1
|
Ben-Eltriki M, Gayle EJ, Walker N, Deb S. Pharmacological Significance of Heme Oxygenase 1 in Prostate Cancer. Curr Issues Mol Biol 2023; 45:4301-4316. [PMID: 37232742 DOI: 10.3390/cimb45050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1) is a detoxifying antioxidant microsomal enzyme that regulates inflammation, apoptosis, cell proliferation, and angiogenesis in prostate cancer (PCa). This makes HO-1 a promising target for therapeutic prevention and treatment due to its anti-inflammatory properties and ability to control redox homeostasis. Clinical evidence highlights the possible correlation between HO-1 expression and PCa growth, aggressiveness, metastasized tumors, resistance to therapy, and poor clinical outcomes. Interestingly, studies have reported anticancer benefits mediated by both HO-1 induction and inhibition in PCa models. Contrasting evidence exists on the role of HO-1 in PCa progression and possible treatment targets. Herein, we provide an overview of available evidence on the clinical significance of HO-1 signaling in PCa. It appears that the beneficial effects of HO-1 induction or inhibition are dependent on whether it is a normal versus malignant cell as well as the intensity (major vs. minor) of the increase in HO-1 enzymatic activity. The current literature evidence indicates that HO-1 has dual effects in PCa. The amount of cellular iron and reactive oxygen species (ROS) can determine the role of HO-1 in PCa. A major increase in ROS enforces HO-1 to a protective role. HO-1 overexpression may provide cryoprotection to normal cells against oxidative stress via suppressing the expression of proinflammatory genes, and thus offer therapeutic prevention. In contrast, a moderate increase in ROS can lead to the perpetrator role of HO-1, which is associated with PCa progression and metastasis. HO-1 inhibition by xenobiotics in DNA-damaged cells tilts the balance to promote apoptosis and inhibit PCa proliferation and metastasis. Overall, the totality of the evidence revealed that HO-1 may play a dual role in the therapeutic prevention and treatment of PCa.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Department of Pharmacology and Therapeutics, Clinical Pharmacology Lab, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Noah Walker
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
2
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Figy C, Guo A, Fernando VR, Furuta S, Al-Mulla F, Yeung KC. Changes in Expression of Tumor Suppressor Gene RKIP Impact How Cancers Interact with Their Complex Environment. Cancers (Basel) 2023; 15:cancers15030958. [PMID: 36765912 PMCID: PMC9913418 DOI: 10.3390/cancers15030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is the immediate environment where cancer cells reside in a tumor. It is composed of multiple cell types and extracellular matrix. Microenvironments can be restrictive or conducive to the progression of cancer cells. Initially, microenvironments are suppressive in nature. Stepwise accumulation of mutations in oncogenes and tumor suppressor genes enables cancer cells to acquire the ability to reshape the microenvironment to advance their growth and metastasis. Among the many genetic events, the loss-of-function mutations in tumor suppressor genes play a pivotal role. In this review, we will discuss the changes in TME and the ramifications on metastasis upon altered expression of tumor metastasis suppressor gene RKIP in breast cancer cells.
Collapse
Affiliation(s)
- Christopher Figy
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Anna Guo
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Veani Roshale Fernando
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Kam C. Yeung
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
4
|
Muljadi M, Fu YC, Cheng CM. Understanding the Cell's Response to Chemical Signals: Utilisation of Microfluidic Technology in Studies of Cellular and Dictyostelium discoideum Chemotaxis. MICROMACHINES 2022; 13:1737. [PMID: 36296089 PMCID: PMC9611482 DOI: 10.3390/mi13101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cellular chemotaxis has been the subject of a variety of studies due to its relevance in physiological processes, disease pathogenesis, and systems biology, among others. The migration of cells towards a chemical source remains a closely studied topic, with the Boyden chamber being one of the earlier techniques that has successfully studied cell chemotaxis. Despite its success, diffusion chambers such as these presented a number of problems, such as the quantification of many aspects of cell behaviour, the reproducibility of procedures, and measurement accuracy. The advent of microfluidic technology prompted more advanced studies of cell chemotaxis, usually involving the social amoeba Dictyostelium discoideum (D. discoideum) as a model organism because of its tendency to aggregate towards chemotactic agents and its similarities to higher eukaryotes. Microfluidic technology has made it possible for studies to look at chemotactic properties that would have been difficult to observe using classic diffusion chambers. Its flexibility and its ability to generate consistent concentration gradients remain some of its defining aspects, which will surely lead to an even better understanding of cell migratory behaviour and therefore many of its related biological processes. This paper first dives into a brief introduction of D. discoideum as a social organism and classical chemotaxis studies. It then moves to discuss early microfluidic devices, before diving into more recent and advanced microfluidic devices and their use with D. discoideum. The paper then closes with brief opinions about research progress in the field and where it will possibly lead in the future.
Collapse
Affiliation(s)
- Michael Muljadi
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Chen Fu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
5
|
Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021; 11:120. [PMID: 35011682 PMCID: PMC8750532 DOI: 10.3390/cells11010120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.
Collapse
Affiliation(s)
| | | | | | - Gabriela Negroiu
- Group of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania; (A.F.); (I.A.P.); (A.F.B.)
| |
Collapse
|
6
|
Yi J, Lin Y, Yicong W, Chengyan L, Shulin Z, Wenjun C. Effect of macrophages on biological function of ovarian cancer cells in tumor microenvironment in vitro. Arch Gynecol Obstet 2020; 302:1009-1017. [PMID: 32748054 DOI: 10.1007/s00404-020-05719-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the influence of two types of tumor-associated macrophages (TAMs) on the biological function of human ovarian cell lines in vitro. METHODS (1) M2 macrophage release was induced by IL-4, and M1 macrophage release by phorbol myristate acetate (PMA) in vitro. Flow cytometry was used to distinguish these two types; (2) transwell culture system was used to establish a non-contact co-culture model of macrophage and ovarian cancer cells (SKOV3, HEY, HO8910 and A2780) in vitro. The microenvironment of ovarian cancer was simulated in vitro. (3) The proliferation, apoptosis, migration and invasion of ovarian cancer cells SKOV3, HEY, HO8910 and A2780 were analyzed after co-culture. Their proliferation was detected by CCK8 method, apoptosis by flow cytometry, Annexin V-FITC/PI double staining, invasion by Transwell assay, and migration by wound healing test. RESULTS (1) IL-4-induced macrophages (M2) overexpressed CD163, and PMA-induced macrophages (M1) overexpressed HLA-DR. After co-culturing primary macrophages with ovarian cancer cells (SKOV3, HEY, HO8910, A2780), macrophage CD163 was highly expressed. (2) Proliferation and apoptosis of ovarian cancer cells (SKOV3, HEY, HO8910, A2780): the proliferation of ovarian cancer cells in M2 co-culture group increased compared to that in M1 co-culture group and primary co-culture group (p < 0.05); the apoptosis of ovarian cancer cells in M2 co-culture group decreased compared to that in M1 co-culture group and primary co-culture group (p < 0.05). (3) Migration and invasion of ovarian cancer cells (SKOV3, HEY, HO8910, A2780): the invasion of ovarian cancer cells in M2 co-culture group increased compared to that in M1 co-culture group and primary co-culture group (p < 0.05); the migration of ovarian cancer cells in M2 co-culture group increased compared to that in M1 co-culture group and the primary co-culture group (p < 0.05). CONCLUSION In the simulated in vitro tumor microenvironment, co-cultured ovarian cancer cells polarized macrophages to the M2 phenotype. Furthermore, M2 macrophages enhanced the proliferation, invasion and migration, and inhibited the apoptosis of ovarian cancer cells.
Collapse
Affiliation(s)
- Jiang Yi
- Gynecology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Lin
- Gynecology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wan Yicong
- Gynecology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luo Chengyan
- Gynecology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Shulin
- Gynecology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Wenjun
- Gynecology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Li Y, Wang D, Li X. The blood cells in NSCLC and the changes after RFA. Int J Hyperthermia 2020; 37:753-762. [PMID: 32619369 DOI: 10.1080/02656736.2020.1782486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Lung cancer has attracted a lot of attention because of its high morbidity and mortality. The emergence of RFA provides a new treatment for unresectable NSCLC patients. In addition to killing in situ lung tumors, RFA also provides new immuno-activated antigens, for the treatment of lung cancer. It changes the tumor microenvironment and activates the entire immune system of patients. The peripheral blood cell count is easy to achieve and the blood cells are important in tumor immunity, which changes after RFA. On the one hand, the changes in blood cells identify the immune changes of NSCLC; on the other hand, it provides support and suspicion for the treatment of RFA.
Collapse
Affiliation(s)
- Yunfang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Graduate School of Perking Union Medical College, China Academy of Medical Sciences, Beijing, China
| | - Dongdong Wang
- Minimally Invasive Interventional Therapy Center Department, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaoguang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Graduate School of Perking Union Medical College, China Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Ye H, He X, Feng X. Developing neobavaisoflavone nanoemulsion suppresses lung cancer progression by regulating tumor microenvironment. Biomed Pharmacother 2020; 129:110369. [PMID: 32563983 DOI: 10.1016/j.biopha.2020.110369] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
It is necessary to create novel, efficacious and harmless therapeutic strategy for lung cancer treatment. The application of nanoemulsion to specifically suppress cancer progression in the tumor microenvironment would be an effective therapy. Neobavaisoflavone (Neo) is an isoflavone isolated from Psoralea corylifolia L, possesses striking anti-inflammatory and anti-cancer effects. In our stduy, Neo significantly reduced reactive oxygen species (ROS) generation in the activated myofibroblast. Furthermore, a novel Neo nanoemulsion (nano-Neo) was prepared to improve Neo solubility and bioavailability. Nano-Neo showed more effectively anti-proliferative role in lung cancer cells. In addition, in vivo analysis further demonstrated that nano-Neo could effectively suppress tumor growth compared to the free Neo-treated mice without noticeable damage to major organs. Furthermore, nano-Neo treatment markedly reduced extracellular matrix (ECM) deposition in tumor samples by repressing transforming growth factor-β (TGF-β)/SMADs signaling pathway. Meanwhile, the activated immune microenvironment in tumor tissues was dramatically improved by nano-Neo through reducing regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) infiltration, as well as improving the count of natural killer (NK) cells and M2 macrophage phenotype switch to pro-inflammatory M1. In addition, we found that the prepared nano-Neo exerted promising tumor targeting efficiency with improved pharmacokinetic properties. Therefore, the novel approach to prepare nano-Neo introduced here might provide an effective strategy for lung cancer treatment with few adverse effects.
Collapse
Affiliation(s)
- Hui Ye
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Xiaojie He
- Department of Science and Education, Maoming People's Hospital, Maoming, Guangdong, 525000, China
| | - Xu Feng
- Department of CT Room, Shanxian Haijiya Hospital, Heze, 274300, China.
| |
Collapse
|
9
|
Xia L, Zhu X, Zhang L, Xu Y, Chen G, Luo J. EZH2 enhances expression of CCL5 to promote recruitment of macrophages and invasion in lung cancer. Biotechnol Appl Biochem 2020; 67:1011-1019. [PMID: 31855281 PMCID: PMC7818479 DOI: 10.1002/bab.1875] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022]
Abstract
EZH2 (enhancer of zeste homolog 2) regulates epigenetic gene silencing and functions as critical regulators in various tumor progression. Macrophages infiltration promotes cancer development via stimulating tumor cell migration and invasion. However, the effect of EZH2 on macrophages infiltration, cell invasion, and migration of lung cancer remains to be investigated. In this study, we found that knockdown of EZH2 inhibited macrophages chemotaxis and decreased chemokine ligand 5 (CCL5). Wound‐healing and transwell assays results showed that migration and invasion of lung cancer cells was inhibited by EZH2 deletion. Moreover, EZH2 overexpression increased CCL5 expression. Loss‐of functional assay indicated that the promotion ability of EZH2 on macrophages chemotaxis was inhibited by CCL5 knockdown. Mechanistically, the promotion ability of EZH2 on cell migration and invasion of lung cancer was also inhibited by CCL5 knockdown. The in vivo subcutaneous xenotransplanted tumor model also revealed that silence of EZH2 suppressed lung cancer metastasis and macrophages infiltration via regulation of CCL5. In conclusion, our findings indicated that EZH2 promoted lung cancer metastasis and macrophages infiltration via upregulation of CCL5, which might be the underlying mechanism of EZH2‐induced lung cancer cell progression.
Collapse
Affiliation(s)
- Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Lei Zhang
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Yanhui Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Guoping Chen
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
10
|
Fan Y, Jalali A, Chen A, Zhao X, Liu S, Teli M, Guo Y, Li F, Li J, Siegel A, Yang L, Liu J, Na S, Agarwal M, Robling AG, Nakshatri H, Li BY, Yokota H. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res 2020; 8:9. [PMID: 32128277 PMCID: PMC7021802 DOI: 10.1038/s41413-020-0083-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/29/2023] Open
Abstract
Osteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFβ levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment.
Collapse
Affiliation(s)
- Yao Fan
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China.,2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Aydin Jalali
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Andy Chen
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Xinyu Zhao
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA.,Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730 China
| | - Shengzhi Liu
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Meghana Teli
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Yunxia Guo
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China.,2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Fangjia Li
- 4Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Junrui Li
- 5Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 USA
| | - Amanda Siegel
- 6Integrative Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Lianxiang Yang
- 5Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 USA
| | - Jing Liu
- 4Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Sungsoo Na
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Mangilal Agarwal
- 6Integrative Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Alexander G Robling
- 7Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA.,8Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Harikrishna Nakshatri
- 9Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Bai-Yan Li
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Hiroki Yokota
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China.,2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA.,5Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 USA.,6Integrative Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA.,7Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA.,8Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
11
|
Lu Y, Luan XR. miR-147a suppresses the metastasis of non-small-cell lung cancer by targeting CCL5. J Int Med Res 2019; 48:300060519883098. [PMID: 31884861 PMCID: PMC7607764 DOI: 10.1177/0300060519883098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective MicroRNA (miR)-147a acts as an inhibitory miRNA in many cancers. However, its potential roles in non-small-cell lung cancer (NSCLC) remain unclear. Methods Levels of miR-147a and C-C motif chemokine ligand 5 (CCL5) were measured using a quantitative real-time PCR assay. Cell growth, migration, and invasion of NSCLC cells were assessed by colony formation, wound healing, and Transwell invasion assays, respectively. The role of miR-147a in the growth and metastatic ability of NSCLC in vivo was detected using a xenograft model and experimental lung metastasis model. Results miR-147a was downregulated in NSCLC cell lines as well as in tissues. Gain-of-function and loss-of-function analyses demonstrated that upregulation of miR-147a decreased the aggressiveness of NSCLC cells in vitro. In addition, CCL5 was identified as a target of miR-147a. We also demonstrated the effect of miR-147a in the progression of NSCLC cells via targeting CCL5. Finally, the in vivo mouse xenograft model showed that miR-147a inhibited progression of NSCLC cells. Conclusions Overall, expression of miR-147a was downregulated in NSCLC. Importantly, upregulation of miR-147a suppressed the growth and metastasis of NSCLC cells in vivo by targeting CCL5.
Collapse
Affiliation(s)
- Yan Lu
- Nursing Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Rong Luan
- Nursing Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Ge X, Zhao Y, Chen C, Wang J, Sun L. Cancer Immunotherapies Targeting Tumor-Associated Regulatory T Cells. Onco Targets Ther 2019; 12:11033-11044. [PMID: 31997881 PMCID: PMC6917600 DOI: 10.2147/ott.s231052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated regulatory T cells (Tregs) are important effectors in the tumor microenvironment (TME), acting as accomplices in the promotion of tumor progression. Currently, the importance of removing the immunosuppressive activity in the TME has received its due attention, and Tregs have been focused on. The cytokine-receptor axes are among the essential signaling pathways in immunocytes, and tumor-associated Tregs are no exception. Therefore, manipulating cytokine-receptor pathways may be a promising effective strategy for treating various malignancies. Here, we summarize the classification, immunosuppressive mechanisms, existing immunotherapies, and potential biomarkers related to tumor-infiltrating Tregs to guide the development of effective cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaoxu Ge
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, People's Republic of China.,Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, People's Republic of China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yamei Zhao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, People's Republic of China.,Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, People's Republic of China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chao Chen
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, People's Republic of China.,Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, People's Republic of China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, People's Republic of China.,Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, People's Republic of China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lifeng Sun
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, People's Republic of China.,Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, People's Republic of China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
13
|
Mardiana S, Lai J, House IG, Beavis PA, Darcy PK. Switching on the green light for chimeric antigen receptor T-cell therapy. Clin Transl Immunology 2019; 8:e1046. [PMID: 31073403 PMCID: PMC6500780 DOI: 10.1002/cti2.1046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Adoptive cellular therapy involving genetic modification of T cells with chimeric antigen receptor (CAR) transgene offers a promising strategy to broaden the efficacy of this approach for the effective treatment of cancer. Although remarkable antitumor responses have been observed following CAR T‐cell therapy in a subset of B‐cell malignancies, this has yet to be extended in the context of solid cancers. A number of promising strategies involving reprogramming the tumor microenvironment, increasing the specificity and safety of gene‐modified T cells and harnessing the endogenous immune response have been tested in preclinical models that may have a significant impact in patients with solid cancers. This review will discuss these exciting new developments and the challenges that must be overcome to deliver a more sustained and potent therapeutic response.
Collapse
Affiliation(s)
- Sherly Mardiana
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Junyun Lai
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Imran Geoffrey House
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Paul Andrew Beavis
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Phillip Kevin Darcy
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia.,Department of Pathology University of Melbourne Parkville VIC Australia.,Department of Immunology Monash University Clayton VIC Australia
| |
Collapse
|
14
|
Chen Q, Liu D, Hu Z, Luo C, Zheng SL. miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6. Onco Targets Ther 2019; 12:835-848. [PMID: 30774371 PMCID: PMC6355169 DOI: 10.2147/ott.s184235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The purpose of this study is to explore the potential biological roles of miR-101-5p in the progression of non-small-cell lung carcinoma (NSCLC). Methods The levels of miR-101-5p and chemokine (C-X-C motif) ligand 6 (CXCL6) in NSCLC tissues and cells were detected using the quantitative real-time PCR (qRT-PCR) assay. Proliferation, colony formation, migration and invasion assays were conducted using miR-101-5p-transfected NSCLC cells in vitro. The expression of CXCL6 was measured using immunofluorescence assay. Xenograft model and lung metastasis model were constructed to further reveal the precise roles of miR-101-5p in the lung metastasis and growth of NSCLC cells in vivo. Results miR-101-5p was underregulated in NSCLC tissues when compared with that in the normal controls. The levels of miR-101-5p were lower in NSCLC cells (H1975, A549, HCC827 and H1650) than in non-tumorigenic human bronchial epithelial cells (BEAS-2B). Overregulation of miR-101-5p restrained the aggressiveness phenotypes of NSCLC cells in vitro. Furthermore, overregulation of miR-101-5p reduced the tumor growth and pulmonary metastasis of NSCLC cells in vivo. CXCL6 was the target gene of miR-101-5p in NSCLC. The mRNA levels of CXCL6 were negatively associated with the levels of miR-101-5p in NSCLC tissues. Finally, the rescue experiments suggested that the inhibitory role of miR-101-5p was mediated by regulating the expression of CXCL6 in NSCLC. Conclusion These findings indicated that overregulation of miR-101-5p restrained the progression of NSCLC cells by targeting CXCL6 and might function as a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.,Department of Nursing, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China,
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Pulmonary and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Cheng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Si Lin Zheng
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China,
| |
Collapse
|
15
|
Song X, Liu W, Yuan X, Jiang J, Wang W, Mullen M, Zhao X, Zhang Y, Liu F, Du S, Rehman A, Tian R, Li J, Frost A, Song Z, Green HN, Henry C, Liu X, Ding X, Wang D, Yao X. Acetylation of ACAP4 regulates CCL18-elicited breast cancer cell migration and invasion. J Mol Cell Biol 2018; 10:559-572. [PMID: 30395269 PMCID: PMC6692856 DOI: 10.1093/jmcb/mjy058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor metastasis represents the main causes of cancer-related death. Our recent study showed that chemokine CCL18 secreted from tumor-associated macrophages regulates breast tumor metastasis, but the underlying mechanisms remain less clear. Here, we show that ARF6 GTPase-activating protein ACAP4 regulates CCL18-elicited breast cancer cell migration via the acetyltransferase PCAF-mediated acetylation. CCL18 stimulation elicited breast cancer cell migration and invasion via PCAF-dependent acetylation. ACAP4 physically interacts with PCAF and is a cognate substrate of PCAF during CCL18 stimulation. The acetylation site of ACAP4 by PCAF was mapped to Lys311 by mass spectrometric analyses. Importantly, dynamic acetylation of ACAP4 is essential for CCL18-induced breast cancer cell migration and invasion, as overexpression of the persistent acetylation-mimicking or non-acetylatable ACAP4 mutant blocked CCL18-elicited cell migration and invasion. Mechanistically, the acetylation of ACAP4 at Lys311 reduced the lipid-binding activity of ACAP4 to ensure a robust and dynamic cycling of ARF6-ACAP4 complex with plasma membrane in response to CCL18 stimulation. Thus, these results present a previously undefined mechanism by which CCL18-elicited acetylation of the PH domain controls dynamic interaction between ACAP4 and plasma membrane during breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoyu Song
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wei Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xiao Yuan
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Department of Chemistry, Southern University of Science & Technology, Shenzhen, China
| | - Jiying Jiang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wanjuan Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - McKay Mullen
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xuannv Zhao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Yin Zhang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fusheng Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shihao Du
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Adeel Rehman
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science & Technology, Shenzhen, China
| | - Jian Li
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Andra Frost
- Department of Pathology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Zhenwei Song
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Hadiyah-Nicole Green
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Calmour Henry
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xia Ding
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Dongmei Wang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| |
Collapse
|
16
|
Wu Y, Zhong C, Du T, Qiu J, Xiong M, Hu Y, Chen Y, Li Y, Liu B, Liu Y, Zou B, Jiang S, Gou M. Preparation and characterization of yeast-encapsulated doxorubicin microparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Bott A, Erdem N, Lerrer S, Hotz-Wagenblatt A, Breunig C, Abnaof K, Wörner A, Wilhelm H, Münstermann E, Ben-Baruch A, Wiemann S. miRNA-1246 induces pro-inflammatory responses in mesenchymal stem/stromal cells by regulating PKA and PP2A. Oncotarget 2018; 8:43897-43914. [PMID: 28159925 PMCID: PMC5546423 DOI: 10.18632/oncotarget.14915] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) has an impact on breast cancer progression by creating a pro-inflammatory milieu within the tumor. However, little is known about the roles of miRNAs in cells of the TME during this process. We identified six putative oncomiRs in a breast cancer dataset, all strongly correlating with poor overall patient survival. Out of the six candidates, miR-1246 was upregulated in aggressive breast cancer subtypes and expressed at highest levels in mesenchymal stem/stroma cells (MSCs). Functionally, miR-1246 led to a p65-dependent increase in transcription and release of pro-inflammatory mediators IL-6, CCL2 and CCL5 in MSCs, and increased NF-κB activity. The pro-inflammatory phenotype of miR-1246 in MSCs was independent of TNFα stimulations and mediated by direct targeting of the tumor-suppressors PRKAR1A and PPP2CB. In vitro recapitulation of the TME revealed increased Stat3 phosphorylation in breast epithelial (MCF10A) and cancer cells (SK-BR-3, MCF7, T47D) upon incubation with conditioned medium (CM) of MSCs overexpressing miR-1246. Additionally, this stimulation enhanced proliferation of MCF10A cells, increased migration of MDA-MB-231 cells and induced attraction of THP-1 monocytic cells. Our data shows that miR-1246 acts as both key-enhancer of pro-inflammatory responses in MSCs and putative oncomiR in breast cancer, suggesting its influence on cancer-related inflammation and breast cancer progression.
Collapse
Affiliation(s)
- Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shalom Lerrer
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Genomics & Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Wörner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Wilhelm
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ewald Münstermann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, Brunner A, Gunsilius E, Biedermann R, Hajek R, Pour L, Willenbacher W, Greil R, Jöhrer K. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma. Oncotarget 2018; 7:78605-78618. [PMID: 27732933 PMCID: PMC5346663 DOI: 10.18632/oncotarget.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
The bone marrow microenvironment plays a decisive role in multiple myeloma progression and drug resistance. Chemokines are soluble mediators of cell migration, proliferation and survival and essentially modulate tumor progression and drug resistance. Here we investigated bone marrow-derived chemokines of naive and therapy-refractory myeloma patients and discovered that high levels of the chemokine CCL27, known so far for its role in skin inflammatory processes, correlated with worse overall survival of the patients. In addition, chemokine levels were significantly higher in samples from patients who became refractory to bortezomib at first line treatment compared to resistance at later treatment lines. In vitro as well as in an in vivo model we could show that CCL27 triggers bortezomib-resistance of myeloma cells. This effect was strictly dependent on the expression of the respective receptor, CCR10, on stroma cells and involved the modulation of IL-10 expression, activation of myeloma survival pathways, and modulation of proteasomal activity. Drug resistance could be totally reversed by blocking CCR10 by siRNA as well as blocking IL-10 and its receptor. From our data we suggest that blocking the CCR10/CCL27/IL-10 myeloma-stroma crosstalk is a novel therapeutic target that could be especially relevant in early refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Benno Postert
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Gerold Untergasser
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Biedermann
- Department of Orthopedic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Roman Hajek
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Ludek Pour
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, University Hospital Innsbruck, Innsbruck, Austria
| | - Richard Greil
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Salzburg Cancer Research Institute-Laboratory of Immunological and Molecular Cancer Research, Salzburg, Austria.,Third Medical Department at The Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
19
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
20
|
Melis MHM, Nevedomskaya E, van Burgsteden J, Cioni B, van Zeeburg HJT, Song JY, Zevenhoven J, Hawinkels LJAC, de Visser KE, Bergman AM. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model. Oncotarget 2017; 8:93867-93877. [PMID: 29212195 PMCID: PMC5706841 DOI: 10.18632/oncotarget.21305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1-/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1-/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1-/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Monique H M Melis
- Division of Molecular Genetics, Netherlands Cancer Institute, The Netherlands
| | | | | | - Bianca Cioni
- Division of Molecular Genetics, Netherlands Cancer Institute, The Netherlands
| | | | - Ji-Ying Song
- Division of Experimental Animal Pathology, Netherlands Cancer Institute, The Netherlands
| | - John Zevenhoven
- Division of Molecular Genetics, Netherlands Cancer Institute, The Netherlands
| | - Lukas J A C Hawinkels
- Division of Gastroenterology-Hepatology and Molecular Cell biology, Leiden university medical center, (LUMC), Netherlands
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute, The Netherlands
| | - Andries M Bergman
- Division of Molecular Genetics, Netherlands Cancer Institute, The Netherlands.,Division of Medical Oncology, Netherlands Cancer Institute, The Netherlands
| |
Collapse
|
21
|
O’Hara MH, Stashwick C, Plesa G, Tanyi JL. Overcoming barriers of car T-cell therapy in patients with mesothelin-expressing cancers. Immunotherapy 2017; 9:767-780. [DOI: 10.2217/imt-2017-0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
One obstacle to the application of immunotherapy to solid malignancies is to overcome the existing tolerance to self-antigens. Vaccine strategies aimed at harnessing endogenous antitumor T cells are limited by the T-cell receptor repertoire, which can be detected within the thymus as central tolerance or rendered nonfunctional by post-thymic mechanisms of peripheral tolerance. Adoptive immunotherapy can overcome these obstacles, since therapeutically effective T cells can be engineered to recognize tumors. Continued advancements in novel treatments, including immunotherapy, in solid malignancies are imperative. While mesothelin is an attractive target for cancer immunotherapy given its normal expression is limited to mesothelial cells, the breakthrough for chimeric antigen receptor T-cell treatment against this antigen is still forthcoming.
Collapse
Affiliation(s)
- Mark H O’Hara
- Department of Hematologic Oncology of the University of Pennsylvania, The University of Pennsylvania Health System, 3400 Spruce street, Philadelphia, PA 19104, USA
| | - Caitlin Stashwick
- Division of Gynecologic Oncology, Lancaster General Hospital, 555 N Duke street, Lancaster, PA 17602, USA
| | - Gabriela Plesa
- Department of Pathology & Laboratory Medicine of The University of Pennsylvania, The University of Pennsylvania Health System, 3400 Spruce street, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Department of Gynecologic Oncology of the University of Pennsylvania, The University of Pennsylvania Health System, 3400 Spruce street, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Topological organisation of the phosphatidylinositol 4,5-bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM gap. Biochem J 2017; 473:4289-4310. [PMID: 27888240 DOI: 10.1042/bcj20160514c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane-associated diacylglycerol (DG) and the consumption of PM PI(4,5)P2 Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the PM, the DG formed during PLC activation is rapidly converted into phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the PM where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2 Thus, two lipid transport steps between membrane compartments through the cytosol are required for the replenishment of PI(4,5)P2 at the PM. Here, we review the topological constraints in the PI(4,5)P2 cycle and current understanding how these constraints are overcome during PLC signalling. In particular, we discuss the role of lipid transfer proteins in this process. Recent findings on the biochemical properties of a membrane-associated lipid transfer protein of the PITP family, PITPNM proteins (alternative name RdgBα/Nir proteins) that localise to membrane contact sites are discussed. Studies in both Drosophila and mammalian cells converge to provide a resolution to the conundrum of reciprocal transfer of PA and PI during PLC signalling.
Collapse
|
23
|
Zhongchao W, Liyuan F, Dan T, Cong Z, Shijun L. [Therapeutic effect of enhancer of Zeste homolog 2 inhibitor GSK343 on periodontitis by regulating macrophage differentiation]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:264-268. [PMID: 28675010 DOI: 10.7518/hxkq.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To explore the therapeutic effect of enhancer of Zeste homolog 2 (EZH2) inhibitor GSK343 on periodontitis by regulating microphage differentiation. METHODS Macrophage RAW264.7 cells were divided into the blank (A group), control (B group), lipopolysaccharide (LPS) stimulation (C group), and LPS+GSK343 (D group) groups. Phenotype transformations was determined through Western blot analysis and enzyme-linked immunosorbent assay by detecting the differentiation of phenotypic biological markers, including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and Arginase-1 (Arg-1). Metergasis was identified by performing a phagocytosis test on Escherichia coli (E. coli). RESULTS Macrophage RAW264.7 cells produced classical phenotypic biomarkers (M1) TNF-α and iNOS under LPS stimulation. The expression levels of IL-10 and Arg-1 increased after adding GSK343 into the culture medium. GSK343 also induced the conversion of M1 macrophages into M2 macrophages. Macrophage RAW264.7 cells exerted a phagocytic effect on E. coli, and this effect was enhanced after adding LPS into the culture medium. GSK343 regulated the macrophage RAW264.7 phagocytosis of E. coli. CONCLUSIONS GSK343 possibly participates in the regulation of macrophage differentiation and, consequently, in the latent treatment of periodontitis.
Collapse
Affiliation(s)
- Wang Zhongchao
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Oral Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fan Liyuan
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tan Dan
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Oral Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhou Cong
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Oral Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Luo Shijun
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
24
|
Beatty GL. Overcoming Therapeutic Resistance by Targeting Cancer Inflammation. Am Soc Clin Oncol Educ Book 2017; 35:e168-73. [PMID: 27249720 DOI: 10.1200/edbk_158948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor-infiltrating myeloid cells are a prominent feature of most solid malignancies. This inflammatory immune response, driven by tumor-intrinsic signaling pathways, is a major checkpoint to therapeutic efficacy achieved with immunotherapy and standard cytotoxic therapies. To overcome therapeutic resistance mediated by cancer inflammation, ongoing clinical trials are evaluating strategies that (1) deplete myeloid cells from tumors, (2) inhibit tumor-promoting properties of myeloid cells, and (3) redirect myeloid cells with tumor-inhibitory activity.
Collapse
Affiliation(s)
- Gregory L Beatty
- From the Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
CAR T-cell therapy of solid tumors. Immunol Cell Biol 2016; 95:356-363. [PMID: 28003642 DOI: 10.1038/icb.2016.128] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
The potential for immunotherapy as a treatment option for cancer is clear from remarkable responses of some leukemia patients to adoptive cell transfer using autologous T cells genetically modified to express chimeric antigen receptors (CARs). However, the vast majority of cancers, in particular the more common solid cancers, such as those of the breast, colon and lung, fail to respond significantly to infusions of CAR T cells. Solid cancers present some formidable barriers to adoptive cell transfer, including suppression of T-cell function and inhibition of T-cell localization. In this review, we discuss the current state of CAR T-cell therapy in solid cancers, the variety of concepts being investigated to overcome these barriers as well as approaches aimed at increasing the specificity and safety of adoptive cell transfer.
Collapse
|
26
|
Datar I, Qiu X, Ma HZ, Yeung M, Aras S, de la Serna I, Al-Mulla F, Thiery JP, Trumbly R, Fan X, Cui H, Yeung KC. RKIP regulates CCL5 expression to inhibit breast cancer invasion and metastasis by controlling macrophage infiltration. Oncotarget 2016; 6:39050-61. [PMID: 26375811 PMCID: PMC4770756 DOI: 10.18632/oncotarget.5176] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/16/2015] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that presence of macrophages in the tumor microenvironment add to the invasive and tumor-promoting hallmarks of cancer cells by secreting angiogenic and growth factors. RKIP is a known metastasis suppressor and interferes with several steps of metastasis. However, the mechanistic underpinnings of its function as a broad metastasis suppressor remain poorly understood. Here, we establish a novel pathway for RKIP regulation of metastasis inhibition through the negative regulation of RANTES/CCL5 thereby limiting tumor macrophage infiltration and inhibition of angiogenesis. Using a combination of loss- and gain-of-function approaches, we show that RKIP hinders breast cancer cell invasion by inhibiting expression of the CC chemokine CCL5 in vitro. We also show that the expression levels of RKIP and CCL5 are inversely correlated among clinical human breast cancer samples. Using a mouse allograft breast cancer transplantation model, we highlight that ectopic expression of RKIP significantly decreases tumor vasculature, macrophage infiltration and lung metastases. Mechanistically, we demonstrate that the inhibition of the CCL5 expression is the cause of the observed effects resulting from RKIP expression. Taken together, our results underscore the significance of RKIP as important negative regulator of tumor microenvironment.
Collapse
Affiliation(s)
- Ila Datar
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| | - Xiaoliang Qiu
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| | - Hong Zhi Ma
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| | - Miranda Yeung
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| | - Shweta Aras
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| | - Ivana de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| | - Fahd Al-Mulla
- Kuwait University, Faculty of Medicine, Safat, Kuwait
| | - Jean Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Robert Trumbly
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| | - Xuan Fan
- State Key Laboratory Of Silkworm Genome Biology, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory Of Silkworm Genome Biology, Chongqing, China
| | - Kam C Yeung
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, OH, USA
| |
Collapse
|
27
|
Wong HSC, Chang CM, Liu X, Huang WC, Chang WC. Characterization of cytokinome landscape for clinical responses in human cancers. Oncoimmunology 2016; 5:e1214789. [PMID: 27999736 DOI: 10.1080/2162402x.2016.1214789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023] Open
Abstract
Dysfunctional intratumoral immune reactions are shaped by complex networks of cytokines (including chemokines), and how the cytokinome landscape coordinates with tumors has not been systematically investigated. Using high-dimensional datasets of cancer specimens, we explored the transcript abundance, biomarker potential, and prognostic impact of local cytokines across 19 tumor types. We found that most cytokines are highly locally dysregulated (p = 0.024), revealing spatiotemporal pattern of local cytokines in the development of cancers. In addition, we noted the significant downregulation of CCL14 and CXCL12 in 9 and 10 cancer types, respectively, implying their crucial roles in tumor pathogenesis. We also found that cytokines showed significantly higher specificity properties compared to other protein-coding genes (PCGs) in primary tumor specimens (p << 0.001), indicating that tissue context remains an issue when considering cancer cytokinomes. Finally, we linked concentrations of local cytokines to patient survival. Our results thus provide a panoramic view of pan-cancer cytokinomes, which highlights tumor type specificity of cancer-related cytokines and their impacts on disease prognosis.
Collapse
Affiliation(s)
- Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Che-Mai Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | - Xiao Liu
- Institute for Molecular Engineering, University of Chicago , Chicago, IL, USA
| | - Wan-Chen Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Department of Pharmacy, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pharmacy, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Umansky V, Blattner C, Fleming V, Hu X, Gebhardt C, Altevogt P, Utikal J. Myeloid-derived suppressor cells and tumor escape from immune surveillance. Semin Immunopathol 2016; 39:295-305. [DOI: 10.1007/s00281-016-0597-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
|
29
|
Sun BS, Pei BX, Zhang K, Zhang LC, Zhang GJ, Liu JK, Cui HW, Pan F, Zhang ZF. Significance of interstitial tumor-associated macrophages in the progression of lung adenocarcinoma. Oncol Lett 2016; 12:4467-4476. [PMID: 28101209 PMCID: PMC5228206 DOI: 10.3892/ol.2016.5270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
Stepwise progression from adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) to lepidic predominant adenocarcinoma (LPA) was proposed by various scholars. Interstitial tumor-associated macrophages (TAMs) and various potential chemokines involved in the progression from AIS/MIA to LPA were hypothesized. In the present study, immunohistochemistry or immunofluorescent double staining was used to detect the expression of the TAMs marker cluster of differentiation (CD) 68, tumor-derived colony-stimulating factor (CSF)-1, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, E-cadherin and Snail in lung adenocarcinoma specimens, including AIS/MIA, LPA and other types. It was observed that infiltrating TAMs were negatively associated with the prognosis of patients, and that the infiltration degree of interstitial TAMs was higher in LPA than that in AIS/MIA. In addition, E-cadherin, Snail and MMP-2 expression were significantly correlated with the infiltration degree of TAMs. Survival analysis revealed that co-expression of CD68, CSF-1 and IL-6 was an independent prognostic factor. Stratified analysis demonstrated that, in AIS/MIA patients, there was a statistically significant difference between the number of TAMs (TAMs ≤25 and TAMs >25) in the CD68+CSF-1+IL-6+ group compared with other groups (including CD68+CSF-1-IL-6-, CD68+CSF-1+IL-6-, CD68+CSF-1-IL-6+ and CD68- groups). By contrast, in patients with TAMs >25 and in patients with positive CD68, CSF-1 and IL-6 expression, the survival rates were not significantly different between AIS/MIA and LPA. These results suggested that co-expression of TAMs marker CD68, CSF-1 and IL-6 may be a valuable independent prognostic predictor in lung adenocarcinoma. TAMs may facilitate AIS/MIA progression to LPA, which may be closely associated with the induction of the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Bing-Sheng Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Lung Cancer Center, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Bao-Xiang Pei
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Kang Zhang
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lu-Chang Zhang
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Guang-Jing Zhang
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Ji-Kuan Liu
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hong-Wei Cui
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Fen Pan
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Lung Cancer Center, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
30
|
Beatty GL, O'Hara M. Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps. Pharmacol Ther 2016; 166:30-9. [PMID: 27373504 DOI: 10.1016/j.pharmthera.2016.06.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown promise in CD19 expressing hematologic malignancies, but how to translate this success to solid malignancies remains elusive. Effective translation of CAR T cells to solid tumors will require an understanding of potential therapeutic barriers, including factors that regulate CAR T cells expansion, persistence, trafficking, and fate within tumors. Herein, we describe the current state of CAR T cells in solid tumors; define key barriers to CAR T cell efficacy and mechanisms underlying these barriers, outline potential avenues for overcoming these therapeutic obstacles, and discuss the future of translating CAR T cells for the treatment of patients with solid malignancies.
Collapse
Affiliation(s)
- Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Long KB, Gladney WL, Tooker GM, Graham K, Fraietta JA, Beatty GL. IFNγ and CCL2 Cooperate to Redirect Tumor-Infiltrating Monocytes to Degrade Fibrosis and Enhance Chemotherapy Efficacy in Pancreatic Carcinoma. Cancer Discov 2016; 6:400-413. [PMID: 26896096 PMCID: PMC4843521 DOI: 10.1158/2159-8290.cd-15-1032] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
UNLABELLED Dense fibrosis and a robust macrophage infiltrate are key therapeutic barriers in pancreatic ductal adenocarcinoma (PDAC). CD40 activation can circumvent these barriers by inducing macrophages, originating from peripheral blood monocytes, to deplete fibrosis. The precise mechanism and therapeutic implications of this antifibrotic activity, though, remain unclear. Here, we report that IFNγ and CCL2 released systemically in response to a CD40 agonist cooperate to redirect a subset of Ly6C(+)CCR2(+)monocytes/macrophages to infiltrate tumors and deplete fibrosis. Whereas CCL2 is required for Ly6C(+)monocyte/macrophage infiltration, IFNγ is necessary for tumor-infiltrating monocytes/macrophages to shift the profile of matrix metalloproteinases (MMP) in tumors, leading to MMP-dependent fibrosis degradation. In addition, MMP13-dependent loss of extracellular matrix components induced by a CD40 agonist increased PDAC sensitivity to chemotherapy. Our findings demonstrate that fibrosis in PDAC is a bidirectional process that can be rapidly altered by manipulating a subset of tumor-infiltrating monocytes, leading to enhanced chemotherapy efficacy. SIGNIFICANCE We report that CD40 agonists improve chemotherapy efficacy in pancreatic carcinoma by redirecting tumor-infiltrating monocytes/macrophages to induce fibrosis degradation that is dependent on MMPs. These findings provide novel insight into the plasticity of monocytes/macrophages in cancer and their capacity to regulate fibrosis and modulate chemotherapy efficacy in pancreatic carcinoma.
Collapse
Affiliation(s)
- Kristen B. Long
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Whitney L. Gladney
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Graham M. Tooker
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kathleen Graham
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Gregory L. Beatty
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Shi L, Zhang B, Sun X, Zhang X, Lv S, Li H, Wang X, Zhao C, Zhang H, Xie X, Wang Y, Zhang P. CC chemokine ligand 18(CCL18) promotes migration and invasion of lung cancer cells by binding to Nir1 through Nir1-ELMO1/DOC180 signaling pathway. Mol Carcinog 2016; 55:2051-2062. [PMID: 26756176 DOI: 10.1002/mc.22450] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Non-small cell lung cancer (NSCLC) comprises nearly 80% of lung cancers and the poor prognosis is due to its high invasiveness and metastasis. CC chemokine ligand 18 (CCL18) is predominantly secreted by M2-tumor associated macrophages (TAMs) and promotes malignant behaviors of various human cancer types. In this study, we report that the high expression of CCL18 in TAMs of NSCLC tissues and increased expression of CCL18 in TAMs is correlated with the lymph node metastasis, distant metastasis, and poor prognosis NSCLC patients. CCL18 can increase the invasive ability of NSCLC cells by binding to its receptor Nir1. In addition, CCL18 is capable of modulating cell migration and invasion by regulating the activation of RAC1 which resulted in cytoskeleton reorganization in an ELMO1 dependent manner. Furthermore, we found that CCL18 could enhance adhesion of NSCLC cells via activating ELMO1-integrin β1 signaling. Thus, CCL18 and its downstream molecules may be used as targets to develop novel NSCLC therapy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lihong Shi
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, P. R. China
| | - Xiuning Sun
- Department of Microbilology, Weifang Medical University, Weifang, P. R. China
| | - Xiurong Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Shijun Lv
- Department of Pathology, Weifang Medical University, Weifang, P. R. China
| | - Hongli Li
- Department of Medicine Research Center, Weifang Medical University, Weifang, P. R. China
| | - Xuejian Wang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Chunzhen Zhao
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Heng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Xinpeng Xie
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Ying Wang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| | - Peng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, P. R. China
| |
Collapse
|
33
|
Roca H, McCauley LK. Inflammation and skeletal metastasis. BONEKEY REPORTS 2015; 4:706. [PMID: 26131358 DOI: 10.1038/bonekey.2015.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
On the road to metastasis a cancer cell has to overcome two major obstacles: the physical escape from the primary tumor to a distant tissue and the adaptation to the new microenvironment via colonization and the formation of a secondary tumor. Accumulated scientific findings support the hypothesis that inflammation is a critical component of the tumor microenvironment and develops as a result of tumor-induced recruitment of inflammatory cells and their reciprocal interaction with other cells from the tumor network. These interactions modulate immune responses to suppress antitumor immunity and activate feedback amplification signaling loops that link nearly all the cells in the cancer inflammatory milieu. The coordinated regulation of cytokines/chemokines, receptors and other inflammatory mediators enables the different steps of the metastatic cascade. As a target organ for colonization, the bone is rich in inflammatory mediators that are critical for successful cancer growth. In this review, we focus on the inflammatory cells, molecules and mechanisms that facilitate the expansion of cancer cells from the primary tumor to their new 'home' in the skeleton.
Collapse
Affiliation(s)
- Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry , Ann Arbor, MI, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry , Ann Arbor, MI, USA ; Department of Pathology, University of Michigan Medical School , Ann Arbor, MI, USA
| |
Collapse
|
34
|
Chen N, Nishio N, Ito S, Tanaka Y, Sun Y, Isobe KI. Growth arrest and DNA damage-inducible protein (GADD34) enhanced liver inflammation and tumorigenesis in a diethylnitrosamine (DEN)-treated murine model. Cancer Immunol Immunother 2015; 64:777-89. [PMID: 25832002 PMCID: PMC11029570 DOI: 10.1007/s00262-015-1690-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Growth arrest and DNA damage-inducible protein (GADD34/Ppp1r15a) is induced by various stimuli including DNA damage and ER stress. DNA damage and oncogene activation, accompanied by tumor-specific DNA repair defects and a failure to stall the cell cycle, are early markers of hepatocellular carcinoma (HCC). However, whether GADD34 accounts for regulating HCC tumorigenesis remains elusive. Here, we demonstrated that GADD34 expression was upregulated in the liver of mice after exposure to a carcinogen, diethylnitrosamine (DEN). In both acute and chronic DEN treatment models, GADD34 deficiency not only decreased oncogene expression, but also reduced hepatic damage. Moreover, loss of GADD34 attenuated immune cell infiltration, pro-inflammatory cytokine expression and hepatic compensatory proliferation. Finally, GADD34-deficient mice showed impaired hepatocarcinogenesis. Thus, the process of DEN-induced HCC proceeded as follows. First, DEN treatment induced DNA damage in hepatocytes, resulting in elevated expression of GADD34 in the liver. The increased expression of GADD34 augmented hepatic necrosis followed by elevated expression of interleukin (IL)-1β and monocyte chemoattractant protein 1. This process promoted immune cell infiltration and Kupffer cell/macrophage activation followed by production of reactive oxygen species and pro-tumorigenic cytokines such as IL-6 and tumor necrosis factor-α. The pro-tumorigenic cytokines stimulated compensatory proliferation of surviving and mutant hepatocytes. Together with oncogene c-Myc expression, these processes led to HCC. Our results suggest therapeutic opportunities for HCC by targeting GADD34-related pathways.
Collapse
Affiliation(s)
- Nana Chen
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Naomi Nishio
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yuriko Tanaka
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yang Sun
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Ken-ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| |
Collapse
|
35
|
Katanov C, Lerrer S, Liubomirski Y, Leider-Trejo L, Meshel T, Bar J, Feniger-Barish R, Kamer I, Soria-Artzi G, Kahani H, Banerjee D, Ben-Baruch A. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res Ther 2015; 6:87. [PMID: 25928089 PMCID: PMC4469428 DOI: 10.1186/s13287-015-0080-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/14/2014] [Accepted: 04/13/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction Breast cancer progression is promoted by stromal cells that populate the tumors, including cancer-associated fibroblasts (CAFs) and mesenchymal stem/stromal cells (MSCs). The activities of CAFs and MSCs in breast cancer are integrated within an intimate inflammatory tumor microenvironment (TME) that includes high levels of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Here, we identified the impact of TNF-α and IL-1β on the inflammatory phenotype of CAFs and MSCs by determining the expression of inflammatory chemokines that are well-characterized as pro-tumorigenic in breast cancer: CCL2 (MCP-1), CXCL8 (IL-8) and CCL5 (RANTES). Methods Chemokine expression was determined in breast cancer patient-derived CAFs by ELISA and in patient biopsies by immunohistochemistry. Chemokine levels were determined by ELISA in (1) human bone marrow-derived MSCs stimulated by tumor conditioned media (Tumor CM) of breast tumor cells (MDA-MB-231 and MCF-7) at the end of MSC-to-CAF-conversion process; (2) Tumor CM-derived CAFs, patient CAFs and MSCs stimulated by TNF-α (and IL-1β). The roles of AP-1 and NF-κB in chemokine secretion were analyzed by Western blotting and by siRNAs to c-Jun and p65, respectively. Migration of monocytic cells was determined in modified Boyden chambers. Results TNF-α (and IL-1β) induced the release of CCL2, CXCL8 and CCL5 by MSCs and CAFs generated by prolonged stimulation of MSCs with Tumor CM of MDA-MB-231 and MCF-7 cells. Patient-derived CAFs expressed CCL2 and CXCL8, and secreted CCL5 following TNF-α (and IL-1β) stimulation. CCL2 was expressed in CAFs residing in proximity to breast tumor cells in biopsies of patients diagnosed with invasive ductal carcinoma. CCL2 release by TNF-α-stimulated MSCs was mediated by TNF-RI and TNF-RII, through the NF-κB but not via the AP-1 pathway. Exposure of MSCs to TNF-α led to potent CCL2-induced migration of monocytic cells, a process that may yield pro-cancerous myeloid infiltrates in breast tumors. Conclusions Our novel results emphasize the important roles of inflammation-stroma interactions in breast cancer, and suggest that NF-κB may be a potential target for inhibition in tumor-adjacent stromal cells, enabling improved tumor control in inflammation-driven malignancies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0080-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Katanov
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Shalom Lerrer
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Yulia Liubomirski
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Leonor Leider-Trejo
- Department of Pathology, Tel Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel Aviv University, 6 Weizmann Street, Tel Aviv, 64239, Israel.
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5262100, Israel.
| | - Rotem Feniger-Barish
- Institute of Oncology, Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5262100, Israel.
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5262100, Israel.
| | - Gali Soria-Artzi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Hadar Kahani
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Debabrata Banerjee
- Department of Medicine and Pharmacology, Robert Wood Johnson Medical School and Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08901, USA.
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| |
Collapse
|
36
|
Chen P, Luo S, Wen YJ, Li YH, Li J, Wang YS, Du LC, Zhang P, Tang J, Yang DB, Hu HZ, Zhao X, Wei YQ. Low-dose paclitaxel improves the therapeutic efficacy of recombinant adenovirus encoding CCL21 chemokine against murine cancer. Cancer Sci 2015; 105:1393-401. [PMID: 25230206 PMCID: PMC4462366 DOI: 10.1111/cas.12537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/05/2023] Open
Abstract
Secondary lymphoid tissue chemokine (SLC/CCL21), one of the CC chemokines, exerts potent antitumor immunity by co-localizing T cells and dendritic cells at the tumor site and is currently tested against human solid tumors. Here, we investigated whether the combination of recombinant adenovirus encoding murine CCL21 (Ad-mCCL21) with low-dose paclitaxel would improve therapeutic efficacy against murine cancer. Immunocompetent mice bearing B16-F10 melanoma or 4T1 breast carcinoma were treated with either Ad-mCCL21, paclitaxel, or both agents together. Our results showed that Ad-mCCL21 + low-dose paclitaxel more effectively reduced the growth of tumors as compared with either treatment alone and significantly prolonged survival time of the tumor-bearing animals. These antitumor effects of the combined therapy were linked to altered cytokine network at the tumor site, enhanced apoptosis of tumor cells, and decreased formation of new vessels in tumors. Importantly, the combined therapy elicited a strong therapeutic antitumor immunity, which could be partly abrogated by the depletion of CD4+ or CD8+ T lymphocytes. Collectively, these preclinical evaluations may provide a combined strategy for antitumor immunity and should be considered for testing in clinical trials.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China; National Institutes for Food and Drug Control, Beijing, China; Chengdu Institute of Biological Products Co., Ltd, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mlecnik B, Bindea G, Angell HK, Sasso MS, Obenauf AC, Fredriksen T, Lafontaine L, Bilocq AM, Kirilovsky A, Tosolini M, Waldner M, Berger A, Fridman WH, Rafii A, Valge-Archer V, Pagès F, Speicher MR, Galon J. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med 2014; 6:228ra37. [PMID: 24648340 DOI: 10.1126/scitranslmed.3007240] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment is host to a complex network of cytokines that contribute to shaping the intratumoral immune reaction. Chromosomal gains and losses, coupled with expression analysis, of 59 cytokines and receptors and their functional networks were investigated in colorectal cancers. Changes in local expression for 13 cytokines were shown. Metastatic patients exhibited an increased frequency of deletions of cytokines from chromosome 4. Interleukin 15 (IL15) deletion corresponded with decreased IL15 expression, a higher risk of tumor recurrence, and reduced patient survival. Decreased IL15 expression affected the local proliferation of B and T lymphocytes. Patients with proliferating B and T cells at the invasive margin and within the tumor center had significantly prolonged disease-free survival. These results delineate chromosomal instability as a mechanism of modulating local cytokine expression in human tumors and underline the major role of IL15. Our data provide further mechanisms resulting in changes of specific immune cell densities within the tumor, and the importance of local active lymphocyte proliferation for patient survival.
Collapse
Affiliation(s)
- Bernhard Mlecnik
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris F-75006, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Savino B, Caronni N, Anselmo A, Pasqualini F, Borroni EM, Basso G, Celesti G, Laghi L, Tourlaki A, Boneschi V, Brambilla L, Nebuloni M, Vago G, Mantovani A, Locati M, Bonecchi R. ERK-dependent downregulation of the atypical chemokine receptor D6 drives tumor aggressiveness in Kaposi sarcoma. Cancer Immunol Res 2014; 2:679-89. [PMID: 24844911 DOI: 10.1158/2326-6066.cir-13-0202] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
D6 is an atypical chemokine receptor acting as a decoy and scavenger for inflammatory CC chemokines expressed in lymphatic endothelial cells. Here, we report that D6 is expressed in Kaposi sarcoma (KS), a tumor ontogenetically related to the lymphatic endothelium. Both in human tumors and in an experimental model, D6 expression levels were inversely correlated with tumor aggressiveness and increased infiltration of proangiogenic macrophages. Inhibition of monocyte recruitment reduced the growth of tumors, while adoptive transfer of wild-type, but not CCR2(-/-) macrophages, increased the growth rate of D6-competent neoplasms. In the KS model with the B-Raf V600E-activating mutation, inhibition of B-Raf or the downstream ERK pathway induced D6 expression; in progressing human KS tumors, the activation of ERK correlates with reduced levels of D6 expression. These results indicate that activation of the K-Ras-B-Raf-ERK pathway during KS progression downregulates D6 expression, which unleashes chemokine-mediated macrophage recruitment and their acquisition of an M2-like phenotype supporting angiogenesis and tumor growth. Combined targeting of CCR2 and the ERK pathway should be considered as a therapeutic option for patients with KS.
Collapse
Affiliation(s)
- Benedetta Savino
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Nicoletta Caronni
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Achille Anselmo
- Authors' Affiliations: Humanitas Clinical and Research Center
| | | | - Elena Monica Borroni
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Gianluca Basso
- Authors' Affiliations: Humanitas Clinical and Research Center
| | | | - Luigi Laghi
- Authors' Affiliations: Humanitas Clinical and Research Center
| | - Athanasia Tourlaki
- UO Dermatologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Vinicio Boneschi
- UO Dermatologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Lucia Brambilla
- UO Dermatologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Manuela Nebuloni
- Department of Clinical Sciences "Luigi Sacco," Università degli Studi di Milano; and
| | - Gianluca Vago
- Department of Clinical Sciences "Luigi Sacco," Università degli Studi di Milano; and
| | - Alberto Mantovani
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Massimo Locati
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Raffaella Bonecchi
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano;
| |
Collapse
|
39
|
Senescent remodeling of the innate and adaptive immune system in the elderly men with prostate cancer. Curr Gerontol Geriatr Res 2014; 2014:478126. [PMID: 24772169 PMCID: PMC3977481 DOI: 10.1155/2014/478126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/26/2014] [Accepted: 02/10/2014] [Indexed: 01/04/2023] Open
Abstract
Despite years of intensive investigation that has been made in understanding prostate cancer, it remains a major cause of death in men worldwide. Prostate cancer emerges from multiple alterations that induce changes in expression patterns of genes and proteins that function in networks controlling critical cellular events. Based on the exponential aging of the population and the increasing life expectancy in industrialized Western countries, prostate cancer in the elderly men is becoming a disease of increasing significance. Aging is a progressive degenerative process strictly integrated with inflammation. Several theories have been proposed that attempt to define the role of chronic inflammation in aging including redox stress, mitochondrial damage, immunosenescence, and epigenetic modifications. Here, we review the innate and adaptive immune systems and their senescent remodeling in elderly men with prostate cancer.
Collapse
|
40
|
Pei X, Sun Q, Zhang Y, Wang P, Peng X, Guo C, Xu E, Zheng Y, Mo X, Ma J, Chen D, Zhang Y, Zhang Y, Song Q, Guo S, Shi T, Zhang Z, Ma D, Wang Y. PC3-secreted microprotein is a novel chemoattractant protein and functions as a high-affinity ligand for CC chemokine receptor 2. THE JOURNAL OF IMMUNOLOGY 2014; 192:1878-86. [PMID: 24442440 DOI: 10.4049/jimmunol.1300758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PC3-secreted microprotein (PSMP) or microseminoprotein is a newly discovered secreted protein whose function is currently unknown. In this study, PSMP was found to possess chemotactic ability toward monocytes and lymphocytes, and its functional receptor was identified as CCR2B. PSMP was identified as a chemoattractant protein from a PBMC chemoattractant platform screen that we established. The mature secreted PSMP was able to chemoattract human peripheral blood monocytes, PBLs, and CCR2B-expressing THP-1 cells, but not peripheral blood neutrophils, even though it does not contain the classical structure of chemokines. CCR2B was identified as one receptor for PSMP-mediated chemotaxis by screening HEK293 cells that transiently expressed classical chemokine receptors; results obtained from the chemotaxis, calcium flux, receptor internalization, and radioligand-binding assays all confirmed this finding. To further identify the major function of PSMP, we analyzed its expression profile in tissues. PSMP is highly expressed in benign prostatic hyperplasia and in some prostate cancers, and can also be detected in breast tumor tissue. In response to PSMP stimulation, phosphorylated ERK levels downstream of CCR2B signaling were upregulated in the PC3 cell line. Taken together, our data collectively suggest that PSMP is a chemoattractant protein acting as a novel CCR2 ligand that may influence inflammation and cancer development.
Collapse
Affiliation(s)
- Xiaolei Pei
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mast cells as a potential prognostic marker in prostate cancer. DISEASE MARKERS 2013; 35:711-20. [PMID: 24324287 PMCID: PMC3844173 DOI: 10.1155/2013/478303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022]
Abstract
Despite years of intensive investigation that has been made in understanding prostate cancer, it remains one of the major men's health issues and the leading cause of death worldwide. It is now ascertained that prostate cancer emerges from multiple spontaneous and/or inherited alterations that induce changes in expression patterns of genes and proteins that function in complex networks controlling critical cellular events. It is now accepted that several innate and adaptive immune cells, including T- and B-lymphocytes, macrophages, natural killer cells, dendritic cells, neutrophils, eosinophils, and mast cells (MCs), infiltrate the prostate cancer. All of these cells are irregularly scattered within the tumor and loaded with an assorted array of cytokines, chemokines, and inflammatory and cytotoxic mediators. This complex framework reflects the diversity in tumor biology and tumor-host interactions. MCs are well-established effector cells in Immunoglobulin-E (Ig-E) associated immune responses and potent effector cells of the innate immune system; however, their clinical significance in prostate cancer is still debated. Here, these controversies are summarized, focusing on the implications of these findings in understanding the roles of MCs in primary prostate cancer.
Collapse
|
42
|
The Chemokine CXCL8 in Carcinogenesis and Drug Response. ISRN ONCOLOGY 2013; 2013:859154. [PMID: 24224100 PMCID: PMC3810054 DOI: 10.1155/2013/859154] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/08/2013] [Indexed: 02/08/2023]
Abstract
Although the functions of chemokines in the regulation of immune processes have been studied in some detail, the role of these biomolecules in cancer is not fully understood. Chemokines mediate migration of immune cells and other functions related to immunity. They are also involved in oncogenesis and in tumor progression, invasion, and metastasis through mechanisms similar to their roles in immune functions. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. Consequently, chemokines and their receptors present potential therapeutic targets for anticancer drugs. The chemokine CXCL8, also known as interleukin-8 (IL8), is a proinflammatory molecule that has functions within the tumor microenvironment. Due to its potent angiogenic effects and the activity of the chemokine and its receptors in the promotion of invasion and metastasis, CXCL8 and its receptors are now considered as attractive targets for cancer therapy. This review relates the current understanding of the regulation, signaling, and functions of CXCL8 that contribute to tumor growth and metastasis, and of its role in drug response.
Collapse
|
43
|
Alshetaiwi HS, Balivada S, Shrestha TB, Pyle M, Basel MT, Bossmann SH, Troyer DL. Luminol-based bioluminescence imaging of mouse mammary tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:223-8. [PMID: 24077442 DOI: 10.1016/j.jphotobiol.2013.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant circulating blood leukocytes. They are part of the innate immune system and provide a first line of defense by migrating toward areas of inflammation in response to chemical signals released from the site. Some solid tumors, such as breast cancer, also cause recruitment and activation of PMNs and release of myeloperoxidase. In this study, we demonstrate that administration of luminol to mice that have been transplanted with 4T1 mammary tumor cells permits the detection of myeloperoxidase activity, and consequently, the location of the tumor. Luminol allowed detection of activated PMNs only two days after cancer cell transplantation, even though tumors were not yet palpable. In conclusion, luminol-bioluminescence imaging (BLI) can provide a pathway towards detection of solid tumors at an early stage in preclinical tumor models.
Collapse
Affiliation(s)
- Hamad S Alshetaiwi
- Department of Anatomy and Physiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Islam SA, Ling MF, Leung J, Shreffler WG, Luster AD. Identification of human CCR8 as a CCL18 receptor. ACTA ACUST UNITED AC 2013; 210:1889-98. [PMID: 23999500 PMCID: PMC3782048 DOI: 10.1084/jem.20130240] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CCL18 is an endogenous agonist of the human CCR8 receptor. The CC chemokine ligand 18 (CCL18) is one of the most highly expressed chemokines in human chronic inflammatory diseases. An appreciation of the role of CCL18 in these diseases has been hampered by the lack of an identified chemokine receptor. We report that the human chemokine receptor CCR8 is a CCL18 receptor. CCL18 induced chemotaxis and calcium flux of human CCR8-transfected cells. CCL18 bound with high affinity to CCR8 and induced its internalization. Human CCL1, the known endogenous CCR8 ligand, and CCL18 competed for binding to CCR8-transfected cells. Further, CCL1 and CCL18 induced heterologous cross-desensitization of CCR8-transfected cells and human Th2 cells. CCL18 induced chemotaxis and calcium flux of human activated highly polarized Th2 cells through CCR8. Wild-type but not Ccr8-deficient activated mouse Th2 cells migrated in response to CCL18. CCL18 and CCR8 were coexpressed in esophageal biopsy tissue from individuals with active eosinophilic esophagitis (EoE) and were present at markedly higher levels compared with esophageal tissue isolated from EoE patients whose disease was in remission or in normal controls. Identifying CCR8 as a chemokine receptor for CCL18 will help clarify the biological role of this highly expressed chemokine in human disease.
Collapse
Affiliation(s)
- Sabina A Islam
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | | | | | | | | |
Collapse
|
45
|
Unveiling the association of STAT3 and HO-1 in prostate cancer: role beyond heme degradation. Neoplasia 2013; 14:1043-56. [PMID: 23226098 DOI: 10.1593/neo.121358] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022]
Abstract
Activation of the androgen receptor (AR) is a key step in the development of prostate cancer (PCa). Several mechanisms have been identified in AR activation, among them signal transducer and activator of transcription 3 (STAT3) signaling. Disruption of STAT3 activity has been associated to cancer progression. Recent studies suggest that heme oxygenase 1 (HO-1) may play a key role in PCa that may be independent of its catalytic function. We sought to explore whether HO-1 operates on AR transcriptional activity through the STAT3 axis. Our results display that HO-1 induction in PCa cells represses AR activation by decreasing the prostate-specific antigen (PSA) promoter activity and mRNA levels. Strikingly, this is the first report to show by chromatin immunoprecipitation analysis that HO-1 associates to gene promoters, revealing a novel function for HO-1 in the nucleus. Furthermore, HO-1 and STAT3 directly interact as determined by co-immunoprecipitation studies. Forced expression of HO-1 increases STAT3 cytoplasmic retention. When PCa cells were transfected with a constitutively active STAT3 mutant, PSA and STAT3 downstream target genes were abrogated under hemin treatment. Additionally, a significant decrease in pSTAT3 protein levels was detected in the nuclear fraction of these cells. Confocal microscopy images exhibit a decreased rate of AR/STAT3 nuclear co-localization under hemin treatment. In vivo studies confirmed that STAT3 nuclear delimitation was significantly decreased in PC3 tumors overexpressing HO-1 grown as xenografts in nude mice. These results provide a novel function for HO-1 down-modulating AR transcriptional activity in PCa, interfering with STAT3 signaling, evidencing its role beyond heme degradation.
Collapse
|
46
|
Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, Shi Y. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 2013; 3:5. [PMID: 23336752 PMCID: PMC3693909 DOI: 10.1186/2045-3701-3-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, 225 Changhai Road, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res Treat 2012; 136:647-58. [DOI: 10.1007/s10549-012-2264-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/18/2012] [Indexed: 01/03/2023]
|
48
|
Kaler P, Augenlicht L, Klampfer L. Activating mutations in β-catenin in colon cancer cells alter their interaction with macrophages; the role of snail. PLoS One 2012; 7:e45462. [PMID: 23029025 PMCID: PMC3448637 DOI: 10.1371/journal.pone.0045462] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tumor cells become addicted to both activated oncogenes and to proliferative and pro-survival signals provided by the abnormal tumor microenvironment. Although numerous soluble factors have been identified that shape the crosstalk between tumor cells and stroma, it has not been established how oncogenic mutations in the tumor cells alter their interaction with normal cells in the tumor microenvironment. PRINCIPAL FINDINGS We showed that the isogenic HCT116 and Hke-3 cells, which differ only by the presence of the mutant kRas allele, both stimulate macrophages to produce IL1β. In turn, macrophages enhanced Wnt signaling, proliferation and survival in both HCT116 and Hke-3 cells, demonstrating that signaling by oncogenic kRas in tumor cells does not impact their interaction with macrophages. HCT116 cells are heterozygous for β-catenin (HCT116(WT/MT)), harboring one wild type (WT) and one mutant (MT) allele, but isogenic lines that carry only the WT (HCT116(WT)) or MT β-catenin allele (HCT116(MT)) have been generated. We showed that macrophages promoted Wnt signaling in cells that carry the MT β-catenin allele, but not in HCT116(WT) cells. Consistent with this observation, macrophages and IL1β failed to stabilize Snail in HCT116(WT) cells, and to protect these cells from TRAIL-induced apoptosis. Finally, we demonstrated that HCT116 cells expressing dominant negative TCF4 (dnTCF4) or HCT116 cells with silenced Snail failed to stimulate IL1β production in macrophages, demonstrating that tumor cells activate macrophages via a Wnt-dependent factor. SIGNIFICANCE Our data demonstrate that oncogenic β-catenin mutations in tumor cells, and subsequent activation of Wnt signaling, not only trigger cell-intrinsic alterations, but also have a significant impact on the crosstalk of tumor cells with the tumor associated macrophages.
Collapse
Affiliation(s)
- Pawan Kaler
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, United States of America
| | - Leonard Augenlicht
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, United States of America
| | - Lidija Klampfer
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, United States of America
| |
Collapse
|
49
|
Li D, Duell EJ, Yu K, Risch HA, Olson SH, Kooperberg C, Wolpin BM, Jiao L, Dong X, Wheeler B, Arslan AA, Bueno-de-Mesquita HB, Fuchs CS, Gallinger S, Gross M, Hartge P, Hoover RN, Holly EA, Jacobs EJ, Klein AP, LaCroix A, Mandelson MT, Petersen G, Zheng W, Agalliu I, Albanes D, Boutron-Ruault MC, Bracci PM, Buring JE, Canzian F, Chang K, Chanock SJ, Cotterchio M, Gaziano J, Giovannucci EL, Goggins M, Hallmans G, Hankinson SE, Hoffman Bolton JA, Hunter DJ, Hutchinson A, Jacobs KB, Jenab M, Khaw KT, Kraft P, Krogh V, Kurtz RC, McWilliams RR, Mendelsohn JB, Patel AV, Rabe KG, Riboli E, Shu XO, Tjønneland A, Tobias GS, Trichopoulos D, Virtamo J, Visvanathan K, Watters J, Yu H, Zeleniuch-Jacquotte A, Amundadottir L, Stolzenberg-Solomon RZ. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis 2012; 33:1384-90. [PMID: 22523087 PMCID: PMC3405651 DOI: 10.1093/carcin/bgs151] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/02/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022] Open
Abstract
Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case-control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10(-6), 1.6 × 10(-5), 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10(-5)), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H.pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer.
Collapse
Affiliation(s)
| | - Eric J. Duell
- Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Bill Wheeler
- Information Management Services, Silver Spring, MD, USA
| | - Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- New York University Cancer Institute, New York, NY, USA
| | - H. Bas Bueno-de-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charles S. Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Myron Gross
- Department of Laboratory Medicine/Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Alison P. Klein
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, The Bloomberg School of Public Health, The Sol Goldman Pancreatic Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrea LaCroix
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret T. Mandelson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Group Health Center for Health Studies, Seattle, WA, USA
| | - Gloria Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Julie E. Buring
- Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, MA, USA
- Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Federico Canzian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kenneth Chang
- Comprehensive Digestive Disease Center, University of California, Irvine Medical Center, Orange, CA, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
| | - Michelle Cotterchio
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - J.Michael Gaziano
- Physicians’ Health Study, Divisions of Aging, Cardiovascular Medicine, and Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, and Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Edward L. Giovannucci
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Michael Goggins
- Departments of Oncology, Pathology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Susan E. Hankinson
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Judith A. Hoffman Bolton
- Department of Epidemiology, The Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - David J. Hunter
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
| | - Kevin B. Jacobs
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Bioinformed Consulting Services, Gaithersburg, MD, USA
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Clinical Gerontology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Vittorio Krogh
- Nutritional Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Julie B. Mendelsohn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Alpa V. Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Kari G. Rabe
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Elio Riboli
- Division of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Anne Tjønneland
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Geoffrey S. Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Kala Visvanathan
- Departments of Oncology, Pathology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joanne Watters
- Division of Cancer Prevention and Population Control, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Herbert Yu
- Yale University School of Public Health, New Haven, CT, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- New York University Cancer Institute, New York, NY, USA
| | - Laufey Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Rachael Z. Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
50
|
Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia 2012; 28:9-18. [PMID: 22235780 DOI: 10.3109/02656736.2011.616182] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Clinical trials combining hyperthermia with radiation and/or chemotherapy for cancer treatment have resulted in improved overall survival and control of local recurrences. The contribution of thermally enhanced anti-immune function in these effects is of considerable interest, but not understood; studies on the fundamental effects of elevated temperature on immune effector cells are needed. The goal of this study is to investigate the potential of mild hyperthermia to impact tumour antigen-specific (Ag) effector CD8+ T cell functions. METHOD Pmel-1 Ag-specific CD8+ T cells were exposed to mild hyperthermia and tested for changes in IFN-γ production and cytotoxicity. Additionally, overall plasma membrane organisation and the phosphorylation of signalling proteins were also investigated following heat treatment. RESULTS Exposing effector Pmel-1-specific CD8+ T cells to mild hyperthermia (39.5°C) resulted in significantly enhanced Ag-specific IFN-γ production and tumour target cell killing compared to that seen using lower temperatures (33° and 37°C). Further, inhibition of protein synthesis during hyperthermia did not reduce subsequent Ag-induced IFN-γ production by CD8+ T cells. Correlated with these effects, we observed a distinct clustering of GM1(+) lipid microdomains at the plasma membrane and enhanced phosphorylation of LAT and PKCθ which may be related to an observed enhancement of Ag-specific effector CD8+ T cell IFN-γ gene transcription following mild hyperthermia. However, mitogen-mediated production of IFN-γ, which bypasses T cell receptor activation with antigen, was not enhanced. CONCLUSIONS Antigen-dependent effector T cell activity is enhanced following mild hyperthermia. These effects could potentially occur in patients being treated with thermal therapies. These data also provide support for the use of thermal therapy as an adjuvant for immunotherapies to improve CD8+ effector cell function.
Collapse
Affiliation(s)
- Thomas A Mace
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | |
Collapse
|