1
|
Gougelet A. Rethinking the roles of oncogenes: How does oncoprotein loss worsen liver carcinogenesis? Hepatology 2024:01515467-990000000-01002. [PMID: 39178360 DOI: 10.1097/hep.0000000000001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024]
Affiliation(s)
- Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée Ligue Nationale contre le Cancer, Paris, France
| |
Collapse
|
2
|
Wang X, Liu Y, Zhang S, Zhang J, Lin X, Liang Y, Zong M, Hanley KL, Lee J, Karin M, Feng GS. Genomic and transcriptomic analyses of chemical hepatocarcinogenesis aggravated by oncoprotein loss. Hepatology 2024:01515467-990000000-00984. [PMID: 39397357 DOI: 10.1097/hep.0000000000001037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS The chemical carcinogen diethylnitrosamine (DEN) is often used to induce HCC in mice. Curiously, several labs have reported that the removal of oncoproteins from hepatocytes exacerbated DEN-induced HCC, with mechanisms unknown. This study aimed at deciphering molecular mechanisms underlying the tumor suppressive effect of oncoproteins. APPROACH AND RESULTS We generated mutant mouse lines with hepatocyte-specific deletions of Met, Ptpn11/Shp2, Ikkβ, or Ctnnb1/β-catenin and assessed DEN-induced tumorigenesis in the wild-type and mutant mice. To systematically examine genetic and molecular signaling alterations, we performed whole exome and RNA-sequencing on liver samples collected at the pre-cancer and established cancer stages. Although the mutational profiles of DEN-induced tumors were barely different in wild-type and mutant mice, oncoprotein ablation increased DEN-induced mutational burdens, especially in Shp2-deficient tumors. RNA-sequencing revealed multiple changes in signaling pathways, in particular, upregulated epithelial-mesenchymal transition, cell migration, and tumor metastasis, as well as downregulated small molecule metabolism that was affected by oncoprotein ablation. We identified key molecules and pathways that are associated with hepatic innate immunity and implicated in liver tumorigenesis. In addition, we unveiled markedly changed expression of a few miRNAs in the human HCC database. CONCLUSIONS The aggravation of DEN-induced HCC progression seen on oncoprotein ablation could be caused by common and distinct genomic and signaling alterations. This study reveals a new level of complexity in hepatocarcinogenesis and elucidates molecular mechanisms underlying tumor evolution and recurrence.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yingluo Liu
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Shuo Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jiemeng Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Xiaoxue Lin
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yan Liang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Min Zong
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Kaisa L Hanley
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jin Lee
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California at San Diego, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Zhou J, Zhang M, Gao A, Herman JG, Guo M. Epigenetic silencing of KCTD8 promotes hepatocellular carcinoma growth by activating PI3K/AKT signaling. Epigenomics 2024; 16:929-944. [PMID: 39023358 PMCID: PMC11370965 DOI: 10.1080/17501911.2024.2370590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: The aim of current study is to explore the epigenetic changes and function of KCTD8 in human hepatocellular carcinoma (HCC). Materials & methods: HCC cell lines and tissue samples were employed. Methylation specific PCR, flow cytometry, immunoprecipitation and xenograft mouse models were used.Results: KCTD8 was methylated in 44.83% (104/232) of HCC and its methylation may act as an independent poor prognostic marker. KCTD8 expression was regulated by DNA methylation. KCTD8 suppressed HCC cell growth both in vitro and in vivo via inhibiting PI3K/AKT pathway.Conclusion: Methylation of KCTD8 is an independent poor prognostic marker, and epigenetic silencing of KCTD8 increases the malignant tendency in HCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA15213, USA
| | - Mingzhou Guo
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
4
|
Liu F, Gao A, Zhang M, Li Y, Zhang F, Herman JG, Guo M. Methylation of FAM110C is a synthetic lethal marker for ATR/CHK1 inhibitors in pancreatic cancer. J Transl Int Med 2024; 12:274-287. [PMID: 39081276 PMCID: PMC11284899 DOI: 10.2478/jtim-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Background and objectives Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. An epigenetic-based synthetic lethal strategy provides a novel opportunity for PDAC treatment. Finding more DNA damage repair (DDR)-related or cell fate-related molecules with aberrant epigenetic changes is becoming very important. Family with sequence similarity 110C (FAM110C) is a cell fate-related gene and its function in cancer remains unclear. Methods Seven cell lines, 34 cases of intraductal papillary mucinous neoplasm (IPMN), 15 cases of mucinous cystic neoplasm (MCN) and 284 cases of PDAC samples were employed. Methylation-specific PCR, western blot, CRISPR knockout, immunoprecipitation and a xenograft mouse model were used in this study. Results FAM110C is methylated in 41.18% (14/34) of IPMN, 46.67% (7/15) of MCN and 72.89% (207/284) of PDAC, with a progression trend from IPMN/MCN to pancreatic cancer (P = 0.0001, P = 0.0389). FAM110C methylation is significantly associated with poor overall survival (OS) (P = 0.0065) and is an independent prognostic marker for poor OS (P = 0.0159). FAM110C inhibits PDAC cells growth both in vitro and in vivo, serving as a novel tumor suppressor. FAM110C activates ATM and NHEJ signaling pathways by interacting with HMGB1. Loss of FAM110C expression sensitizes PDAC cells to VE-822 (an ATR inhibitor) and MK-8776 (a CHK1 inhibitor). Conclusion FAM110C methylation is a potential diagnostic and prognostic marker in PDAC, and its epigenetic silencing sensitizes PDAC cells to ATR/CHK1 inhibitors.
Collapse
Affiliation(s)
- Fengna Liu
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
| | - Aiai Gao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
| | - Yazhuo Li
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing100048, China
| | - Fan Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
- The Third Clinical College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - James G. Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
| |
Collapse
|
5
|
Wei T, Li J, Zhang J, Zhang Q, Liu X, Chen Q, Wen L, Ma K, Chen W, Zhao J, Zhang C, Huang J, Xie Y, Qin H, Qian D, Liang T. Loss of Mettl3 enhances liver tumorigenesis by inducing hepatocyte dedifferentiation and hyperproliferation. Cell Rep 2023; 42:112704. [PMID: 37379215 DOI: 10.1016/j.celrep.2023.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
While a few works have shown that Mettl3 plays oncogenic roles in hepatocellular carcinoma (HCC), its function in early HCC tumorigenesis remains unclear. In Mettl3flox/flox; Alb-Cre knockout mice, Mettl3 loss leads to aberrant hepatocyte homeostasis and liver damage. Importantly, Mettl3 deletion dramatically accelerates liver tumorigenesis in various HCC mouse models. Depletion of Mettl3 in adult Mettl3flox/flox mice through TBG-Cre administration also enhances liver tumor development, while overexpression of Mettl3 inhibits hepatocarcinogenesis. Mechanistically, aggravated tumorigenesis upon Mettl3 deletion is a consequence of hepatocyte dedifferentiation and hyperproliferation via m6A-mediated modulation on Hnf4α and cell cycle genes. In contrast, by using Mettl3flox/flox; Ubc-Cre mice, depletion of Mettl3 in established HCC ameliorates tumor progression. Additionally, Mettl3 is overexpressed in HCC tumors compared with adjacent non-tumor tissues. The present findings define a tumor-suppressive role of Mettl3 in liver tumorigenesis, indicating its potentially opposite stage-dependent functions in HCC initiation versus progression.
Collapse
Affiliation(s)
- Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Cheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Yali Xie
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Hao Qin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Danfeng Qian
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
6
|
Du L, Ji Y, Xin B, Zhang J, Lu LC, Glass CK, Feng GS. Shp2 Deficiency in Kupffer Cells and Hepatocytes Aggravates Hepatocarcinogenesis by Recruiting Non-Kupffer Macrophages. Cell Mol Gastroenterol Hepatol 2023; 15:1351-1369. [PMID: 36828281 PMCID: PMC10140795 DOI: 10.1016/j.jcmgh.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND & AIMS Complex communications between hepatocytes and Kupffer cells (KCs) are known to drive or suppress hepatocarcinogenesis, with controversial data in the literature. In previous experiments that aimed to decipher hepatocyte/KC interactions, we unexpectedly unveiled a tumor-suppressing effect of polyinosinic-polycytidylic acid, a widely used inducer of MX dynamin like GTPase 1 (Mx1)-cre expression, which questioned a theory of interleukin 1a/6 cytokine circuit in hepatocyte/KC communication. The goal of this study was to clarify the controversy and decipher unique functions of KCs and non-KC macrophages in liver tumorigenesis. METHODS We used the C-type lectin domain family 4 member F (Clec4f)-cre system to delete Src-homology 2 domain-containing tyrosine phosphatase 2 (Shp2)/protein tyrosine phosphatase nonreceptor 11 (Ptpn11) in KCs, and a combination of Clec4f-cre and adeno-associated virus-cre to delete Shp2 in KCs and hepatocytes to investigate the effects on hepatocellular carcinoma development and immune cell compositions/activities. RESULTS Ablating Shp2 in KCs generated a tumor-promoting niche, which was exacerbated further by concurrent removal of Shp2 in both KCs and hepatocytes. Shp2 deficiency induced KC apoptosis and decreased its numbers, which induced compensatory recruitment of bone marrow-derived monocytes into liver. These newly recruited monocytes differentiated into non-KC macrophages with tumor-associated macrophage function, leading to aggravated tumor progression through down-regulation of CD8 T cells. Tumor-associated macrophage blockade by anti-chemokine (C-C motif) ligand 2 (CCL2) antibody inhibited hepatocellular carcinoma progression, while depletion of all macrophages had a tumor-promoting effect by increasing myeloid-derived suppressor cells (M-MDSCs) and decreasing CD8 T cells. CONCLUSIONS Shp2 loss in KCs or hepatocytes generated a protumorigenic microenvironment, which was exacerbated by its removal in both cell types. These results show the complexity of intercellular signaling events in liver tumorigenesis and raises caution on the use of specific Shp2 inhibitor in liver cancer therapy. Transcript profiling: RNA sequencing data are available at Gene Expression Omnibus (GSE222594).
Collapse
Affiliation(s)
- Li Du
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichun Ji
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Bing Xin
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Jiemeng Zhang
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Li-Chun Lu
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California; Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Gen-Sheng Feng
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
7
|
Chen J, Liu J, Chen Z, Feng D, Zhu C, Fan J, Zhang S, Zhang X, Xu J. Nonmuscle myosin IIA promotes the internalization of influenza A virus and regulates viral polymerase activity through interacting with nucleoprotein in human pulmonary cells. Virol Sin 2023; 38:128-141. [PMID: 36509386 PMCID: PMC10006312 DOI: 10.1016/j.virs.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), responsible for seasonal epidemics and recurring pandemics, represents a global threat to public health. Given the risk of a potential IAV pandemic, it is increasingly important to better understand virus-host interactions and develop new anti-viral strategies. Here, we reported nonmuscle myosin IIA (MYH9)-mediated regulation of IAV infection. MYH9 depletion caused a profound inhibition of IAV infection by reducing viral attachment and internalization in human lung epithelial cells. Surprisingly, overexpression of MYH9 also led to a significant reduction in viral productive infection. Interestingly, overexpression of MYH9 retained viral attachment, internalization, or uncoating, but suppressed the viral ribonucleoprotein (vRNP) activity in a minigenome system. Further analyses found that excess MYH9 might interrupt the formation of vRNP by interacting with the viral nucleoprotein (NP) and result in the reduction of the completed vRNP in the nucleus, thereby inhibiting subsequent viral RNA transcription and replication. Together, we discovered that MYH9 can interact with IAV NP protein and engage in the regulation of vRNP complexes, thereby involving viral replication. These findings enlighten new mechanistic insights into the complicated interface of host-IAV interactions, ultimately making it an attractive target for the generation of antiviral drugs.
Collapse
Affiliation(s)
- Jian Chen
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Center for Infectious Disease Research, Science of Life Sciences, Westlake University, Hangzhou, 310024, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jian Liu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Zhilu Chen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Daobin Feng
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jun Fan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Shuye Zhang
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| | - Xiaoyan Zhang
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| | - Jianqing Xu
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China. ORCID%
| |
Collapse
|
8
|
Yang W, Guo C, Herman JG, Zhu C, Lv H, Su X, Zhang L, Zhang M, Guo M. Epigenetic silencing of JAM3 promotes esophageal cancer development by activating Wnt signaling. Clin Epigenetics 2022; 14:164. [PMID: 36461092 PMCID: PMC9719220 DOI: 10.1186/s13148-022-01388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The role of JAM3 in different tumors is controversial. The epigenetic regulation and the mechanism of JAM3 remain to be elucidated in human esophageal cancer (EC). METHODS Eleven EC cell lines, 49 cases of esophageal intraepithelial neoplasia (EIN) and 760 cases of primary EC samples were employed. Methylation-specific polymerase chain reaction, immunohistochemistry, MTT, western blot and xenograft mouse models were applied in this study. RESULTS The inverse association between RNA expression and promoter region methylation of JAM3 was found by analyzing 185 cases of EC samples extracted from the TCGA database (p < 0.05). JAM3 was highly expressed in KYSE450, KYSE520, TE1 and YES2 cells, low level expressed in KYSE70 cells and unexpressed in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells. JAM3 was unmethylated in KYSE450, KYSE520, TE1 and YES2 cells, partial methylated in KYSE70 cells and completely methylated in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells. The expression of JAM3 is correlated with methylation status. The levels of JAM3 were unchanged in KYSE450, KYSE520, TE1 and YES2 cells, increased in KYSE70 cells and restored expression in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells after 5-aza-2'-deoxycytidine treatment, suggesting that the expression of JAM3 is regulated by promoter region methylation. JAM3 was methylated in 26.5% (13/49) of EIN and 51.1% (388/760) of primary EC, and methylation of JAM3 was associated significantly with tumor differentiation and family history (all p < 0.05). Methylation of JAM3 is an independent prognostic factor of poor 5-year overall survival (p < 0.05). JAM3 suppresses cell proliferation, colony formation, migration and invasion and induces G1/S arrest and apoptosis in EC. Further study demonstrated that JAM3 suppressed EC cells and xenograft tumor growth by inhibiting Wnt/β-catenin signaling. CONCLUSION JAM3 is frequently methylated in human EC, and the expression of JAM3 is regulated by promoter region methylation. JAM3 methylation is an early detection and prognostic marker of EC. JAM3 suppresses EC growth both in vitro and in vivo by inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Weili Yang
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chao Guo
- grid.414252.40000 0004 1761 8894Laboratory Animal Center, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G. Herman
- grid.478063.e0000 0004 0456 9819The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 USA
| | - Cheng Zhu
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China ,grid.216938.70000 0000 9878 7032Medical College of NanKai University, Tianjin, 300071 China
| | - Honghui Lv
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Xiaomo Su
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Lirong Zhang
- grid.207374.50000 0001 2189 3846Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China
| | - Meiying Zhang
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China
| |
Collapse
|
9
|
Jiang J, Turpin C, Qiu G(S, Xu M, Lee E, Hinds TD, Peterson ML, Spear BT. Zinc fingers and homeoboxes 2 is required for diethylnitrosamine-induced liver tumor formation in C57BL/6 mice. Hepatol Commun 2022; 6:3550-3562. [PMID: 36194180 PMCID: PMC9701486 DOI: 10.1002/hep4.2106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 01/21/2023] Open
Abstract
Liver cancer, comprised primarily of hepatocellular carcinoma (HCC), is the third leading cause of cancer deaths worldwide and increasing in Western countries. We previously identified the transcription factor zinc fingers and homeoboxes 2 (Zhx2) as a regulator of hepatic gene expression, and many Zhx2 target genes are dysregulated in HCC. Here, we investigate HCC in Zhx2-deficient mice using the diethylnitrosamine (DEN)-induced liver tumor model. Our study using whole-body Zhx2 knockout (Zhx2KO ) mice revealed the complete absence of liver tumors 9 and 10 months after DEN exposure. Analysis soon after DEN treatment showed no differences in expression of the DEN bioactivating enzyme cytochrome P450 2E1 (CYP2E1) and DNA polymerase delta 2, or in the numbers of phosphorylated histone variant H2AX foci between Zhx2KO and wild-type (Zhx2wt ) mice. The absence of Zhx2, therefore, did not alter DEN bioactivation or DNA damage. Zhx2KO livers showed fewer positive foci for Ki67 staining and reduced interleukin-6 and AKT serine/threonine kinase 2 expression compared with Zhx2wt livers, suggesting that Zhx2 loss reduces liver cell proliferation and may account for reduced tumor formation. Tumors were reduced but not absent in DEN-treated liver-specific Zhx2 knockout mice, suggesting that Zhx2 acts in both hepatocytes and nonparenchymal cells to inhibit tumor formation. Analysis of data from the Cancer Genome Atlas and Clinical Proteomic Tumor Consortium indicated that ZHX2 messenger RNA and protein levels were significantly higher in patients with HCC and associated with clinical pathological parameters. Conclusion: In contrast to previous studies in human hepatoma cell lines and other HCC mouse models showing that Zhx2 acts as a tumor suppressor, our data indicate that Zhx2 acts as an oncogene in the DEN-induced HCC model and is consistent with the higher ZHX2 expression in patients with HCC.
Collapse
Affiliation(s)
- Jieyun Jiang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Courtney Turpin
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Guofang (Shirley) Qiu
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Mei Xu
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Eun Lee
- Department of Pathology and Laboratory MedicineUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Barnstable Brown Diabetes CenterUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Martha L. Peterson
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Brett T. Spear
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
10
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
11
|
Wei M, Yan X, Xin X, Chen H, Hou L, Zhang J. Hepatocyte-Specific Smad4 Deficiency Alleviates Liver Fibrosis via the p38/p65 Pathway. Int J Mol Sci 2022; 23:ijms231911696. [PMID: 36232998 PMCID: PMC9570188 DOI: 10.3390/ijms231911696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Liver fibrosis is a wound-healing response caused by the abnormal accumulation of extracellular matrix, which is produced by activated hepatic stellate cells (HSCs). Most studies have focused on the activated HSCs themselves in liver fibrosis, and whether hepatocytes can modulate the process of fibrosis is still unclear. Sma mothers against decapentaplegic homologue 4 (Smad4) is a key intracellular transcription mediator of transforming growth factor-β (TGF-β) during the development and progression of liver fibrosis. However, the role of hepatocyte Smad4 in the development of fibrosis is poorly elucidated. Here, to explore the functional role of hepatocyte Smad4 and the molecular mechanism in liver fibrosis, a CCl4-induced liver fibrosis model was established in mice with hepatocyte-specific Smad4 deletion (Smad4Δhep). We found that hepatocyte-specific Smad4 deficiency reduced liver inflammation and fibrosis, alleviated epithelial-mesenchymal transition, and inhibited hepatocyte proliferation and migration. Molecularly, Smad4 deletion in hepatocytes suppressed the expression of inhibitor of differentiation 1 (ID1) and the secretion of connective tissue growth factor (CTGF) of hepatocytes, which subsequently activated the p38 and p65 signaling pathways of HSCs in an epidermal growth factor receptor-dependent manner. Taken together, our results clearly demonstrate that the Smad4 expression in hepatocytes plays an important role in promoting liver fibrosis and could therefore be a promising target for future anti-fibrotic therapy.
Collapse
Affiliation(s)
- Miaomiao Wei
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Haiqiang Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
12
|
Makino Y, Hikita H, Kato S, Sugiyama M, Shigekawa M, Sakamoto T, Sasaki Y, Murai K, Sakane S, Kodama T, Sakamori R, Kobayashi S, Eguchi H, Takemura N, Kokudo N, Yokoi H, Mukoyama M, Tatsumi T, Takehara T. STAT3 is Activated by CTGF-mediated Tumor-stroma Cross Talk to Promote HCC Progression. Cell Mol Gastroenterol Hepatol 2022; 15:99-119. [PMID: 36210625 PMCID: PMC9672888 DOI: 10.1016/j.jcmgh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Signal transducer and activator of transcription 3 (STAT3) is known as a pro-oncogenic transcription factor. Regarding liver carcinogenesis, however, it remains controversial whether activated STAT3 is pro- or anti-tumorigenic. This study aimed to clarify the significance and mechanism of STAT3 activation in hepatocellular carcinoma (HCC). METHODS Hepatocyte-specific Kras-mutant mice (Alb-Cre KrasLSL-G12D/+; KrasG12D mice) were used as a liver cancer model. Cell lines of hepatoma and stromal cells including stellate cells, macrophages, T cells, and endothelial cells were used for culture. Surgically resected 12 HCCs were used for human analysis. RESULTS Tumors in KrasG12D mice showed up-regulation of phosphorylated STAT3 (p-STAT3), together with interleukin (IL)-6 family cytokines, STAT3 target genes, and connective tissue growth factor (CTGF). Hepatocyte-specific STAT3 knockout (Alb-Cre KrasLSL-G12D/+ STAT3fl/fl) downregulated p-STAT3 and CTGF and suppressed tumor progression. In coculture with stromal cells, proliferation, and expression of p-STAT3 and CTGF, were enhanced in hepatoma cells via gp130/STAT3 signaling. Meanwhile, hepatoma cells produced CTGF to stimulate integrin/nuclear factor kappa B signaling and up-regulate IL-6 family cytokines from stromal cells, which could in turn activate gp130/STAT3 signaling in hepatoma cells. In KrasG12D mice, hepatocyte-specific CTGF knockout (Alb-Cre KrasLSL-G12D/+ CTGFfl/fl) downregulated p-STAT3, CTGF, and IL-6 family cytokines, and suppressed tumor progression. In human HCC, single cell RNA sequence showed CTGF and IL-6 family cytokine expression in tumor cells and stromal cells, respectively. CTGF expression was positively correlated with that of IL-6 family cytokines and STAT3 target genes in The Cancer Genome Atlas. CONCLUSIONS STAT3 is activated by CTGF-mediated tumor-stroma crosstalk to promote HCC progression. STAT3-CTGF positive feedback loop could be a therapeutic target.
Collapse
Affiliation(s)
- Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiya Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Sakamoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuyuki Takemura
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
13
|
Monti N, Verna R, Piombarolo A, Querqui A, Bizzarri M, Fedeli V. Paradoxical Behavior of Oncogenes Undermines the Somatic Mutation Theory. Biomolecules 2022; 12:662. [PMID: 35625590 PMCID: PMC9138429 DOI: 10.3390/biom12050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The currently accepted theory on the influence of DNA mutations on carcinogenesis (the Somatic Mutation Theory, SMT) is facing an increasing number of controversial results that undermine the explanatory power of mutated genes considered as "causative" factors. Intriguing results have demonstrated that several critical genes may act differently, as oncogenes or tumor suppressors, while phenotypic reversion of cancerous cells/tissues can be achieved by modifying the microenvironment, the mutations they are carrying notwithstanding. Furthermore, a high burden of mutations has been identified in many non-cancerous tissues without any apparent pathological consequence. All things considered, a relevant body of unexplained inconsistencies calls for an in depth rewiring of our theoretical models. Ignoring these paradoxes is no longer sustainable. By avoiding these conundrums, the scientific community will deprive itself of the opportunity to achieve real progress in this important biomedical field. To remedy this situation, we need to embrace new theoretical perspectives, taking the cell-microenvironment interplay as the privileged pathogenetic level of observation, and by assuming new explanatory models based on truly different premises. New theoretical frameworks dawned in the last two decades principally focus on the complex interaction between cells and their microenvironment, which is thought to be the critical level from which carcinogenesis arises. Indeed, both molecular and biophysical components of the stroma can dramatically drive cell fate commitment and cell outcome in opposite directions, even in the presence of the same stimulus. Therefore, such a novel approach can help in solving apparently inextricable paradoxes that are increasingly observed in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valeria Fedeli
- Systems Biology Group Lab, Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (N.M.); (R.V.); (A.P.); (A.Q.); (M.B.)
| |
Collapse
|
14
|
Maywald ML, Picciotto C, Lepa C, Bertgen L, Yousaf FS, Ricker A, Klingauf J, Krahn MP, Pavenstädt H, George B. Rap1 Activity Is Essential for Focal Adhesion and Slit Diaphragm Integrity. Front Cell Dev Biol 2022; 10:790365. [PMID: 35372328 PMCID: PMC8972170 DOI: 10.3389/fcell.2022.790365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Glomerular podocytes build, with their intercellular junctions, part of the kidney filter. The podocyte cell adhesion protein, nephrin, is essential for developing and maintaining slit diaphragms as functional loss in humans results in heavy proteinuria. Nephrin expression and function are also altered in many adult-onset glomerulopathies. Nephrin signals from the slit diaphragm to the actin cytoskeleton and integrin β1 at focal adhesions by recruiting Crk family proteins, which can interact with the Rap guanine nucleotide exchange factor 1 C3G. As Rap1 activity affects focal adhesion formation, we hypothesize that nephrin signals via Rap1 to integrin β. To address this issue, we combined Drosophila in vivo and mammalian cell culture experiments. We find that Rap1 is necessary for correct targeting of integrin β to focal adhesions in Drosophila nephrocytes, which also form slit diaphragm-like structures. In the fly, the Rap1 activity is important for signaling of the nephrin ortholog to integrin β, as well as for nephrin-dependent slit diaphragm integrity. We show by genetic interaction experiments that Rap1 functions downstream of nephrin signaling to integrin β and downstream of nephrin signaling necessary for slit diaphragm integrity. Similarly, in human podocyte culture, nephrin activation results in increased activation of Rap1. Thus, Rap1 is necessary for downstream signal transduction of nephrin to integrin β.
Collapse
Affiliation(s)
- Mee-Ling Maywald
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Cara Picciotto
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Carolin Lepa
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Luisa Bertgen
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | | | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael P. Krahn
- Medizinische Klinik D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | | | - Britta George
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
- *Correspondence: Britta George,
| |
Collapse
|
15
|
Hanley KL, Liang Y, Wang G, Lin X, Yang M, Karin M, Fu W, Feng GS. Concurrent Disruption of the Ras/MAPK and NF-κB Pathways Induces Circadian Deregulation and Hepatocarcinogenesis. Mol Cancer Res 2021; 20:337-349. [PMID: 34810213 PMCID: PMC8898265 DOI: 10.1158/1541-7786.mcr-21-0479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/10/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
The Ras/Erk and NF-κB pathways play critical roles in cell proliferation and are known to drive oncogenesis when overactivated. Herein we report a gatekeeper function of the two pathways by working in synergy to suppress liver tumorigenesis. Hepatocyte-specific deletion of both Shp2/Ptpn11 and Ikkβ in mice, which promote Ras/Erk and NF-κB signaling, respectively, exacerbated chemical carcinogenesis and even triggered spontaneous development of hepatocellular carcinoma (HCC). We show that the unanticipated severe tumor phenotype was contributed collectively by severe cholestasis, metabolic changes, upregulated cell-cycle progression, and disruption of circadian rhythm in mutant hepatocytes. Remarkably, human HCCs with dysregulated circadian gene expression displayed downregulation of Ras/Erk and NF-κB signaling and poor prognosis. Together, these data indicate that at the ground state, the two central pathways, previously known as oncogenic, cooperate to sustain tumor-suppressive physiologic homeostasis and to prevent hepatic damage. Disruption of this intricate signaling network is carcinogenic in the liver. IMPLICATIONS: We demonstrate here that basal levels of the Ras/MAPK and NF-κB pathways, while promoting tumorigenesis if overactivated, are required to maintain physiologic homeostasis and regulate circadian rhythm in the liver, which are antitumorigenic.
Collapse
Affiliation(s)
- Kaisa L Hanley
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Yan Liang
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Gaowei Wang
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Xiaoxue Lin
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Meixiang Yang
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Wenxian Fu
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Gen-Sheng Feng
- Division of Biological Sciences, University of California San Diego, La Jolla, California. .,Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Chen WS, Liang Y, Zong M, Liu JJ, Kaneko K, Hanley KL, Zhang K, Feng GS. Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment. Cell Rep 2021; 37:109974. [PMID: 34758313 DOI: 10.1016/j.celrep.2021.109974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/16/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
The mechanisms of Myc-driven liver tumorigenesis are inadequately understood. Herein we show that Myc-driven hepatocellular carcinoma (HCC) is dramatically aggravated in mice with hepatocyte-specific Ptpn11/Shp2 deletion. However, Myc-induced tumors develop selectively from the rare Shp2-positive hepatocytes in Shp2-deficent liver, and Myc-driven oncogenesis depends on an intact Ras-Erk signaling promoted by Shp2 to sustain Myc stability. Despite a stringent requirement of Shp2 cell autonomously, Shp2 deletion induces an immunosuppressive environment, resulting in defective clearance of tumor-initiating cells and aggressive tumor progression. The basal Wnt/β-catenin signaling is upregulated in Shp2-deficient liver, which is further augmented by Myc transfection. Ablating Ctnnb1 suppresses Myc-induced HCC in Shp2-deficient livers, revealing an essential role of β-catenin. Consistently, Myc overexpression and CTNNB1 mutations are frequently co-detected in HCC patients with poor prognosis. These data elucidate complex mechanisms of liver tumorigenesis driven by cell-intrinsic oncogenic signaling in cooperation with a tumor-promoting microenvironment generated by disrupting the specific oncogenic pathway.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Gene Expression Regulation, Neoplastic
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/physiology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Single-Cell Analysis/methods
- Transcriptome
- Tumor Microenvironment
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Wendy S Chen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Yan Liang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Min Zong
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jacey J Liu
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kota Kaneko
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kaisa L Hanley
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gen-Sheng Feng
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clément S, Maeder C, Dolicka D, Fournier M, Vinet L, Montet X, Dufour JF, Humar B, Negro F, Sempoux C, Foti M. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel) 2021; 13:4983. [PMID: 34638467 PMCID: PMC8508272 DOI: 10.3390/cancers13194983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Nicolas Calo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Laurent Vinet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Jean-François Dufour
- Department for Visceral Surgery and Medicine, University Hospital Bern, 3010 Bern, Switzerland;
| | - Bostjan Humar
- Department of Visceral & Transplantation Surgery, University Hospital Zürich, 8006 Zürich, Switzerland;
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Sempoux
- Service of Clinical Pathology, University Institute of Pathology, Vaud University Hospital Center, 1011 Lausanne, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| |
Collapse
|
18
|
Shriki A, Lanton T, Sonnenblick A, Levkovitch-Siany O, Eidelshtein D, Abramovitch R, Rosenberg N, Pappo O, Elgavish S, Nevo Y, Safadi R, Peled A, Rose-John S, Galun E, Axelrod JH. Multiple Roles of IL6 in Hepatic Injury, Steatosis, and Senescence Aggregate to Suppress Tumorigenesis. Cancer Res 2021; 81:4766-4777. [PMID: 34117031 DOI: 10.1158/0008-5472.can-21-0321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) typically develops on a background of chronic hepatitis for which the proinflammatory cytokine IL6 is conventionally considered a crucial driving factor. Paradoxically, IL6 also acts as a hepatoprotective factor in chronic liver injury. Here we used the multidrug-resistant gene 2 knockout (Mdr2-/-) mouse model to elucidate potential roles of IL6 in chronic hepatitis-associated liver cancer. Long-term analysis of three separate IL6/Stat3 signaling-deficient Mdr2-/- strains revealed aggravated liver injury with increased dysplastic nodule formation and significantly accelerated tumorigenesis in all strains. Tumorigenesis in the IL6/Stat3-perturbed models was strongly associated with enhanced macrophage accumulation and hepatosteatosis, phenotypes of nonalcoholic steatohepatitis (NASH), as well as with significant reductions in senescence and the senescence-associated secretory phenotype (SASP) accompanied by increased hepatocyte proliferation. These findings reveal a crucial suppressive role for IL6/Stat3 signaling in chronic hepatitis-associated hepatocarcinogenesis by impeding protumorigenic NASH-associated phenotypes and by reinforcing the antitumorigenic effects of the SASP. SIGNIFICANCE: These findings describe a context-dependent role of IL6 signaling in hepatocarcinogenesis and predict that increased IL6-neutralizing sgp130 levels in some patients with NASH may herald early HCC development.See related commentary by Huynh and Ernst, p. 4671.
Collapse
Affiliation(s)
- Anat Shriki
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Tali Lanton
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orr Levkovitch-Siany
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dana Eidelshtein
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Rinat Abramovitch
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Human Biology Research Center, Hadassah University Medical Center, Jerusalem, Israel
| | - Nofar Rosenberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Sharona Elgavish
- Bioinformatics Unit, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Yuval Nevo
- Bioinformatics Unit, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Rifaat Safadi
- Liver Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | - Jonathan H Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
19
|
Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis 2021; 12:474. [PMID: 33980818 PMCID: PMC8115181 DOI: 10.1038/s41419-021-03749-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Fas/Fas ligand (FasL)-mediated cell apoptosis involves a variety of physiological and pathological processes including chronic hepatic diseases, and hepatocytes apoptosis contributes to the development of liver fibrosis following various causes. However, the mechanism of the Fas/FasL signaling and hepatocytes apoptosis in liver fibrogenesis remains unclear. The Fas/FasL signaling and hepatocytes apoptosis in liver samples from both human sections and mouse models were investigated. NF-κBp65 wild-type mice (p65f/f), hepatocytes specific NF-κBp65 deletion mice (p65Δhepa), p53-upregulated modulator of apoptosis (PUMA) wild-type (PUMA-WT) and PUMA knockout (PUMA-KO) littermate models, and primary hepatic stellate cells (HSCs) were also used. The mechanism underlying Fas/FasL-regulated hepatocytes apoptosis to drive HSCs activation in fibrosis was further analyzed. We found Fas/FasL promoted PUMA-mediated hepatocytes apoptosis via regulating autophagy signaling and NF-κBp65 phosphorylation, while inhibition of autophagy or PUMA deficiency attenuated Fas/FasL-modulated hepatocytes apoptosis and liver fibrosis. Furthermore, NF-κBp65 in hepatocytes repressed PUMA-mediated hepatocytes apoptosis via regulating the Bcl-2 family, while NF-κBp65 deficiency in hepatocytes promoted PUMA-mediated hepatocytes apoptosis and enhanced apoptosis-linked inflammatory response, which contributed to the activation of HSCs and liver fibrogenesis. These results suggest that Fas/FasL contributes to NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to enhance liver fibrogenesis, and this network could be a potential therapeutic target for liver fibrosis.
Collapse
|
20
|
Lee YR, Kim G, Lee HW, Tak WY, Park SY, Jang SY, Kweon YO, Park JG, Han YS, Chun JM, Han JR, Hur K. Long interspersed nuclear element-1 hypomethylation is associated with poor outcomes via the activation of ST18 in human hepatocellular carcinoma. Medicine (Baltimore) 2021; 100:e25552. [PMID: 33879706 PMCID: PMC8078304 DOI: 10.1097/md.0000000000025552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
The level of long interspersed nuclear element-1 (LINE-1) methylation, representing the global deoxyribonucleic acid methylation level, could contribute to the prognosis of cancer via the activation of oncogenes. This study was performed to evaluate the prognostic implications of LINE-1 hypomethylation in patients with hepatocellular carcinoma (HCC) and the possible mechanisms related to oncogene activation.Seventy-seven HCC patients between October 2014 and September 2015 were enrolled in this prospective study. Quantitative pyrosequencing was performed to assess the LINE-1 methylation level of HCC and matched non-HCC tissue samples. The expression of suppression of tumorigenicity 18 was measured by immunohistochemistry and its correlation with LINE-1 methylation levels was examined.LINE-1 was significantly hypomethylated in the HCC tissue compared with the matched nontumor tissue (64.0 ± 11.6% vs 75.6 ± 4.0%, P < .001). LINE-1 hypomethylation was an independent risk factor for overall survival (hazard ratio = 27.291, P = .032) and disease progression (hazard ratio = 5.298, P = .005). The expression of suppression of tumorigenicity 18 was higher in the hypomethylated LINE-1 HCC tissue than the hypermethylated LINE-1 tumor tissue (P = .030).LINE-1 hypomethylation may serve as a potential prognostic marker for patients with HCC.
Collapse
Affiliation(s)
- Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital
| | - Gyeonghwa Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine
| | - Won Young Tak
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital
| | - Se Young Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital
| | - Young Oh Kweon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital
| | - Jung Gil Park
- Department of Internal Medicine, College of Medicine, Yeungnam University
| | - Young Seok Han
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jae Min Chun
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ja Ryung Han
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University
| |
Collapse
|
21
|
Lepa C, Hoppe S, Stöber A, Skryabin BV, Sievers LK, Heitplatz B, Ciarimboli G, Neugebauer U, Lindenmeyer MT, Cohen CD, Drexler HC, Boor P, Weide T, Pavenstädt H, George B. TrkC Is Essential for Nephron Function and Trans-Activates Igf1R Signaling. J Am Soc Nephrol 2021; 32:357-374. [PMID: 33380522 PMCID: PMC8054883 DOI: 10.1681/asn.2020040424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Injury to kidney podocytes often results in chronic glomerular disease and consecutive nephron malfunction. For most glomerular diseases, targeted therapies are lacking. Thus, it is important to identify novel signaling pathways contributing to glomerular disease. Neurotrophic tyrosine kinase receptor 3 (TrkC) is expressed in podocytes and the protein transmits signals to the podocyte actin cytoskeleton. METHODS Nephron-specific TrkC knockout (TrkC-KO) and nephron-specific TrkC-overexpressing (TrkC-OE) mice were generated to dissect the role of TrkC in nephron development and maintenance. RESULTS Both TrkC-KO and TrkC-OE mice exhibited enlarged glomeruli, mesangial proliferation, basement membrane thickening, albuminuria, podocyte loss, and aspects of FSGS during aging. Igf1 receptor (Igf1R)-associated gene expression was dysregulated in TrkC-KO mouse glomeruli. Phosphoproteins associated with insulin, erb-b2 receptor tyrosine kinase (Erbb), and Toll-like receptor signaling were enriched in lysates of podocytes treated with the TrkC ligand neurotrophin-3 (Nt-3). Activation of TrkC by Nt-3 resulted in phosphorylation of the Igf1R on activating tyrosine residues in podocytes. Igf1R phosphorylation was increased in TrkC-OE mouse kidneys while it was decreased in TrkC-KO kidneys. Furthermore, TrkC expression was elevated in glomerular tissue of patients with diabetic kidney disease compared with control glomerular tissue. CONCLUSIONS Our results show that TrkC is essential for maintaining glomerular integrity. Furthermore, TrkC modulates Igf-related signaling in podocytes.
Collapse
Affiliation(s)
- Carolin Lepa
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Sascha Hoppe
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Antje Stöber
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Westfälische-Wilhelms-University, Münster, Germany
| | | | - Barbara Heitplatz
- Gerhard-Domagk Institute for Pathology, University Hospital Münster, Münster, Germany
| | | | - Ute Neugebauer
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Maja T. Lindenmeyer
- III. Medizinische Klinik und Poliklinik, University Hospital Hamburg-Eppendorf, Germany
| | - Clemens D. Cohen
- Klinik für Nieren-, Hochdruck- und Rheumaerkrankungen, München Klinik Harlaching, Germany
| | - Hannes C.A. Drexler
- Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Thomas Weide
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | | | - Britta George
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| |
Collapse
|
22
|
Feng GS, Hanley KL, Liang Y, Lin X. Improving the Efficacy of Liver Cancer Immunotherapy: The Power of Combined Preclinical and Clinical Studies. Hepatology 2021; 73 Suppl 1:104-114. [PMID: 32715491 PMCID: PMC7854886 DOI: 10.1002/hep.31479] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a most deadly malignant disease worldwide, with no effective mechanism-based therapy available. Therefore, following the "miracle" outcomes seen in a few patients at the advanced stages of melanoma or lung cancer, the immune checkpoint inhibitors (ICIs) immediately entered clinical trials for advanced HCC patients without pre-clinical studies. Emerging data of clinical studies showed manageable toxicity and safety but limited therapeutic benefit to HCC patients, suggesting low response rate. Thus, one urgent issue is how to convert the liver tumors from cold to hot and responsive, which may rely on in-depth mechanistic studies in animal models and large scale data analysis in human patients. One ongoing approach is to design combinatorial treatment of different ICIs with other reagents and modalities. Indeed, a phase 3 clinical trial showed that combination of atezolizumab and bevacizumab achieved better overall and progression-free survival rates than sorafenib in unresectable HCC. This review highlights the value of animal models and the power of combining pre-clinical and clinical studies in efforts to improve HCC immunotherapy.
Collapse
Affiliation(s)
- Gen-Sheng Feng
- Correspondence to: Gen-Sheng Feng, Ph.D., Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093-0864,
| | | | | | | |
Collapse
|
23
|
Zhou C, Shi Q, Liu J, Huang S, Yang C, Xiong B. Effect of Inhibiting Tumor Angiogenesis After Embolization in the Treatment of HCC with Apatinib-Loaded p( N-Isopropyl-Acrylamide- co-Butyl Methyl Acrylate) Temperature-Sensitive Nanogel. J Hepatocell Carcinoma 2020; 7:447-456. [PMID: 33409168 PMCID: PMC7780989 DOI: 10.2147/jhc.s282209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Background Transcatheter arterial embolization (TAE) is widely used in hepatocellular carcinoma (HCC) therapy. Tumor hypoxia often correlates with the recurrence and metastasis of the tumor and is the critical factor limiting the treatment effect of TAE. Purpose To investigate the underlying mechanism and therapeutic potential of TAE combined with apatinib-loaded p(N-isopropyl-acrylamide-co-butyl methyl acrylate) temperature-sensitive (PIB) nanogel for the suppression of rabbit VX2 liver tumor growth. Materials and Methods Sixty-five VX2 tumor-burdened rabbits were randomly divided into five groups and treated transarterially with apatinib-loaded PIB (Group PA, 0.4 mL, n=13), PIB alone (Group P, 0.4 mL, n=13), iodized oil alone (Group I, 0.4 mL, n=13), apatinib solution (Group A, 0.4 mL, n=13) or saline (Group NS, 0.4 mL, n=13). The dose of apatinib was 2 mg/kg. Tumors were harvested, sectioned and immunohistochemically stained, and the tumor growth rates and survival times in each group were measured. Blood samples and liver tissues were collected for pharmacokinetic analysis. Results The tumor growth rate in Group PA was considerably lower than the other four groups (P=0.000<0.01), and the survival time was significantly prolonged (P=0.000<0.01). The immunohistochemistry results showed that CD31 expression was significantly lower in Group PA than that of the other four groups (P=0.000<0.01). The apatinib concentration in the blood fell below 10 ng/mL within 10 min after TAE and dropped below 1 ng/mL after 8 h. The drug was released continuously in the liver for 36 days, with the highest concentration at the tumor junction (P=0.045<0.05). Conclusion PIB effectively targeted apatinib to HCC tissues, achieved a slow and sustained release of the drug in the tumor and considerably reduced the systemic drug concentration. Further experiments showed significantly prolonged survival times and an inhibitory effect on tumor growth.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Qin Shi
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Songjiang Huang
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Chongtu Yang
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Bin Xiong
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| |
Collapse
|
24
|
The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals (Basel) 2020; 13:ph13120432. [PMID: 33260729 PMCID: PMC7760785 DOI: 10.3390/ph13120432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal-dependent pathway for degrading cytoplasmic proteins, macromolecules, and organelles. Autophagy-related genes (Atgs) are the core molecular machinery in the control of autophagy, and several major functional groups of Atgs coordinate the entire autophagic process. Autophagy plays a dual role in liver cancer development via several critical signaling pathways, including the PI3K-AKT-mTOR, AMPK-mTOR, EGF, MAPK, Wnt/β-catenin, p53, and NF-κB pathways. Here, we review the signaling pathways involved in the cross-talk between autophagy and hepatocellular carcinoma (HCC) and analyze the status of the development of novel HCC therapy by targeting the core molecular machinery of autophagy as well as the key signaling pathways. The induction or the inhibition of autophagy by the modulation of signaling pathways can confer therapeutic benefits to patients. Understanding the molecular mechanisms underlying the cross-link of autophagy and HCC may extend to translational studies that may ultimately lead to novel therapy and regimen formation in HCC treatment.
Collapse
|
25
|
The HMGB1-RAGE axis modulates the growth of autophagy-deficient hepatic tumors. Cell Death Dis 2020; 11:333. [PMID: 32382012 PMCID: PMC7206028 DOI: 10.1038/s41419-020-2536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular lysosomal degradative pathway important for tumor surveillance. Autophagy deficiency can lead to tumorigenesis. Autophagy is also known to be important for the aggressive growth of tumors, yet the mechanism that sustains the growth of autophagy-deficient tumors is not unclear. We previously reported that progression of hepatic tumors developed in autophagy-deficient livers required high mobility group box 1 (HMGB1), which was released from autophagy-deficient hepatocytes. In this study we examined the pathological features of the hepatic tumors and the mechanism of HMGB1-mediated tumorigenesis. We found that in liver-specific autophagy-deficient (Atg7ΔHep) mice the tumors cells were still deficient in autophagy and could also release HMGB1. Histological analysis using cell-specific markers suggested that fibroblast and ductular cells were present only outside the tumor whereas macrophages were present both inside and outside the tumor. Genetic deletion of Hmgb1 or one of its receptors, receptor for advanced glycated end product (Rage), retarded liver tumor development. HMGB1 and RAGE enhanced the proliferation capability of the autophagy-deficient hepatocytes and tumors. However, RAGE expression was only found on ductual cells and Kupffer’s cells but not on hepatoctyes, suggesting that HMGB1 might promote hepatic tumor growth through a paracrine mode, which altered the tumor microenvironment. Finally, RNAseq analysis of the tumors indicated that HMGB1 induced a much broad changes in tumors. In particular, genes related to mitochondrial structures or functions were enriched among those differentially expressed in tumors in the presence or absence of HMGB1, revealing a potentially important role of mitochondria in sustaining the growth of autophagy-deficient liver tumors via HMGB1 stimulation.
Collapse
|
26
|
Combining transcatheter arterial embolization with iodized oil containing Apatinib inhibits HCC growth and metastasis. Sci Rep 2020; 10:2964. [PMID: 32076049 PMCID: PMC7031235 DOI: 10.1038/s41598-020-59746-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 01/21/2023] Open
Abstract
Transcatheter arterial embolization (TAE) plays an important role in clinical liver tumor therapy. However, hypoxia after TAE limit the medium-long term efficacy of TAE. Thus, in our study, we explored the treatment effect and mechanism of combining transcatheter arterial embolization with adopted iodized oil containing Apatinib on suppressing tumor growth and metastasis. We simulated the changing of tumor microenvironment before and after TAE both in vitro and in vivo models. The anti-angiogenic effect of Apatinib was explored by bioassays in human umbilical vein endothelial cells (HUVECs), including cell migration, invasion and apoptosis, tube formation, and wound healing. Further experiments showed that Apatinib inhibited tumor microangiogenesis to achieve the aims of inhibiting tumor growth and recurrence by means of down-regulating the phosphorylation of the RAF-mek-erk, PI3K-akt and P38MAPK pathways. The antitumor growth and anti-angiogenic effect of Apatinib was further validated by the animal experiment. Taken together, we concluded that Apatinib inhibits the angiogenesis and growth of liver cancer by down-regulating the PI3K-akt, RAF-mek-erk and P38MAPK pathways, and has a stronger inhibitory effect in hypoxic environments. Combining TAE with adopted iodized oil containing Apatinib has a stronger inhibitory effect in VX2 liver tumor growth and metastasis, which suggesting such combinations may provide a new target and strategy for interventional therapy of liver cancer.
Collapse
|
27
|
Buechler C, Aslanidis C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158658. [PMID: 32058031 DOI: 10.1016/j.bbalip.2020.158658] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and widespread cancer. Patients with liver cirrhosis of different aetiologies are at a risk to develop HCC. It is important to know that in approximately 20% of cases primary liver tumors arise in a non-cirrhotic liver. Lipid metabolism is variable in patients with chronic liver diseases, and lipid metabolites involved therein do play a role in the development of HCC. Of note, lipid composition of carcinogenic tissues differs from non-affected liver tissues. High cholesterol and low ceramide levels in the tumors protect the cells from oxidative stress and apoptosis, and do also promote cell proliferation. So far, detailed characterization of the mechanisms by which lipids enable the development of HCC has received little attention. Evaluation of the complex roles of lipids in HCC is needed to better understand the pathophysiology of HCC, the later being of paramount importance for the development of urgently needed therapeutic interventions. Disturbed hepatic lipid homeostasis has systemic consequences and lipid species may emerge as promising biomarkers for early diagnosis of HCC. The challenge is to distinguish lipids specifically related to HCC from changes simply related to the underlying liver disease. This review article discusses aberrant lipid metabolism in patients with HCC.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
28
|
Wang D, Chen F, Zeng T, Tang Q, Chen B, Chen L, Dong Y, Li X. Comprehensive biological function analysis of lncRNAs in hepatocellular carcinoma. Genes Dis 2020; 8:157-167. [PMID: 33997162 PMCID: PMC8099694 DOI: 10.1016/j.gendis.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Thousands of long non-coding RNAs (lncRNAs) have been discovered in human genomes by gene chip, next-generation sequencing, and/or other methods in recent years, which represent a significant subset of the universal genes involved in a wide range of biological functions. An abnormal expression of lncRNAs is associated with the growth, invasion, and metastasis of various types of human cancers, including hepatocellular carcinoma (HCC), which is an aggressive, highly malignant, and invasive tumor, and a poor prognosis in China. With a more in-depth understanding of lncRNA research for HCC and the emergence of new molecular-targeted therapies, the diagnosis, treatment, and prognosis of HCC will be considerably improved. Therefore, this review is expected to provide recommendations and directions for future lncRNA research for HCC.
Collapse
Affiliation(s)
- Dan Wang
- Department of Clinical Laboratory, People's Hospital of Rongchang District, Chongqing, Rongchang 402460, PR China.,Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fengjiao Chen
- Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tao Zeng
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Province, Chengdu, 611731, PR China
| | - Qingxia Tang
- Department of Clinical Laboratory, People's Hospital of Rongchang District, Chongqing, Rongchang 402460, PR China
| | - Bing Chen
- Department of Clinical Laboratory, People's Hospital of Rongchang District, Chongqing, Rongchang 402460, PR China
| | - Ling Chen
- Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Dong
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
29
|
Nibau C, Dadarou D, Kargios N, Mallioura A, Fernandez-Fuentes N, Cavallari N, Doonan JH. A Functional Kinase Is Necessary for Cyclin-Dependent Kinase G1 (CDKG1) to Maintain Fertility at High Ambient Temperature in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:586870. [PMID: 33240303 PMCID: PMC7683410 DOI: 10.3389/fpls.2020.586870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/15/2020] [Indexed: 05/15/2023]
Abstract
Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: Candida Nibau,
| | - Despoina Dadarou
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nestoras Kargios
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Areti Mallioura
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Nicola Cavallari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - John H. Doonan
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- John H. Doonan,
| |
Collapse
|
30
|
A tumorigenic index for quantitative analysis of liver cancer initiation and progression. Proc Natl Acad Sci U S A 2019; 116:26873-26880. [PMID: 31843886 DOI: 10.1073/pnas.1911193116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary liver cancer develops from multifactorial etiologies, resulting in extensive genomic heterogeneity. To probe the common mechanism of hepatocarcinogenesis, we interrogated temporal gene expression profiles in a group of mouse models with hepatic steatosis, fibrosis, inflammation, and, consequently, tumorigenesis. Instead of anticipated progressive changes, we observed a sudden molecular switch at a critical precancer stage, by developing analytical platform that focuses on transcription factor (TF) clusters. Coarse-grained network modeling demonstrated that an abrupt transcriptomic transition occurred once changes were accumulated to reach a threshold. Based on the experimental and bioinformatic data analyses as well as mathematical modeling, we derived a tumorigenic index (TI) to quantify tumorigenic signal strengths. The TI is powerful in predicting the disease status of patients with metabolic disorders and also the tumor stages and prognosis of liver cancer patients with diverse backgrounds. This work establishes a quantitative tool for triage of liver cancer patients and also for cancer risk assessment of chronic liver disease patients.
Collapse
|
31
|
Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res 2019; 152:104595. [PMID: 31838080 DOI: 10.1016/j.phrs.2019.104595] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a major phosphatase involved in several cellular processes. In recent years, SHP2 has been the focus of significant attention in human diseases, particular in cancer. Several studies have shown that SHP2 plays an important role in regulating immune cell functions in tumor microenvironment. A few clinical trials conducted using SHP2 allosteric inhibitors have shown remarkable anti-tumor benefits and good safety profiles. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in T lymphocytes, macrophages and cancer cells. It also summarizes the current development of SHP2 inhibitors as a promising strategy for cancer immunotherapy.
Collapse
|
32
|
Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence. Cell Death Dis 2019; 10:426. [PMID: 31160556 PMCID: PMC6546712 DOI: 10.1038/s41419-019-1666-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
Accumulating evidence has indicated crucial roles for pseudogenes in human cancers. However, the roles played by pseudogenes in the pathogenesis of HCC, particularly HCC early recurrence, still incompletely elucidated. Herein, we identify a novel early recurrence related pseudogene RACGAP1P which was significantly upregulated in HCC and was associated with larger tumour size, advanced clinical stage, abnormal AFP level and shorter survival time. In vitro and in vivo experiments have shown that RACGAP1P is a prerequisite for the development of malignant characteristics of HCC cells, including cell growth and migration. Mechanistic investigations indicated that RACGAP1P elicits its oncogenic activity as a ceRNA to sequestrate miR-15-5p from its endogenous target RACGAP1, thereby leading to the upregulation of RACGAP1 and the activation of RhoA/ERK signalling. These results may provide new insights into the functional crosstalk of the pseudogene/miRNA/parent-gene genetic network during HCC early relapse and may contribute to improving the clinical intervention for this subset of HCC patients.
Collapse
|
33
|
Feng GS. Tumor immunology and immunotherapy: a journey I started from Hangzhou. J Zhejiang Univ Sci B 2019; 20:373-380. [PMID: 31090263 PMCID: PMC6568228 DOI: 10.1631/jzus.b1900204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 11/11/2022]
Abstract
This short article is dedicated to the 90th Anniversary of the School of Life Sciences at Zhejiang University, China. Immunotherapy of cancer is currently a hot topic in the biomedical field, and a re-search focus of my laboratory is on developing new and effective combinatorial immunotherapeutic strategies for liver cancer. Of note, my interest in immunotherapy of cancer stems from the training as an undergraduate student at Hangzhou University, China, almost 40 years ago.
Collapse
|
34
|
Wang S, Ma K, Zhou C, Wang Y, Hu G, Chen L, Li Z, Hu C, Xu Q, Zhu H, Liu M, Xu N. LKB1 and YAP phosphorylation play important roles in Celastrol-induced β-catenin degradation in colorectal cancer. Ther Adv Med Oncol 2019; 11:1758835919843736. [PMID: 31040884 PMCID: PMC6477772 DOI: 10.1177/1758835919843736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
Wnt/β-catenin and Hippo pathways play essential roles in the tumorigenesis and
development of colorectal cancer. We found that Celastrol, isolated from
Tripterygium wilfordii plant, exerted a significant
inhibitory effect on colorectal cancer cell growth in vitro and
in vivo, and further unraveled the molecular mechanisms.
Celastrol induced β-catenin degradation through phosphorylation of
Yes-associated protein (YAP), a major downstream effector of Hippo pathway, and
also Celastrol-induced β-catenin degradation was dependent on liver kinase B1
(LKB1). Celastrol increased the transcriptional activation of LKB1, partially
through the heat shock factor 1 (HSF1). Moreover, LKB1 activated AMP-activated
protein kinase α (AMPKα) and further phosphorylated YAP, which eventually
promoted the degradation of β-catenin. In addition, LKB1 deficiency promoted
colorectal cancer cell growth and attenuated the inhibitory effect of Celastrol
on colorectal cancer growth both in vitro and in
vivo. Taken together, Celastrol inhibited colorectal cancer cell
growth by promoting β-catenin degradation via the
HSF1–LKB1–AMPKα–YAP pathway. These results suggested that Celastrol may
potentially serve as a future drug for colorectal cancer treatment.
Collapse
Affiliation(s)
- Shuren Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cuiqi Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yu Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanghui Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 PanjiayuanNanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, P. R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 PanjiayuanNanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, P. R. China State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
| |
Collapse
|
35
|
Zhang J, Han C, Ungerleider N, Chen W, Song K, Wang Y, Kwon H, Ma W, Wu T. A Transforming Growth Factor-β and H19 Signaling Axis in Tumor-Initiating Hepatocytes That Regulates Hepatic Carcinogenesis. Hepatology 2019; 69:1549-1563. [PMID: 30014520 PMCID: PMC6335184 DOI: 10.1002/hep.30153] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023]
Abstract
Functions of transforming growth factor-β (TGF-β) in the liver vary depending on specific cell types and their temporal response to TGF-β during different stages of hepatocarcinogenesis (HCG). Through analysis of tumor tissues from hepatocellular carcinoma (HCC) patients, we were able to cluster hepatic epithelial cell-derived TGF-β gene signatures in association with distinct clinical prognoses. To delineate the role of hepatic epithelial TGF-β signaling in HCC development, we used an experimental system in which tumor-initiating hepatocytes (TICs) were isolated from TGF-β receptor II floxed mice (Tgfbr2fl/fl ) and transplanted into syngeneic C57BL/6J mice by splenic injection. Recipient mice were then administered Cre-expressing adenovirus (Ad-Cre) to inactivate Tgfbr2 in transplanted TICs. After latency, Tgfbr2-inactivated TICs formed larger and more tumor nodules in recipient livers compared to TICs without Tgfbr2 inactivation. In vitro analyses revealed that treatment of cultured TICs with TGF-β inhibited expression of progenitor cell factors (including SRY (sex determining region Y)-box 2 [Sox2]). RNA sequencing (RNA-seq) analysis identified H19 as one of the most up-regulated long noncoding RNA (lncRNA) in association with Tgfbr2 inactivation in TICs. Tgfbr2 inactivation by Ad-Cre led to a 5-fold increase of H19 expression in TICs. Accordingly, TGF-β treatment reduced H19 expression. We observed that forced overexpression of Sox2 in TICs increased transcription of H19, whereas knockdown of Sox2 decreased it. Furthermore, depletion of H19 reduced the progenitor property of TICs in vitro and decreased their tumorigenic potential in vivo. Finally, we observed a low level of H19 mRNA expression in human HCC tissues from patients with the epithelial TGF-β gene signature in association with favorable prognosis. Conclusion: Our findings describe a TGF-β and H19 signaling axis by Sox2 in TICs that importantly regulates HCG.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Hyunjoo Kwon
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
36
|
Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J Biomed Sci 2019; 26:24. [PMID: 30849993 PMCID: PMC6407245 DOI: 10.1186/s12929-019-0517-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is controlled by several metabolic hormones, including thyroid hormone, and characteristically displays high lysosomal activity as well as metabolic stress-triggered autophagy, which is stringently regulated by the levels of hormones and metabolites. Hepatic autophagy provides energy through catabolism of glucose, amino acids and free fatty acids for starved cells, facilitating the generation of new macromolecules and maintenance of the quantity and quality of cellular organelles, such as mitochondria. Dysregulation of autophagy and defective mitochondrial homeostasis contribute to hepatocyte injury and liver-related diseases, such as non-alcoholic fatty liver disease (NAFLD) and liver cancer. Thyroid hormones (TH) mediate several critical physiological processes including organ development, cell differentiation, metabolism and cell growth and maintenance. Accumulating evidence has revealed dysregulation of cellular TH activity as the underlying cause of several liver-related diseases, including alcoholic or non-alcoholic fatty liver disease and liver cancer. Data from epidemiologic, animal and clinical studies collectively support preventive functions of THs in liver-related diseases, highlighting the therapeutic potential of TH analogs. Elucidation of the molecular mechanisms and downstream targets of TH should thus facilitate the development of therapeutic strategies for a number of major public health issues. Here, we have reviewed recent studies focusing on the involvement of THs in hepatic homeostasis through induction of autophagy and their implications in liver-related diseases. Additionally, the potential underlying molecular pathways and therapeutic applications of THs in NAFLD and HCC are discussed.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan, Taiwan, 333.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, 613.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333. .,Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 333, Taiwan, Republic of China. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan.
| |
Collapse
|
37
|
Fujita J, Sakurai T. The Oncoprotein Gankyrin/PSMD10 as a Target of Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:63-71. [PMID: 31576540 DOI: 10.1007/978-3-030-22254-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gankyrin (also called PSMD10, p28, or p28GANK) is a crucial oncoprotein that is upregulated in various cancers and assumed to play pivotal roles in the initiation and progression of tumors. Although the in vitro function of gankyrin is relatively well characterized, its role in vivo remains to be elucidated. We have investigated the function of gankyrin in vivo by producing mice with liver parenchymal cell-specific gankyrin ablation (Alb-Cre;gankyrinf/f) and gankyrin deletion both in liver parenchymal and in non-parenchymal cells (Mx1-Cre;gankyrinf/f). Gankyrin deficiency both in non-parenchymal cells and parenchymal cells, but not in parenchymal cells alone, reduced STAT3 activity, interleukin-6 production, and cancer stem cell marker expression, leading to attenuated tumorigenic potential in the diethylnitrosamine hepatocarcinogenesis model. Essentially similar results were obtained by analyzing mice with intestinal epithelial cell-specific gankyrin ablation (Villin-Cre;Gankyrinf/f) and gankyrin deletion both in myeloid and epithelial cells (Mx1-Cre;Gankyrinf/f) in the colitis-associated cancer model. Clinically, gankyrin expression in the tumor microenvironment was negatively correlated with progression-free survival in patients undergoing treatment with Sorafenib for hepatocellular carcinomas. These findings indicate important roles played by gankyrin in non-parenchymal cells as well as parenchymal cells in the pathogenesis of liver cancers and colorectal cancers, and suggest that by acting both on cancer cells and on the tumor microenvironment, anti-gankyrin agents would be promising as therapeutic and preventive strategies against various cancers, and that an in vitro cell culture models that incorporate the effects of non-parenchymal cells and gankyrin would be useful for the study of human cell transformation.
Collapse
Affiliation(s)
- Jun Fujita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
38
|
Xu M, Hu J, Zhou B, Zhong Y, Lin N, Xu R. TRIM29 prevents hepatocellular carcinoma progression by inhibiting Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:68-77. [PMID: 30566565 DOI: 10.1093/abbs/gmy151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
TRIM29 plays an important role in many neoplasms. In this study, we aimed to elucidate its role in hepatocellular carcinoma (HCC) and explore the corresponding potential mechanism. The expression level of TRIM29 in HCC samples and hepatoma cell lines was detected. We found that TRIM29 was down-regulated in clinical HCC samples and cultured hepatoma cell lines by western blot analysis and quantitative polymerase chain reaction. In addition, we demonstrated that higher TRIM29 expression was associated with higher differentiation grade of HCC. To explore the effect of TRIM29 on hepatoma cells and its possible mechanisms, TRIM29-knockdown and overexpression cell models were constructed. The results showed that the depletion of TRIM29 promoted liver cancer cell proliferation, clone formation, migration and invasion in vitro probably through the Wnt/β-catenin signaling pathway. This study revealed the inhibitory roles of TRIM29 in HCC and the possible mechanisms.
Collapse
Affiliation(s)
- Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuesi Zhong
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Patel M, Sachidanandan M, Adnan M. Serine arginine protein kinase 1 (SRPK1): a moonlighting protein with theranostic ability in cancer prevention. Mol Biol Rep 2018; 46:1487-1497. [PMID: 30535769 DOI: 10.1007/s11033-018-4545-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Serine/arginine protein kinase 1 (SRPK1); a versatile functional moonlighting protein involved in varied cellular activities comprised of cell cycle progression, innate immune response, chromatin reorganization, negative and positive regulation of viral genome replication, protein amino acid phosphorylation, regulation of numerous mRNA-processing pathways, germ cell development as well as inflammation due to acquaintances with many transcription factors and signaling pathways. Several diseases including cancer have been associated with dysregulation of SRPK1. The function of SRPK1 in cancer is contradictory and inexplicable because it acts as both tumor suppressor and promoter based on the type of cell and locale. Over expression of SRPK1 including its role has been recently narrated and associated with several cancers, which includes, lung, glioma, prostate and breast via dysregulated signals from the Akt/eIF4E/HIF-1/VEGF, Erk or MAPK, PI3K/AKT/mTOR, TGF-β, and Wnt/β-catenin signaling pathways. Therefore, SRPK1 has occurred as a promising and possible curative target in cancer. In recent years, few natural and synthetic SRPK1 inhibitors have been discovered. This review emphasizes and highlights the complicated connections between SRPK1 and oncogenic signaling circuits together with the possibility of aiming SRPK1 in the treatment of cancer.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, P O Box 2440, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, Faculty of Science, University of Hail, P O Box 2440, Hail, Saudi Arabia.
| |
Collapse
|
40
|
Vav1 mutations identified in human cancers give rise to different oncogenic phenotypes. Oncogenesis 2018; 7:80. [PMID: 30297765 PMCID: PMC6175932 DOI: 10.1038/s41389-018-0091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/09/2018] [Indexed: 01/26/2023] Open
Abstract
Vav1 is physiologically active as a GDP/GTP nucleotide exchange factor (GEF) in the hematopoietic system. Overexpression of Vav1 in multiple tumor types is known to enhance oncogenicity, yet whether or not Vav1 is a bona fide oncogene is still a matter of debate. Although mutations in Vav1 were recently identified in human cancers of various origins, the functional activities of these mutants are not known. We tested the transforming potential of three mutations identified in human lung adenocarcinoma: E59K, D517E, and L801P. Results from several assays indicative of transforming activities such as rate of proliferation, growth in agar, and generation of tumors in NOD/SCID mice clearly indicated that E59K and D517E are highly transforming but L801P at the SH3 domain is not. The acquired oncogenic activity of these mutants can be attributed to their enhanced activity as GEFs for Rho/Rac GTPases. Deciphering of the mechanisms leading to overactivity of the tested mutants revealed that the E59K mutation facilitates cleavage of a truncated protein that is uncontrollably active as a GEF, while D517E generates a highly stable overexpressed protein that is also more active as a GEF than wild-type Vav1. These findings support the classification of Vav1 as a bona fide oncogene in human cancer.
Collapse
|
41
|
Chan CH, Chen CM, Lee YHW, You LR. DNA Damage, Liver Injury, and Tumorigenesis: Consequences of DDX3X Loss. Mol Cancer Res 2018; 17:555-566. [PMID: 30297359 DOI: 10.1158/1541-7786.mcr-18-0551] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/09/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
The pleiotropic roles of DEAD-box helicase 3, X-linked (DDX3X), including its functions in transcriptional and translational regulation, chromosome segregation, DNA damage, and cell growth control, have highlighted the association between DDX3X and tumorigenesis. However, mRNA transcripts and protein levels of DDX3X in patient specimens have shown the controversial correlations of DDX3X with hepatocellular carcinoma (HCC) prevalence. In this study, generation of hepatocyte-specific Ddx3x-knockout mice revealed that loss of Ddx3x facilitates liver tumorigenesis. Loss of Ddx3x led to profound ductular reactions, cell apoptosis, and compensatory proliferation in female mutants at 6 weeks of age. The sustained phosphorylation of histone H2AX (γH2AX) and significant accumulation of DNA single-strand breaks and double-strand breaks in liver indicated that the replicative stress occurred in female mutants. Further chromatin immunoprecipitation analyses demonstrated that DDX3X bound to promoter regions and regulated the expression of DNA repair factors, DDB2 and XPA, to maintain genome stability. Loss of Ddx3x led to decreased levels of DNA repair factors, which contributed to an accumulation of unrepaired DNA damage, replication stress, and eventually, spontaneous liver tumors and DEN-induced HCCs in Alb-Cre/+;Ddx3xflox/flox mice. IMPLICATIONS: These data identify an important role of DDX3X in the regulation of DNA damage repair to protect against replication stress in liver and HCC development and progression.
Collapse
Affiliation(s)
- Chieh-Hsiang Chan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan. .,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
42
|
Liu JJ, Li Y, Chen WS, Liang Y, Wang G, Zong M, Kaneko K, Xu R, Karin M, Feng GS. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol 2018; 69:79-88. [PMID: 29505847 PMCID: PMC6008184 DOI: 10.1016/j.jhep.2018.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Shp2 is an SH2-tyrosine phosphatase acting downstream of receptor tyrosine kinases (RTKs). Most recent data demonstrated a liver tumor-suppressing role for Shp2, as ablating Shp2 in hepatocytes aggravated hepatocellular carcinoma (HCC) induced by chemical carcinogens or Pten loss. We further investigated the effect of Shp2 deficiency on liver tumorigenesis driven by classical oncoproteins c-Met (receptor for HGF), β-catenin and PIK3CA. METHODS We performed hydrodynamic tail vein injection of two pairs of plasmids expressing c-Met and ΔN90-β-catenin (MET/CAT), or c-Met and PIK3CAH1047R (MET/PIK), into WT and Shp2hep-/- mice. We compared liver tumor loads and investigated the pathogenesis and molecular mechanisms involved using multidisciplinary approaches. RESULTS Despite the induction of oxidative and metabolic stresses, Shp2 deletion in hepatocytes suppressed hepatocarcinogenesis driven by overexpression of oncoproteins MET/CAT or MET/PIK. Shp2 loss inhibited proliferative signaling from c-Met, Wnt/β-catenin, Ras/Erk and PI3K/Akt pathways, but triggered cell senescence following exogenous expression of the oncogenes. CONCLUSIONS Shp2, acting downstream of RTKs, is positively required for hepatocyte-intrinsic tumorigenic signaling from these oncoproteins, even if Shp2 deficiency induces a tumor-promoting hepatic microenvironment. These data suggest a new and more effective therapeutic strategy for HCCs driven by oncogenic RTKs and other upstream molecules, by inhibiting Shp2 and also suppressing any tumor-enhancing stromal factors produced because of Shp2 inhibition. LAY SUMMARY Primary liver cancer is a malignant disease with poor prognosis, largely because there are limited systemic therapies available. We show here that a cytoplasmic tyrosine phosphatase Shp2 is required for liver tumorigenesis. This tumorigenesis is driven by two oncoproteins that are implicated in human liver cancer. This, together with our previous studies, uncovers the complexity of liver tumorigenesis, by elucidating the pro- and anti-tumor effects of Shp2 in mouse models. This data can be used to guide new therapies.
Collapse
Affiliation(s)
- Jacey J. Liu
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yanjie Li
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA,Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wendy S. Chen
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yan Liang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Min Zong
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kota Kaneko
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Lee J, Liao R, Wang G, Yang BH, Luo X, Varki NM, Qiu SJ, Ren B, Fu W, Feng GS. Preventive Inhibition of Liver Tumorigenesis by Systemic Activation of Innate Immune Functions. Cell Rep 2018; 21:1870-1882. [PMID: 29141219 DOI: 10.1016/j.celrep.2017.10.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Liver cancer has become the second most deadly malignant disease, with no efficient targeted or immune therapeutic agents available yet. While dissecting the roles of cytoplasmic signaling molecules in hepatocarcinogenesis using an inducible mouse gene targeting system, Mx1-cre, we identified a potent liver tumor-inhibitory effect of synthetic double-stranded RNA (dsRNA), polyinosinic-polycytidylic acid (pIC), an inducer of the Mx1-cre system. Injection of pIC at the pre-cancer stage robustly suppressed liver tumorigenesis either induced by chemical carcinogens or by Pten loss and associated hepatosteatosis. The immunostimulatory dsRNA inhibited liver cancer initiation, apparently by boosting multiple anti-tumor activities of innate immunity, including induction of immunoregulatory cytokines, activation of NK cells and dendritic cells, and reprogramming of macrophage polarization. This study paves the way for the development of preventive and early interfering strategies for liver cancer to reduce the rapidly increasing incidences of liver cancer in an ever-growing population with chronic liver disorders.
Collapse
Affiliation(s)
- Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liao
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gaowei Wang
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bi-Huei Yang
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Xiaolin Luo
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Ren
- Ludwig Cancer Research Institute, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Chen J, Chen CY, Nguyen C, Chen L, Lee K, Stiles BL. Emerging signals regulating liver tumor initiating cells. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Castven D, Fischer M, Becker D, Heinrich S, Andersen JB, Strand D, Sprinzl MF, Strand S, Czauderna C, Heilmann-Heimbach S, Roessler S, Weinmann A, Wörns MA, Thorgeirsson SS, Galle PR, Matter MS, Lang H, Marquardt JU. Adverse genomic alterations and stemness features are induced by field cancerization in the microenvironment of hepatocellular carcinomas. Oncotarget 2018; 8:48688-48700. [PMID: 28415775 PMCID: PMC5564717 DOI: 10.18632/oncotarget.16231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) commonly develops in chronically damaged liver tissues. The resulting regenerative and inflammatory processes create an adverse milieu that promotes tumor-initiation and progression. A better understanding of the hepatic tumor-microenvironment interaction might infer profound therapeutic implications. Integrative whole genome and transcriptome analyses of different tumor regions, the invasive tumor border and tumor-surrounding liver (SL) were performed to identify associated molecular alterations and integrated with our existing HCC database. Expression levels and localization of established CSC markers were assessed in pre-neoplastic lesions and confirmed in two independent patient cohorts using qRT-PCR, immunohistochemistry and immunofluorescence. Our results indicate that genomic and transcriptomic profiles between SL and different tumor regions are quite distinct. Progressive increase in genetic alterations and activation of pathways related to proliferation as well as apoptosis were observed in the tumor tissue, while activation of stemness markers was present in cirrhotic SL and continuously decreased from pre-neoplastic lesions to HCC. Interestingly, the invasive tumor border was characterized by inflammatory and EMT-related gene sets as well as activation of pro-survival signaling. Consistently, integration of gene expression signatures with two independent HCC databases containing 300 HCCs revealed that border signatures are predictive of HCC patient survival. Prognostic significance of the permissive liver microenvironment might be a consequence of a pro-oncogenic field effect that is caused by chronic regenerative processes. Activation of key oncogenic features and immune-response signaling indicates that the cross-talk between tumor and microenvironment might be a promising therapeutic and/or preventive target.
Collapse
Affiliation(s)
- Darko Castven
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Michael Fischer
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Diana Becker
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Heinrich
- Department of Surgery, Johannes Gutenberg University, Mainz, Germany
| | - Jesper B Andersen
- Department of Health and Medical Science, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Strand
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Martin F Sprinzl
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Carolin Czauderna
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Institute of Human Genetics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arndt Weinmann
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Marcus A Wörns
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter R Galle
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Hauke Lang
- Department of Surgery, Johannes Gutenberg University, Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
46
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
47
|
Gagné-Sansfaçon J, Coulombe G, Langlois MJ, Langlois A, Paquet M, Carrier J, Feng GS, Qu CK, Rivard N. SHP-2 phosphatase contributes to KRAS-driven intestinal oncogenesis but prevents colitis-associated cancer development. Oncotarget 2018; 7:65676-65695. [PMID: 27582544 PMCID: PMC5323184 DOI: 10.18632/oncotarget.11601] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023] Open
Abstract
A major risk factor of developing colorectal cancer (CRC) is the presence of chronic inflammation in the colon. In order to understand how inflammation contributes to CRC development, the present study focused on SHP-2, a tyrosine phosphatase encoded by PTPN11 gene in which polymorphisms have been shown to be markers of colitis susceptibility. Conversely, gain-of-function mutations in PTPN11 gene (E76 residue) have been found in certain sporadic CRC. Results shown herein demonstrate that SHP-2 expression was markedly increased in sporadic human adenomas but not in advanced colorectal tumors. SHP-2 silencing inhibited proliferative, invasive and tumoral properties of both intestinal epithelial cells (IECs) transformed by oncogenic KRAS and of human CRC cells. IEC-specific expression of a SHP-2E76K activated mutant in mice was not sufficient to induce tumorigenesis but markedly promoted tumor growth under the ApcMin/+ background. Conversely, mice with a conditional deletion of SHP-2 in IECs developed colitis-associated adenocarcinomas with age, associated with sustained activation of Wnt/β-catenin, NFκB and STAT3 signalings in the colonic mucosae. Moreover, SHP-2 epithelial deficiency considerably increased tumor load in ApcMin/+ mice, shifting tumor incidence toward the colon. Overall, these results reveal that SHP-2 can exert opposing functions in the large intestine: it can promote or inhibit tumorigenesis depending of the inflammatory context.
Collapse
Affiliation(s)
- Jessica Gagné-Sansfaçon
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Geneviève Coulombe
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilene Paquet
- Département de microbiologie et pathologie, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Julie Carrier
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
48
|
Chen J, Qi Y, Zhao Y, Kaczorowski D, Couttas TA, Coleman PR, Don AS, Bertolino P, Gamble JR, Vadas MA, Xia P, McCaughan GW. Deletion of sphingosine kinase 1 inhibits liver tumorigenesis in diethylnitrosamine-treated mice. Oncotarget 2018; 9:15635-15649. [PMID: 29643998 PMCID: PMC5884653 DOI: 10.18632/oncotarget.24583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is the 3rd leading cause of cancer deaths worldwide with very few effective treatments. Sphingosine kinase 1 (SphK1), a key regulator of sphingolipid metabolites, is over-expressed in human hepatocellular carcinoma (HCC) and our previous studies have shown that SphK1 is important in liver injury. We aimed to explore the role of SphK1 specifically in liver tumorigenesis using the SphK1 knockout (SphK1-/-) mouse. SphK1 deletion significantly reduced the number and the size of DEN-induced liver cancers in mice. Mechanistically, fewer proliferating but more apoptotic and senescent cells were detected in SphK1 deficient tumors compared to WT tumors. There was an increase in sphingosine rather than a decrease in sphingosine 1-phosphate (S1P) in SphK1 deficient tumors. Furthermore, the STAT3-S1PR pathway that has been reported previously to mediate the effect of SphK1 on colorectal cancers was not altered by SphK1 deletion in liver cancer. Instead, c-Myc protein expression was down-regulated by SphK1 deletion. In conclusion, this is the first in vivo evidence that SphK1 contributes to hepatocarcinogenesis. However, the downstream signaling pathways impacting on the development of HCC via SphK1 are organ specific providing further evidence that simply transferring known oncogenic molecular pathway targeting into HCC is not always valid.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer, Camperdown, NSW 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| | - Yanfei Qi
- Vascular Biology, Camperdown, NSW 2050, Australia
| | - Yang Zhao
- Vascular Biology, Camperdown, NSW 2050, Australia
| | | | | | | | - Anthony S Don
- ACRF Centenary Cancer Research, Camperdown, NSW 2050, Australia
| | - Patrick Bertolino
- Liver Immunology in Centenary Institute, Camperdown, NSW 2050, Australia
| | | | | | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Geoffrey W McCaughan
- Liver Injury and Cancer, Camperdown, NSW 2050, Australia.,A.W. Morrow Gastroenterology and Liver Center, Australian Liver Transplant Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
49
|
Wang G, Yuan R, Zhu X, Ao P. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach. Methods Mol Biol 2018; 1702:215-245. [PMID: 29119508 DOI: 10.1007/978-1-4939-7456-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.
Collapse
Affiliation(s)
- Gaowei Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093-0864, USA
| | - Ruoshi Yuan
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Systems Biology, Harvard University, Boston, MA, USA
| | - Xiaomei Zhu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ping Ao
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Luo X, Liao R, Hanley KL, Zhu HH, Malo KN, Hernandez C, Wei X, Varki NM, Alderson N, Chu C, Li S, Fan J, Loomba R, Qiu SJ, Feng GS. Dual Shp2 and Pten Deficiencies Promote Non-alcoholic Steatohepatitis and Genesis of Liver Tumor-Initiating Cells. Cell Rep 2017; 17:2979-2993. [PMID: 27974211 DOI: 10.1016/j.celrep.2016.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 01/14/2023] Open
Abstract
The complexity of liver tumorigenesis is underscored by the recently observed anti-oncogenic effects of oncoproteins, although the mechanisms are unclear. Shp2/Ptpn11 is a proto-oncogene in hematopoietic cells and antagonizes the effect of tumor suppressor Pten in leukemogenesis. In contrast, we show here cooperative functions of Shp2 and Pten in suppressing hepatocarcinogenesis. Ablating both Shp2 and Pten in hepatocytes induced early-onset non-alcoholic steatohepatitis (NASH) and promoted genesis of liver tumor-initiating cells likely due to augmented cJun expression/activation and elevated ROS and inflammation in the hepatic microenvironment. Inhibiting cJun partially suppressed NASH-driven liver tumorigenesis without improving NASH. SHP2 and PTEN deficiencies were detected in liver cancer patients with poor prognosis. These data depict a mechanism of hepato-oncogenesis and suggest a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaolin Luo
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liao
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 40016, China
| | - Kaisa L Hanley
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen He Zhu
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kirsten N Malo
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carolyn Hernandez
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xufu Wei
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 40016, China
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nazilla Alderson
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Catherine Chu
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuangwei Li
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rohit Loomba
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|