1 overexpression was associated with p16 downregulation in SCCHN (P < 0.05). These results indicate that RD deletion and BMI1 overexpression frequently occur in the early stage of oral carcinogenesis and BMI1 overexpression may downregulate the transcription of p16 and p14 through interfering with RD.
Collapse
Affiliation(s)
- Ming J Poi
- Department of Pharmacy, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Thomas J Knobloch
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Marta T Sears
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Blake M Warner
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Lana K Uhrig
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Christopher M Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
29
|
Dontula R, Dinasarapu A, Chetty C, Pannuru P, Herbert E, Ozer H, Lakka SS. MicroRNA 203 Modulates Glioma Cell Migration via Robo1/ERK/MMP-9 Signaling. Genes Cancer 2013; 4:285-96. [PMID: 24167656 DOI: 10.1177/1947601913500141] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/12/2013] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary adult brain cancer. Allelic deletion on chromosome 14q plays an important role in the pathogenesis of GBM, and this site was thought to harbor multiple tumor suppressor genes associated with GBM, a region that also encodes microRNA-203 (miR-203). In this study, we sought to identify the role of miR-203 as a tumor suppressor in the pathogenesis of GBM. We analyzed the miR-203 expression data of GBM patients in 10 normal and 495 tumor tissue samples derived from The Cancer Genome Atlas data set. Quantitative real-time PCR and in situ hybridization in 10 high-grade GBM and 10 low-grade anaplastic astrocytoma tumor samples showed decreased levels of miR-203 expression in anaplastic astrocytoma and GBM tissues and cell lines. Exogenous expression of miR-203 using a plasmid expressing miR-203 precursor (pmiR-203) suppressed glioma cell proliferation, migration, and invasion. We determined that one relevant target of miR-203 was Robo1, given that miR-203 expression decreased mRNA and protein levels as determined by RT-PCR and Western blot analysis. Moreover, cotransfection experiments using a luciferase-based transcription reporter assay have shown direct regulation of Robo1 by miR-203. We also show that Robo1 mediates miR-203 mediated antimigratory functions as up-regulation of Robo1 abrogates miR-203 mediated antimigratory effects. We also show that miR-203 expression suppressed ERK phosphorylation and MMP-9 expression in glioma cells. Furthermore, we demonstrate that miR-203 inhibits migration of the glioma cells by disrupting the Robo1/ERK/MMP-9 signaling axis. Taken together, these studies demonstrate that up-regulation of Robo1 in response to the decrease in miR-203 in glioma cells is responsible for glioma tumor cell migration and invasion.
Collapse
Affiliation(s)
- Ranadheer Dontula
- Section of Hematology/Oncology, University of Illinois Cancer Center, College of Medicine at Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kasaian K, Wiseman SM, Thiessen N, Mungall KL, Corbett RD, Qian JQ, Nip KM, He A, Tse K, Chuah E, Varhol RJ, Pandoh P, McDonald H, Zeng T, Tam A, Schein J, Birol I, Mungall AJ, Moore RA, Zhao Y, Hirst M, Marra MA, Walker BA, Jones SJM. Complete genomic landscape of a recurring sporadic parathyroid carcinoma. J Pathol 2013; 230:249-60. [PMID: 23616356 DOI: 10.1002/path.4203] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
Parathyroid carcinoma is a rare endocrine malignancy with an estimated incidence of less than 1 per million population. Excessive secretion of parathyroid hormone, extremely high serum calcium level, and the deleterious effects of hypercalcaemia are the clinical manifestations of the disease. Up to 60% of patients develop multiple disease recurrences and although long-term survival is possible with palliative surgery, permanent remission is rarely achieved. Molecular drivers of sporadic parathyroid carcinoma have remained largely unknown. Previous studies, mostly based on familial cases of the disease, suggested potential roles for the tumour suppressor MEN1 and proto-oncogene RET in benign parathyroid tumourigenesis, while the tumour suppressor HRPT2 and proto-oncogene CCND1 may also act as drivers in parathyroid cancer. Here, we report the complete genomic analysis of a sporadic and recurring parathyroid carcinoma. Mutational landscapes of the primary and recurrent tumour specimens were analysed using high-throughput sequencing technologies. Such molecular profiling allowed for identification of somatic mutations never previously identified in this malignancy. These included single nucleotide point mutations in well-characterized cancer genes such as mTOR, MLL2, CDKN2C, and PIK3CA. Comparison of acquired mutations in patient-matched primary and recurrent tumours revealed loss of PIK3CA activating mutation during the evolution of the tumour from the primary to the recurrence. Structural variations leading to gene fusions and regions of copy loss and gain were identified at a single-base resolution. Loss of the short arm of chromosome 1, along with somatic missense and truncating mutations in CDKN2C and THRAP3, respectively, provides new evidence for the potential role of these genes as tumour suppressors in parathyroid cancer. The key somatic mutations identified in this study can serve as novel diagnostic markers as well as therapeutic targets.
Collapse
Affiliation(s)
- Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sung J, Kim PJ, Ma S, Funk CC, Magis AT, Wang Y, Hood L, Geman D, Price ND. Multi-study integration of brain cancer transcriptomes reveals organ-level molecular signatures. PLoS Comput Biol 2013; 9:e1003148. [PMID: 23935471 PMCID: PMC3723500 DOI: 10.1371/journal.pcbi.1003148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/05/2013] [Indexed: 12/23/2022] Open
Abstract
We utilized abundant transcriptomic data for the primary classes of brain cancers to study the feasibility of separating all of these diseases simultaneously based on molecular data alone. These signatures were based on a new method reported herein – Identification of Structured Signatures and Classifiers (ISSAC) – that resulted in a brain cancer marker panel of 44 unique genes. Many of these genes have established relevance to the brain cancers examined herein, with others having known roles in cancer biology. Analyses on large-scale data from multiple sources must deal with significant challenges associated with heterogeneity between different published studies, for it was observed that the variation among individual studies often had a larger effect on the transcriptome than did phenotype differences, as is typical. For this reason, we restricted ourselves to studying only cases where we had at least two independent studies performed for each phenotype, and also reprocessed all the raw data from the studies using a unified pre-processing pipeline. We found that learning signatures across multiple datasets greatly enhanced reproducibility and accuracy in predictive performance on truly independent validation sets, even when keeping the size of the training set the same. This was most likely due to the meta-signature encompassing more of the heterogeneity across different sources and conditions, while amplifying signal from the repeated global characteristics of the phenotype. When molecular signatures of brain cancers were constructed from all currently available microarray data, 90% phenotype prediction accuracy, or the accuracy of identifying a particular brain cancer from the background of all phenotypes, was found. Looking forward, we discuss our approach in the context of the eventual development of organ-specific molecular signatures from peripheral fluids such as the blood. From a multi-study, integrated transcriptomic dataset, we identified a marker panel for differentiating major human brain cancers at the gene-expression level. The ISSAC molecular signatures for brain cancers, composed of 44 unique genes, are based on comparing expression levels of pairs of genes, and phenotype prediction follows a diagnostic hierarchy. We found that sufficient dataset integration across multiple studies greatly enhanced diagnostic performance on truly independent validation sets, whereas signatures learned from only one dataset typically led to high error rate. Molecular signatures of brain cancers, when obtained using all currently available gene-expression data, achieved 90% phenotype prediction accuracy. Thus, our integrative approach holds significant promise for developing organ-level, comprehensive, molecular signatures of disease.
Collapse
Affiliation(s)
- Jaeyun Sung
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, United States of America
| | - Pan-Jun Kim
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Republic of Korea
- Department of Physics, POSTECH, Pohang, Gyeongbuk, Republic of Korea
| | - Shuyi Ma
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, United States of America
| | - Cory C. Funk
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Andrew T. Magis
- Institute for Systems Biology, Seattle, Washington, United States of America
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Yuliang Wang
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, United States of America
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Donald Geman
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Friedman MD, Jeevan DS, Tobias M, Murali R, Jhanwar-Uniyal M. Targeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid. Oncol Rep 2013; 30:1645-50. [PMID: 23877261 DOI: 10.3892/or.2013.2625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/21/2013] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, portends a poor prognosis despite current treatment modalities. Recurrence of tumor growth is attributed to the presence of treatment-resistant cancer stem cells (CSCs). The targeting of these CSCs is therefore essential in the treatment of this disease. Mechanistic target of rapamycin (mTOR) forms two multiprotein complexes, mTORC1 and mTORC2, which regulate proliferation and migration, respectively. Aberrant function of mTOR has been shown to be present in GBM CSCs. All-trans retinoic acid (ATRA), a derivative of retinol, causes differentiation of CSCs as well as normal neural progenitor cells. The purpose of this investigation was to delineate the role of mTOR in CSC maintenance, and to establish the mechanism of targeting GBM CSCs using differentiating agents along with inhibitors of the mTOR pathways. The results demonstrated that ATRA caused differentiation of CSCs, as demonstrated by the loss of the stem cell marker Nestin. These observations were confirmed by western blotting, which demonstrated a time-dependent decrease in Nestin expression following ATRA treatment. This effect occurred despite combination with mTOR (rapamycin), PI3K (LY294002) and MEK1/2 (U0126) inhibitors. Expression of activated extracellular signal-regulated kinase 1/2 (pERK1/2) was enhanced following treatment with ATRA, independent of mTOR pathway inhibitors. Proliferation of CSCs, determined by neurosphere diameter, was decreased following treatment with ATRA alone and in combination with rapamycin. The motility of GBM cells was mitigated by treatment with ATRA, rapamycin and LY29002 alone. However, combination treatment augmented the inhibitory effect on migration suggesting synergism. These findings indicate that ATRA-induced differentiation is mediated via the ERK1/2 pathway, and underscores the significance of including differentiating agents along with inhibitors of mTOR pathways in the treatment of GBM.
Collapse
Affiliation(s)
- Marissa D Friedman
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
33
|
Xiao B, Tan L, He B, Liu Z, Xu R. MiRNA-329 targeting E2F1 inhibits cell proliferation in glioma cells. J Transl Med 2013; 11:172. [PMID: 23866847 PMCID: PMC3750231 DOI: 10.1186/1479-5876-11-172] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023] Open
Abstract
Background MicroRNAs have recently emerged as key regulators of cancers, miR-329 located on 14q32.31 is one of down-regulated miRNAs in glioma, but the function and molecular mechanisms of miR-329 in determining the malignant phenotype of human glioma are elusive. This study therefore was conducted to investigate the role of miR-329 in biological behaviors of human glioma LN18 and T98G cell lines and its molecular mechanisms. Methods Nine patients with GBM were analyzed for the expression of miR-329 by quantitative RT–PCR. MiR-329 overexpression was established by transfecting miR-329 precursor into LN18 and T98G cells, and its effects on cell proliferation were studied using MTT assay, anchorage-independent growth ability assay, colony formation assays, Bromodeoxyuridine labeling and immunofluorescence. The effects of miR-329 on cell cycle were studied by flow cytometry. The target of miR-329 was determined by luciferase assays. The regulation of miR-329 on Akt pathway was determined by western blot. Results The E2F1 was identified as the target of miR-329. Overexpression of miR-329 blocked G1/S transition in LN18 and T98G cell lines, dramatically suppressed cell proliferation and the ability of colony formation. MiR-329 significantly decreased the phosphorylation levels of intracellular kinases Akt and expression of cyclin D1, but the expression of p21 was upregulated, cell growth was suppressed by inhibiting E2F1-mediated Akt pathway. Conclusions MiR-329 may inhibit cell proliferation in human glioma cells through regulating E2F1-mediated suppression of Akt pathway.
Collapse
Affiliation(s)
- Bingxiang Xiao
- The Neurosurgery Department, General Hospital of Beijing Military Command of People's Liberation Army-PLA, Beijing 100700, P.R. China
| | | | | | | | | |
Collapse
|
34
|
Nalepa G, Barnholtz-Sloan J, Enzor R, Dey D, He Y, Gehlhausen JR, Lehmann AS, Park SJ, Yang Y, Yang X, Chen S, Guan X, Chen Y, Renbarger J, Yang FC, Parada LF, Clapp W. The tumor suppressor CDKN3 controls mitosis. ACTA ACUST UNITED AC 2013; 201:997-1012. [PMID: 23775190 PMCID: PMC3691455 DOI: 10.1083/jcb.201205125] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2(pThr-161) at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guo P, Lan J, Ge J, Nie Q, Mao Q, Qiu Y. miR-708 acts as a tumor suppressor in human glioblastoma cells. Oncol Rep 2013; 30:870-6. [PMID: 23754151 DOI: 10.3892/or.2013.2526] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/03/2013] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma (GBM) is one of the most lethal forms of human cancer, and new clinical biomarkers and therapeutic targets are urgently required. microRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional and/or translational level by binding the 3' untranslated regions (3' UTRs) of target mRNAs. The dysregulated expression of several miRNAs has been reported to modulate glioma progression. In the present study, we defined the expression and function of miR-708, which, based on real-time PCR analysis, were downregulated in GBM cells. The overexpression of miR-708 inhibited cell proliferation and invasion and induced apoptosis in the human GBM cell lines A172 and T98G. Furthermore, the overexpression of miR-708 reduced the expression of Akt1, CCND1, MMP2, EZH2, Parp-1 and Bcl2 in A172 and T98G cells. Taken together, our study suggests that miR-708 affects GBM cell proliferation and invasion, and induces apoptosis. It is suggested that miR-708 may play an important role as a tumor suppressor in GBM and it may be an attractive target for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Pin Guo
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Poi MJ, Knobloch TJ, Yuan C, Tsai MD, Weghorst CM, Li J. Evidence that P12, a specific variant of P16(INK4A), plays a suppressive role in human pancreatic carcinogenesis. Biochem Biophys Res Commun 2013; 436:217-22. [PMID: 23727582 DOI: 10.1016/j.bbrc.2013.05.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 12/30/2022]
Abstract
The INK4a-ARF locus plays a central role in the development of pancreatic tumors as evidenced by the fact that up to 98% of pancreatic tumor specimens harbored genetic alterations at the INK4a-ARF locus. Interestingly, in addition to the well-known P16(INK4A) (P16) and P14ARF tumor suppressors, the INK4a-ARF locus in pancreas encodes another protein, P12, whose structure, function, and contributions to pancreatic carcinogenesis remain to be elucidated. In the current study, we demonstrated that over-expression of p12 in human pancreatic cancer cells led to cell arrest at the G1 phase and such cell cycle arrest was related to down-regulation of a number of oncogenes, such as c-Jun, Fos, and SEI1. Furthermore, unlike P16, P12 did not retain any cyclin-dependent kinase 4 (CDK4)-inhibitory activity. Instead, P12 exhibited a transactivating activity not found in P16. We also examined the genetic status of p12 in a cohort of 40 pancreatic tumor specimens and found that p12 alteration was prevalent in pancreatic tumors with an incidence of 70% (28/40). These results support that P12 is a tumor suppressive protein distinct from P16, and its genetic inactivation is associated with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Ming J Poi
- Department of Pharmacy, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The advent of a variety of genomic, proteomic and other system-based scientific approaches has raised the expectations of identifying novel targets for oncology drug discovery. However, the complexity of human genome cancer alterations requires a careful analysis of the function of candidate targets identified by these efforts. The postulation and testing of a hypothesis that modulation of a protein or pathway will result in a therapeutic effect in a preclinical setting is crucial for target validation activities. In this chapter, we provide an overview on target identification and validation approaches to interrogate the functional and therapeutic relevance of a candidate cancer drug target as an essential step towards justifying the subsequent investment in drug discovery efforts.
Collapse
|
38
|
Quayle SN, Chheda MG, Shukla SA, Wiedemeyer R, Tamayo P, Dewan RW, Zhuang L, Huang-Hobbs E, Haidar S, Xiao Y, Ligon KL, Hahn WC, Chin L. Integrative functional genomics identifies RINT1 as a novel GBM oncogene. Neuro Oncol 2012; 14:1325-31. [PMID: 23074196 PMCID: PMC3480269 DOI: 10.1093/neuonc/nos246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large-scale cancer genomics efforts are identifying hundreds of somatic genomic alterations in glioblastoma (GBM). Distinguishing between active driver and neutral passenger alterations requires functional assessment of each gene; therefore, integrating biological weight of evidence with statistical significance for each genomic alteration will enable better prioritization for downstream studies. Here, we demonstrate the feasibility and potential of in vitro functional genomic screens to rapidly and systematically prioritize high-probability candidate genes for in vivo validation. Integration of low-complexity gain- and loss-of-function screens designed on the basis of genomic data identified 6 candidate GBM oncogenes, and RINT1 was validated as a novel GBM oncogene based on its ability to confer tumorigenicity to primary nontransformed murine astrocytes in vivo. Cancer genomics-guided low-complexity genomic screens can quickly provide a functional filter to prioritize high-value targets for further downstream mechanistic and translational studies.
Collapse
Affiliation(s)
- Steven N Quayle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fuentealba LC, Obernier K, Alvarez-Buylla A. Adult neural stem cells bridge their niche. Cell Stem Cell 2012; 10:698-708. [PMID: 22704510 DOI: 10.1016/j.stem.2012.05.012] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major developments in the neural stem cell (NSC) field in recent years provide new insights into the nature of the NSC niche. In this perspective, we integrate recent anatomical data on the organization of the two main neurogenic niches in the adult brain, the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), with signaling pathways that control the behavior of NSCs. NSCs in the adult brain stretch into physiologically distinct compartments of their niche. We propose how adult NSCs' morphology may allow these cells to integrate multiple signaling pathways arising from unique locations of their niche.
Collapse
Affiliation(s)
- Luis C Fuentealba
- Department of Neurological Surgery and Institute for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Department of Neurological Surgery and Institute for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and Institute for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Li Y, Pal R, Sung LY, Feng H, Miao W, Cheng SY, Tian C, Cheng T. An opposite effect of the CDK inhibitor, p18(INK4c) on embryonic stem cells compared with tumor and adult stem cells. PLoS One 2012; 7:e45212. [PMID: 23049777 PMCID: PMC3458833 DOI: 10.1371/journal.pone.0045212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
Self-renewal is a feature common to both adult and embryonic stem (ES) cells, as well as tumor stem cells (TSCs). The cyclin-dependent kinase inhibitor, p18INK4c, is a known tumor suppressor that can inhibit self-renewal of tumor cells or adult stem cells. Here, we demonstrate an opposite effect of p18 on ES cells in comparison with teratoma cells. Our results unexpectedly showed that overexpression of p18 accelerated the growth of mouse ES cells and embryonic bodies (EB); on the contrary, inhibited the growth of late stage teratoma. Up-regulation of ES cell markers (i.e., Oct4, Nanog, Sox2, and Rex1) were detected in both ES and EB cells, while concomitant down-regulation of various differentiation markers was observed in EB cells. These results demonstrate that p18 has an opposite effect on ES cells as compared with tumor cells and adult stem cells. Mechanistically, expression of CDK4 was significantly increased with overexpression of p18 in ES cells, likely leading to a release of CDK2 from the inhibition by p21 and p27. As a result, self-renewal of ES cells was enhanced. Our current study suggests that targeting p18 in different cell types may yield different outcomes, thereby having implications for therapeutic manipulations of cell cycle machinery in stem cells.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Rekha Pal
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Haizhong Feng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Weimin Miao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shi-Yuan Cheng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Cindy Tian
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
A high-throughput computational framework for identifying significant copy number aberrations from array comparative genomic hybridisation data. Adv Bioinformatics 2012; 2012:876976. [PMID: 23008709 PMCID: PMC3449101 DOI: 10.1155/2012/876976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 11/17/2022] Open
Abstract
Reliable identification of copy number aberrations (CNA) from comparative genomic hybridization data would be improved by the availability of a generalised method for processing large datasets. To this end, we developed swatCGH, a data analysis framework and region detection heuristic for computational grids. swatCGH analyses sequentially displaced (sliding) windows of neighbouring probes and applies adaptive thresholds of varying stringency to identify the 10% of each chromosome that contains the most frequently occurring CNAs. We used the method to analyse a published dataset, comparing data preprocessed using four different DNA segmentation algorithms, and two methods for prioritising the detected CNAs. The consolidated list of the most commonly detected aberrations confirmed the value of swatCGH as a simplified high-throughput method for identifying biologically significant CNA regions of interest.
Collapse
|
42
|
Chen AJ, Paik JH, Zhang H, Shukla SA, Mortensen R, Hu J, Ying H, Hu B, Hurt J, Farny N, Dong C, Xiao Y, Wang YA, Silver PA, Chin L, Vasudevan S, Depinho RA. STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA. Genes Dev 2012; 26:1459-72. [PMID: 22751500 DOI: 10.1101/gad.189001.112] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multidimensional cancer genome analysis and validation has defined Quaking (QKI), a member of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, as a novel glioblastoma multiforme (GBM) tumor suppressor. Here, we establish that p53 directly regulates QKI gene expression, and QKI protein associates with and leads to the stabilization of miR-20a; miR-20a, in turn, regulates TGFβR2 and the TGFβ signaling network. This pathway circuitry is substantiated by in silico epistasis analysis of its components in the human GBM TCGA (The Cancer Genome Atlas Project) collection and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies. This p53-QKI-miR-20a-TGFβ pathway expands our understanding of the p53 tumor suppression network in cancer and reveals a novel tumor suppression mechanism involving regulation of specific cancer-relevant microRNAs.
Collapse
Affiliation(s)
- An-Jou Chen
- Belfer Institute for Applied Cancer Science, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Akatsuka S, Yamashita Y, Ohara H, Liu YT, Izumiya M, Abe K, Ochiai M, Jiang L, Nagai H, Okazaki Y, Murakami H, Sekido Y, Arai E, Kanai Y, Hino O, Takahashi T, Nakagama H, Toyokuni S. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS One 2012; 7:e43403. [PMID: 22952676 PMCID: PMC3430702 DOI: 10.1371/journal.pone.0043403] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC) after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Departments of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yoriko Yamashita
- Departments of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroki Ohara
- Departments of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yu-Ting Liu
- Department of Pathology and Biology of Diseases, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masashi Izumiya
- Division of Cancer Development System, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Koichiro Abe
- Division of Cancer Development System, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Internal Medicine, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Masako Ochiai
- Division of Cancer Development System, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Li Jiang
- Departments of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hirotaka Nagai
- Departments of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Department of Pathology and Biology of Diseases, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yasumasa Okazaki
- Departments of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hideki Murakami
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Chikusa-Ku, Nagoya, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Chikusa-Ku, Nagoya, Japan
| | - Eri Arai
- Division of Molecular Pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Takashi Takahashi
- Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hitoshi Nakagama
- Division of Cancer Development System, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Shinya Toyokuni
- Departments of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
44
|
Bai F, Smith MD, Chan HL, Pei XH. Germline mutation of Brca1 alters the fate of mammary luminal cells and causes luminal-to-basal mammary tumor transformation. Oncogene 2012; 32:2715-25. [PMID: 22777348 DOI: 10.1038/onc.2012.293] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer developed in familial BRCA1 mutation carriers bears striking similarities to sporadic basal-like breast tumors. The mechanism underlying the function of BRCA1 in suppressing basal-like breast cancer remains unclear. We previously reported that the deletion of p18(Ink4c) (p18), an inhibitor of G1 cyclin Ds-dependent CDK4 and CDK6, stimulates mammary luminal progenitor cell proliferation and leads to spontaneous luminal tumor development. We report here that germline mutation of Brca1 in p18-deficient mice blocks the increase of luminal progenitor cells, impairs luminal gene expression and promotes malignant transformation of mammary tumors. Instead of the luminal mammary tumors developed in p18 single-mutant mice, mammary tumors developed in the p18;Brca1 mice, similar to breast cancer developed in familial BRCA1 carriers, exhibited extensive basal-like features and lost the remaining wild-type allele of Brca1. These results reveal distinct functions of the RB and BRCA1 pathways in suppressing luminal and basal-like mammary tumors, respectively. These results also suggest a novel mechanism--causing luminal-to-basal transformation--for the development of basal-like breast cancer in familial BRCA1 carriers and establish a unique mouse model for developing therapeutic strategies to target both luminal and basal-like breast cancers.
Collapse
Affiliation(s)
- F Bai
- Molecular Oncology Program, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
45
|
Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood 2012; 120:1095-106. [PMID: 22718837 DOI: 10.1182/blood-2012-03-415984] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.
Collapse
|
46
|
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012. [PMID: 22508724 DOI: 10.1101/gad.187922.112.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012; 26:756-84. [PMID: 22508724 DOI: 10.1101/gad.187922.112] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Glioblastoma multiforme is a histopathologically heterogeneous disease with few treatment options. Therapy based on genomic alterations is rapidly gaining popularity because of the high response rate and high specificity. DNA copy number and exon-sequencing studies of glioblastoma multiforme samples have revealed recurrent genomic alterations in genes such as TP53, EGFR, and IDH1, but to date, this has not resulted in novel glioblastoma multiforme therapies. Identification of expression subtypes has resulted in new insights such as the association between genomic abnormalities and expression signatures. This review describes the types of genomic studies that have been performed and that are underway, the most prominent results, and the implications of genomic research for the development of clinical treatment modalities.
Collapse
|
49
|
Cai H, Kumar N, Baudis M. arrayMap: a reference resource for genomic copy number imbalances in human malignancies. PLoS One 2012; 7:e36944. [PMID: 22629346 PMCID: PMC3356349 DOI: 10.1371/journal.pone.0036944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The delineation of genomic copy number abnormalities (CNAs) from cancer samples has been instrumental for identification of tumor suppressor genes and oncogenes and proven useful for clinical marker detection. An increasing number of projects have mapped CNAs using high-resolution microarray based techniques. So far, no single resource does provide a global collection of readily accessible oncogenomic array data. METHODOLOGY/PRINCIPAL FINDINGS We here present arrayMap, a curated reference database and bioinformatics resource targeting copy number profiling data in human cancer. The arrayMap database provides a platform for meta-analysis and systems level data integration of high-resolution oncogenomic CNA data. To date, the resource incorporates more than 40,000 arrays in 224 cancer types extracted from several resources, including the NCBI's Gene Expression Omnibus (GEO), EBI's ArrayExpress (AE), The Cancer Genome Atlas (TCGA), publication supplements and direct submissions. For the majority of the included datasets, probe level and integrated visualization facilitate gene level and genome wide data review. Results from multi-case selections can be connected to downstream data analysis and visualization tools. CONCLUSIONS/SIGNIFICANCE To our knowledge, currently no data source provides an extensive collection of high resolution oncogenomic CNA data which readily could be used for genomic feature mining, across a representative range of cancer entities. arrayMap represents our effort for providing a long term platform for oncogenomic CNA data independent of specific platform considerations or specific project dependence. The online database can be accessed at http//www.arraymap.org.
Collapse
Affiliation(s)
- Haoyang Cai
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nitin Kumar
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Michael Baudis
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
50
|
Leone PE, González MB, Elosua C, Gómez-Moreta JA, Lumbreras E, Robledo C, Santos-Briz A, Valero JM, de la Guardia RD, Gutiérrez NC, Hernández JM, García JL. Integration of Global Spectral Karyotyping, CGH Arrays, and Expression Arrays Reveals Important Genes in the Pathogenesis of Glioblastoma Multiforme. Ann Surg Oncol 2012; 19:2367-79. [DOI: 10.1245/s10434-011-2202-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Indexed: 12/17/2022]
|