1
|
Liao C, Hu L, Zhang Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol 2024; 21:662-675. [PMID: 38698165 DOI: 10.1038/s41585-024-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Tian S, Du S, Wang C, Zhang Y, Wang H, Fan Y, Gao Y, Gu L, Huang Q, Wang B, Ma X, Zhang X, Huang Y. Inhibition of primary cilia-hedgehog signaling axis triggers autophagic cell death and suppresses malignant progression of VHL wild-type ccRCC. Cell Death Dis 2024; 15:739. [PMID: 39389955 PMCID: PMC11466958 DOI: 10.1038/s41419-024-07085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Primary cilia are present on renal tubules and are implicated to play a pivotal role in transducing signals during development; however, the oncogenic role of cilia in clear cell renal cell carcinoma (ccRCC) has not been examined. Here we show that VHL wild-type ccRCC cell lines have a high incidence of primary cilia, and a high frequency of primary cilia is positively correlated with VHL expression and poor prognosis. Besides, the depletion of KIF3A and IFT88, genes required for ciliogenesis, significantly inhibited tumor proliferation and metastasis in vitro and in vivo. Further analysis found that mutations of key genes in hedgehog signaling are enriched in VHL wild ccRCC, its downstream signaling activation depends on ciliogenesis. Moreover, depletion of primary cilia or suppression of hedgehog pathway activation with inhibitor-induced robust autophagic cell death. Collectively, our findings revealed that primary cilia could serve as a diagnostic tool and provide new insights into the mechanism of VHL wild-type ccRCC progression. Targeting the primary cilia-hedgehog pathway may represent an effective therapeutic strategy for VHL wild-type ccRCC.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, China
| | - Yu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Fan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Gao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liangyou Gu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA Medical School, Beijing, China.
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA Medical School, Beijing, China.
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
4
|
Bertlin JAC, Pauzaite T, Liang Q, Wit N, Williamson JC, Sia JJ, Matheson NJ, Ortmann BM, Mitchell TJ, Speak AO, Zhang Q, Nathan JA. VHL synthetic lethality screens uncover CBF-β as a negative regulator of STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610968. [PMID: 39282259 PMCID: PMC11398426 DOI: 10.1101/2024.09.03.610968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL, and uncover that loss of Core Binding Factor β (CBF-β) causes cell death in VHL-null ccRCC cell lines and impairs tumour establishment and growth in vivo. This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL-null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-β. Mechanistically, CBF-β loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-β at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-β in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.
Collapse
Affiliation(s)
- James A C Bertlin
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qian Liang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Jia Jhing Sia
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Mitchell
- Early Cancer Institute and Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anneliese O Speak
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
5
|
Meng Y, Lyu CC, He YT, Che HY, Jiang H, Zhang JB, Tang HY, Yuan B. ALG5 Regulates STF-62247-Induced Milk Fat Synthesis via the mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14620-14629. [PMID: 38885170 DOI: 10.1021/acs.jafc.3c07812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Milk fat content is a critical indicator of milk quality. Exploring the key regulatory genes involved in milk fat synthesis is essential for enhancing milk fat content. STF-62247 (STF), a thiazolamide compound, has the potential to bind with ALG5 and upregulate lipid droplets in fat synthesis. However, the effect of STF on the process of milk fat synthesis and whether it acts through ALG5 remains unknown. In this study, the impact of ALG5 on milk fat synthesis and its underlying mechanism were investigated using bovine mammary epithelial cells (BMECs) and mouse models through real-time PCR, western blotting, Oil Red O staining, and triglyceride analysis. Experimental findings revealed a positive correlation between STF and ALG5 with the ability to synthesize milk fat. Silencing ALG5 led to decreased expression of FASN, SREBP1, and PPARγ in BMECs, as well as reduced phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. Moreover, the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway were restored when ALG5 silencing was followed by the addition of STF. These results suggest that STF regulates fatty acid synthesis in BMECs by affecting the PI3K/AKT/mTOR signaling pathway through ALG5. ALG5 is possibly a new factor in milk fat synthesis.
Collapse
Affiliation(s)
- Yu Meng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Chen-Chen Lyu
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Yun-Tong He
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Hao-Yu Che
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Hong-Yu Tang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, P. R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| |
Collapse
|
6
|
Liu H, Wang L, Shi X, Yin L, Zhai W, Gao S, Chen Y, Zhang T. Calcium saccharate/DUSP6 suppresses renal cell carcinoma glycolytic metabolism and boosts sunitinib efficacy via the ERK-AKT pathway. Biochem Pharmacol 2024; 224:116247. [PMID: 38697311 DOI: 10.1016/j.bcp.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Current therapeutic options for renal cell carcinoma (RCC) are very limited, which is largely due to inadequate comprehension of molecular pathological mechanisms as well as RCC's resistance to chemotherapy. Dual-specificity phosphatase 6 (DUSP6) has been associated with numerous human diseases. However, its role in RCC is not well understood. Here, we show that diminished DUSP6 expression is linked to RCC progression and unfavorable prognosis. Mechanistically, DUSP6 serves as a tumor suppressor in RCC by intervening the TAF10 and BSCL2 via the ERK-AKT pathway. Further, DUSP6 is also transcriptionally regulated by HNF-4a. Moreover, docking experiments have indicated that DUSP6 expression is enhanced when bound by Calcium saccharate, which also inhibits RCC cell proliferation, metabolic rewiring, and sunitinib resistance. In conclusion, our study identifies Calcium saccharate as a prospective pharmacological therapeutic approach for RCC.
Collapse
Affiliation(s)
- Huan Liu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longsheng Wang
- Department of Urology, Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Yin
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China; Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Qinghai, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Yonghui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tao Zhang
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China..
| |
Collapse
|
7
|
Huang S, Liu J, Hu J, Hou Y, Hu M, Zhang B, Luo H, Fu S, Chen Y, Liu X, Chen Z, Wang L. GHITM regulates malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling. J Cell Mol Med 2024; 28:e18290. [PMID: 38588015 PMCID: PMC11000813 DOI: 10.1111/jcmm.18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Growth hormone inducible transmembrane protein (GHITM), one member of Bax inhibitory protein-like family, has been rarely studied, and the clinical importance and biological functions of GHITM in kidney renal clear cell carcinoma (KIRC) still remain unknown. In the present study, we found that GHITM was downregulated in KIRC. Aberrant GHITM downregulation related to clinicopathological feature and unfavourable prognosis of KIRC patients. GHITM overexpression inhibited KIRC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, GHITM overexpression could induce the downregulation of Notch1, which acts as an oncogene in KIRC. Overexpression of Notch1 effectively rescued the inhibitory effect induced by GHITM upregulation. More importantly, GHITM could regulate PD-L1 protein abundance and ectopic overexpression of GHITM enhanced the antitumour efficiency of PD-1 blockade in KIRC, which provided new insights into antitumour therapy. Furthermore, we also showed that YY1 could decrease GHITM level via binding to its promoter. Taken together, our study revealed that GHITM was a promising therapeutic target for KIRC, which could modulate malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling pathway.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Jiachen Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Juncheng Hu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yanguang Hou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Min Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Banghua Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
- Hubei Key Laboratory of Digestive System DiseaseWuhanChina
| | - Hongbo Luo
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Department of UrologyThe Second Hospital of HuangshiHuangshiChina
| | - Shujie Fu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yujie Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
8
|
Long X, Wang H, Yan J, Li Y, Dong X, Tian S, Sun Y, Luo K, He B, Liang Y. Tailor-Made Autophagy Cascade Amplification Polymeric Nanoparticles for Enhanced Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207898. [PMID: 36932938 DOI: 10.1002/smll.202207898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Indexed: 06/15/2023]
Abstract
Chemotherapeutics can induce immunogenic cell death (ICD) by triggering autophagy and mediate antitumor immunotherapy. However, using chemotherapeutics alone can only cause mild cell-protective autophagy and be incapable of inducing sufficient ICD efficacy. The participation of autophagy inducer is competent to enhance autophagy, so the level of ICD is promoted and the effect of antitumor immunotherapy is highly increased. Herein, tailor-made autophagy cascade amplification polymeric nanoparticles STF@AHPPE are constructed to enhance tumor immunotherapy. Arginine (Arg), polyethyleneglycol-polycaprolactone, and epirubicin (EPI) are grafted onto hyaluronic acid (HA) via disulfide bond to form the AHPPE nanoparticles and autophagy inducer STF-62247 (STF) is loaded. When STF@AHPPE nanoparticles target to tumor tissues and efficiently enter into tumor cells with the help of HA and Arg, the high glutathione concentration leads to the cleavage of disulfide bond and the release of EPI and STF. Finally, STF@AHPPE induces violent cytotoxic autophagy and strong ICD efficacy. As compared to AHPPE nanoparticles, STF@AHPPE nanoparticles kill the most tumor cells and show the more obvious ICD efficacy and immune activation ability. This work provides a novel strategy for combining tumor chemo-immunotherapy with autophagy induction.
Collapse
Affiliation(s)
- Xuehua Long
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Huiqi Wang
- Instrumental Analysis Center, Qingdao University, Qingdao, 266073, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Xue Dong
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Sijia Tian
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| |
Collapse
|
9
|
Zhang H, Ma L, Kim E, Yi J, Huang H, Kim H, Raza MA, Park S, Jang S, Kim K, Kim SH, Lee Y, Kim E, Ryoo ZY, Kim MO. Rhein Induces Oral Cancer Cell Apoptosis and ROS via Suppresse AKT/mTOR Signaling Pathway In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24108507. [PMID: 37239855 DOI: 10.3390/ijms24108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lei Ma
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science, Hankyung National University, Anseong 17579, Republic of Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Hyeonjin Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Muhammad Atif Raza
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kirim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam 34134, Republic of Korea
| | - Youngkyun Lee
- School of Dentistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunkyong Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
10
|
Curcumin Inhibits Proliferation of Renal Cell Carcinoma in vitro and in vivo by Regulating miR-148/ADAMTS18 through Suppressing Autophagy. Chin J Integr Med 2022:10.1007/s11655-022-3690-9. [PMID: 36477451 DOI: 10.1007/s11655-022-3690-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To explore the effect of curcumin on the proliferation of renal cell carcinoma and analyze its regulation mechanism. METHODS In RCC cell lines of A498 and 786-O, the effects of curcumin (2.5, 5, 10 µ mo/L) on the proliferation were analyzed by Annexin V+PI staining. Besides, A498 was inoculated into nude mice to establish tumorigenic models, and the model mice were treated with different concentrations of curcumin (100, 200, and 400 mg/kg), once daily for 30 days. Then the tumor diameter was measured, the tumor cells were observed by hematoxylin-eosin staining, and the protein expressions of miR-148 and ADAMTS18 were detected by immunohistochemistry. In vitro, after transfection of miR-148 mimics, miR-148 inhibitor or si-ADAMTS18 in cell lines, the expression of ADAMTS18 was examined by Western blotting and the cell survival rate was analyzed using MTT. Subsequently, Western blot analysis was again used to examine the autophagy phenomenon by measuring the relative expression level of LC3-II/LC3-I; autophagy-associated genes, including those of Beclin-1 and ATG5, were also examined when miR-148 was silenced in both cell lines with curcumin treatment. RESULTS Curcumin could inhibit the proliferation of RCC in cell lines and nude mice. The expression of miR-148 and ADAMTS18 was upregulated after curcumin treatment both in vitro and in vivo (P<0.05). The cell survival rate was dramatically declined upon miR-148 or ADAMTS18 upregulated. However, si-ADAMTS18 treatment or miR-148 inhibitor reversed these results, that is, both of them promoted the cell survival rate. CONCLUSION Curcumin can inhibit the proliferation of renal cell carcinoma by regulating the miR-148/ ADAMTS18 axis through the suppression of autophagy in vitro and in vivo. There may exist a positive feedback loop between miR-148 and ADAMTS18 gene in RCC.
Collapse
|
11
|
Johnson M, Nowlan S, Sahin G, Barnett DA, Joy AP, Touaibia M, Cuperlovic-Culf M, Zofija Avizonis D, Turcotte S. Decrease of Intracellular Glutamine by STF-62247 Results in the Accumulation of Lipid Droplets in von Hippel-Lindau Deficient Cells. Front Oncol 2022; 12:841054. [PMID: 35223522 PMCID: PMC8865074 DOI: 10.3389/fonc.2022.841054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Kidney cancer is one of the top ten cancer diagnosed worldwide and its incidence has increased the last 20 years. Clear Cell Renal Cell Carcinoma (ccRCC) are characterized by mutations that inactivate the von Hippel-Lindau (VHL) tumor suppressor gene and evidence indicated alterations in metabolic pathways, particularly in glutamine metabolism. We previously identified a small molecule, STF-62247, which target VHL-deficient renal tumors by affecting late-stages of autophagy and lysosomal signaling. In this study, we investigated ccRCC metabolism in VHL-deficient and proficient cells exposed to the small molecule. Metabolomics profiling using 1H NMR demonstrated that STF-62247 increases levels of glucose, pyruvate, glycerol 3-phosphate while glutamate, asparagine, and glutathione significantly decreased. Diminution of glutamate and glutamine was further investigated using mass spectrometry, western blot analyses, enzymatic activities, and viability assays. We found that expression of SLC1A5 increases in VHL-deficient cells treated with STF-62247, possibly to stimulate glutamine uptake intracellularly to counteract the diminution of this amino acid. However, exogenous addition of glutamine was not able to rescue cell viability induced by the small molecule. Instead, our results showed that VHL-deficient cells utilize glutamine to produce fatty acid in response to STF-62247. Surprisingly, this occurs through oxidative phosphorylation in STF-treated cells while control cells use reductive carboxylation to sustain lipogenesis. We also demonstrated that STF-62247 stimulated expression of stearoyl-CoA desaturase (SCD1) and peripilin2 (PLIN2) to generate accumulation of lipid droplets in VHL-deficient cells. Moreover, the carnitine palmitoyltransferase 1A (CPT1A), which control the entry of fatty acid into mitochondria for β-oxidation, also increased in response to STF-62247. CPT1A overexpression in ccRCC is known to limit tumor growth. Together, our results demonstrated that STF-62247 modulates cellular metabolism of glutamine, an amino acid involved in the autophagy-lysosome process, to support lipogenesis, which could be implicated in the signaling driving to cell death.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sarah Nowlan
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Gülsüm Sahin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | | | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | | | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
12
|
Xu T, Tian W, Zhang Q, Liu J, Liu Z, Jin J, Guo Y, Bai LP. Novel 1,3,4-thiadiazole/oxadiazole-linked honokiol derivatives suppress cancer via inducing PI3K/Akt/mTOR-dependent autophagy. Bioorg Chem 2021; 115:105257. [PMID: 34426156 DOI: 10.1016/j.bioorg.2021.105257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
Honokiol is a bioactive biphenolic component derived from Magnoliae officinalis Cortex (known as "Hou Po" in Chinese), a traditional Chinese herbal medicine. A series of novel 1,3,4-thiadiazole/oxadiazole-linked honokiol derivatives were synthesized and tested for anticancer activity against seven human cancer cell lines in this study. Among all derivatives, 8a had the most potent cytotoxic effect on all tested cancer cells, with IC50 values ranging from 1.62 ± 0.19 to 4.61 ± 0.51 µM, which were 10.38-34.36 folds more potent than the parental honokiol (IC50 values of 30.96 ± 1.81-55.67 ± 0.31 µM). On A549, HCT116, and MDA-MB-231 cell lines, 8a demonstrated 5.69-fold, 5.65-fold, and 4.83-fold greater cytotoxicity than cisplatin, respectively. Compound 8a also had higher selectivity (SI values of 8.41-49.38) towards seven cancer cell lines over the normal cell lines than cisplatin (SI values of 1.24-2.52). The analysis of structure-activity relationships (SARs) revealed that honokiol derivatives bearing 1,3,4-thiadiazoles (8a-j) possessed stronger anticancer activity than those containing 1,3,4-oxadiazoles. Further mechanistic investigation indicated that 8a induced cytotoxic autophagy in cancer cells in a time- and dose-independent manner via suppressing the PI3K/Akt/mTOR pathway. Molecular docking suggested that 8a could bind to the PI3Kα active sites. Additionally, 8a inhibited the migration and invasion of A549 and MDA-MB-231 cancer cells.
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Wenyue Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhiyan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yong Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
13
|
Steroidal Saponins Isolated from the Rhizome of Dioscorea tokoro Inhibit Cell Growth and Autophagy in Hepatocellular Carcinoma Cells. Life (Basel) 2021; 11:life11080749. [PMID: 34440493 PMCID: PMC8400091 DOI: 10.3390/life11080749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Our preliminary screening identified an extract from the rhizome of Dioscorea tokoro, which strongly suppressed the proliferation of HepG2 hepatocellular carcinoma cells and inhibited autophagy. This study aimed to isolate active compounds from the rhizome of D. tokoro that exert antiproliferative effects and inhibit autophagy. The bioassay-guided fractionation of the active fraction led to the isolation of two spirostan-type steroidal saponins, dioscin (1) and yamogenin 3-O-α-l-rhamnopyranosyl (1→4)-O-α-l-rhamnopyranosyl(1→2)-β-d-glucopyranoside (2), and the frostane-type steroidal saponin protodioscin (3) from the n-BuOH fraction. Furthermore, acid hydrolysis of 1 and 2 produced the aglycones diosgenin (4) and yamogenin (5), respectively. Compounds 1-5 suppressed proliferation of HepG2 cells. The analysis of structure-activity relationships indicated that the 25(R)-conformation, structures with a sugar moiety, and the spirostan-type aglycone moiety contributed to antiproliferative activity. Analysis of autophagy-related proteins demonstrated that 1-3 clearly increased the levels of both LC3-II and p62, implying that 1-3 deregulate the autophagic pathway by blocking autophagic flux, which results in p62 and LC3-II accumulation. In contrast, 1-3 did not significantly affect caspase-3 activation and PARP cleavage, suggesting that the antiproliferative activity of 1-3 occurred independently of caspase-3-mediated apoptosis. In summary, our study showed that 1-3, active compounds in the rhizome of D. tokoro, suppressed cell proliferation and autophagy, and might be potential agents for autophagy research and cancer chemoprevention.
Collapse
|
14
|
Shulman M, Shi R, Zhang Q. Von Hippel-Lindau tumor suppressor pathways & corresponding therapeutics in kidney cancer. J Genet Genomics 2021; 48:552-559. [PMID: 34376376 PMCID: PMC8453047 DOI: 10.1016/j.jgg.2021.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
The identification and application of the Von Hippel-Lindau (VHL) gene is a seminal breakthrough in kidney cancer research. VHL and its protein pVHL are the root cause of most kidney cancers, and the cascading pathway below them is crucial for understanding hypoxia, in addition to the aforementioned tumorigenesis routes and treatments. We reviewed the history and functions of VHL/pVHL and Hypoxia-inducible factor (HIF), their well-known activities under low-oxygen environments as an E3 ubiquitin ligase and as a transcription factor, respectively, as well as their non-canonical functions revealed recently. Additionally, we discussed how their dysregulation promotes tumorigenesis: beginning with chromosome 3 p-arm (3p) loss/epigenetic methylation, followed by two-allele knockout, before the loss of complimentary tumor suppressor genes leads cells down predictable oncological paths. These different pathways can ultimately determine the grade, outcome, and severity of the deadliest genitourinary cancer. We finished by investigating current and proposed schemes to therapeutically treat clear cell renal cell carcinoma (ccRCC) by manipulating the hypoxic pathway utilizing Vascular Endothelial Growth Factor (VEGF) inhibitors, mammalian target of rapamycin complex 1 (mTORC1) inhibitors, small molecule HIF inhibitors, immune checkpoint blockade therapy, and synthetic lethality.
Collapse
Affiliation(s)
- Maxwell Shulman
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel Shi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Ortmann BM, Nathan JA. Genetic approaches to understand cellular responses to oxygen availability. FEBS J 2021; 289:5396-5412. [PMID: 34125486 DOI: 10.1111/febs.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Oxygen-sensing mechanisms have evolved to allow organisms to respond and adapt to oxygen availability. In metazoans, oxygen-sensing is predominantly mediated by the hypoxia inducible factors (HIFs). These transcription factors are stabilised when oxygen is limiting, activating genes involved in angiogenesis, cell growth, pH regulation and metabolism to reset cell function and adapt to the cellular environment. However, the recognition that other cellular pathways and enzymes can also respond to changes in oxygen abundance provides further complexity. Dissecting this interplay of oxygen-sensing mechanisms has been a key research goal. Here, we review how genetic approaches have contributed to our knowledge of oxygen-sensing pathways which to date have been predominantly focused on the HIF pathway. We discuss how genetic studies have advanced the field and outline the implications and limitations of such approaches for the development of therapies targeting oxygen-sensing mechanisms in human disease.
Collapse
Affiliation(s)
- Brian M Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| |
Collapse
|
16
|
Khan AA, Alanazi AM, Alsaif N, Al-anazi M, Sayed AY, Bhat MA. Potential cytotoxicity of silver nanoparticles: Stimulation of autophagy and mitochondrial dysfunction in cardiac cells. Saudi J Biol Sci 2021; 28:2762-2771. [PMID: 34025162 PMCID: PMC8117033 DOI: 10.1016/j.sjbs.2021.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
In the present study, we elucidated the potential cytotoxicity of AgNPs in H9c2 rat cardiomyoblasts and assessed the underlying toxicological manifestations responsible for their toxicity thereof. The results indicated that the exposure of AgNPs to H9c2 cardiac cells decreased cell viability in a dose-dependent manner and caused cell cycle arrest followed by induction of apoptosis. The AgNPs treated cardiac cells showed a generation of reactive oxygen species (ROS) and mitochondrial dysfunction where mitochondrial ATP was reduced and the expression of AMPK1α increased. AgNPs also induced ROS-mediated autophagy in H9c2 cells. There was a significant time-dependent increase in intracellular levels of Atg5, Beclin1, and LC3BII after exposure to AgNPs, signifying the autophagic response in H9c2 cells. More importantly, the addition of N-acetyl-L-cysteine (NAC) inhibited autophagy and significantly reduced the cytotoxicity of AgNPs in H9c2 cells. The study highlights the prospective toxicity of AgNPs on cardiac cells, collectively signifying a potential health risk.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Al-anazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Y.A. Sayed
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Fei H, Chen S, Xu C. Construction autophagy-related prognostic risk signature combined with clinicopathological validation analysis for survival prediction of kidney renal papillary cell carcinoma patients. BMC Cancer 2021; 21:411. [PMID: 33858375 PMCID: PMC8048278 DOI: 10.1186/s12885-021-08139-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Little data is available on prognostic biomarkers and effective treatment options for Kidney Renal Papillary Cell Carcinoma (KIRP) patients, to find potential prognostic biomarkers and new targets was an urgent mission for KIRP therapy. METHODS The differentially expressed autophagy-related genes (DEARGs) were screened out according to the RNA sequencing data in The Cancer Genome Atlas database, then identified survival-related DEARGs to establish a prognostic model for survival predicting of KIRP patients. Then we verified the robustness and validity of the prognostic risk model through clinicopathological data. At last, we evaluate the prognostic value of genes that formed the prognostic risk model individually. RESULTS We analyzed the expression of 232 autophagy-related genes (ARGs) in 289 KIRP and 32 non-tumor tissue cases, and 40 mRNAs were screened out as DEARGs. The functional and pathway enrichment analysis was done and protein-protein interaction network was constructed for all DEARGs. To sift candidate DEARGs associated with KIRP patients' survival and create an autophagy-related risk prognostic model, univariate and multivariate Cox regression analysis were did separately. Eventually 3 desirable independent prognostic DEARGs (P4HB, NRG1, and BIRC5) were picked out and used for construct the autophagy-related risk model. The accuracy of the prognostic risk model for survival prediction was assessed by Kaplan-Meier plotter, receiver-operator characteristic curve, and clinicopathological correlational analyses. The prognostic value of above 3 genes was verified individually by survival analysis and expression analysis on mRNA and protein level. CONCLUSIONS The autophagy-related prognostic model is accurate and applicable, it can predict OS independently for KIRP patients. Three independent prognostic DEARGs can benefit for facilitate personalized target treatment too.
Collapse
Affiliation(s)
- Hongjun Fei
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai Jiao Tong University School of Medicine, No.910, Hengshan Road, Shanghai, 200030, PR China
| | - Songchang Chen
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai Jiao Tong University School of Medicine, No.910, Hengshan Road, Shanghai, 200030, PR China.,Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Chenming Xu
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai Jiao Tong University School of Medicine, No.910, Hengshan Road, Shanghai, 200030, PR China. .,Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
18
|
Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021; 17:245-261. [PMID: 33144689 PMCID: PMC8172121 DOI: 10.1038/s41581-020-00359-2] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The molecular features that define clear cell renal cell carcinoma (ccRCC) initiation and progression are being increasingly defined. The TRACERx Renal studies and others that have described the interaction between tumour genomics and remodelling of the tumour microenvironment provide important new insights into the molecular drivers underlying ccRCC ontogeny and progression. Our understanding of common genomic and chromosomal copy number abnormalities in ccRCC, including chromosome 3p loss, provides a mechanistic framework with which to organize these abnormalities into those that drive tumour initiation events, those that drive tumour progression and those that confer lethality. Truncal mutations in ccRCC, including those in VHL, SET2, PBRM1 and BAP1, may engender genomic instability and promote defects in DNA repair pathways. The molecular features that arise from these defects enable categorization of ccRCC into clinically and therapeutically relevant subtypes. Consideration of the interaction of these subtypes with the tumour microenvironment reveals that specific mutations seem to modulate immune cell populations in ccRCC tumours. These findings present opportunities for disease prevention, early detection, prognostication and treatment.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Das B, Kundu CN. Anti-Cancer Stem Cells Potentiality of an Anti-Malarial Agent Quinacrine: An Old Wine in a New Bottle. Anticancer Agents Med Chem 2021; 21:416-427. [PMID: 32698746 DOI: 10.2174/1871520620666200721123046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Quinacrine (QC) is a tricyclic compound and a derivative of 9-aminoacridine. It has been widely used to treat malaria and other parasitic diseases since the last century. Interestingly, studies have revealed that it also displays anti-cancer activities. Here, we have discussed the anti-cancer mechanism of QC along with its potentiality to specifically target cancer stem cells. The anti-cancer action of this drug includes DNA intercalation, inhibition of DNA repair mechanism, prevention of cellular growth, cell cycle arrest, inhibition of DNA and RNA polymerase activity, induction of autophagy, promotion of apoptosis, deregulation of cell signaling in cancer cells and cancer stem cells, inhibition of metastasis and angiogenesis. In addition, we have also emphasized on the synergistic effect of this drug with other potent chemotherapeutic agents and mentioned its different applications in anti-cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya N Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
20
|
He YH, Tian G. Autophagy as a Vital Therapy Target for Renal Cell Carcinoma. Front Pharmacol 2021; 11:518225. [PMID: 33643028 PMCID: PMC7902926 DOI: 10.3389/fphar.2020.518225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process that degrades and recycles superfluous organelles or damaged cellular contents. It has been found to have dual functions in renal cell carcinoma (RCC). Many autophagy-related proteins are regarded as prognostic markers of RCC. Researchers have attempted to explore synthetic and phytochemical drugs for RCC therapy that target autophagy. In this review, we highlight the importance of autophagy in RCC and potential treatments related to autophagy.
Collapse
Affiliation(s)
- Ying-Hua He
- Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guo Tian
- Hepatobiliary and Pancreatic Intervention Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Radovanović M, Džamić Z. Autophagy and renal cell carcinoma: What do we know so far? MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-31557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney tumor in adults, accounting for approximately 90% of kidney malignances, occurring usually between the ages of 60 and 70. The 5-year overall survival rate for all RCC types is 49%. Since RCCs are resistant to numeorus different radio and chemotherapeutics that act via apoptosis induction, the development of new approaches to RCC treatment is still in the focus of modern urology. In particular, in recent years, autophagy in RCC has been widely studied as a mechanism of cell extinction through which tumor cells can overcome resistance to apoptosis activation therapy. Autophagy is often referred to as a double-edged sword because it can be a process that allows cells of cancer to survive and, on the other hand and under other conditions, it can be a cell dying mechanism, independent or closely related to other cell death modalities, like apoptosis and necrosis. The central role in the tempering of the process of autophagy, in general, belongs to the mTOR complex (mammalian target of rapamycin), which integrates numerous signals that affect autophagy, such as growth factors, nutrients, various stressors and the energy status of the cell. In RCC, the most important is PI3K/AKT/mTOR signaling pathway, since activation of this signaling leads to survival of tumor cells through mTOR activation and thus, autophagy inhibition. Up to now, it was found that autophagy markers such as Beclin-1 and LC3-II can be considered as prognostic markers for RCC since the high level of Beclin-1 was detected in tissues and cells of RCC (A498 and ACHN cell lines) and that tumor cell mobility is promoted by the up-regulated expression of LC3. Therefore, a progress in RCC therapy can be expected from the development and synthesis of specific compounds targeting autophagy, as well as the therapy based on their combination.
Collapse
|
22
|
Coalescing lessons from oxygen sensing, tumor metabolism, and epigenetics to target VHL loss in kidney cancer. Semin Cancer Biol 2020; 67:34-42. [DOI: 10.1016/j.semcancer.2020.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
|
23
|
Kowalewski A, Zdrenka M, Grzanka D, Szylberg Ł. Targeting the Deterministic Evolutionary Trajectories of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2020; 12:E3300. [PMID: 33182233 PMCID: PMC7695334 DOI: 10.3390/cancers12113300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of clinical resistance to currently available systemic therapies forces us to rethink our approach to clear cell renal cell carcinoma (ccRCC). The ability to influence ccRCC evolution by inhibiting processes that propel it or manipulating its course may be an adequate strategy. There are seven deterministic evolutionary trajectories of ccRCC, which correlate with clinical phenotypes. We suspect that each trajectory has its own unique weaknesses that could be exploited. In this review, we have summarized recent advances in the treatment of ccRCC and demonstrated how to improve systemic therapies from the evolutionary perspective. Since there are only a few evolutionary trajectories in ccRCC, it appears feasible to use them as potential biomarkers for guiding intervention and surveillance. We believe that the presented patient stratification could help predict future steps of malignant progression, thereby informing optimal and personalized clinical decisions.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland; (D.G.); (Ł.S.)
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland; (D.G.); (Ł.S.)
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland; (D.G.); (Ł.S.)
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| |
Collapse
|
24
|
SEÇİNTİ İE, AKINCIOĞLU E, KANDEMİR O. Beclin 1 (otofaji belirteci), p53 mutasyonu, Ki-67 proliferasyon indeksi, tümör nekrozu ve mikrovasküler invazyonun böbrek hücreli karsinomlarda prognoz üzerindeki etkisi ve bunların bilinen prognostik parametrelerle ilişkisi. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2020. [DOI: 10.17517/ksutfd.794679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Bouhamdani N, Comeau D, Coholan A, Cormier K, Turcotte S. Targeting lysosome function causes selective cytotoxicity in VHL-inactivated renal cell carcinomas. Carcinogenesis 2020; 41:828-840. [PMID: 31556451 DOI: 10.1093/carcin/bgz161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
The inactivation of the tumor suppressor gene, von Hippel-Lindau (VHL), has been identified as the earliest event in renal cell carcinoma (RCC) development. The loss of heterogeneity by chromosome 3p deletion followed by inactivating mutations on the second VHL copy are events present in close to 90% of patients. Our study illustrates a lysosomal vulnerability in VHL-inactivated RCC in vitro. By investigating the mechanism of action of the previously identified STF-62247, a small bioactive compound known for its selective cytotoxic properties towards VHL-defective models, we present the promising approach of targeting truncal-driven VHL inactivation through lysosome disruption. Furthermore, by analyzing the open platform for exploring cancer genomic data (cbioportal), we uncover the high alteration frequency of essential lysosomal and autophagic genes in sequenced biopsies from clear cell RCC patient primary tumors. By investigating lysosome physiology, we also identify VHL-inactivated cells' inability to maintain their lysosomes at the perinuclear localization in response to STF-62247-induced stress and accumulate cytoplasmic inclusion bodies in response to an inefficient lysosomal degradative capacity. Finally, by testing other known lysosomal-disrupting agents (LDAs), we show that these are selectively cytotoxic to cells lacking VHL functions. Our study builds a strong platform that could specifically link genetic clonal ccRCC evolution to lysosomal and trafficking vulnerabilities.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Dominique Comeau
- Department of Biology, Université de Moncton, Moncton, New-Brunswick, Canada
| | - Alexandre Coholan
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Kevin Cormier
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Sandra Turcotte
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| |
Collapse
|
26
|
Xiao Y, Thakkar KN, Zhao H, Broughton J, Li Y, Seoane JA, Diep AN, Metzner TJ, von Eyben R, Dill DL, Brooks JD, Curtis C, Leppert JT, Ye J, Peehl DM, Giaccia AJ, Sinha S, Rankin EB. The m 6A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proc Natl Acad Sci U S A 2020; 117:21441-21449. [PMID: 32817424 PMCID: PMC7474618 DOI: 10.1073/pnas.2000516117] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Loss of the von Hippel-Lindau (VHL) tumor suppressor is a hallmark feature of renal clear cell carcinoma. VHL inactivation results in the constitutive activation of the hypoxia-inducible factors (HIFs) HIF-1 and HIF-2 and their downstream targets, including the proangiogenic factors VEGF and PDGF. However, antiangiogenic agents and HIF-2 inhibitors have limited efficacy in cancer therapy due to the development of resistance. Here we employed an innovative computational platform, Mining of Synthetic Lethals (MiSL), to identify synthetic lethal interactions with the loss of VHL through analysis of primary tumor genomic and transcriptomic data. Using this approach, we identified a synthetic lethal interaction between VHL and the m6A RNA demethylase FTO in renal cell carcinoma. MiSL identified FTO as a synthetic lethal partner of VHL because deletions of FTO are mutually exclusive with VHL loss in pan cancer datasets. Moreover, FTO expression is increased in VHL-deficient ccRCC tumors compared to normal adjacent tissue. Genetic inactivation of FTO using multiple orthogonal approaches revealed that FTO inhibition selectively reduces the growth and survival of VHL-deficient cells in vitro and in vivo. Notably, FTO inhibition reduced the survival of both HIF wild type and HIF-deficient tumors, identifying FTO as an HIF-independent vulnerability of VHL-deficient cancers. Integrated analysis of transcriptome-wide m6A-seq and mRNA-seq analysis identified the glutamine transporter SLC1A5 as an FTO target that promotes metabolic reprogramming and survival of VHL-deficient ccRCC cells. These findings identify FTO as a potential HIF-independent therapeutic target for the treatment of VHL-deficient renal cell carcinoma.
Collapse
Affiliation(s)
- Yiren Xiao
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Kaushik N Thakkar
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA 94305
| | | | - Yang Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Jose A Seoane
- Department of Medicine, Stanford University, Stanford, CA 94305
- Deparment of Genetics, Stanford University, Stanford, CA 94305
| | - Anh N Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | | | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, CA 94305
| | - Christina Curtis
- Department of Medicine, Stanford University, Stanford, CA 94305
- Deparment of Genetics, Stanford University, Stanford, CA 94305
| | - John T Leppert
- Department of Urology, Stanford University, Stanford, CA 94305
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Donna M Peehl
- Deparment of Genetics, Stanford University, Stanford, CA 94305
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Subarna Sinha
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305;
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305
| |
Collapse
|
27
|
Wang X, Li M, Ren K, Xia C, Li J, Yu Q, Qiu Y, Lu Z, Long Y, Zhang Z, He Q. On-Demand Autophagy Cascade Amplification Nanoparticles Precisely Enhanced Oxaliplatin-Induced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002160. [PMID: 32596861 DOI: 10.1002/adma.202002160] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Chemoimmunotherapy-induced antitumor immune response is highly dependent on tumor autophagy. When tumor cells are treated with chemoimmunotherapy, timely overactivated autophagy can not only lead more tumor cells to death, but also participate in the endogenous antigen presentation and immune stimulators secretion of dying cells, thus plays a vital role. However, timely and accurately overactivated tumor autophagy during chemoimmunotherapy is of great difficulty. Here, an on-demand autophagy cascade amplification nanoparticle (ASN) is reported to boost oxaliplatin-induced cancer immunotherapy. ASN is prepared by self-assemble of autophagy-responsible C-TFG micelle and is followed by electrostatic binding of oxaliplatin prodrug (HA-OXA). After entering tumor cells, the HA-OXA shell of ASN first responds to the reduction microenvironment and releases oxaliplatin to trigger tumor immunogenic cell death and mildly stimulates tumor autophagy. Then, the exposed C-TFG micelle can sensitively respond to oxaliplatin-induced autophagy and release a powerful autophagy inducer STF-62247, which precisely transforms autophagy to "overactivated" condition, leading tumor cells to autophagic death and enhance subsequent tumor antigen processing of the dying cells. In CT26 tumor-bearing mice, ASN exhibits optimal immune stimulation and antitumor efficiency due to its on-demand autophagy induction ability.
Collapse
Affiliation(s)
- Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Chunyu Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Jianping Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Qianwen Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Yue Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
28
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
29
|
Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis 2020; 11:524. [PMID: 32655130 PMCID: PMC7354992 DOI: 10.1038/s41419-020-2730-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with poor survival. It is urgent to search for new efficient drugs with good stability and safety for clinical therapy. This study aims to identify potential anticancer drugs from a compound library consisting of 429 natural products. Echinatin, a compound isolated from the Chinese herb Glycyrrhiza uralensis Fisch, was found to markedly induce apoptosis and inhibit proliferation and colony-formation ability in ESCC. Confocal fluorescence microscopy data showed that echinatin significantly induced autophagy in ESCC cells, and autophagy inhibitor bafilomycinA1 attenuated the suppressive effects of echinatin on cell viability and apoptosis. Mechanistically, RNA sequencing coupled with bioinformatics analysis and a series of functional assays revealed that echinatin induced apoptosis and autophagy through inactivation of AKT/mTOR signaling pathway, whereas constitutive activation of AKT significantly abrogated these effects. Furthermore, we demonstrated that echinatin had a significant antitumor effect in the tumor xenograft model and markedly suppressed cell migration and invasion abilities of ESCC cells in a dose-dependent manner. Our findings provide the first evidence that echinatin could be a novel therapeutic strategy for treating ESCC.
Collapse
|
30
|
Jones TM, Carew JS, Nawrocki ST. Therapeutic Targeting of Autophagy for Renal Cell Carcinoma Therapy. Cancers (Basel) 2020; 12:E1185. [PMID: 32392870 PMCID: PMC7281213 DOI: 10.3390/cancers12051185] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Kidney cancer is the 7th most prevalent form of cancer in the United States with the vast majority of cases being classified as renal cell carcinoma (RCC). Multiple targeted therapies have been developed to treat RCC, but efficacy and resistance remain a challenge. In recent years, the modulation of autophagy has been shown to augment the cytotoxicity of approved RCC therapeutics and overcome drug resistance. Inhibition of autophagy blocks a key nutrient recycling process that cancer cells utilize for cell survival following periods of stress including chemotherapeutic treatment. Classic autophagy inhibitors such as chloroquine and hydroxychloroquine have been introduced into phase I/II clinical trials, while more experimental compounds are moving forward in preclinical development. Here we examine the current state and future directions of targeting autophagy to improve the efficacy of RCC therapeutics.
Collapse
Affiliation(s)
| | | | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (T.M.J.); (J.S.C.)
| |
Collapse
|
31
|
Hu L, Xie H, Liu X, Potjewyd F, James LI, Wilkerson EM, Herring LE, Xie L, Chen X, Cabrera JC, Hong K, Liao C, Tan X, Baldwin AS, Gong K, Zhang Q. TBK1 Is a Synthetic Lethal Target in Cancer with VHL Loss. Cancer Discov 2020; 10:460-475. [PMID: 31810986 PMCID: PMC7058506 DOI: 10.1158/2159-8290.cd-19-0837] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/25/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022]
Abstract
TANK binding kinase 1 (TBK1) is an important kinase involved in the innate immune response. Here we discover that TBK1 is hyperactivated by von Hippel-Lindau (VHL) loss or hypoxia in cancer cells. Tumors from patients with kidney cancer with VHL loss display elevated TBK1 phosphorylation. Loss of TBK1 via genetic ablation, pharmacologic inhibition, or a new cereblon-based proteolysis targeting chimera specifically inhibits VHL-deficient kidney cancer cell growth, while leaving VHL wild-type cells intact. TBK1 depletion also significantly blunts kidney tumorigenesis in an orthotopic xenograft model in vivo. Mechanistically, TBK1 hydroxylation on Proline 48 triggers VHL as well as the phosphatase PPM1B binding that leads to decreased TBK1 phosphorylation. We identify that TBK1 phosphorylates p62/SQSTM1 on Ser366, which is essential for p62 stability and kidney cancer cell proliferation. Our results establish that TBK1, distinct from its role in innate immune signaling, is a synthetic lethal target in cancer with VHL loss. SIGNIFICANCE: The mechanisms that lead to TBK1 activation in cancer and whether this activation is connected to its role in innate immunity remain unclear. Here, we discover that TBK1, distinct from its role in innate immunity, is activated by VHL loss or hypoxia in cancer.See related commentary by Bakouny and Barbie, p. 348.This article is highlighted in the In This Issue feature, p. 327.
Collapse
Affiliation(s)
- Lianxin Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haibiao Xie
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Frances Potjewyd
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Lindsey I James
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Johnny Castillo Cabrera
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chengheng Liao
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Kinzler MN, Zielke S, Kardo S, Meyer N, Kögel D, van Wijk SJL, Fulda S. STF-62247 and pimozide induce autophagy and autophagic cell death in mouse embryonic fibroblasts. Sci Rep 2020; 10:687. [PMID: 31959760 PMCID: PMC6971264 DOI: 10.1038/s41598-019-56990-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
Induction of autophagy can have beneficial effects in several human diseases, e.g. cancer and neurodegenerative diseases (ND). Here, we therefore evaluated the potential of two novel autophagy-inducing compounds, i.e. STF-62247 and pimozide, to stimulate autophagy as well as autophagic cell death (ACD) using mouse embryonic fibroblasts (MEFs) as a cellular model. Importantly, both STF-62247 and pimozide triggered several hallmarks of autophagy in MEFs, i.e. enhanced levels of LC3B-II protein, its accumulation at distinct cytosolic sites and increase of the autophagic flux. Intriguingly, autophagy induction by STF-62247 and pimozide resulted in cell death that was significantly reduced in ATG5- or ATG7-deficient MEFs. Consistent with ACD induction, pharmacological inhibitors of apoptosis, necroptosis or ferroptosis failed to protect MEFs from STF-62247- or pimozide-triggered cell death. Interestingly, at subtoxic concentrations, pimozide stimulated fragmentation of the mitochondrial network, degradation of mitochondrial proteins (i.e. mitofusin-2 and cytochrome c oxidase IV (COXIV)) as well as a decrease of the mitochondrial mass, indicative of autophagic degradation of mitochondria by pimozide. In conclusion, this study provides novel insights into the induction of selective autophagy as well as ACD by STF-62247 and pimozide in MEFs.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Svenja Zielke
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Simon Kardo
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Nina Meyer
- Experimental Neurosurgery, Goethe-University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe-University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
- German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| |
Collapse
|
33
|
New Spisulosine Derivative promotes robust autophagic response to cancer cells. Eur J Med Chem 2020; 188:112011. [PMID: 31926468 DOI: 10.1016/j.ejmech.2019.112011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022]
Abstract
Therapy resistance by evasion of apoptosis is one of the hallmarks of human cancer. Therefore, restoration of cell death by non-apoptotic mechanisms is critical to successfully overcome therapy resistance in cancer. By rational drug design approach, here we try to provide evidence that subtle changes in the chemical structure of spisulosine completely switched its cytotoxic function from apoptosis to autophagy. Our most potent molecule (26b) in a series of 16 synthesized derivatives showed robust autophagic cell death in diverse cancer cells sparing normal counterpart. Compound 26b mediated lethal autophagy induction was confirmed by formation of characteristic autophagic vacuoles, LC3 puncta formation, upregulation of signature autophagy markers like Beclin and Atg family proteins. Altogether, we have detected novel autophagy inducer small molecule which can be tested further for drug discovery research.
Collapse
|
34
|
Abstract
The discovery of the von Hippel-Lindau (VHL) gene marked a milestone in our understanding of clear cell renal cell carcinoma (ccRCC) pathogenesis. VHL inactivation is not only a defining feature of ccRCC, but also the initiating event. Herein, we discuss canonical and noncanonical pVHL functions, as well as breakthroughs shaping our understanding of ccRCC evolution and evolutionary subtypes. We conclude by presenting evolving strategies to therapeutically exploit effector mechanisms downstream of pVHL.
Collapse
|
35
|
Cassidy AA, Lamarre SG. Activation of oxygen-responsive pathways is associated with altered protein metabolism in Arctic char exposed to hypoxia. ACTA ACUST UNITED AC 2019; 222:jeb.203901. [PMID: 31704904 DOI: 10.1242/jeb.203901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022]
Abstract
Fish exposed to fluctuating oxygen concentrations often alter their metabolism and/or behaviour to survive. Hypoxia tolerance is typically associated with the ability to reduce energy demand by supressing metabolic processes such as protein synthesis. Arctic char is amongst the most sensitive salmonid to hypoxia, and typically engage in avoidance behaviour when faced with lack of oxygen. We hypothesized that a sensitive species will still have the ability (albeit reduced) to regulate molecular mechanisms during hypoxia. We investigated the tissue-specific response of protein metabolism during hypoxia. Little is known about protein degradation pathways during hypoxia in fish and we predict that protein degradation pathways are differentially regulated and play a role in the hypoxia response. We also studied the regulation of oxygen-responsive cellular signalling pathways [hypoxia inducible factor (HIF), unfolded protein response (UPR) and mTOR pathways] since most of what we know comes from studies on cancerous mammalian cell lines. Arctic char were exposed to cumulative graded hypoxia trials for 3 h at four air saturation levels (100%, 50%, 30% and 15%). The rate of protein synthesis was measured using a flooding dose technique, whereas protein degradation and signalling pathways were assessed by measuring transcripts and phosphorylation of target proteins. Protein synthesis decreased in all tissues measured (liver, muscle, gill, digestive system) except for the heart. Salmonid hearts have preferential access to oxygen through a well-developed coronary artery, therefore the heart is likely to be the last tissue to become hypoxic. Autophagy markers were upregulated in the liver, whereas protein degradation markers were downregulated in the heart during hypoxia. Further work is needed to determine the effects of a decrease in protein degradation on a hypoxic salmonid heart. Our study showed that protein metabolism in Arctic char is altered in a tissue-specific fashion during graded hypoxia, which is in accordance with the responses of the three major hypoxia-sensitive pathways (HIF, UPR and mTOR). The activation pattern of these pathways and the cellular processes that are under their control varies greatly among tissues, sometimes even going in the opposite direction. This study provides new insights on the effects of hypoxia on protein metabolism. Adjustment of these cellular processes is likely to contribute to shifting the fish phenotype into a more hypoxia-tolerant one, if more than one hypoxia event were to occur. Our results warrant studying these adjustments in fish exposed to long-term and diel cycling hypoxia.
Collapse
Affiliation(s)
- Alicia A Cassidy
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
36
|
Selka A, Doiron JA, Lyons P, Dastous S, Chiasson A, Cormier M, Turcotte S, Surette ME, Touaibia M. Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells. Eur J Med Chem 2019; 179:347-357. [DOI: 10.1016/j.ejmech.2019.06.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
|
37
|
Min DJ, Vural S, Krushkal J. Association of transcriptional levels of folate-mediated one-carbon metabolism-related genes in cancer cell lines with drug treatment response. Cancer Genet 2019; 237:19-38. [DOI: 10.1016/j.cancergen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
|
38
|
Sun N, Petiwala S, Lu C, Hutti JE, Hu M, Hu M, Domanus MH, Mitra D, Addo SN, Miller CP, Chung N. VHL Synthetic Lethality Signatures Uncovered by Genotype-Specific CRISPR-Cas9 Screens. CRISPR J 2019; 2:230-245. [DOI: 10.1089/crispr.2019.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ning Sun
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, Illinois
| | - Mufeng Hu
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
39
|
Udristioiu A, Nica-Badea D. Autophagy dysfunctions associated with cancer cells and their therapeutic implications. Biomed Pharmacother 2019; 115:108892. [PMID: 31029889 DOI: 10.1016/j.biopha.2019.108892] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
Genomic analysis of human cancers indicates that the loss or mutation of core autophagy related genes, (ATG) is uncommon, whereas oncogenic events that activate autophagy and lysosomal biogenesis have been identified. Several studies have demonstrated that autophagy plays a wide variety of physiological and pathophysiological roles in cells: a cellular process that maintains the homeostasis of the normal cell, while self-defects can lead to a lawsuit to accelerate tumorigenesis and developing diseases, such as cancer. Depending on different contexts, autophagy dysfunctions may play a role: neutral, tumor-suppressive, or tumor-promoting. The process of autophagy may function in tumor suppression by mitigating metabolic stress and, in concert with apoptosis, by preventing tumor cell death by necrosis. In this case, optimal combination of autophagy inhibition (CQ, HCQ) with other conventional therapies - chemo or radiotherapy in a variety of tumor types in different phases can be successful approaches for improve the effect of anticancer therapies. This review examines recent insights of the molecular mechanism of autophagy and the potential roles of autophagy in cell death, cancer development, overview of the most recent therapeutic strategies involving autophagy modulators in cancer prevention and therapeutic opportunities.
Collapse
Affiliation(s)
- Aurelian Udristioiu
- Molecular Biology, Medicine Faculty, Titu Maiorescu University, Bucharest, Romania
| | - Delia Nica-Badea
- Medicinal and Behavioral Sciences Faculty, Constantin Brâncuși University, Târgu - Jiu, Romania.
| |
Collapse
|
40
|
Screening of Crude Drugs Used in Japanese Kampo Formulas for Autophagy-Mediated Cell Survival of the Human Hepatocellular Carcinoma Cell Line. MEDICINES 2019; 6:medicines6020063. [PMID: 31163644 PMCID: PMC6631990 DOI: 10.3390/medicines6020063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Background: Autophagy is a catabolic process through which dysfunctional proteins and organelles are degraded, and that is associated with the proliferation of cancer cells. The aim of this study was to screen approximately 130 kinds of crude drugs used in Japanese Kampo formulas to identify crude drugs that would regulate the proliferation through autophagy of human hepatocellular carcinoma HepG2 cells. Methods: Extracts of each crude drug were prepared using methanol. Protein levels were determined using Western blotting. Cell viability was measured by MTT assay. Results: Among the 130 crude extracts, 24 of them increased LC3-II expression. Among these, Goboshi (burdock fruit), Soboku (sappan wood), Mokko (saussurea root), Rengyo (forsythia fruit), and Hikai (dioscorea) notably suppressed the proliferation of HepG2 cells and increased p62 expression levels, which suggested that these five extracts downregulate the autophagic activity resulting in the accumulation of p62. On the other hand, Hishinomi (water chestnut), Biwayo (loquat leaf), and Binroji (areca) induced cell growth and decreased or were uninvolved with p62 expression levels, which implied that these three extracts might induce autophagy modulators for cell growth. Conclusions: The results suggest that the compounds contained in the crude drugs selected for this study could control cell viability by regulating autophagic activity in HepG2 cells. The isolation and identification of the active compounds in these drugs might lead to the development of agents for autophagy research and cancer chemoprevention.
Collapse
|
41
|
Bouhamdani N, Comeau D, Cormier K, Turcotte S. STF-62247 accumulates in lysosomes and blocks late stages of autophagy to selectively target von Hippel-Lindau-inactivated cells. Am J Physiol Cell Physiol 2019; 316:C605-C620. [DOI: 10.1152/ajpcell.00483.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autophagy is a highly conserved, homeostatic process by which cytosolic components reach lysosomes for degradation. The roles played by different autophagic processes in cancer are complex and remain cancer type and stage dependent. Renal cell carcinoma (RCC) is the most common subtype of kidney cancer and is characterized by the inactivation of the von Hippel-Lindau (VHL) tumor suppressor. Our previous study identified a small compound, STF-62247, as an autophagy-modulating molecule causing selective cytotoxicity for VHL-inactivated cells. This present study investigates the effects of STF-62247 specifically on the macroautophagic flux to better characterize its mechanism of action in RCC. Our results clearly demonstrate that this compound is a potent blocker of late stages of autophagy. We show that inhibiting autophagy by CRISPR knockouts of autophagy-related genes rendered VHL-deficient cells insensitive to STF-62247, uncovering the importance of the autophagic pathway in STF-selective cell death. By exploiting the autofluorescence of STF-62247, we pinpointed its cellular localization to lysosomes. Finally, in response to prolonged STF treatments, we show that VHL-proficient cells are able to surmount the block in late stages of autophagy by restoring their lysosome numbers. Conversely, an increase in autophagic vesicles accompanied by a time-dependent decrease in lysosomes was observed in VHL-deficient cells. This is the first mechanistic study investigating STF-62447’s effects on the autophagic flux in RCC. Importantly, our study reclassifies STF-62247 as a blocker of later stages of autophagy and highlights the possibility of blocking this process through lysosome disruption in VHL-mutated RCCs.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Kevin Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| |
Collapse
|
42
|
Metformin Induces Different Responses in Clear Cell Renal Cell Carcinoma Caki Cell Lines. Biomolecules 2019; 9:biom9030113. [PMID: 30909494 PMCID: PMC6468376 DOI: 10.3390/biom9030113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and lethal form of urological cancer diagnosed globally. Mutations of the von Hippel-Lindau (VHL) tumor-suppressor gene and the resultant overexpression of hypoxia-inducible factor (HIF)-1α protein are considered hallmarks of ccRCC. Persistently activated HIF-1α is associated with increased cell proliferation, angiogenesis, and epithelial–mesenchymal transition (EMT), consequently leading to ccRCC progression and metastasis to other organs. However, the VHL status alone cannot predict the differential sensitivity of ccRCC to cancer treatments, which suggests that other molecular differences may contribute to the differential response of ccRCC cells to drug therapies. In this study, we investigated the response to metformin (an antidiabetic drug) of two human ccRCC cell lines Caki-1 and Caki-2, which express wild-type VHL. Our findings demonstrate a differential response between the two ccRCC cell lines studied, with Caki-2 cells being more sensitive to metformin compared to Caki-1 cells, which could be linked to the differential expression of HIF-1α despite both cell lines carrying a wild-type VHL. Our study unveils the therapeutic potential of metformin to inhibit the progression of ccRCC in vitro. Additional preclinical and clinical studies are required to ascertain the therapeutic efficacy of metformin against ccRCC.
Collapse
|
43
|
Ubiquitination of MAP1LC3B by pVHL is associated with autophagy and cell death in renal cell carcinoma. Cell Death Dis 2019; 10:279. [PMID: 30902965 PMCID: PMC6430800 DOI: 10.1038/s41419-019-1520-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022]
Abstract
Von Hippel Lindau (VHL) expression is significantly decreased in high-grade RCC, and autophagy, which is involved in tumor growth, invasion, differentiation, and metastasis, is activated in various human cancers. However, the relationship of autophagy and VHL in tumor progression remains controversial. Here, we showed that the expression levels of VHL and microtubule-associated protein 1 light chain 3B (MAP1LC3B, LC3B) were inversely correlated with various tumor grades of RCC tissues. pVHL was found to possess the LIR motif within a beta domain that interacted with MAP1LC3B and ubiquitinated it. The L101A VHL mutant failed to interact with MAP1LC3B, thereby failing to induce ubiquitination. MAP1LC3B-mediated autophagy was inhibited by functional pVHL and the ubiquitination of MAPLC3B was implicated in autophagy-induced cell death. We screened various autophagy inducers to determine the physiological function of the inhibition of LC3B-mediated autophagy by pVHL using VHL-deficient and VHL-expressing cell lines. MLN9708, a proteasome inhibitor, potently induced autophagy via the induction of MAP1LC3B and sensitized the cell to autophagy-mediated cell death in VHL-deficient and VHL-mutant (L101A) cells. In conclusion, our results showed that pVHL interacts with MAPL1LC3B and inhibits LC3B-mediated autophagy via MAP1LC3B ubiquitination. Furthermore, the activation of autophagy by the proteasome inhibitor MLN9708 induced cell death, indicating that MLN9708 can be used for VHL-deficient RCC therapy.
Collapse
|
44
|
Brennecke P, Rasina D, Aubi O, Herzog K, Landskron J, Cautain B, Vicente F, Quintana J, Mestres J, Stechmann B, Ellinger B, Brea J, Kolanowski JL, Pilarski R, Orzaez M, Pineda-Lucena A, Laraia L, Nami F, Zielenkiewicz P, Paruch K, Hansen E, von Kries JP, Neuenschwander M, Specker E, Bartunek P, Simova S, Leśnikowski Z, Krauss S, Lehtiö L, Bilitewski U, Brönstrup M, Taskén K, Jirgensons A, Lickert H, Clausen MH, Andersen JH, Vicent MJ, Genilloud O, Martinez A, Nazaré M, Fecke W, Gribbon P. EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:398-413. [PMID: 30616481 PMCID: PMC6764006 DOI: 10.1177/2472555218816276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.
Collapse
Affiliation(s)
- Philip Brennecke
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Dace Rasina
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Oscar Aubi
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Katja Herzog
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Johannes Landskron
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Bastien Cautain
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | | | - Jordi Quintana
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
| | - Jordi Mestres
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- IMIM Hospital del Mar Medical Research
Institute, Research Program on Biomedical Informatics (GRIB), Barcelona, Spain
| | - Bahne Stechmann
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| | - Jose Brea
- Institute for Research in Molecular
Medicine and Chronic Diseases—BioFarma Research Group, University of Santiago de
Compostela, Santiago de Compostela, Spain
| | - Jacek L. Kolanowski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Radosław Pilarski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Mar Orzaez
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | | | - Luca Laraia
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Piotr Zielenkiewicz
- Department of Bioinformatics,
Institute of Biochemistry and Biophysics—Polish Academy of Sciences, Warsaw,
Poland
| | - Kamil Paruch
- Department of Chemistry—CZ-OPENSCREEN,
Masaryk University, Brno, Czech Republic
| | - Espen Hansen
- The Arctic University of Norway,
University of Tromsø, Marbio, Tromsø, Norway
| | - Jens P. von Kries
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Martin Neuenschwander
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Edgar Specker
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | - Petr Bartunek
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Sarka Simova
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Zbigniew Leśnikowski
- Laboratory of Molecular Virology and
Biological Chemistry, Institute of Medical Biology—Polish Academy of Sciences, Łódź,
Poland
| | - Stefan Krauss
- Department of Immunology and
Transfusion Medicine, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub—Centre of
Excellence—Institute of Basic Medical Sciences, University of Oslo, Oslo,
Norway
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular
Medicine—Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ursula Bilitewski
- Working Group Compound Profiling and
Screening, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mark Brönstrup
- Department of Chemical Biology,
Helmholtz Centre for Infection Research, Brunswick, Germany
- German Center for Infection Research
(DZIF), partner site Hannover-Brunswick, Brunswick, Germany
| | - Kjetil Taskén
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Cancer
Immunology—Institute for Cancer Research, Oslo University Hospital, Oslo,
Norway
- K.G. Jebsen Centre for Cancer
Immunotherapy—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for B Cell
Malignancies—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aigars Jirgensons
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Heiko Lickert
- Institute of Diabetes and Regeneration
Research, Helmholtz Centre Munich German Research Center for Environmental Health,
Neuherberg, Germany
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | | | - Maria J. Vicent
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Marc Nazaré
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | | | - Philip Gribbon
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| |
Collapse
|
45
|
Akhtar S, Khan FA, Buhaimed A. Functionalized magnetic nanoparticles attenuate cancer cells proliferation: Transmission electron microscopy analysis. Microsc Res Tech 2019; 82:983-992. [PMID: 30809861 DOI: 10.1002/jemt.23245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
The penetration and transportation of nanoparticles (NPs) inside the cancer cells is critical to study. In this article, cancer cells (HCT-116) were treated with functionalized magnetic NPs for the period of 48 hr and studied their ultrastructure by transmission electron microscopy (TEM). The NPs-treated cells were prepared by chemical fixation and sliced into electron-transparent arbitrary sections (200 × 200 μm2 ) by ultramicrotome. Major events of NPs-cell interaction, such as penetration of NPs, encapsulation of NPs into the intracellular compartments, transportation of NPs, and NPs exit, were examined by TEM to understand the mechanism of cell death. The NPs showed the uniform spherical shape with broad size distribution (100-400 nm), while cells displayed irregular morphology with average diameter ~5 μm. Our results showed the successful penetration of NPs deep into the cell, encapsulation, transportation, and exocytosis. Furthermore, we tested the different concentrations (0, 1.5, 12.5, and 50 μg/ml) of NPs on cancer cells and evaluated the cell viability. Laser confocal microscopy and colorimetric analysis together demonstrated that the cell viability is a dose-dependent phenomenon, where 50 μg/ml specimen showed the highest killing of cancer cells compared to other dosages.
Collapse
Affiliation(s)
- Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah Buhaimed
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
46
|
Asiri SM, Khan FA, Bozkurt A. Synthesis of chitosan nanoparticles, chitosan-bulk, chitosan nanoparticles conjugated with glutaraldehyde with strong anti-cancer proliferative capabilities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S1152-S1161. [DOI: 10.1080/21691401.2018.1533846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarah Mousa Asiri
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ayhan Bozkurt
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|
47
|
Wang Z, Tao L, Xue Y, Xue L, Wang Z, Chong T. Association of ATG7 Polymorphisms and Clear Cell Renal Cell Carcinoma Risk. Curr Mol Med 2019; 19:40-47. [PMID: 30827239 DOI: 10.2174/1566524019666190227202003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney cancer is one of the most common cancers worldwide. Recent studies have suggested that single nucleotide polymorphisms (SNPs) in autophagy-related gene are associated with the risk of kidney cancer. OBJECTIVE This study was undertaken to investigate the association of autophagyrelated gene 7 (ATG7) polymorphisms with the risk of clear cell renal cell carcinoma (ccRCC) in the Chinese Han population. METHODS Blood samples were collected from 293 ccRCC patients and 297 healthy controls. Three ATG7 polymorphisms (rs1375206, rs2606736 and rs6442260) were genotyped by Agena MassARRAY. The association was estimated by genetic models and stratification analyses. RESULTS A significant association was observed between allele A of rs6442260 and ccRCC risk (OR = 0.76, 95% CI: 0.58-0.99, p = 0.039). Genetic model analysis revealed that rs2606736 (OR = 0.57, 95% CI: 0.34-0.95, p = 0.031) and rs6442260 (OR = 0.44, 95% CI: 0.22-0.90, p = 0.021) were associated with decreased risk of ccRCC under recessive model. Age stratification analysis showed that rs2606736 (OR = 0.67, 95% CI: 0.46-0.98, p = 0.036) and rs6442260 (OR = 0.26, 95% CI: 0.07-0.89, p = 0.014) were significantly decreased risk of ccRCC under the log-additive model in age > 55 years old and ≤ 55 years old, respectively. CONCLUSIONS This study indicated that ATG7 polymorphisms (rs2606736 and rs6442260) have a protective role for ccRCC risk. Further large sample size and functional assays are needed to confirm our findings and reveal the role of ATG7 polymorphisms in ccRCC carcinogenesis.
Collapse
Affiliation(s)
- Zhenlong Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Lei Tao
- Department of anesthesiology, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yuquan Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
48
|
Elias R, Sharma A, Singla N, Brugarolas J. Next Generation Sequencing in Renal Cell Carcinoma: Towards Precision Medicine. KIDNEY CANCER JOURNAL : OFFICIAL JOURNAL OF THE KIDNEY CANCER ASSOCIATION 2019; 17:94-104. [PMID: 32206160 PMCID: PMC7089604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Roy Elias
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Akanksha Sharma
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Nirmish Singla
- Department of Urology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - James Brugarolas
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| |
Collapse
|
49
|
Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death Dis 2018; 9:994. [PMID: 30250198 PMCID: PMC6155211 DOI: 10.1038/s41419-018-1003-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Autophagy is a well-described degradation mechanism that promotes cell survival upon nutrient starvation and other forms of cellular stresses. In addition, there is growing evidence showing that autophagy can exert a lethal function via autophagic cell death (ACD). As ACD has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs. Therefore, we screened a library containing 70 autophagy-inducing compounds to induce ATG5-dependent cell death in human MZ-54 GBM cells. Here, we identified three compounds, i.e. loperamide, pimozide, and STF-62247 that significantly induce cell death in several GBM cell lines compared to CRISPR/Cas9-generated ATG5- or ATG7-deficient cells, pointing to a death-promoting role of autophagy. Further cell death analyses conducted using pharmacological inhibitors revealed that apoptosis, ferroptosis, and necroptosis only play minor roles in loperamide-, pimozide- or STF-62247-induced cell death. Intriguingly, these three compounds induce massive lipidation of the autophagy marker protein LC3B as well as the formation of LC3B puncta, which are characteristic of autophagy. Furthermore, loperamide, pimozide, and STF-62247 enhance the autophagic flux in parental MZ-54 cells, but not in ATG5 or ATG7 knockout (KO) MZ-54 cells. In addition, loperamide- and pimozide-treated cells display a massive formation of autophagosomes and autolysosomes at the ultrastructural level. Finally, stimulation of autophagy by all three compounds is accompanied by dephosphorylation of mammalian target of rapamycin complex 1 (mTORC1), a well-known negative regulator of autophagy. In summary, our results indicate that loperamide, pimozide, and STF-62247 induce ATG5- and ATG7-dependent cell death in GBM cells, which is preceded by a massive induction of autophagy. These findings emphasize the lethal function and potential clinical relevance of hyperactivated autophagy in GBM.
Collapse
|
50
|
Abstract
The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field.
Collapse
Affiliation(s)
- Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|