1
|
Sahoo L, Panwar P, Sastri CV, de Visser SP. Unraveling Chlorite Oxidation Pathways in Equatorially Heteroatom-Substituted Nonheme Iron Complexes. ACS ORGANIC & INORGANIC AU 2024; 4:673-680. [PMID: 39649995 PMCID: PMC11621950 DOI: 10.1021/acsorginorgau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold. These complexes feature systematic substitutions at the equatorial position in the bispidine ligand framework where the pyridine group is replaced with NMe2, SMe, and OMe groups. The three iron(II)-bispidine complexes were subjected to studies in chlorite oxidation reactions as a model pathway for oxygen atom transfer. Chlorine oxyanions, which have the halide in an oxidation state ranging from +1 to +7, have numerous applications but can contaminate water bodies, and this demands urgent environmental remediation. Chlorite, a common precursor to chlorine dioxide, is of particular interest due to the superior antimicrobial activity of chlorine dioxide. Moreover, its generation leads to fewer harmful byproducts in water treatment. Here, we demonstrate that these complexes can produce chlorine dioxide from chlorite in acetate buffer at room temperature and pH 5.0, oxidizing chlorite through the in situ formation of high-valent iron(IV)-oxo intermediates. This study establishes how subtle changes in the coordination sphere around iron can influence the reactivity.
Collapse
Affiliation(s)
- Limashree Sahoo
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Payal Panwar
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Sam P. de Visser
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
- The
Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
2
|
Paris JC, Hei Cheung Y, Zhang T, Chang WC, Liu P, Guo Y. New Frontiers in Nonheme Enzymatic Oxyferryl Species. Chembiochem 2024; 25:e202400307. [PMID: 38900645 DOI: 10.1002/cbic.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Non-heme mononuclear iron dependent (NHM-Fe) enzymes exhibit exceedingly diverse catalytic reactivities. Despite their catalytic versatilities, the mononuclear iron centers in these enzymes show a relatively simple architecture, in which an iron atom is ligated with 2-4 amino acid residues, including histidine, aspartic or glutamic acid. In the past two decades, a common high-valent reactive iron intermediate, the S=2 oxyferryl (Fe(IV)-oxo or Fe(IV)=O) species, has been repeatedly discovered in NHM-Fe enzymes containing a 2-His-Fe or 2-His-1-carboxylate-Fe center. However, for 3-His/4-His-Fe enzymes, no common reactive intermediate has been identified. Recently, we have spectroscopically characterized the first S=1 Fe(IV) intermediate in a 3-His-Fe containing enzyme, OvoA, which catalyzes a novel oxidative carbon-sulfur bond formation. In this review, we summarize the broad reactivities demonstrated by S=2 Fe(IV)-oxo intermediates, the discovery of the first S=1 Fe(IV) intermediate in OvoA and the mechanistic implication of such a discovery, and the intrinsic reactivity differences of the S=2 and the S=1 Fe(IV)-oxo species. Finally, we postulate the possible reasons to utilize an S=1 Fe(IV) species in OvoA and their implications to other 3-His/4-His-Fe enzymes.
Collapse
Affiliation(s)
- Jared C Paris
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA
| | - Tao Zhang
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Devkota L, Xiong J, Fischer AA, Murphy K, Kumar P, Balensiefen EL, Lindeman SV, Popescu CV, Fiedler AT. Observation of oxygenated intermediates in functional mimics of aminophenol dioxygenase. J Inorg Biochem 2024; 259:112632. [PMID: 38950482 DOI: 10.1016/j.jinorgbio.2024.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024]
Abstract
Aminophenol dioxygenases (APDO) are mononuclear nonheme iron enzymes that utilize dioxygen (O2) to catalyze the conversion of o-aminophenols to 2-picolinic acid derivatives in metabolic pathways. This study describes the synthesis and O2 reactivity of two synthetic models of substrate-bound APDO: [FeII(TpMe2)(tBu2APH)] (1) and [FeII(TpMe2)(tBuAPH)] (2), where TpMe2 = hydrotris(3,5-dimethylpyrazole-1-yl)borate, tBu2APH = 4,6-di-tert-butyl-2-aminophenolate, and tBuAPH2 = 4-tert-butyl-2-aminophenolate. Both Fe(II) complexes behave as functional APDO mimics, as exposure to O2 results in oxidative CC bond cleavage of the o-aminophenolate ligand. The ring-cleaved products undergo spontaneous cyclization to give substituted 2-picolinic acids, as verified by 1H NMR spectroscopy, mass spectrometry, and X-ray crystallography. Reaction of the APDO models with O2 at low temperature reveals multiple intermediates, which were probed with UV-vis absorption, electron paramagnetic resonance (EPR), Mössbauer (MB), and resonance Raman (rRaman) spectroscopies. The most stable intermediate at -70 °C in THF exhibits multiple isotopically-sensitive features in rRaman samples prepared with 16O2 and 18O2, confirming incorporation of O2-derived atom(s) into its molecular structure. Insights into the geometric structures, electronic properties, and spectroscopic features of the observed intermediates were obtained from density functional theory (DFT) calculations. Although functional APDO models have been previously reported, this is the first time that an oxygenated ligand-based radical has been detected and spectroscopically characterized in the ring-cleaving mechanism of a relevant synthetic system.
Collapse
Affiliation(s)
- Laxmi Devkota
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anne A Fischer
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Kate Murphy
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States
| | - Praveen Kumar
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Ellie L Balensiefen
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Codrina V Popescu
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States.
| | - Adam T Fiedler
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States.
| |
Collapse
|
4
|
Wang Q, Aleshintsev A, Rai K, Jin E, Gupta R. Proton Transfer via Arginine with Suppressed p Ka Mediates Catalysis by Gentisate and Salicylate Dioxygenase. J Phys Chem B 2024; 128:6797-6805. [PMID: 38978492 PMCID: PMC11264262 DOI: 10.1021/acs.jpcb.4c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Gentisate and salicylate 1,2-dioxygenases (GDO and SDO) facilitate aerobic degradation of aromatic rings by inserting both atoms of dioxygen into their substrates, thereby participating in global carbon cycling. The role of acid-base catalysts in the reaction cycles of these enzymes is debatable. We present evidence of the participation of a proton shuffler during catalysis by GDO and SDO. The pH dependence of Michaelis-Menten parameters demonstrates that a single proton transfer is mandatory for the catalysis. Measurements at variable temperatures and pHs were used to determine the standard enthalpy of ionization (ΔHion°) of 51 kJ/mol for the proton transfer event. Although the observed apparent pKa in the range of 6.0-7.0 for substrates of both enzymes is highly suggestive of a histidine residue, ΔHion° establishes an arginine residue as the likely proton source, providing phylogenetic relevance for this strictly conserved residue in the GDO family. We propose that the atypical 3-histidine ferrous binding scaffold of GDOs contributes to the suppression of arginine pKa and provides support for this argument by employing a 2-histidine-1-carboxylate variant of the enzyme that exhibits elevated pKa. A reaction mechanism considering the role of the proton source in stabilizing key reaction intermediates is proposed.
Collapse
Affiliation(s)
- Qian Wang
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
| | - Aleksey Aleshintsev
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
- Ph.D.
Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Kamal Rai
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
| | - Eric Jin
- Staten
Island Technical High School, Staten Island, New York 10306, United States
| | - Rupal Gupta
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
- Ph.D.
Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
5
|
Xue S, Tang Y, Kurnikov IV, Liao HJ, Li J, Chan NL, Kurnikova MG, Chang WC, Guo Y. Spectroscopic and computational studies of a bifunctional iron- and 2-oxoglutarate dependent enzyme, AsqJ. Methods Enzymol 2024; 704:199-232. [PMID: 39300648 PMCID: PMC11415609 DOI: 10.1016/bs.mie.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes exhibit an exceedingly broad reaction repertoire. The most prevalent reactivity is hydroxylation, but many other reactivities have also been discovered in recent years, including halogenation, desaturation, epoxidation, endoperoxidation, epimerization, and cyclization. To fully explore the reaction mechanisms that support such a diverse reactivities in Fe/2OG enzyme, it is necessary to utilize a multi-faceted research methodology, consisting of molecular probe design and synthesis, in vitro enzyme assay development, enzyme kinetics, spectroscopy, protein crystallography, and theoretical calculations. By using such a multi-faceted research approach, we have explored reaction mechanisms of desaturation and epoxidation catalyzed by a bi-functional Fe/2OG enzyme, AsqJ. Herein, we describe the experimental protocols and computational workflows used in our studies.
Collapse
Affiliation(s)
- Shan Xue
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Igor V Kurnikov
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hsuan-Jen Liao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, Taiwan
| | - Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, Taiwan.
| | - Maria G Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Ren D, Lee YH, Liu HW. Expression, purification and characterization of non-heme iron-dependent mono-oxygenase OzmD in oxazinomycin biosynthesis. Methods Enzymol 2024; 704:113-142. [PMID: 39300645 DOI: 10.1016/bs.mie.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Oxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis. The intrinsic sensitivity of the OzmD substrate to oxygen along with the oxygen dependency of catalysis presents significant challenges in conducting in vitro enzymatic assays. This chapter describes the detailed procedures that have been used to characterize OzmD, including protein preparation, activity assays, and reaction by-product identification.
Collapse
Affiliation(s)
- Daan Ren
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Yu-Hsuan Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States; Department of Chemistry, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
7
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
8
|
Paris JC, Hu S, Wen A, Weitz AC, Cheng R, Gee LB, Tang Y, Kim H, Vegas A, Chang WC, Elliott SJ, Liu P, Guo Y. An S=1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation. Angew Chem Int Ed Engl 2023; 62:e202309362. [PMID: 37640689 PMCID: PMC10592081 DOI: 10.1002/anie.202309362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.
Collapse
Affiliation(s)
- Jared C Paris
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Sha Hu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Aiwen Wen
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Andrew C Weitz
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Ronghai Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Hyomin Kim
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Arturo Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Podder N, Saha A, Barman SK, Mandal S. Flavonol dioxygenation catalysed by cobalt(II) complexes supported with 3N(COO) and 4N donor ligands: a comparative study to assess the carboxylate effects on quercetin 2,4-dioxygenase-like reactivity. Dalton Trans 2023; 52:11465-11480. [PMID: 37466296 DOI: 10.1039/d3dt00833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Two new cobalt(II)-acetato complexes, [CoII(L3NCOO)(OAc)]·0.5H2O (1OAc·0.5H2O) and [CoII(L4N)(OAc)](PF6) (2OAc(PF6)), were synthesised using ligands L3NCOO- (Li+L3NCOO- = lithium 2-(benzyl((6'-methyl-[2,2'-bipyridin]-6-yl)methyl)amino)acetate) and L4N (N-benzyl-1-(6'-methyl-[2,2'-bipyridin]-6-yl)-N-(pyridin-2-ylmethyl)methanamine), respectively, to mimic the functional activity of cobalt(II)-quercetin-2,4-dioxygenase (CoII-2,4-QD). Additionally, Co(II)-flavonolato ternary complexes, [CoII(L3NCOO)(fla)]·H2O (1fla·H2O) and [CoII(L4N)(fla)](PF6) (2fla(PF6)), were synthesised as enzyme-substrate models. All four complexes were thoroughly characterised by elemental analyses and spectroscopic methods. Structural characterisation was performed for 1OAc·0.5H2O, 2OAc(PF6)·CH2Cl2 and 2fla+ with a perchlorate counter anion, 2fla(ClO4)·1.5H2O. Furthermore, density functional theory (DFT) calculations, time-dependent DFT (TD-DFT) and molecular orbital (MO) analysis were performed for the flavonolato adducts 1fla and 2fla+. The catalytic activities of complexes 1OAc·0.5H2O and 2OAc(PF6) in the oxygenative degradation of flavonol (multiple-turnover reactions) were investigated at 70 °C in DMF to determine the effect of the carboxylate substituent over a pyridyl donor residue on reactivity. Complex 1OAc·0.5H2O showed a higher catalytic rate than complex 2OAc(PF6). The same reactivity order was observed for single-turnover dioxygenation reactions with ternary complexes (1fla > 2fla+). The formation constants (Kf) of 1fla and 2fla+ species are comparable, implying that catalyst-substrate adduct formation occurs in similar amounts for both catalytic reactions. Therefore, the Kf values have a similar impact on reactivities. However, the oxidation potential of the bound fla-/fla˙ couple in 1fla is considerably lower than that in 2fla+. DFT calculations predicted that the negatively charged carboxylate group of ligand L3NCOO- determines the higher reactivity of 1fla with dioxygen by decreasing the oxidation potential of the bound fla-/fla˙ couple. During the dioxygenation process, the reactive Co(II)-bound flavonoxy radical was generated via single-electron transfer from the coordinated fla- to dioxygen, simultaneously forming a superoxide ion. The anionic carboxylate group improves the stability of the bound flavonoxy radical by providing substantial electron density to the electron-deficient fla˙ through the Co(II) centre, allowing the reactive fla˙ species to accumulate at an optimal concentration for effective catalysis. EPR spectroscopy successfully detected the cobalt-bound fla˙ species formed through the dioxygenation of 1fla. NBT2+ and EPR spin-trapping experiments confirmed superoxide formation during the dioxygenation process. So, the present work describes CoII-2,4-QD model studies and clarifies the function of carboxylate in quercetinase-like reactivity.
Collapse
Affiliation(s)
- Nirmalya Podder
- Department of Chemistry, Indian Institute of Technology (IIT) Kharagpur, Kharagpur 721302, India.
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, 140306, India
| | - Suman K Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, 140306, India
| | - Sukanta Mandal
- Department of Chemistry, Indian Institute of Technology (IIT) Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
11
|
Xie YX, Cheng WC, Wang L, Xue ZF, Rahman MM, Hu W. Immobilizing copper in loess soil using microbial-induced carbonate precipitation: Insights from test tube experiments and one-dimensional soil columns. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130417. [PMID: 36410249 DOI: 10.1016/j.jhazmat.2022.130417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Biomineralization as an alternative to traditional remediation measures has been widely applied to remediate copper (Cu)-contaminated sites due to its environmental-friendly nature. Immobilizing Cu is, however, a challenging task as it inevitably causes inactivation of ureolytic bacteria. In the present work, a series of test tube experiments were conducted to derive the relationships of Cu immobilization efficiency versus pH conditions. The Cu speciation transformation that is invisible in the test tube experiments was investigated via numerical simulations. Apart from that, the one-dimensional soil column tests, accompanied by the X-ray diffraction (XRD) and Raman spectroscopy analysis, mainly aimed not only to investigate the variations of Cu immobilization efficiency with the depth but to reveal the underlying mechanisms affecting the Cu immobilization efficiency. The results of the test tube experiments highlight the necessity of narrowing pH ranges to as close as 7 by introducing an appropriate bacterial inoculation proportion. The coordination adsorption of Cu, while performing the one-dimensional soil column tests, is encouraged by alkaline environments, which differs from the test tube experiments where Cu2+ is capsulized by carbonate precipitates to prevent their migration. The findings highlight the potential of applying the microbial-induced carbonate precipitation (MICP) technology to Cu-rich water bodies and Cu-contaminated sites remediation.
Collapse
Affiliation(s)
- Yi-Xin Xie
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wen-Chieh Cheng
- Professor, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Lin Wang
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Zhong-Fei Xue
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Md Mizanur Rahman
- Professor in Geotechnical Engineering, UniSA STEM, ScaRCE, University of South Australia, SA 5000, Australia.
| | - Wenle Hu
- PhD student, School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| |
Collapse
|
12
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Ren D, Lee YH, Wang SA, Liu HW. Characterization of the Oxazinomycin Biosynthetic Pathway Revealing the Key Role of a Nonheme Iron-Dependent Mono-oxygenase. J Am Chem Soc 2022; 144:10968-10977. [PMID: 35687050 DOI: 10.1021/jacs.2c04080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxazinomycin is a C-nucleoside natural product with antibacterial and antitumor activities. In addition to the characteristic C-glycosidic linkage shared with other C-nucleosides, oxazinomycin also features a structurally unusual 1,3-oxazine moiety, the biosynthesis of which had previously been unknown. Herein, complete in vitro reconstitution of the oxazinomycin biosynthetic pathway is described. Construction of the C-glycosidic bond between ribose 5-phosphate and an oxygen-labile pyridine heterocycle is catalyzed by the C-glycosidase OzmB and involves formation of an enzyme-substrate Schiff base intermediate. The DUF4243 family protein OzmD is shown to catalyze oxygen insertion and rearrangement of the pyridine C-nucleoside intermediate to generate the 1,3-oxazine moiety along with the elimination of cyanide. Spectroscopic analysis and mutagenesis studies indicate that OzmD is a novel nonheme iron-dependent enzyme in which the catalytic iron center is likely coordinated by four histidine residues. These results provide the first example of 1,3-oxazine biosynthesis catalyzed by an unprecedented iron-dependent mono-oxygenase.
Collapse
Affiliation(s)
- Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shao-An Wang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Tao Y, Li Z, Zhang Y, Sun K, Liu Z. Determining the inherent selectivity for carbon radical hydroxylation versus halogenation with high-spin oxoiron(iv)-halide complexes: a concerted rebound step. RSC Adv 2022; 12:9891-9897. [PMID: 35424943 PMCID: PMC8963258 DOI: 10.1039/d2ra01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
A synthetic iron model can process both halogenation and hydroxylation with vague selectivity, which is different from halogenase even though these structures are used for the simulation of halogenase. The key factor of the synthetic oxo-iron model mediated hydroxylation or the halogenation is still under debate. Herein density functional theory calculation is used to investigate the hydroxylation versus halogenation of propylene by the complex [FeIV(O)(TQA)(X)]+ (X = F, Cl, Br). Our results suggest that a concerted rebound mechanism (between the -X and the hydroxyl ligands after the hydrogen abstraction) leads to the formation of two different kinds of products. DFT calculation for the hydroxylation versus halogenation of propylene by [FeIV(O)(TQA)X]+ (X = F, Cl and Br) reveals that after hydrogen abstraction, halogen and oxygen rebound reactions are a synergistic process.![]()
Collapse
Affiliation(s)
- Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| | - Zixian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Yiman Zhang
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| | - Kexi Sun
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| | - Zhaojun Liu
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| |
Collapse
|
15
|
Ali HS, de Visser SP. Electrostatic Perturbations in the Substrate-Binding Pocket of Taurine/α-Ketoglutarate Dioxygenase Determine its Selectivity. Chemistry 2022; 28:e202104167. [PMID: 34967481 PMCID: PMC9304159 DOI: 10.1002/chem.202104167] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Taurine/α-ketoglutarate dioxygenase is an important enzyme that takes part in the cysteine catabolism process in the human body and selectively hydroxylates taurine at the C1 -position. Recent computational studies showed that in the gas-phase the C2 -H bond of taurine is substantially weaker than the C1 -H bond, yet no evidence exists of 2-hydroxytaurine products. To this end, a detailed computational study on the selectivity patterns in TauD was performed. The calculations show that the second-coordination sphere and the protonation states of residues play a major role in guiding the enzyme to the right selectivity. Specifically, a single proton on an active site histidine residue can change the regioselectivity of the reaction through its electrostatic perturbations in the active site and effectively changes the C1 -H and C2 -H bond strengths of taurine. This is further emphasized by many polar and hydrogen bonding interactions of the protein cage in TauD with the substrate and the oxidant that weaken the pro-R C1 -H bond and triggers a chemoselective reaction process. The large cluster models reproduce the experimental free energy of activation excellently.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sam P. de Visser
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
16
|
Zhang S, Xin W, Anderson GJ, Li R, Gao L, Chen S, Zhao J, Liu S. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis 2022; 13:40. [PMID: 35013137 PMCID: PMC8748693 DOI: 10.1038/s41419-021-04490-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Iron is vital for many physiological functions, including energy production, and dysregulated iron homeostasis underlies a number of pathologies. Ferroptosis is a recently recognized form of regulated cell death that is characterized by iron dependency and lipid peroxidation, and this process has been reported to be involved in multiple diseases. The mechanisms underlying ferroptosis are complex, and involve both well-described pathways (including the iron-induced Fenton reaction, impaired antioxidant capacity, and mitochondrial dysfunction) and novel interactions linked to cellular energy production. In this review, we examine the contribution of iron to diverse metabolic activities and their relationship to ferroptosis. There is an emphasis on the role of iron in driving energy production and its link to ferroptosis under both physiological and pathological conditions. In conclusion, excess reactive oxygen species production driven by disordered iron metabolism, which induces Fenton reaction and/or impairs mitochondrial function and energy metabolism, is a key inducer of ferroptosis.
Collapse
Affiliation(s)
- Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Ruibin Li
- School for Radiological and Interdisciplinary Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250031, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250031, China.
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
17
|
Lin YT, Ali HS, de Visser S. Biodegradation of herbicides by a plant nonheme iron dioxygenase: mechanism and selectivity of substrate analogues. Chemistry 2021; 28:e202103982. [PMID: 34911156 DOI: 10.1002/chem.202103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Aryloxyalkanoate dioxygenases are unique herbicide biodegrading nonheme iron enzymes found in plants and hence, from environmental and agricultural point of view they are important and valuable. However, they often are substrate specific and little is known on the details of the mechanism and the substrate scope. To this end, we created enzyme models and calculate the mechanism for 2,4-dichlorophenoxyacetic acid biodegradation and 2-methyl substituted analogs by density functional theory. The work shows that the substrate binding is tight and positions the aliphatic group close to the metal center to enable a chemoselective reaction mechanism to form the C 2 -hydroxy products, whereas the aromatic hydroxylation barriers are well higher in energy. Subsequently, we investigated the metabolism of R - and S -methyl substituted inhibitors and show that these do not react as efficiently as 2,4-dichlorophenoxyacetic acid substrate due to stereochemical clashes in the active site and particularly for the R -isomer give high rebound barriers.
Collapse
Affiliation(s)
- Yen-Ting Lin
- UoM: The University of Manchester, Chemical Engineering and Analytical Science, UNITED KINGDOM
| | - Hafiz S Ali
- UoM: The University of Manchester, Chemistry, UNITED KINGDOM
| | - Samuel de Visser
- The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
18
|
Yeh CCG, Pierides C, Jameson GNL, de Visser SP. Structure and Functional Differences of Cysteine and 3-Mercaptopropionate Dioxygenases: A Computational Study. Chemistry 2021; 27:13793-13806. [PMID: 34310770 DOI: 10.1002/chem.202101878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/09/2022]
Abstract
Thiol dioxygenases are important enzymes for human health; they are involved in the detoxification and catabolism of toxic thiol-containing natural products such as cysteine. As such, these enzymes have relevance to the development of Alzheimer's and Parkinson's diseases in the brain. Recent crystal structure coordinates of cysteine and 3-mercaptopropionate dioxygenase (CDO and MDO) showed major differences in the second-coordination spheres of the two enzymes. To understand the difference in activity between these two analogous enzymes, we created large, active-site cluster models. We show that CDO and MDO have different iron(III)-superoxo-bound structures due to differences in ligand coordination. Furthermore, our studies show that the differences in the second-coordination sphere and particularly the position of a positively charged Arg residue results in changes in substrate positioning, mobility and enzymatic turnover. Furthermore, the substrate scope of MDO is explored with cysteinate and 2-mercaptosuccinic acid and their reactivity is predicted.
Collapse
Affiliation(s)
- C-C George Yeh
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Christos Pierides
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Vic, 3010, Australia
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
19
|
Poirier W, Ravenel K, Bouchara JP, Giraud S. Lower Funneling Pathways in Scedosporium Species. Front Microbiol 2021; 12:630753. [PMID: 34276578 PMCID: PMC8283699 DOI: 10.3389/fmicb.2021.630753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Lignin, a natural polyaromatic macromolecule, represents an essential component of the lignocellulose biomass. Due to its complexity, the natural degradation of this molecule by microorganisms still remains largely misunderstood. Extracellular oxidative degradation is followed by intracellular metabolic degradation of conserved aromatic intermediate compounds (protocatechuate, catechol, hydroxyquinol, and gentisic acid) that are used as carbon and energy sources. The lower funneling pathways are characterized by the opening of the aromatic ring of these molecules through dioxygenases, leading to degradation products that finally enter into the tricarboxylic acid (TCA) cycle. In order to better understand the adaptation mechanisms of Scedosporium species to their environment, these specific catabolism pathways were studied. Genes encoding ring-cleaving dioxygenases were identified in Scedosporium genomes by sequence homology, and a bioinformatic analysis of the organization of the corresponding gene clusters was performed. In addition, these predictions were confirmed by evaluation of the expression level of the genes of the gentisic acid cluster. When the fungus was cultivated in the presence of lignin or gentisic acid as sole carbon source, experiments revealed that the genes of the gentisic acid cluster were markedly overexpressed in the two Scedosporium species analyzed (Scedosporium apiospermum and Scedosporium aurantiacum). Only the gene encoding a membrane transporter was not overexpressed in the gentisic acid-containing medium. Together, these data suggest the involvement of the lower funneling pathways in Scedosporium adaptation to their environment.
Collapse
Affiliation(s)
- Wilfried Poirier
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Kevin Ravenel
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Jean-Philippe Bouchara
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Sandrine Giraud
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| |
Collapse
|
20
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Lin YT, Ali HS, de Visser SP. Electrostatic Perturbations from the Protein Affect C-H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme. Chemistry 2021; 27:8851-8864. [PMID: 33978257 DOI: 10.1002/chem.202100791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/08/2022]
Abstract
The nonheme iron dioxygenase 2-(trimethylammonio)-ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio- and chemoselective hydroxylation at the C1 -position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2 -H bond in favor of C1 -hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)-oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1 -hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1 -H and C2 -H bonds of the substrate, and strongly strengthens the C2 -H bond in the substrate-bound orientation.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hafiz Saqib Ali
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
22
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Glasmacher S, Gertsch J. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 2021; 80:100808. [PMID: 33799079 DOI: 10.1016/j.jbior.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Hemopressins ((x)-PVNFKLLSH) or peptide endocannabinoids (pepcans) can bind to cannabinoid receptors. RVD-hemopressin (pepcan-12) was shown to act as endogenous allosteric modulator of cannabinoid receptors, with opposite effects on CB1 and CB2, respectively. Moreover, the N-terminally elongated pepcan-23 was detected in different tissues and was postulated to be the pro-peptide of RVD-hemopressin. Currently, data about the pharmacokinetics, tissue distribution and stability of hemopressin-type peptides are lacking. Here we investigated the secondary structure and physiological role of pepcan-23 as precursor of RVD-hemopressin. We assessed the metabolic stability of these peptides, including hemopressin. Using LC-ESI-MS/MS, pepcan-23 was measured in mouse tissues and human whole blood (~50 pmol/mL) and in plasma was the most stable endogenous peptide containing the hemopressin sequence. Using peptide spiked human whole blood, mouse adrenal gland and liver homogenates demonstrate that pepcan-23 acts as endogenous pro-peptide of RVD-hemopressin. Furthermore, administered pepcan-23 converted to RVD-hemopressin in mice. In circular dichroism spectroscopy, pepcan-23 showed a helix-unordered-helix structure and efficiently formed complexes with divalent metal ions, in particular Cu(II) and Ni(II). Hemopressin and RVD-hemopressin were not bioavailable to the brain and showed poor stability in plasma, in agreement with their overall poor biodistribution. Acute hemopressin administration (100 mg/kg) did not modulate endogenous RVD-hemopressin/pepcan-23 levels or influence the endocannabinoid lipidome but increased 1-stearoyl-2-arachidonoyl-sn-glycerol. Overall, we show that pepcan-23 is a biological pro-peptide of RVD-hemopressin and divalent metal ions may regulate this process. Given the lack of metabolic stability of hemopressins, administration of pepcan-23 as pro-peptide may be suitable in pharmacological experiments as it is converted to RVD-hemopressin in vivo.
Collapse
Affiliation(s)
- Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
24
|
Han SB, Ali HS, de Visser SP. Glutarate Hydroxylation by the Carbon Starvation-Induced Protein D: A Computational Study into the Stereo- and Regioselectivities of the Reaction. Inorg Chem 2021; 60:4800-4815. [DOI: 10.1021/acs.inorgchem.0c03749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sungho Bosco Han
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
25
|
Li Y, Qian C, Li Y, Yang Y, Lin D, Liu X, Chen C. Syntheses, crystal structures of two Fe(III) Schiff base complexes with chelating o-vanillin aroylhydrazone and exploration of their bio-relevant activities. J Inorg Biochem 2021; 218:111405. [PMID: 33689963 DOI: 10.1016/j.jinorgbio.2021.111405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Two novel Fe(III) complexes, Fe(HL1)2Cl·1.25H2O (1) and Fe(HL2)2·Et3NH·H2O (2) (H2L1 = o-vanillin benzoylhydrazone, H3L2 = o-vanillin salicylhydrazone) are prepared. X-ray single crystal diffraction confirms that the hydrazone ligands can be chelated to iron centre resulting in a six-coordinate octahedral configuration. Both complexes show major intercalation effect to the herring sperm deoxyribonucleic acid (HS-DNA) with high binding constants of 2.01 × 104 M-1 and 2.24 × 104 M-1, respectively. Molecular docking studies reveal both complexes can intercalate at the gap of DC5-DG2 and DG6-DC1 base pairs of DNA hexamer (1Z3F). The interaction of the complex 1 with plasmid pBR322 DNA induces distinguishable alterations of the DNA morphology. Further, the structure of plasmid pBR322 DNA treated with complex 1 in the presence of ascorbic acid has been damaged probably due to the reactive oxygen species (ROS) generation. What's more, both complexes show high affinity with bovine serum albumin (BSA), the binding constants measured by fluorescence techniques are 5.75 × 106 M-1 and 4.39 × 107 M-1, respectively. Molecular docking demonstrates that the complexes prefer the binding pocket of site III (subdomain IIB) of BSA (PDB ID: 4F5S). Similarly, dynamic light scattering (DLS) reveals that the complexes not only bind to BSA but also induce bigger size aggregates as the concentration increases.
Collapse
Affiliation(s)
- Yueqin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Changhao Qian
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yong Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dong Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaohui Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chen Chen
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
26
|
Müller L, Baturin K, Hoof S, Lau C, Herwig C, Limberg C. The Properties of Hydrotris(3‐mesitylpyrazol‐1‐yl) Borate Iron(II) Complexes with Aryl Carboxylate Co‐ligands – Stabilization of an Iron(III) Alkylperoxide. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lars Müller
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Kirill Baturin
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Santina Hoof
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Caroline Lau
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
27
|
Gunasekera PS, Abhyankar PC, MacMillan SN, Lacy DC. A Facially Coordinating Tris‐Benzimidazole Ligand for Nonheme Iron Enzyme Models. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parami S. Gunasekera
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 United States
| | - Preshit C. Abhyankar
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York 14853 United States
| | - David C. Lacy
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 United States
| |
Collapse
|
28
|
Latifi R, Minnick JL, Quesne MG, de Visser SP, Tahsini L. Computational studies of DNA base repair mechanisms by nonheme iron dioxygenases: selective epoxidation and hydroxylation pathways. Dalton Trans 2020; 49:4266-4276. [PMID: 32141456 DOI: 10.1039/d0dt00007h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA base repair mechanisms of alkylated DNA bases is an important reaction in chemical biology and particularly in the human body. It is typically catalyzed by an α-ketoglutarate-dependent nonheme iron dioxygenase named the AlkB repair enzyme. In this work we report a detailed computational study into the structure and reactivity of AlkB repair enzymes with alkylated DNA bases. In particular, we investigate the aliphatic hydroxylation and C[double bond, length as m-dash]C epoxidation mechanisms of alkylated DNA bases by a high-valent iron(iv)-oxo intermediate. Our computational studies use quantum mechanics/molecular mechanics methods on full enzymatic structures as well as cluster models on active site systems. The work shows that the iron(iv)-oxo species is rapidly formed after dioxygen binding to an iron(ii) center and passes a bicyclic ring structure as intermediate. Subsequent cluster models explore the mechanism of substrate hydroxylation and epoxidation of alkylated DNA bases. The work shows low energy barriers for substrate activation and consequently energetically feasible pathways are predicted. Overall, the work shows that a high-valent iron(iv)-oxo species can efficiently dealkylate alkylated DNA bases and return them into their original form.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Matthew G Quesne
- Cardiff University, School of Chemistry, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon, OX110FA, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, 131 Princess Street, Manchester M1 7DN, UK.
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
29
|
Gentisate 1,2-dioxygenase from the gram-positive bacteria Rhodococcus opacus 1CP: Identical active sites vs. different substrate selectivities. Biochimie 2020; 180:90-103. [PMID: 33122105 DOI: 10.1016/j.biochi.2020.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/10/2020] [Accepted: 10/25/2020] [Indexed: 11/20/2022]
Abstract
Gentisate 1,2-dioxygenases belong to the class III ring-cleaving dioxygenases catalyzing key reactions of aromatic compounds degradation by aerobic microorganisms. In the present work, the results of complete molecular, structural, and functional investigations of the gentisate 1,2-dioxygenase (rho-GDO) from a gram-positive bacterium Rhodococcus opacus 1CP growing on 3-hydroxybenzoate as a sole source of carbon and energy are presented. The purified enzyme showed a narrow substrate specificity. Among fourteen investigated substrate analogues only gentisate was oxidized by the enzyme, what can be potentially applied in biosensor technologies. The rho-GDO encoding gene was identified in the genomic DNA of the R. opacus 1CP. According to phylogenetic analysis, the rho-GDO belongs to the group of apparently most recently acquired activities in bacterial genera Rhodococcus, Arthrobacter, Corynebacterium, Nocardia, Amycolatopsis, Comamonas, and Streptomyces. Homology modeling the rho-GDO 3D-structure demonstrates the composition identity of the first-sphere residues of the active site of rho-GDO and salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans (RCSB PDB: 2PHD), despite of their different substrate specificities. The phenomenon described for the first time for this family of enzymes supposes a more complicated mechanism of substrate specificity than previously imagined, and makes the rho-GDO a convenient model for a novel direction of structure-function relationship studies.
Collapse
|
30
|
Aregbesola OA, Kumar A, Mokoena MP, Olaniran AO. Role of tetrachloro-1,4-benzoquinone reductase in phenylalanine hydroxylation system and pentachlorophenol degradation in Bacillus cereus AOA-CPS1. Int J Biol Macromol 2020; 161:875-890. [PMID: 32535205 DOI: 10.1016/j.ijbiomac.2020.06.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
This study reports a ≅12.5 kDa protein tetrachloro-1,4-benzoquinone reductase (CpsD) from Bacillus cereus strain AOA-CPS1 (BcAOA). CpsD is purified to homogeneity with a total yield of 35% and specific activity of 160 U·mg-1 of protein. CpsD showed optimal activity at pH 7.5 and 40 °C. The enzyme was found to be functionally stable between pH 7.0-7.5 and temperature between 30 °C and 35 °C. CpsD activity was enhanced by Fe2+ and inhibited by sodium azide and SDS. CpsD followed Michaelis-Menten kinetic exhibiting an apparent vmax, Km, kcat and kcat/Km values of 0.071 μmol·s-1, 94 μmol, 0.029 s-1 and 3.13 × 10-4 s-1·μmol-1, respectively, for substrate tetrachloro-1,4-benzoquinone. The bioinformatics analysis indicated that CpsD belongs to the PCD/DCoH superfamily, with specific conserved protein domains of pterin-4α-carbinolamine dehydratase (PCD). This study proposed that CpsD catalysed the reduction of tetrachloro-1,4-benzoquinone to tetrachloro-p-hydroquinone and released the products found in phenylalanine hydroxylation system (PheOHS) via a Ping-Pong or atypical ternary mechanism; and regulate expression of phenylalanine 4-monooxygenase by blocking reverse flux in BcAOA PheOHS using a probable Yin-Yang mechanism. The study also concluded that CpsD may play a catalytic and regulatory role in BcAOA PheOHS and pentachlorophenol degradation pathway.
Collapse
Affiliation(s)
- Oladipupo A Aregbesola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
31
|
Müller L, Hoof S, Keck M, Herwig C, Limberg C. Enhancing Tris(pyrazolyl)borate-Based Models of Cysteine/Cysteamine Dioxygenases through Steric Effects: Increased Reactivities, Full Product Characterization and Hints to Initial Superoxide Formation. Chemistry 2020; 26:11851-11861. [PMID: 32432367 PMCID: PMC7540079 DOI: 10.1002/chem.202001818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 02/03/2023]
Abstract
The design of biomimetic model complexes for the cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO) is reported, where the 3-His coordination of the iron ion is simulated by three pyrazole donors of a trispyrazolyl borate ligand (Tp) and protected cysteine and cysteamine represent substrate ligands. It is found that the replacement of phenyl groups-attached at the 3-positions of the pyrazole units in a previous model-by mesityl residues has massive consequences, as the latter arrange to a more spacious reaction pocket. Thus, the reaction with O2 proceeds much faster and afterwards the first structural characterization of an iron(II) η2 -O,O-sulfinate product became possible. If one of the three Tp-mesityl groups is placed in the 5-position, an even larger reaction pocket results, which leads to yet faster rates and accumulation of a reaction intermediate at low temperatures, as shown by UV/Vis and Mössbauer spectroscopy. After comparison with the results of investigations on the cobalt analogues this intermediate is tentatively assigned to an iron(III) superoxide species.
Collapse
Affiliation(s)
- Lars Müller
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Santina Hoof
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Matthias Keck
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Herwig
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Limberg
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
32
|
Flückger S, Igareta NV, Seebeck FP. Convergent Evolution of Fungal Cysteine Dioxygenases. Chembiochem 2020; 21:3082-3086. [PMID: 32543095 DOI: 10.1002/cbic.202000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cupin-type cysteine dioxygenases (CDOs) are non-heme iron enzymes that occur in animals, plants, bacteria and in filamentous fungi. In this report, we show that agaricomycetes contain an entirely unrelated type of CDO that emerged by convergent evolution from enzymes involved in the biosynthesis of ergothioneine. The activity of this CDO type is dependent on the ergothioneine precursor N-α-trimethylhistidine. The metabolic link between ergothioneine production and cysteine oxidation suggests that the two processes might be part of the same chemical response in fungi, for example against oxidative stress.
Collapse
Affiliation(s)
- Sebastian Flückger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Nico V Igareta
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
33
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
34
|
Wang L, Gennari M, Cantú Reinhard FG, Padamati SK, Philouze C, Flot D, Demeshko S, Browne WR, Meyer F, de Visser SP, Duboc C. O2 Activation by Non-Heme Thiolate-Based Dinuclear Fe Complexes. Inorg Chem 2020; 59:3249-3259. [DOI: 10.1021/acs.inorgchem.9b03633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lianke Wang
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, P. R. China
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Marcello Gennari
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sandeep K. Padamati
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | - David Flot
- ESRF European Synchrotron 71, Ave Martyrs Grenoble, 38000 Grenoble, France
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Wesley R. Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| |
Collapse
|
35
|
Yan J, Chen S. How To Produce Methane Precursor in the Upper Ocean by An Untypical Non‐Heme Fe‐Dependent Methylphosphonate Synthase? Chemphyschem 2020; 21:385-396. [DOI: 10.1002/cphc.202000025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ji‐Fan Yan
- Key Laboratory of Cluster Science of Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Shi‐Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
36
|
Sun Y, Liu Y, Zhang J, Li Y. Structure‐Reactivity Relationship in ES Models of Co(II)‐Containing Quercetin 2,4‐Dioxygenase. ChemistrySelect 2019. [DOI: 10.1002/slct.201903205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ying‐Ji Sun
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yan‐Fang Liu
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Jian‐Jun Zhang
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yan‐Qin Li
- Department of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
37
|
Ghafoor S, Mansha A, de Visser SP. Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. J Am Chem Soc 2019; 141:20278-20292. [PMID: 31749356 DOI: 10.1021/jacs.9b10526] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant non-heme iron dioxygenase flavonol synthase performs a regioselective desaturation reaction as part of the biosynthesis of the signaling molecule flavonol that triggers the growing of leaves and flowers. These compounds also have health benefits for humans. Desaturation of aliphatic compounds generally proceeds through two consecutive hydrogen atom abstraction steps from two adjacent carbon atoms and in nature often is performed by a high-valent iron(IV)-oxo species. We show that the order of the hydrogen atom abstraction steps, however, is opposite of those expected from the C-H bond strengths in the substrate and determines the product distributions. As such, flavonol synthase follows a negative catalysis mechanism. Using density functional theory methods on large active-site model complexes, we investigated pathways for desaturation and hydroxylation by an iron(IV)-oxo active-site model. Contrary to thermochemical predictions, we find that the oxidant abstracts the hydrogen atom from the strong C2-H bond rather than the weaker C3-H bond of the substrate first. We analyze the origin of this unexpected selective hydrogen atom abstraction pathway and find that the alternative C3-H hydrogen atom abstraction would be followed by a low-energy and competitive substrate hydroxylation mechanism hence, should give considerable amount of byproducts. Our computational modeling studies show that substrate positioning in flavonol synthase is essential, as it guides the reactivity to a chemo- and regioselective substrate desaturation from the C2-H group, leading to desaturation products efficiently.
Collapse
Affiliation(s)
- Sidra Ghafoor
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.,Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| |
Collapse
|
38
|
Mishra VK, Mishra S. Origin of Regio- and Stereospecific Catalysis by 8-Lipoxygenase. J Phys Chem B 2019; 123:10605-10621. [PMID: 31775504 DOI: 10.1021/acs.jpcb.9b07917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
39
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
40
|
Zhang S, Liu Y. Mechanism of fatty acid decarboxylation catalyzed by a non-heme iron oxidase (UndA): a QM/MM study. Org Biomol Chem 2019; 17:9808-9818. [PMID: 31710061 DOI: 10.1039/c9ob02116g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UndA is a non-heme iron enzyme that was recognized to catalyze the decarboxylation of medium chain (C10-C14) fatty acids to produce trace amounts of 1-alkenes. Owing to the electron imbalance during the oxidative decarboxylation of the substrate and the reduction of O2, only single turnover reactions were obtained in UndA in vitro assays. Unlike the general non-heme iron enzymes, the catalytic efficiency of UndA is quite low. According to the previous proposal, both FeIII-OO˙- and FeIV[double bond, length as m-dash]O complexes may abstract the β-H of fatty acids to trigger the oxidative decarboxylation reaction. Herein, on the basis of the crystal structures of UndA in complex with the substrate analogues, we constructed a series of computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to explore the UndA-catalyzed decarboxylation using lauric acid as the substrate. Our calculation results reveal that only the FeIII-OO˙- complex can initiate the decarboxylation, and the substrate (lauric acid) should monodentately coordinate to the Fe center to facilitate the β-H abstraction. In addition, the monodentate coordination corresponds to higher relative energy than the bidentate mode, which may explain the low efficiency of UndA. It is also revealed that as long as the β-H is extracted by the FeIII-OO˙-, the decarboxylation of the substrate radical is quite easy, and an electron transfer from the substrate to the iron center is the prerequisite. For the FeIV[double bond, length as m-dash]O complex, since the β-H is far from the OFe atom and the angle of ∠Fe-O-H is 53.1°, the H-abstraction is calculated to be difficult.
Collapse
Affiliation(s)
- Shiqing Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
41
|
Ramasubramanian R, Anandababu K, Mösch-Zanetti NC, Belaj F, Mayilmurugan R. Bioinspired models for an unusual 3-histidine motif of diketone dioxygenase enzyme. Dalton Trans 2019; 48:14326-14336. [PMID: 31486449 DOI: 10.1039/c9dt02518a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioinspired models for contrasting the electronic nature of neutral tris-histidine with the anionic 2-histidine-1-carboxylate facial motif and their subsequent impact on catalysis are reported. Herewith, iron(ii) complexes [Fe(L)(CH3CN)3](SO3CF3)21-3 of tris(2-pyridyl)-based ligands (L) have been synthesized and characterized as accurate structural models for the neutral 3-histidine triad of the enzyme diketone dioxygenase (DKDO). The molecular structure of one of the complexes exhibits octahedral coordination geometry and Fe-N11py bond lengths [1.952(4) to 1.959(4) Å] close to the Fe-NHis bond distances (1.98 Å) of the 3-His triad in the resting state of the enzyme, as obtained by EXAFS studies. The diketonate substrate-adduct complexes [Fe(L)(acacR)](SO3CF3) (R = Me, Ph) of 1-3 have been obtained using Na(acacR) in acetonitrile. The Fe2+/3+ redox potentials of the complexes (1.05 to 1.2 V vs. Fc/Fc+) and their substrate adducts (1.02 to 1.19 V vs. Fc/Fc+) appeared at almost the same redox barrier. All diketonate adducts exhibit two Fe(ii) → acac MLCT bands around 338 to 348 and 430 to 490 nm. Exposure of these adducts to O2 results in the decay of both MLCT bands with a rate of (kO2) 5.37 to 9.41 × 10-3 M-1 s-1. The kO2 values were concomitantly accelerated 20 to 50 fold by the addition of H+ (acetic acid), which nicely models the rate enhancement in the enzyme kinetics by the glutamate residue (Glu98). The oxygenation of the phenyl-substituted adducts yielded benzoin and benzoic acid (40% to 71%) as cleavage products in the presence of H+ ions. Isotope-labeling experiments using 18O2 showed 47% incorporation of 18O in benzoic acid, which reveals that the oxygen originates from dioxygen. Thus, the present model complexes exhibit very similar chemical surroundings to the active site of DKDO and mimic its functions elegantly. On the basis of these results, the C-C bond cleavage reaction mechanism is discussed.
Collapse
Affiliation(s)
- Ramamoorthy Ramasubramanian
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| | | | - Ferdinand Belaj
- Institute of Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| |
Collapse
|
42
|
Song H, Naowarojna N, Cheng R, Lopez J, Liu P. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:1-61. [PMID: 31564305 DOI: 10.1016/bs.apcsb.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-heme iron enzymes catalyze a wide range of chemical transformations, serving as one of the key types of tailoring enzymes in the biosynthesis of natural products. Hydroxylation reaction is the most common type of reactions catalyzed by these enzymes and hydroxylation reactions have been extensively investigated mechanistically. However, the mechanistic details for other types of transformations remain largely unknown or unexplored. In this paper, we present some of the most recently discovered transformations, including endoperoxidation, orthoester formation, cyclopropanation, oxidative C-C and C-S bond formation reactions. In addition, many of them are multi-functional enzymes, which further complicate their mechanistic investigations. In this work, we summarize their biosynthetic pathways, with special emphasis on the mechanistic details available for these newly discovered enzymes.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, People's Republic of China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States
| |
Collapse
|
43
|
Anandababu K, Ramasubramanian R, Wadepohl H, Comba P, Johnee Britto N, Jaccob M, Mayilmurugan R. A Structural and Functional Model for the Tris-Histidine Motif in Cysteine Dioxygenase. Chemistry 2019; 25:9540-9547. [PMID: 31090109 DOI: 10.1002/chem.201901005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Indexed: 01/14/2023]
Abstract
The iron(II) complexes [Fe(L)(MeCN)3 ](SO3 CF3 )2 (L are two derivatives of tris(2-pyridyl)-based ligands) have been synthesized as models for cysteine dioxygenase (CDO). The molecular structure of one of the complexes exhibits octahedral coordination geometry and the Fe-Npy bond lengths [1.953(4)-1.972(4) Å] are similar to those in the Cys-bound FeII -CDO; Fe-NHis : 1.893-2.199 Å. The iron(II) centers of the model complexes exhibit relatively high FeIII/II redox potentials (E1/2 =0.988-1.380 V vs. ferrocene/ferrocenium electrode, Fc/Fc+ ), within the range for O2 activation and typical for the corresponding nonheme iron enzymes. The reaction of in situ generated [Fe(L)(MeCN)(SPh)]+ with excess O2 in acetonitrile (MeCN) yields selectively the doubly oxygenated phenylsulfinic acid product. Isotopic labeling studies using 18 O2 confirm the incorporation of both oxygen atoms of O2 into the product. Kinetic and preliminary DFT studies reveal the involvement of an FeIII peroxido intermediate with a rhombic S= 1 / 2 FeIII center (687-696 nm; g≈2.46-2.48, 2.13-2.15, 1.92-1.94), similar to the spectroscopic signature of the low-spin Cys-bound FeIII CDO (650 nm, g≈2.47, 2.29, 1.90). The proposed FeIII peroxido intermediates have been trapped, and the O-O stretching frequencies are in the expected range (approximately 920 and 820 cm-1 for the alkyl- and hydroperoxido species, respectively). The model complexes have a structure similar to that of the enzyme and structural aspects as well as the reactivity are discussed.
Collapse
Affiliation(s)
- Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | - Ramamoorthy Ramasubramanian
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | | | - Madhavan Jaccob
- Department of Chemistry, Loyola College, Chennai, 600034, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| |
Collapse
|
44
|
Zeb N, Rashid MH, Mubarak MQE, Ghafoor S, de Visser SP. Flavonol biosynthesis by nonheme iron dioxygenases: A computational study into the structure and mechanism. J Inorg Biochem 2019; 198:110728. [PMID: 31203088 DOI: 10.1016/j.jinorgbio.2019.110728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Plants produce flavonol compounds for vital functions regarding plant growth, fruit and flower colouring as well as fruit ripening processes. Several of these biosynthesis steps are stereo- and regioselective and are being carried out by nonheme iron enzymes. Using density functional theory calculations on a large active site model complex of flavanone-3β-hydroxylase (FHT), we established the mechanism for conversion of naringenin to its dihydroflavonol, which is a key step in the mechanism of flavonol biosynthesis. The reaction starts with dioxygen binding to the iron(II) centre and a reaction with α-ketoglutarate co-substrate gives succinate, an iron(IV)-oxo species and CO2 with large exothermicity and small reaction barriers. The rate-determining reaction step in the mechanism; however, is hydrogen atom abstraction of an aliphatic CH bond by the iron(IV)-oxo species. We identify a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium. In a final step the OH and substrate radicals combine to form the alcohol product with a barrier of several kcal mol-1. We show that the latter is the result of geometric constraints in the active site pocket. Furthermore, the calculations show that a weak tertiary CH bond is shielded from the iron(IV)-oxo species in the substrate binding position and therefore the enzyme is able to activate a stronger CH bond. As such, the flavanone-3β-hydroxylase enzyme reacts regioselectively with one specific CH bond of naringenin by avoiding activation of weaker bonds through tight substrate and oxidant positioning.
Collapse
Affiliation(s)
- Neelam Zeb
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad H Rashid
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sidra Ghafoor
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Department of Chemistry, Government College University Faisalabad, Jhang Road, 3800 Faisalabad, Pakistan
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
45
|
Substrate promiscuity and active site differences in gentisate 1,2-dioxygenases: electron paramagnetic resonance study. J Biol Inorg Chem 2019; 24:287-296. [PMID: 30712085 DOI: 10.1007/s00775-019-01646-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Gentisate 1,2-dioxygenases (GDOs) are non-heme iron enzymes that catalyze the oxidation of dihydroxylated aromatic substrate, gentisate (2,5-dihydroxybenzoate). Salicylate 1,2-dioxygenase (SDO), a member of the GDO family, performs the ring scission of monohydroxylated substrates such as salicylate, thereby oxidizing a broader range of substrates compared to GDOs. Although the two types of enzymes share a high degree of sequence similarity, the origin of substrate specificity between SDO and GDOs is not understood. We present electron paramagnetic resonance (EPR) investigation of ferrous-nitrosyl complexes of SDO and a GDO from the bacterium Corynebacterium glutamicum (GDOCg). The EPR spectra of these complexes, which mimic the Fe-substrate-O2 intermediates in the catalytic cycle, show unexpected differences in the substrate binding mode and the coordination geometry of the metal cofactor in the two enzymes. Binding of substrate to the ferrous center increases the symmetry of the Fe(II)-NO complex in SDO, while a reverse trend is observed in GDOCg where substrate ligation reduces the symmetry of the nitrosyl complex. Identical EPR spectra were obtained for the NO derivatives of a variant of GDOCg(A112G), which can oxidize salicylate, and wild-type GDOCg revealing that the A112G mutation does not alter the nature of the Fe-substrate-O2 ternary complex.
Collapse
|
46
|
Paudel J, Pokhrel A, Kirk ML, Li F. Remote Charge Effects on the Oxygen-Atom-Transfer Reactivity and Their Relationship to Molybdenum Enzymes. Inorg Chem 2019; 58:2054-2068. [PMID: 30673233 DOI: 10.1021/acs.inorgchem.8b03093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the syntheses, crystal structures, and characterization of the novel cis-dioxomolybdenum(VI) complexes [Tpm*MoVIO2Cl](MoO2Cl3) (1) and [Tpm*MoVIO2Cl](ClO4) (2), which are supported by the charge-neutral tris(3,5-dimethyl-1-pyrazolyl)methane (Tpm*) ligand. A comparison between isostructural [Tpm*MoVIO2Cl]+ and Tp*MoVIO2Cl [Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate] reveals the effects of one unit of overall charge difference on their spectroscopic and electrochemical properties, geometric and electronic structures, and O-atom-transfer (OAT) reactivities, providing new insight into pyranopterin molybdoenzyme OAT reactivity. Computational studies of these molecules indicate that the delocalized positive charge lowers the lowest unoccupied molecular orbital (LUMO) energy of cationic [Tpm*MoO2Cl]+ relative to Tp*MoO2Cl. Despite their virtually identical geometric structures revealed by crystal structures, the MoVI/MoV redox potential of 2 is increased by 350 mV relative to that of Tp*MoVIO2Cl. This LUMO stabilization also contributes to an increased effective electrophilicity of [Tpm*MoO2Cl]+ relative to that of Tp*MoO2Cl, resulting in a more favorable resonant interaction between the molydenum complex LUMO and the highest occupied molecular orbital (HOMO) of the PPh3 substrate. This leads to a greater thermodynamic driving force, an earlier transition state, and a lowered activation barrier for the orbitally controlled first step of the OAT reaction in the Tpm* system relative to the Tp* system. An Eyring plot analysis shows that this initial step yields an O≡MoIV-OPPh3 intermediate via an associative transition state, and the reaction is ∼500-fold faster for 2 than for Tp*MoO2Cl. The second step of the OAT reaction entails solvolysis of the O≡MoIV-OPPh3 intermediate to afford the solvent-substituted MoIV product and is 750-fold faster for the Tpm* system at -15 °C compared to the Tp* system. The observed rate enhancement for the second step is ascribed to a switch of the reaction mechanism from a dissociative pathway for the Tp* system to an alternative associative pathway for the Tpm* system. This is due to a more Lewis acidic MoIV center in the Tpm* system.
Collapse
Affiliation(s)
- Jaya Paudel
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Amrit Pokhrel
- Department of Chemistry and Chemical Biology , The University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology , The University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Feifei Li
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| |
Collapse
|
47
|
Wang D, Gardinier JR, Lindeman SV. Iron( ii) tetrafluoroborate complexes of new tetradentate C-scorpionates as catalysts for the oxidative cleavage of trans-stilbene with H 2O 2. Dalton Trans 2019; 48:14478-14489. [DOI: 10.1039/c9dt02829c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron(ii) complexes of two new tetradentate C-scorpionate ligands are characterized. Both catalyze stilbene cleavage using either H2O2 or a O2/photocatalyst oxidant.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry
- Marquette University
- Milwaukee
- USA
| | | | | |
Collapse
|
48
|
Banerjee A, Li J, Molenda MA, Brennessel WW, Chavez FA. A Biomimetic System for Studying Salicylate Dioxygenase. ACS SYMPOSIUM SERIES. AMERICAN CHEMICAL SOCIETY 2019; 1317:71-83. [PMID: 33967356 PMCID: PMC8101989 DOI: 10.1021/bk-2019-1317.ch004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the characterization of [Fe(T1Et4iPrIP)(sal)] (2) (T1Et4iPrIP = tris(1-ethyl-4-isopropyl-imidazolyl)phosphine; sal2- = salicylate dianion), which serves as a model for substrate-bound salicylate dioxygenase (SDO). Complex 2 crystallizes in the monoclinic space group P21/n with a = 10.7853(12) Å, b = 16.5060(19) Å, c = 21.217(2) Å, β = 94.489(2)°, and V = 3765.5(7) Å3. The structure consists of FeII bonded in distorted square pyramidal geometry (τ = 0.32) with two salicylate oxygens and two T1Et4iPrIP nitrogens serving as the base and the apical position occupied by the other ligand nitrogen. [Fe(T1Et4iPrIP)(OTf)2] (1), the precursor for 2, catalyzes the cleavage of 1,4-dihydroxy-2-naphthoate in the presence of O2. Complex 1 is also capable of cleaving the salicylate aromatic ring in the presence of H2O2. The progression of this reaction toward product formation involves an FeIII-phenoxide species.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, United States
| | - Jia Li
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, United States
| | - Monika A. Molenda
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, United States
| | - Ferman A. Chavez
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, United States
| |
Collapse
|
49
|
Timmins A, Fowler NJ, Warwicker J, Straganz GD, de Visser SP. Does Substrate Positioning Affect the Selectivity and Reactivity in the Hectochlorin Biosynthesis Halogenase? Front Chem 2018; 6:513. [PMID: 30425979 PMCID: PMC6218459 DOI: 10.3389/fchem.2018.00513] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
In this work we present the first computational study on the hectochlorin biosynthesis enzyme HctB, which is a unique three-domain halogenase that activates non-amino acid moieties tethered to an acyl-carrier, and as such may have biotechnological relevance beyond other halogenases. We use a combination of small cluster models and full enzyme structures calculated with quantum mechanics/molecular mechanics methods. Our work reveals that the reaction is initiated with a rate-determining hydrogen atom abstraction from substrate by an iron (IV)-oxo species, which creates an iron (III)-hydroxo intermediate. In a subsequent step the reaction can bifurcate to either halogenation or hydroxylation of substrate, but substrate binding and positioning drives the reaction to optimal substrate halogenation. Furthermore, several key residues in the protein have been identified for their involvement in charge-dipole interactions and induced electric field effects. In particular, two charged second coordination sphere amino acid residues (Glu223 and Arg245) appear to influence the charge density on the Cl ligand and push the mechanism toward halogenation. Our studies, therefore, conclude that nonheme iron halogenases have a chemical structure that induces an electric field on the active site that affects the halide and iron charge distributions and enable efficient halogenation. As such, HctB is intricately designed for a substrate halogenation and operates distinctly different from other nonheme iron halogenases.
Collapse
Affiliation(s)
- Amy Timmins
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| | - Nicholas J. Fowler
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Grit D. Straganz
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Institute of Molecular Biosciences, Graz University, Graz, Austria
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
50
|
Manna RN, Malakar T, Jana B, Paul A. Unraveling the Crucial Role of Single Active Water Molecule in the Oxidative Cleavage of Aliphatic C–C Bond of 2,4′-Dihydroxyacetophenone Catalyzed by 2,4′-Dihydroxyacetophenone Dioxygenase Enzyme: A Quantum Mechanics/Molecular Mechanics Investigation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rabindra Nath Manna
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tanmay Malakar
- Raman Center for Atomic, Molecular, and Optical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ankan Paul
- Raman Center for Atomic, Molecular, and Optical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|