1
|
Bădescu‐Singureanu CC, Nizovtsev AS, Pecoraro VL, Petoud S, Eliseeva SV. Enabling Visible Light Sensitization of Yb III, Nd III and Er III in Dimeric Ln III/Ga III Metallacrowns through Functionalization with Ru II Complexes for NIR-II Multiplex Imaging. Angew Chem Int Ed Engl 2025; 64:e202416101. [PMID: 39288073 PMCID: PMC11735903 DOI: 10.1002/anie.202416101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Multiplex imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides exciting opportunities for more precise understanding of biological processes and more accurate diagnosis of diseases by enabling real-time acquisition of images with improved contrast and spatial resolution in deeper tissues. Today, the number of imaging agents suitable for this modality remains very scarce. In this work, we have synthesized and fully characterized, including theoretical calculations, a series of dimeric LnIII/GaIII metallacrowns bearing RuII polypyridyl complexes, LnRu-3 (Ln=YIII, YbIII, NdIII, ErIII). Relaxed structures of YRu-3 in the ground and the excited electronic states have been calculated using dispersion-corrected density functional theory methods. Detailed photophysical studies of LnRu-3 have demonstrated that characteristic emission signals of YbIII, NdIII and ErIII in the NIR-II range can be sensitized upon excitation in the visible range through RuII-centered metal-to-ligand charge transfer (MLCT) states. We have also showed that these NIR-II signals are unambiguously detected in an imaging experiment using capillaries and biological tissue-mimicking phantoms. This work opens unprecedented perspectives for NIR-II multiplex imaging using LnIII-based molecular compounds.
Collapse
Affiliation(s)
| | - Anton S. Nizovtsev
- Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of Sciences3 Academician Lavrentiev AvenueNovosibirsk630090Russia
- Novosibirsk State University2 Pirogov StreetNovosibirsk630090Russia
| | - Vincent L. Pecoraro
- Department of ChemistryWillard H. Dow LaboratoriesUniversity of MichiganAnn ArborMichigan48109-1055United States
| | - Stéphane Petoud
- Centre de Biophysique MoléculaireCNRS UPR 4301Université d'OrléansRue Charles SadronOrléans45071France
| | - Svetlana V. Eliseeva
- Centre de Biophysique MoléculaireCNRS UPR 4301Université d'OrléansRue Charles SadronOrléans45071France
| |
Collapse
|
2
|
Graczyk D, Cowin RA, Chekulaev D, Haigh MA, Scattergood PA, Quinn SJ. Study of the Photophysical Properties and the DNA Binding of Enantiopure [Cr(TMP) 2(dppn)] 3+ Complex. Inorg Chem 2024; 63:23620-23629. [PMID: 39626123 DOI: 10.1021/acs.inorgchem.4c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The preparation, electrochemistry and photophysical properties of a heteroleptic chromium(III) polypyridyl complex rac-[Cr(TMP)2(dppn)]3+ (1) containing two 3,4,7,8-tetramethyl-1,10-phenanthroline (TMP) ligands and the π-extended benzodipyrido[3,2-a:2',3'-c]phenazine (dppn) ligand are reported. The visible absorption spectrum of 1 reveals distinct bands between 320 and 420 nm characteristic of dppn-based ligand-centered transitions, with 1 found to be nonemissive in aqueous solution but weakly luminescent in aerated acetonitrile solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of 1 leads to initial population of a ligand-to-metal charge transfer (LMCT) state which evolves within tens of ps to form a dppn-localized intraligand (3IL) state which persists for longer than 7 ns and efficiently sensitizes singlet oxygen. Chiral resolution and DNA binding of the lambda and delta enantiomers of 1 to four different DNA systems is reported. In all cases the lambda enantiomer shows greater affinity for DNA and in particular AT-rich DNA. Thermal denaturation reveals that the lambda enantiomer stabilizes the DNA more. There is also a greater stabilization of the AT-containing DNA sequences compared to GC DNA.
Collapse
Affiliation(s)
- Daniel Graczyk
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rory A Cowin
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S1 3HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S1 3HF, U.K
| | - Maisie A Haigh
- Department of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
3
|
Montesdeoca N, Mohr JM, Kruss S, Karges J. Shift of cell-death mechanisms in primary human neutrophils with a ruthenium photosensitizer. J Biol Inorg Chem 2024:10.1007/s00775-024-02088-4. [PMID: 39673631 DOI: 10.1007/s00775-024-02088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Primary human neutrophils are the most abundant human white blood cells and are central for innate immunity. They act as early responders at inflammation sites, guided by chemotactic gradients to find infection or inflammation sites. Neutrophils can undergo both apoptosis as well as NETosis. NETosis is a form of neutrophil cell death that releases chromatin-based extracellular traps (NETs) to capture and neutralize pathogens. Understanding or controlling the balance between these cell-death mechanisms is crucial. In this study, the chemical synthesis and biologic assessment of a ruthenium complex as a light-activated photosensitizer that creates reactive oxygen species (ROS) in primary human neutrophils is reported. The ruthenium complex remains non-toxic in the dark. However, upon exposure to blue light at 450 nm, it exhibits potent cytotoxic effects in both cancerous and non-cancerous cell lines. Interestingly, the metal complex shifts the cell-death mechanism of primary human neutrophils from NETosis to apoptosis. Cells irradiated directly by the light source immediately undergo apoptosis, whereas those further away from the light source perform NETosis at a slower rate. This indicates that high ROS levels trigger apoptosis and lower ROS levels NETosis. The ability to control the type of cell death undergone in primary human neutrophils could have implications in managing acute and chronic infectious diseases.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Jennifer M Mohr
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sebastian Kruss
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
4
|
Hammecke H, Fritzler D, Vashistha N, Jin P, Dietzek-Ivanšić B, Wang C. 100 μs Luminescence Lifetime Boosts the Excited State Reactivity of a Ruthenium(II)-Anthracene Complex in Photon Upconversion and Photocatalytic Polymerizations with Red Light. Chemistry 2024; 30:e202402679. [PMID: 39298687 DOI: 10.1002/chem.202402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
The triplet excited state lifetime of a photosensitizer is an essential parameter for diffusion-controlled energy- and electron-transfer, which occurs usually in a competitive manner to the intrinsic decay of a triplet excited state. Here we show the decisive role of luminescence lifetime in the triplet excited state reactivity toward energy- and electron transfer. Anchoring two phenyl anthracene chromophores to a ruthenium(II) polypyridyl complex (RuII ref) leads to a RuII triad with a luminescence lifetime above 100 μs, which is more than 40 times longer than that of the prototypical complex. The obtained RuII triad sensitizes energy transfer to anthracene-based annihilators more efficiently than RuII ref and enables red-to-blue photon upconversion with a pseudo anti-Stokes shift of 0.94 eV and a moderate upconversion efficiency near 1 % in aerated solution. Particularly, RuII triad allows rapid photoredox catalytic polymerizations of acrylate and acrylamide monomers under aerobic condition with red light, which are kinetically hindered for RuII ref. Our work shows that excited state lifetime of a photosensitizer governs the dynamics of the excited state reactions, which seems an overlooked but important aspect for photochemistry.
Collapse
Affiliation(s)
- Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Dennis Fritzler
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Nikita Vashistha
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Benjamin Dietzek-Ivanšić
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
5
|
Yakovlev IA, Golubeva JA, Klyushova LS, Kostin GA, Mikhailov AA. Photoinduced cytotoxic activity of a rare ruthenium nitrosyl phenanthroline complex showing NO generation in human cells. Dalton Trans 2024; 53:17642-17653. [PMID: 39415592 DOI: 10.1039/d4dt02653e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A new nitro-nitrosyl complex [RuNO(Phen)(NO2)2OH] (1) was synthesized and characterized by X-ray diffraction, where Phen = 1,10-phenanthroline. The complex was crystallized in two different modifications without (1) and with a solvent molecule of DMF (1a). The photolysis process together with the determination of the quantum yield of NO release was investigated in acetonitrile solution using a special flow-through system for the simultaneous registration of infrared (IR) and optical absorption (UV-vis) spectra under irradiation with 450 nm light. The quantum yield of photoinduced NO release was 4.0 ± 0.2%. DFT calculations showed that the main contribution to the absorption band at 450 nm is made by the HOMO/HOMO-1 → LUMO transitions, which are represented by the transfer of electron density from the -OH and -NO2 ligands to the orbitals located on the Ru-NO bond. The dark and photoinduced cytotoxicity of the complex was studied against the human breast adenocarcinoma (MCF-7) and lung carcinoma (A549) cell lines and human non-tumor lung fibroblasts (MRC5). The complex shows a low cytotoxicity on MCF-7 cells (ICdark50 = 90.6 ± 6.2 μM and ICirr.50 = 95.3 ± 11.4 μM) and a moderate dark cytotoxicity on A549 and MRC5 cells (ICdark50 = 33.4 ± 2.6 μM and ICdark50 = 62.6 ± 3.1 μM, respectively), which slightly increases after irradiation (ICirr.50 = 21.2 ± 3.3 μM and ICirr.50 = 47.2 ± 2.3 μM, respectively).
Collapse
Affiliation(s)
- Ivan A Yakovlev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Julia A Golubeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Lyubov S Klyushova
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia
| | - Gennadiy A Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | | |
Collapse
|
6
|
Das S, Sahoo A, Baitalik S. Advancing Molecular-Scale Logic Devices through Multistage Switching in a Luminescent Bimetallic Ru(II)-Terpyridine Complex. Inorg Chem 2024; 63:14933-14942. [PMID: 39091180 DOI: 10.1021/acs.inorgchem.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Stimuli-responsive multistep switching phenomena of a luminescent bimetallic Ru(II) complex are employed herein to fabricate multiple configurable logic devices. The complex exhibits "off-on" and "on-off" emission switching upon alternative treatment with visible and UV light. Additionally, remarkable augmentation of the rate as well as quantum yield of photoisomerization was achieved via the use of a chemical oxidant (Ce4+) as well as a reductant (metallic sodium). Upon exploiting the emission spectral response of the complex, several advanced Boolean logic functions, including IMPLICATION as well as 2-input 2-output and 3-input 2-output complex combinational logic gates, are successfully implemented. Additionally, by utilizing the vast efficacy of Python, a novel "logic_circuit" model is devised that is capable of making accurate decisions under the influence of various input combinations. This model transcends traditional Boolean logic gates, offering flexibility and intuition to design logical functions tailored to specific chemical contexts. By integrating principles of logic circuits with chemical processes, this innovative approach enables structure determination of the chemical states based on input conditions, thereby unlocking avenues for exploring intricate interactions and reactions beyond conventional Boolean logic paradigms.
Collapse
Affiliation(s)
- Soumi Das
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
7
|
Zanchet A, Roncero O, Karabulut E, Solem N, Romanzin C, Thissen R, Alcaraz C. The role of intersystem crossing in the reactive collision of S+(4S) with H2. J Chem Phys 2024; 161:044302. [PMID: 39037135 DOI: 10.1063/5.0214447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
We report a study on the reactive collision of S+(4S) with H2, HD, and D2 combining guided ion beam experiments and quantum-mechanical calculations. It is found that the reactive cross sections reflect the existence of two different mechanisms, one being spin-forbidden. Using different models, we demonstrate that the spin-forbidden pathway follows a complex mechanism involving three electronic states instead of two as previously thought. The good agreement between theory and experiment validates the methodology employed and allows us to fully understand the reaction mechanism. This study also provides new fundamental insights into the intersystem crossing process.
Collapse
Affiliation(s)
- Alexandre Zanchet
- Instituto de Física Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Ezman Karabulut
- Vocational School of Health Services, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Nicolas Solem
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Claire Romanzin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Roland Thissen
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Christian Alcaraz
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Steinke SJ, Dunbar MN, Amalfi Suarez MA, Turro C. Ru(II) Complexes with Absorption in the Photodynamic Therapy Window: 1O 2 Sensitization, DNA Binding, and Plasmid DNA Photocleavage. Inorg Chem 2024; 63:11450-11458. [PMID: 38823006 DOI: 10.1021/acs.inorgchem.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Two Ru(II) complexes, [Ru(pydppn)(bim)(py)]2+ [2; pydppn = 3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene; bim = 2,2'-bisimidazole; py = pyridine] and [Ru(pydppn)(Me4bim)(py)]2+ [3; Me4bim = 2,2'-bis(4,5-dimethylimidazole)], were synthesized and characterized, and their photophysical properties, DNA binding, and photocleavage were evaluated and compared to [Ru(pydppn)(bpy)(py)]2+ (1; bpy = 2,2'-bipyridine). Complexes 2 and 3 exhibit broad 1MLCT (metal-to-ligand charge transfer) transitions with maxima at ∼470 nm and shoulders at ∼525 and ∼600 nm that extend to ∼800 nm. These bands are red-shifted relative to those of 1, attributed to the π-donating ability of the bim and Me4bim ligands. A strong signal at 550 nm is observed in the transient absorption spectra of 1-3, previously assigned as arising from a pydppn-centered 3ππ* state, with lifetimes of ∼19 μs for 1 and 2 and ∼270 ns for 3. A number of methods were used to characterize the mode of binding of 1-3 to DNA, including absorption titrations, thermal denaturation, relative viscosity changes, and circular dichroism, all of which point to the intercalation of the pydpppn ligand between the nucleobases. The photocleavage of plasmid pUC19 DNA was observed upon the irradiation of 1-3 with visible and red light, attributed to the sensitized generation of 1O2 by the complexes. These findings indicate that the bim ligand, together with pydppn, serves to shift the absorption of Ru(II) complexes to the photodynamic therapy window, 600-900 nm, and also extend the excited state lifetimes for the efficient production of cytotoxic singlet oxygen.
Collapse
Affiliation(s)
- Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - M Agustina Amalfi Suarez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Xu ZC, Ma XR, Zhang LJ, Chen HT, Qing DM, Li RT, Ye RR, Wang RR. Antifungal activity of ruthenium (II) complex combined with fluconazole against drug-resistant Candida albicans in vitro and its anti-invasive infection in vivo. J Inorg Biochem 2024; 255:112522. [PMID: 38522215 DOI: 10.1016/j.jinorgbio.2024.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
With the abuse of antibiotics and azoles, drug-resistant Candida albicans infections have increased sharply and are spreading rapidly, thereby significantly reducing the antifungal efficacy of existing therapeutics. Several patients die of fungal infections every year. Therefore, there is an urgent requirement to develop new drugs. Accordingly, we synthesized a series of polypyridyl ruthenium (II) complexes having the formula [Ru (NN)2 (bpm)] (PF6)2 (N-N = 2,2'-bipyridine) (bpy, in Ru1), 1,10-phenanthroline (phen, in Ru2), 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru3) (bpm = 2,2'-bipyrimidine) and studied their antifungal activities. Ru3 alone had no effect on the drug-resistant strains, but Ru3 combined with fluconazole (FLC) exhibited significant antifungal activity on drug-resistant strains. A high-dose combination of Ru3 and FLC exhibited direct fungicidal activity by promoting the accumulation of reactive oxygen species and damaging the cellular structure of C. albicans. Additionally, the combination of Ru3 and FLC demonstrated potent antifungal efficacy in vivo in a mouse model of invasive candidiasis. Moreover, the combination significantly improved the survival state of mice, restored their immune systems, and reduced renal injury. These findings could provide ideas for the development of ruthenium (II) complexes as novel antifungal agents for drug-resistant microbial stains.
Collapse
Affiliation(s)
- Zhi-Chang Xu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Li-Juan Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Hui-Ting Chen
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Ding-Mei Qing
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Rui-Rui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
10
|
Noakes F, Smitten KL, Maple LEC, Bernardino de la Serna J, Robertson CC, Pritchard D, Fairbanks SD, Weinstein JA, Smythe CGW, Thomas JA. Phenazine Cations as Anticancer Theranostics †. J Am Chem Soc 2024; 146:12836-12849. [PMID: 38683943 PMCID: PMC11082890 DOI: 10.1021/jacs.4c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.
Collapse
Affiliation(s)
- Felicity
F. Noakes
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Kirsty L. Smitten
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Laura E. C. Maple
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
- Central
Laser
Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford, Didcot OX11 0QX, U.K.
| | - Craig C. Robertson
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Dylan Pritchard
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Simon D. Fairbanks
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Julia A. Weinstein
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Carl G. W. Smythe
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jim A. Thomas
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| |
Collapse
|
11
|
Sinha N, Wellauer J, Maisuradze T, Prescimone A, Kupfer S, Wenger OS. Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex. J Am Chem Soc 2024; 146:10418-10431. [PMID: 38588581 PMCID: PMC11027151 DOI: 10.1021/jacs.3c13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Light-triggered dissociation of ligands forms the basis for many compounds of interest for photoactivated chemotherapy (PACT), in which medicinally active substances are released or "uncaged" from metal complexes upon illumination. Photoinduced ligand dissociation is usually irreversible, and many recent studies performed in the context of PACT focused on ruthenium(II) polypyridines and related heavy metal complexes. Herein, we report a first-row transition metal complex, in which photoinduced dissociation and spontaneous recoordination of a ligand unit occurs. Two scorpionate-type tridentate chelates provide an overall six-coordinate arylisocyanide environment for chromium(0). Photoexcitation causes decoordination of one of these six ligating units and coordination of a solvent molecule, at least in tetrahydrofuran and 1,4-dioxane solvents, but far less in toluene, and below detection limit in cyclohexane. Transient UV-vis absorption spectroscopy and quantum chemical simulations point to photoinduced ligand dissociation directly from an excited metal-to-ligand charge-transfer state. Owing to the tridentate chelate design and the substitution lability of the first-row transition metal, recoordination of the photodissociated arylisocyanide ligand unit can occur spontaneously on a millisecond time scale. This work provides insight into possible self-healing mechanisms counteracting unwanted photodegradation processes and seems furthermore relevant in the contexts of photoswitching and (photo)chemical information storage.
Collapse
Affiliation(s)
- Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- School
of Chemical Sciences, Indian Institute of
Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Tamar Maisuradze
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Stephan Kupfer
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Coene J, Wilms S, Verhelst SHL. Photopharmacology of Protease Inhibitors: Current Status and Perspectives. Chemistry 2024; 30:e202303999. [PMID: 38224181 DOI: 10.1002/chem.202303999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Proteases are involved in many essential biological processes. Dysregulation of their activity underlies a wide variety of human diseases. Photopharmacology, as applied on various classes of proteins, has the potential to assist protease research by enabling spatiotemporal control of protease activity. Moreover, it may be used to decrease side-effects of protease-targeting drugs. In this review, we discuss the current status of the chemical design of photoactivatable proteases inhibitors and their biological application. Additionally, we give insight into future possibilities for further development of this field of research.
Collapse
Affiliation(s)
- Jonathan Coene
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Simon Wilms
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| |
Collapse
|
13
|
Das S, Bar M, Ganguly T, Baitalik S. Control of Photoisomerization Kinetics via Multistage Switching in Bimetallic Ru(II)-Terpyridine Complexes. Inorg Chem 2024; 63:6600-6615. [PMID: 38557011 DOI: 10.1021/acs.inorgchem.3c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, we carried out detailed experimental and theoretical investigation on photophysical, electrochemical, and photoisomerization behaviors of a new array of luminescent binuclear Ru(II) complexes derived from a phenylene-vinylene-substituted terpyridyl ligand possessing RT lifetimes within 60.3-410.5 ns. The complexes experienced trans-to-cis isomerization in MeCN on irradiation with visible light, accompanied by significant changes in their absorption and emission spectral profiles. The reverse cis-to-trans process is also possible with the use of ultraviolet (UV) light. On conversion from trans to cis isomers, the emission intensity increases substantially, while for the reverse process, luminescence quenching occurs. Thus, "off-on" and "on-off" emission switching is facilitated upon treatment with visible and UV light alternatively. By the use of chemical oxidants (ceric ammonium nitrate and potassium permanganate) and reductants (metallic sodium) as well as light of appropriate wavelengths, multistate switching phenomena involving reversible oxidation-reduction and trans-cis isomerization have been achieved. Interestingly, the rate of this multistate photoswitching process becomes much faster compared to only two-state trans-cis isomerization of these complexes. Density functional theory (DFT) and time-dependent-DFT (TD-DFT) calculations are also performed to obtain a clear picture of the electronic environment of the complexes and also for the appropriate assignment of absorption and emission spectral bands.
Collapse
Affiliation(s)
- Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
14
|
Zheng M, Lin X, Xiong K, Zhang X, Chen Y, Ji L, Chao H. A hetero-bimetallic Ru(II)-Ir(III) photosensitizer for effective cancer photodynamic therapy under hypoxia. Chem Commun (Camb) 2024; 60:2776-2779. [PMID: 38357825 DOI: 10.1039/d4cc00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A hetero-bimetallic Ru(II)-Ir(III) photosensitizer was developed. Upon light exposure, contrary to the homogeneous Ru(II)-Ru(II) and Ir(III)-Ir(III) complexes that can only produce singlet oxygen, Ru(II)-Ir(III) can generate multiple reactive oxygen species and kill hypoxic tumors. This study presents the first example of a hetero-bimetallic type-I and type-II dual photosensitizer.
Collapse
Affiliation(s)
- Mengsi Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Xinlin Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Xiting Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
15
|
Hemmeter D, Merlinsky LS, Baraldo LM, Maier F, Williams FJ, Steinrück HP. Exploring the interfacial behavior of ruthenium complexes in ionic liquids: implications for supported ionic liquid phase catalysts. Phys Chem Chem Phys 2024; 26:7602-7610. [PMID: 38363127 DOI: 10.1039/d4cp00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The interaction of metal complexes with ionic liquids, with a particular focus on the stability and surface concentration of the metal centers, is crucial in applications involving catalysts based on supported ionic liquids. In this study, we synthesized the complexes [Ru(tpy)(bpy)Cl][PF6] and [Ru(tpy)(dcb)Cl][PF6] (tpy = 2,2',2''-terpyridine, bpy = 2,2'-bipyridine, dcb = 4,4'-dicarboxy-2,2'-bipyridine) and we prepared solutions using the ionic liquids (ILs) 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] and 1-butyl-3-methylimidazolium hexafluorophosphate [C4C1Im][PF6]. The chemical environment of the Ru(II) metal center and the interfacial behavior of the complexes in the different IL solutions were determined using angle-resolved X-ray photoelectron spectroscopy (ARXPS). In [C4C1Im][PF6], [Ru(tpy)(bpy)Cl][PF6] maintains its chemical structure, while in [C2C1Im][OAc], partial changes in the chemical environment of the Ru center are indicated by XPS, likely due to ligand exchange. The presence of carboxylic acid functional groups in the bipyridyl ligand seems to inhibit this ligand exchange. The investigated complexes do not exhibit surface activity but are depleted from the IL/gas interface. These findings hold significance for the design of new supported ionic liquid phase catalysts based on Ru complexes.
Collapse
Affiliation(s)
- Daniel Hemmeter
- Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, Germany.
| | - Luciano Sanchez Merlinsky
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis M Baraldo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, Germany.
| | - Federico J Williams
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, Germany.
| |
Collapse
|
16
|
Wei L, He X, Zhao D, Kandawa-Shultz M, Shao G, Wang Y. Biotin-conjugated Ru(II) complexes with AIE characteristics as mitochondria-targeted photosensitizers for enhancing photodynamic therapy by disrupting cellular redox balance. Eur J Med Chem 2024; 264:115985. [PMID: 38016298 DOI: 10.1016/j.ejmech.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The potential use of Ru(II) complexes as photosensitizers (PSs) in photodynamic therapy (PDT) has gained significant attention. In comparison with fluorophores with aggregation-caused quenching (ACQ), fluorophores with aggregation-induced emission (AIE) characteristics exhibit sustained fluorescence and dispersibility in aqueous solutions. PSs with AIE characteristics have received much attention in recent years. Herein, we reported two novel biotin-conjugated Ru(II) polypyridyl complexes (Ru1 and Ru2) with AIE characteristics. When exposed to 460 nm (10 mW cm-2) light, Ru1 and Ru2 exhibited outstanding photostability and photocatalytic activity. Ru1 and Ru2 could efficiently generate singlet oxygen and induce pUC19 DNA photolysis when exposed to 460 nm light. Interestingly, both Ru1 and Ru2 also functioned as catalysts for NADH oxidation when exposed to 460 nm light. The presence of biotin fragments in Ru1 and Ru2 enhanced the specific uptake of these complexes by tumor cells. Both complexes showed minimal toxicity to selected cells in the dark. Nevertheless, the phototoxicity of both complexes significantly increased upon 460 nm light irradiation for 15 min. Further experiments revealed that Ru2 primarily accumulated in mitochondria and might bind to mitochondrial DNA. Under 460 nm light irradiation, Ru2 induced the generation of reactive oxygen species (ROS) and NADH depletion disrupting intracellular redox homeostasis in A549 cells, activating the mitochondrial apoptosis pathway resulting in up-regulation of apoptotic marker caspase-3, effectively damaged A549 cell DNA and arrested A549 cell cycle in the S phase. In vivo anti-tumor experiments were conducted to assess the effects of Ru2 on tumor growth in A549 tumor-bearing mice. The results showed that Ru2 effectively inhibited tumor growth under 460 nm light irradiation conditions. These findings indicate that Ru2 has great potential as a targeted photosensitizer for mitochondrial targeting imaging and photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Lai Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiangdong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Martha Kandawa-Shultz
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, 13301, Namibia
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China.
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
17
|
Kostova I. Therapeutic and Diagnostic Agents based on Bioactive Endogenous and Exogenous Coordination Compounds. Curr Med Chem 2024; 31:358-386. [PMID: 36944628 DOI: 10.2174/0929867330666230321110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
Metal-based coordination compounds have very special place in bioinorganic chemistry because of their different structural arrangements and significant application in medicine. Rapid progress in this field increasingly enables the targeted design and synthesis of metal-based pharmaceutical agents that fulfill valuable roles as diagnostic or therapeutic agents. Various coordination compounds have important biological functions, both those initially present in the body (endogenous) and those entering the organisms from the external environment (exogenous): vitamins, drugs, toxic substances, etc. In the therapeutic and diagnostic practice, both the essential for all living organisms and the trace metals are used in metal-containing coordination compounds. In the current review, the most important functional biologically active compounds were classified group by group according to the position of the elements in the periodic table.
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav St., Sofia 1000, Bulgaria
| |
Collapse
|
18
|
Semionova VV, Pozdnyakov IP, Grivin VP, Eltsov IV, Vasilchenko DB, Polyakova EV, Melnikov AA, Chekalin SV, Wang L, Glebov EM. Primary processes in photophysics and photochemistry of a potential light-activated anti-cancer dirhodium complex. Photochem Photobiol Sci 2024; 23:153-162. [PMID: 38066379 DOI: 10.1007/s43630-023-00509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 02/02/2024]
Abstract
Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2…O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2…O2] complexes.
Collapse
Affiliation(s)
- Veronica V Semionova
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Vjacheslav P Grivin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Ilia V Eltsov
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Danila B Vasilchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Evgeniya V Polyakova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation
- Department of Physics, High School of Economy, Moscow, Russian Federation
| | - Sergei V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Evgeni M Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.
- Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
19
|
Cole HD, Vali A, Roque JA, Shi G, Kaur G, Hodges RO, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents. Inorg Chem 2023; 62:21181-21200. [PMID: 38079387 PMCID: PMC10754219 DOI: 10.1021/acs.inorgchem.3c03216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 μs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 μs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 μM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 μM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| |
Collapse
|
20
|
Ma Y, Zhang Z, Sun F, Mesdom P, Ji X, Burckel P, Gasser G, Li MH. Red-Light-Responsive Polypeptoid Nanoassemblies Containing a Ruthenium(II) Polypyridyl Complex with Synergistically Enhanced Drug Release and ROS Generation for Anticancer Phototherapy. Biomacromolecules 2023; 24:5940-5950. [PMID: 38033171 DOI: 10.1021/acs.biomac.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Polymer micelles/vesicles made of a red-light-responsive Ru(II)-containing block copolymer (PolyRu) are elaborated as a model system for anticancer phototherapy. PolyRu is composed of PEG and a hydrophobic polypeptoid bearing thioether side chains, 40% of which are coordinated with [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)](PF6)2 via the Ru-S bond, resulting in a 67 wt % Ru complex loading capacity. Red-light illumination induces the photocleavage of the Ru-S bond and produces [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)(H2O)](PF6)2. Meanwhile, ROS are generated under the photosensitization of the Ru complex and oxidize hydrophobic thioether to hydrophilic sulfoxide, causing the disruption of micelles/vesicles. During the disruption, ROS generation and Ru complex release are synergistically enhanced. PolyRu micelles/vesicles are taken up by cancer cells while they exhibit very low cytotoxicity in the dark. In contrast, they show much higher cytotoxicity under red-light irradiation. PolyRu micelles/vesicles are promising nanoassembly prototypes that protect metallodrugs in the dark but exhibit light-activated anticancer effects with spatiotemporal control for photoactivated chemotherapy and photodynamic therapy.
Collapse
Affiliation(s)
- Yandong Ma
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| | - Zhihua Zhang
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| | - Fan Sun
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| | - Pierre Mesdom
- Chimie ParisTech, Laboratory for Inorganic Chemistry, CNRS, Institute of Chemistry for Life and Health Sciences, PSL University, 75005, Paris, France
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Pierre Burckel
- CNRS, Institut de Physique du Globe de Paris, Université Paris-Cité, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemistry, CNRS, Institute of Chemistry for Life and Health Sciences, PSL University, 75005, Paris, France
| | - Min-Hui Li
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, 75005 Paris, France
| |
Collapse
|
21
|
Lanquist AP, Piechota EJ, Wickramasinghe LD, Marques Silva A, Thummel RP, Turro C. New Tridentate Ligand Affords a Long-Lived 3MLCT Excited State in a Ru(II) Complex: DNA Photocleavage and 1O 2 Production. Inorg Chem 2023; 62:15927-15935. [PMID: 37733276 DOI: 10.1021/acs.inorgchem.3c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Two new complexes, [Ru(tpy)(qdppz)](PF6)2 (1; qdppz = 2-(quinolin-8-yl)dipyrido[3,2-a:2',3'-c]phenazine, tpy = 2,2':6',2″-terpyridine) and [Ru(qdppz)2](PF6)2 (2), were investigated for their potential use as phototherapeutic agents through their ability to photosensitize the production of singlet oxygen, 1O2, upon irradiation with visible light. The complexes exhibit strong Ru(dπ) → qdppz(π*) metal-to-ligand charge transfer (MLCT) absorption with maxima at 485 and 495 nm for 1 and 2 in acetone, respectively, red-shifted from the Ru(dπ) → tpy(π*) absorption at 470 nm observed for [Ru(tpy)2]2+ (3) in the same solvent. Complexes 1 and 3 are not luminescent at room temperature, but 3MLCT emission is observed for 2 with maximum at 690 nm (λexc = 480 nm) in acetone. The lifetimes of the 3MLCT states of 1 and 2 were measured using transient absorption spectroscopy to be ∼9 and 310 ns in methanol, respectively, at room temperature (λexc = 490 nm). The bite angle of the qdppz ligand is closer to octahedral geometry than that of tpy, resulting in the longer lifetime of 2 as compared to those of 1 and 3. Arrhenius treatment of the temperature dependence of the luminescence results in similar activation energies, Ea, from the 3MLCT to the 3LF (ligand-field) state for the two complexes, 2520 cm-1 in 1 and 2400 cm-1 in 2. However, the pre-exponential factors differ by approximately two orders of magnitude, 2.3 × 1013 s-1 for 1 and 1.4 × 1011 s-1 for 2, which, together with differences in the Huang-Rhys factors, lead to markedly different 3MLCT lifetimes. Although both 1 and 2 intercalate between the DNA bases, only 2 is able to photocleave DNA owing to its 1O2 production upon irradiation with ΦΔ = 0.69. The present work highlights the profound effect of the ligand bite angle on the electronic structure, providing guidelines for extending the lifetime of 3MLCT Ru(II) complexes with tridentate ligands, a desired property for a number of applications.
Collapse
Affiliation(s)
- Austin P Lanquist
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric J Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Alexia Marques Silva
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Randolph P Thummel
- Department of Chemistry, University of Houston, Houston, Texas 77004, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Li H, Cheng S, Zhai J, Lei K, Zhou P, Cai K, Li J. Platinum based theranostics nanoplatforms for antitumor applications. J Mater Chem B 2023; 11:8387-8403. [PMID: 37581251 DOI: 10.1039/d3tb01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Platinum (Pt) based nanoplatforms are biocompatible nanoagents with photothermal antitumor performance, while exhibiting excellent radiotherapy sensitization properties. Pt-nanoplatforms have extensive research prospects in the realm of cancer treatment due to their highly selective and minimally invasive treatment mode with low damage, and integrated diagnosis and treatment with image monitoring and collaborative drug delivery. Platinum based anticancer chemotherapeutic drugs can kill tumor cells by damaging DNA through chemotherapy. Meanwhile, Pt-nanoplatforms also have good electrocatalytic activity, which can mediate novel electrodynamic therapy. Simultaneously, Pt(II) based compounds also have potential as photosensitizers in photodynamic therapy for malignant tumors. Pt-nanoplatforms can also modulate the immunosuppressive environment and synergistically ablate tumor cells in combination with immune checkpoint inhibitors. This article reviews the research progress of platinum based nanoplatforms in new technologies for cancer therapy, starting from widely representative examples of platinum based nanoplatforms in chemotherapy, electrodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Finally, multimodal imaging techniques of platinum based nanoplatforms for biomedical diagnosis are briefly discussed.
Collapse
Affiliation(s)
- Heying Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Shaowen Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jingming Zhai
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Kun Lei
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Ping Zhou
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jinghua Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
23
|
Karges J. Encapsulation of Ru(II) Polypyridine Complexes for Tumor-Targeted Anticancer Therapy. BME FRONTIERS 2023; 4:0024. [PMID: 37849670 PMCID: PMC10392611 DOI: 10.34133/bmef.0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/02/2023] [Indexed: 10/19/2023] Open
Abstract
Ru(II) polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical, photochemical, and biological properties. Despite their promising therapeutic profile, the vast majority of compounds are associated with poor water solubility and poor cancer selectivity. Among the different strategies employed to overcome these pharmacological limitations, many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II) polypyridine complexes into nanoparticles. This article highlights recent developments in the design, preparation, and physicochemical properties of Ru(II) polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
24
|
Giacomazzo GE, Conti L, Fagorzi C, Pagliai M, Andreini C, Guerri A, Perito B, Mengoni A, Valtancoli B, Giorgi C. Ruthenium(II) Polypyridyl Complexes and Metronidazole Derivatives: A Powerful Combination in the Design of Photoresponsive Antibacterial Agents Effective under Hypoxic Conditions. Inorg Chem 2023; 62:7716-7727. [PMID: 37163381 DOI: 10.1021/acs.inorgchem.3c00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) are gaining momentum in photoactivated chemotherapy (PACT), thanks to the possibility of overcoming the classical reliance on molecular oxygen of photodynamic therapy while preserving the selective drug activation by using light. However, notwithstanding the intriguing perspectives, the translation of such an approach in the development of new antimicrobials has been only barely considered. Herein, MTZH-1 and MTZH-2, two novel analogues of metronidazole (MTZ), a mainstay drug in the treatment of anaerobic bacterial infections, were designed and inserted in the strained ruthenium complexes [Ru(tpy)(dmp)(MTZ-1)]PF6 (Ru2) and [Ru(tpy)(dmp)(MTZ-2)]PF6 (Ru3) (tpy = terpyridine, dmp = 2,9-dimethyl-1,10-phenanthroline) (Chart 1). Analogously to the parental compound [Ru(tpy)(dmp)(5NIM)]PF6 (Ru1) (5-nitroimidazolate), the Ru(II)-imidazolate coordination of MTZ derivatives resulted in promising Ru(II) photocages, capable to easily unleash the bioactive ligands upon light irradiation and increase the antibacterial activity against Bacillus subtilis, which was chosen as a model of Gram-positive bacteria. The photoreleased 5-nitroimidazole-based ligands led to remarkable phototoxicities under hypoxic conditions (<1% O2), with the lead compound Ru3 that exhibited the highest potency across the series, being comparable to the one of the clinical drug MTZ. Besides, the chemical architectures of MTZ derivatives made their interaction with NimAunfavorable, being NimA a model of reductases responsible for bacterial resistance against 5-nitroimidazole-based antibiotics, thus hinting at their possible use to combat antimicrobial resistance. This work may therefore provide fundamental knowledge in the design of novel photoresponsive tools to be used in the fight against infectious diseases. For the first time, the effectiveness of the "photorelease antimicrobial therapy" under therapeutically relevant hypoxic conditions was demonstrated.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Andreini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Brunella Perito
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
25
|
Xiong K, Wei F, Chen Y, Ji L, Chao H. Recent Progress in Photodynamic Immunotherapy with Metal-Based Photosensitizers. SMALL METHODS 2023; 7:e2201403. [PMID: 36549671 DOI: 10.1002/smtd.202201403] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Indexed: 05/17/2023]
Abstract
Cancer ranks as a leading cause of death. There is an urgent need to develop minimally invasive methods to eradicate tumors and prevent their recurrence. As a light-driven modality, photodynamic therapy takes advantage of high tumor selectivity and low normal tissue damage. However, it shows poor potential for preventing tumor recurrence. Immunotherapy is currently being used as an alternative treatment for the control of malignant diseases. Although immunotherapy can establish long-time immune memory and efficiently protects treated patients from cancer relapse, its clinical efficacy is limited by the minority of patients' responding rate. Recently, photodynamic immunotherapy, which utilizes photosensitizers as an immunotherapy trigger to exert synergistic effects of photodynamic therapy and tumor immunotherapy, has attracted considerable interest. Like all the newly proposed treatments, there is still room for improvement. In this mini review, the progress in photodynamic immunotherapy with metal-based photosensitizers is summarized. It is hoped that this review can give a broad update on photodynamic immunotherapy and inspire readers.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
26
|
Jiang L, Ma Y, Chen Y, Cai M, Wu Z, Xiong Y, Duan X, Liao X, Wang J. Multi-target antibacterial mechanism of ruthenium polypyridine complexes with anthraquinone groups against Staphylococcus aureus. RSC Med Chem 2023; 14:700-709. [PMID: 37122548 PMCID: PMC10131643 DOI: 10.1039/d2md00430e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Three new Ru(ii) complexes, [Ru(dtb)2PPAD](PF6)2 (Ru-1), [Ru(dmob)2PPAD](PF6)2 (Ru-2) and [Ru(bpy)2PPAD](PF6)2 (Ru-3) (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmob = 4,4'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine and PPAD = 2-(pyridine-3-yl)-1H-imidazo[4,5f][1.10]phenanthracene-9,10-dione), were synthesized and characterized by 1H NMR and 13C NMR spectroscopy, HRMS and HPLC. Among them, Ru-1 showed excellent antimicrobial activity against Gram-positive bacteria Staphylococcus aureus (minimum inhibitory concentration (MIC) = 1 μg mL-1) and low hemolytic and cytotoxic activity. In addition, Ru-1 showed obviously rapid bactericidal activity, low resistance rate, bacterial biofilm destroying activity and high biosafety in vivo. Moreover, skin infection models and a mouse model of sepsis indicated that the anti-infective efficacy of Ru-1 was comparable to that of vancomycin. Mechanism exploration results showed that the antibacterial behavior is probably related with targeting of the bacterial cell membrane and inhibiting topoisomerase I.
Collapse
Affiliation(s)
- Li Jiang
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yuanyuan Ma
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yiman Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Mengcheng Cai
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Zhixing Wu
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yanshi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Xuemin Duan
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Xiangwen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Jintao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| |
Collapse
|
27
|
Cytotoxicity Evaluation of Unmodified Paddlewheel Dirhodium(II,II)-Acetate/-Formamidinate Complexes and Their Axially Modified Low-Valent Metallodendrimers. Molecules 2023; 28:molecules28062671. [PMID: 36985643 PMCID: PMC10055960 DOI: 10.3390/molecules28062671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Two diphenyl formamidine ligands, four dirhodium(II,II) complexes, and three axially modified low-valent dirhodium(II,II) metallodendrimers were synthesized and evaluated as anticancer agents against the A2780, A2780cis, and OVCAR-3 human ovarian cancer cell lines. The dirhodium(II,II) complexes show moderate cytotoxic activity in the tested tumor cell lines, with acetate and methyl-substituted formamidinate compounds displaying increased cytotoxicity that is relative to cisplatin in the A2780cis cisplatin resistant cell line. Additionally, methyl- and fluoro-substituted formamidinate complexes showed comparable and increased cytotoxic activity in the OVCAR-3 cell line when compared to cisplatin. The low-valent metallodendrimers show some activity, but a general decrease in cytotoxicity was observed when compared to the precursor complexes in all but one case, which is where the more active acetate-derived metallodendrimer showed a lower IC50 value in the OVCAR-3 cell line in comparison with the dirhodium(II,II) tetraacetate.
Collapse
|
28
|
Liu X, Xie H, Zhuo S, Zhou Y, Selim MS, Chen X, Hao Z. Ru(II) Complex Grafted Ti 3C 2T x MXene Nano Sheet with Photothermal/Photodynamic Synergistic Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:958. [PMID: 36985852 PMCID: PMC10051588 DOI: 10.3390/nano13060958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
For a long time, the emergence of microbial drug resistance due to the abuse of antibiotics has greatly reduced the therapeutic effect of many existing antibiotics. This makes the development of new antimicrobial materials urgent. Light-assisted antimicrobial therapy is an alternative to antibiotic therapy due to its high antimicrobial efficiency and non-resistance. Here, we develop a nanocomposite material (Ru@MXene) which is based on Ru(bpy)(dcb)2+ connected to MXene nanosheets by ester bonding as a photothermal/photodynamic synergistic antibacterial material. The obtained Ru@MXene nanocomposites exhibit a strengthened antimicrobial capacity compared to Ru or MXene alone, which can be attributed to the higher reactive oxygen species (ROS) yield and the thermal effect. Once exposed to a xenon lamp, Ru@MXene promptly achieved almost 100% bactericidal activity against Escherichia coli (200 μg/mL) and Staphylococcus aureus (100 μg/mL). This is ascribed to its synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) capabilities. Consequently, the innovative Ru@MXene can be a prospective non-drug antimicrobial therapy that avoids antibiotic resistance in practice. Notably, this high-efficiency PTT/PDT synergistic antimicrobial material by bonding Ru complexes to MXene is the first such reported model. However, the toxic effects of Ru@MXene materials need to be studied to evaluate them for further medical applications.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongchi Xie
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Zhuo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanhong Zhou
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mohamed S. Selim
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Egyptian Petroleum Research Institute, Petroleum Application Department, Cairo 11727, Egypt
| | - Xiang Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Hao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
29
|
Silva MJSA, Vinck R, Wang Y, Saubaméa B, Tharaud M, Dominguez-Jurado E, Karges J, Gois PMP, Gasser G. Towards Selective Delivery of a Ruthenium(II) Polypyridyl Complex-Containing Bombesin Conjugate into Cancer Cells. Chembiochem 2023; 24:e202200647. [PMID: 36479913 DOI: 10.1002/cbic.202200647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
An increasing number of novel Ru(II) polypyridyl complexes have been successfully applied as photosensitizers (PSs) for photodynamic therapy (PDT). Despite recent advances in optimized PSs with refined photophysical properties, the lack of tumoral selectivity is often a major hurdle for their clinical development. Here, classical maleimide and versatile NHS-activated acrylamide strategies were employed to site-selectively conjugate a promising Ru(II) polypyridyl complex to the N-terminally Cys-modified Bombesin (BBN) targeting unit. Surprisingly, the decreased cell uptake of these novel Ru-BBN conjugates in cancer cells did not hamper the high phototoxic activity of the Ru-containing bioconjugates and even decreased the toxicity of the constructs in the absence of light irradiation. Overall, although deceiving in terms of selectivity, our new bioconjugates could still be useful for advanced cancer treatment due to their nontoxicity in the dark.
Collapse
Affiliation(s)
- Maria J S A Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging Facility, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006, Paris, France
| | - Mickaël Tharaud
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Elena Dominguez-Jurado
- Faculty of Pharmacy of Albacete, Universidad de Castilla-La Mancha, 02008, Albacete, Spain
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
30
|
The bromoporphyrins as promising anti-tumor photosensitizers in vitro. Photochem Photobiol Sci 2023; 22:427-439. [PMID: 36344865 DOI: 10.1007/s43630-022-00326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
The synthesis of ideal photosensitizers (PSs) is considered to be the most significant bottleneck in photodynamic therapy (PDT). To discover novel PSs with excellent photodynamic anti-tumor activities, a series of novel photosensitizers 5,15-diaryl-10,20-dibromoporphyrins (I1-6) were synthesized by a facile method. Compared with hematoporphyrin monomethyl ether (HMME) as the representative porphyrin-based photosensitizers, it is found that not only the longest absorption wavelength of all compounds was red-shifted to therapeutic window (660 nm) of photodynamic therapy, but also the singlet oxygen quantum yields were significantly increased. Furthermore, all compounds exhibited lower dark toxicity (except I2) and stronger phototoxicity (except I4) against Eca-109 tumor cells than HMME. Among them, I3 possessed the highest singlet oxygen quantum yield (ΦΔ = 0.205), the lower dark toxicity and the strongest phototoxicity (IC50 = 3.5 μM) in vitro. The findings indicated the compounds I3 had the potential to become anti-tumor agents for PDT.
Collapse
|
31
|
Atmaca GY, Elmalı FT, Erdoğmuş A. Improved singlet oxygen generation of axially ruthenium(II) complex substituted silicon(IV) phthalocyanine by sono-photochemical studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Zeng X, Wang Y, Huang YS, Han J, Sun W, Butt HJ, Liang XJ, Wu S. Amphiphilic Metallodrug Assemblies with Red-Light-Enhanced Cellular Internalization and Tumor Penetration for Anticancer Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205461. [PMID: 36366920 DOI: 10.1002/smll.202205461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Metallodrugs are widely used in cancer treatment. The modification of metallodrugs with polyethylene glycol (PEGylation) prolongs blood circulation and improves drug accumulation in tumors; it represents a general strategy for drug delivery. However, PEGylation hinders cellular internalization and tumor penetration, which reduce therapeutic efficacy. Herein, the red-light-enhanced cellular internalization and tumor penetration of a PEGylated anticancer agent, PEGylated Ru complex (Ru-PEG), are reported upon. Ru-PEG contains a red-light-cleavable PEG ligand, anticancer Ru complex moiety, and fluorescent pyrene group for imaging and self-assembly. Ru-PEG self-assembles into vesicles that circulate in the bloodstream and accumulate in the tumors. Red-light irradiation induces dePEGylation and changes the Ru-PEG vesicles to large compound micelles with smaller diameters and higher zeta potentials, which enhance tumor penetration and cellular internalization. Red-light irradiation also generates intracellular 1 O2 , which induces the death of cancer cells. This work presents a new strategy to enhance the cellular internalization and tumor penetration of anticancer agents for efficient phototherapy.
Collapse
Affiliation(s)
- Xiaolong Zeng
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yufei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Shuai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jianxiong Han
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian, 116024, China
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
33
|
Naskar N, Liu W, Qi H, Stumper A, Fischer S, Diemant T, Behm RJ, Kaiser U, Rau S, Weil T, Chakrabortty S. A Carbon Nanodot Based Near-Infrared Photosensitizer with a Protein-Ruthenium Shell for Low-Power Photodynamic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48327-48340. [PMID: 36269223 DOI: 10.1021/acsami.2c08585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Near-infrared (NIR) light-activated photosensitization represents an encouraging therapeutic method in photodynamic therapy, especially for deep tissue penetration. In this context, two-photon activation, i.e., utilization of photons with relatively low energy but high photon flux for populating a virtual intermediate state leading to an excited state, is attractive. This concept would be highly advantageous in photodynamic therapy due to its minimal side effects. Herein, we propose that the combination of plasma protein serum albumin (HSA) containing several Ru complexes and NIR two-photon excitable carbon nanodots (Cdots), termed HSA-Ru-Cdots, provides several attractive features for enhancing singlet oxygen formation within the mitochondria of cancer cells stimulated by two-photon excitation in the NIR region. HSA-Ru-Cdot features biocompatibility, water solubility, and photostability as well as uptake into cancer cells with an endosomal release, which is an essential feature for subcellular targeting of mitochondria. The NIR two-photon excitation induced visible emission of the Cdots allows fluorescence resonance energy transfer (FRET) to excite the metal-to-ligand charge transfer of the Ru moiety, and fluorescence-lifetime imaging microscopy (FLIM) has been applied to demonstrate FRET within the cells. The NIR two-photon excitation is indirectly transferred to the Ru complexes, which leads to the production of singlet oxygen within the mitochondria of cancer cells. Consequently, we observe the destruction of filamentous mitochondrial structures into spheroid aggregates within various cancer cell lines. Cell death is induced by the long-wavelength NIR light irradiation at 810 nm with a low power density (7 mW/cm2), which could be attractive for phototherapy applications where deeper tissue penetration is crucial.
Collapse
Affiliation(s)
- Nilanjon Naskar
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Weina Liu
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Haoyuan Qi
- Central Facility for Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Dresden University of Technology, Mommsenstrasse 4, D-01062Dresden, Germany
| | - Anne Stumper
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Thomas Diemant
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081Ulm, Germany
| | - R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081Ulm, Germany
| | - Ute Kaiser
- Central Facility for Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Tanja Weil
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Sabyasachi Chakrabortty
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
- Department of Chemistry, SRM University AP Andhra Pradesh, Andhra Pradesh522502, India
| |
Collapse
|
34
|
Jiang L, Ma Y, Xiong Y, Tan Y, Duan X, Liao X, Wang J. Ruthenium polypyridine complexes with triphenylamine groups as antibacterial agents against Staphylococcus aureus with membrane-disruptive mechanism. Front Chem 2022; 10:1035741. [PMID: 36300021 PMCID: PMC9589286 DOI: 10.3389/fchem.2022.1035741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the emergence and wide spread of methicillin-resistant Staphylococcus aureus, the treatment of this kind of infection becomes more and more difficult. To solve the problem of drug resistance, it is urgent to develop new antibiotics to avoid the most serious situation of no drug available. Three new Ru complexes [Ru (dmob)2PMA] (PF6)2 (Ru-1) [Ru (bpy)2PMA] (PF6)2 (Ru-2) and [Ru (dmb)2PMA] (PF6)2 (Ru-3) (dmob = 4,4′-dimethoxy-2,2′-bipyridine, bpy = 2,2′-bipyridine, dmb = 4,4′-dimethyl-2,2′-bipyridine and PMA = N-(4-(1H-imidazo [4,5-f] [1,10] phenanthrolin-2-yl) -4-methyl-N-(p-tolyl) aniline) were synthesized and characterized by 1H NMR, 13C NMR and HRMS. The detailed molecular structure of Ru-3 was determined by single crystal X-ray diffraction. Their antibacterial activities against Staphylococcus aureus (Staphylococcus aureus) were obvious and Ru-3 showed the best antibacterial effect with the minimum inhibitory concentration value of 4 μg ml−1. Therefore, further study on its biological activity showed that Ru-3 can effectively inhibit the formation of biofilm and destroy cell membrane. In vitro hemolysis test showed that Ru-3 has almost negligible cytotoxicity to mammalian red blood cells. In the toxicity test of wax moth insect model, Ru-3 exhibited low toxicity in vivo. These results, combined with histopathological studies, strongly suggest that Ru-3 was almost non-toxic. In addition, the synergistic effect of Ru-3 with common antibiotics such as ampicillin, chloramphenicol, tetracycline, kanamycin and gentamicin on Staphylococcus aureus was detected by chessboard method. Finally, in vivo results revealed that Ru-3 could obviously promote the wound healing of Staphylococcus aureus infected mice.
Collapse
Affiliation(s)
- Li Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yuanyuan Ma
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
- *Correspondence: Jintao Wang, ; Xuemin Duan, ; Xiangwen Liao,
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
- *Correspondence: Jintao Wang, ; Xuemin Duan, ; Xiangwen Liao,
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
- *Correspondence: Jintao Wang, ; Xuemin Duan, ; Xiangwen Liao,
| |
Collapse
|
35
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
36
|
Vinck R, Gandioso A, Burckel P, Saubaméa B, Cariou K, Gasser G. Red-Absorbing Ru(II) Polypyridyl Complexes with Biotin Targeting Spontaneously Assemble into Nanoparticles in Biological Media. Inorg Chem 2022; 61:13576-13585. [PMID: 35960605 DOI: 10.1021/acs.inorgchem.2c02214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four new ruthenium(II) polypyridyl complexes were synthesized to study the effect of poly(ethylene glycol) and/or biotin conjugation on their physical and biological properties, including their hydrophilicity, their cellular uptake, and their phototoxicity. Unexpectedly, these complexes self-assembled into nanoparticles upon dilution in biological media. This behavior leads to their accumulation in lysosomes following their internalization by cells. While a significant increase in cellular uptake was observed for the biotin-conjugated complexes, it did not result in an increase in their phototoxicity. However, their high phototoxicity upon irradiation at long wavelengths (645-670 nm) and their self-assembling behavior make them a promising backbone for the development of new lysosome-targeted photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, 75005 Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging platform, US 25 Inserm, UMS 3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
37
|
Guin PS, Roy S. Recently Reported Ru-Metal Organic Coordination Complexes and Their Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Lanthanide (III) complexes (Ln = Er and Yb) based on polypyridyl ligand: Synthesis, crystal structure, DNA-binding activity and interaction with human serum protein in vitro. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Photosubstitution reaction of a bidentate ligand in a Ru(II) complex in aqueous solution. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Chen M, Gong N, Sun W, Han J, Liu Y, Zhang S, Zheng A, Butt HJ, Liang XJ, Wu S. Red-Light-Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrug-Resistant Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201672. [PMID: 35665442 DOI: 10.1002/smll.202201672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
It is challenging to treat multidrug-resistant tumors because such tumors are resistant to a broad spectrum of structurally and functionally unrelated drugs. Herein, treatment of multidrug-resistant tumors using red-light-responsive metallopolymer nanocarriers that are conjugated with the anticancer drug chlorambucil (CHL) and encapsulated with the anticancer drug doxorubicin (DOX) is reported. An amphiphilic metallopolymer PolyRuCHL that contains a poly(ethylene glycol) (PEG) block and a red-light-responsive ruthenium (Ru)-containing block is synthesized. Chlorambucil is covalently conjugated to the Ru moieties of PolyRuCHL. Encapsulation of DOX into PolyRuCHL in an aqueous solution results in DOX@PolyRuCHL micelles. The DOX@PolyRuCHL micelles are efficiently taken up by the multidrug-resistant breast cancer cell line MCF-7R and which carries DOX into the cells. Free DOX, without the nanocarriers, is not taken up by MCF-7R or pumped out of MCF-7R via P-glycoproteins. Red light irradiation of DOX@PolyRuCHL micelles triggers the release of chlorambucil-conjugated Ru moieties and DOX. Both act synergistically to inhibit the growth of multidrug-resistant cancer cells. Furthermore, the inhibition of the growth of multidrug-resistant tumors in a mouse model using DOX@PolyRuCHL micelles is demonstrated. The design of red-light-responsive metallopolymer nanocarriers with both conjugated and encapsulated drugs opens up an avenue for photoactivated chemotherapy against multidrug-resistant tumors.
Collapse
Affiliation(s)
- Mingjia Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ningqiang Gong
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen Sun
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jianxiong Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuanli Liu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shouwen Zhang
- Neurophysiology Department, Beijing ChaoYang Emergency Medical Center, Beijing, 100122, China
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology of Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Paul S, Pathak S, Sahoo S, Maji RC, Bhattacharyya U, Nandi D, Chakravarty AR. Bichromophoric ruthenium(II) bis-terpyridine-BODIPY based photosensitizers for cellular imaging and photodynamic therapy. Dalton Trans 2022; 51:10392-10405. [PMID: 35758169 DOI: 10.1039/d2dt01137a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two multichromophoric homoleptic ruthenium(II) complexes [Ru(tpy-BODIPY)2]Cl2 (complexes 1 and 2, tpy = 4-phenyl-2,2:6,2-terpyridine, BODIPY = boron-dipyrromethene) were prepared, characterized and their phototherapeutic activity and bioimaging properties were studied. The complexes having structural similarity differ only by a phenylethynyl linker, and its overall influence on their physicochemical and photobiological behavior was evaluated. The terpyridine-BODIPY ligand L1 was structurally characterized by X-ray crystallography. The complexes showed intense absorption near 500 nm (ε: ∼1.5 × 105 M-1 cm-1 in DMSO), have a high singlet oxygen quantum yield (ΦΔ: ∼0.6 in DMSO), and displayed low photobleaching thus making them suitable for PDT applications. The complexes showed high DNA binding affinity and induced DNA damage on light activation via multiple types of ROS production. Confocal laser scanning microscopy experiments revealed their incorporation in the cancer cells and complex 1 predominantly accumulated in lysosomes. The complexes displayed a significant PDT effect in cancerous cells with visible light activation with a high photocytotoxicity index (PI) value in HeLa cells. Both type-I and type-II photosensitization processes were involved in the PDT effect. The photodynamic action of complex 2 initiated cellular apoptosis. Finally, their diagnostic potential was evaluated against clinically relevant 3D multicellular tumor spheroids (MCTs).
Collapse
Affiliation(s)
- Subhadeep Paul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Ram Chandra Maji
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Utso Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
42
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
43
|
Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, Zhang R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top Curr Chem (Cham) 2022; 380:29. [PMID: 35695976 PMCID: PMC9192387 DOI: 10.1007/s41061-022-00392-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes' evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
44
|
Margaret McCutcheon M, Freindorf M, Kraka E. Bonding in Nitrile Photo-dissociating Ruthenium Drug Candidates --A Local Vibrational Mode Study. J Chem Phys 2022; 157:014301. [DOI: 10.1063/5.0094567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigated bonding features 15 ruthenium complexes of the type [Ru(tpy)(L)-(CH3CN)]n+, containing the tridentate tpy ligand (tpy = 2,2':6',2'--terpyridine) and various bidentate ancillary ligands, 12 compounds originally synthesized by Loftus et al. (J. Phys. Chem. C 123, 10291-10299 (2019)) complemented with three additional complexes. The main focus of our work was to relate these local features to the experimental data of Loftus et al. which assess the efficiency of nitrile release in an indirect way via observed quantum yields for ruthenium water association after nitrile release. As a tool to quantitatively assess Ru-NC and Ru-L bonding we utilized the local vibrational mode analysis complemented by the topological analysis of the electron density and the natural bond orbital analysis. Interestingly, the stronger Ru-NC bonds have the greater observed quantum yields, leading to the conclusion that the observed quantum yields are a result of a complex interplay of several processes excluding a direct relationship between QY and Ru-NC or Ru-L bond strengths. We identified the ST splitting as one of the key players and not the Ru-NC bond strength, as one may have thought. In summary, this work has presented a modern computational tool set for the investigation of bonding features applied to nitrile photo-dissociating ruthenium drug candidates forming a valuable basis for future design and fine tuning of nitrile releasing ruthenium compounds, as well as for the understanding of how local properties affect overall experimental outcomes.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Chemistry, Southern Methodist University, United States of America
| |
Collapse
|
45
|
Synthesis, in vitro anticancer activity and reactions with biomolecule of gold(I)-NHC carbene complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Toupin N, Herroon MK, Thummel RP, Turro C, Podgorski I, Gibson H, Kodanko JJ. Metalloimmunotherapy with Rhodium and Ruthenium Complexes: Targeting Tumor-Associated Macrophages. Chemistry 2022; 28:e202104430. [PMID: 35235227 PMCID: PMC9541094 DOI: 10.1002/chem.202104430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 12/24/2022]
Abstract
Tumor associated macrophages (TAMs) suppress the cancer immune response and are a key target for immunotherapy. The effects of ruthenium and rhodium complexes on TAMs have not been well characterized. To address this gap in the field, a panel of 22 dirhodium and ruthenium complexes were screened against three subtypes of macrophages, triple-negative breast cancer and normal breast tissue cells. Experiments were carried out in 2D and biomimetic 3D co-culture experiments with and without irradiation with blue light. Leads were identified with cell-type-specific toxicity toward macrophage subtypes, cancer cells, or both. Experiments with 3D spheroids revealed complexes that sensitized the tumor models to the chemotherapeutic doxorubicin. Cell surface exposure of calreticulin, a known facilitator of immunogenic cell death (ICD), was increased upon treatment, along with a concomitant reduction in the M2-subtype classifier arginase. Our findings lay a strong foundation for the future development of ruthenium- and rhodium-based chemotherapies targeting TAMs.
Collapse
Affiliation(s)
- Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Mackenzie K Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| |
Collapse
|
47
|
Santos DA, Vu AT, Brennessel WW, Reed CR, Garner RN. Synthesis, crystal structure, electrochemical properties, and photophysical characterization of ruthenium(II) 4,4′-dimethoxy-2,2′-bipyridine polypyridine complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2066531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- David A. Santos
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
| | - An T. Vu
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
| | | | - Carly R. Reed
- Department of Chemistry and Biochemistry, SUNY Brockport, Brockport, NY, USA
| | - Robert N. Garner
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
48
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
49
|
Dakua KK, Rajak K, Mishra S. Spin–vibronic coupling in the quantum dynamics of a Fe(III) trigonal-bipyramidal complex. J Chem Phys 2022; 156:134103. [DOI: 10.1063/5.0080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of a high density of excited electronic states in the immediate vicinity of the optically bright state of a molecule paves the way for numerous photo-relaxation channels. In transition-metal complexes, the presence of heavy atoms results in a stronger spin–orbit coupling, which enables spin forbidden spin-crossover processes to compete with the spin-allowed internal conversion processes. However, no matter how effectively the states cross around the Franck–Condon region, the degree of vibronic coupling, of both relativistic and non-relativistic nature, drives the population distribution among these states. One such case is demonstrated in this work for the intermediate-spin Fe(III) trigonal-bipyramidal complex. A quantum dynamical investigation of the photo-deactivation mechanism in the Fe(III) system is presented using the multi-configurational time-dependent Hartree approach based on the vibronic Hamiltonian whose coupling terms are derived from the state-averaged complete active space self-consistent field/complete active space with second-order perturbation theory (CASPT2) calculations and spin–orbit coupling of the scalar-relativistic CASPT2 states. The results of this study show that the presence of a strong (non-relativistic) vibronic coupling between the optically bright intermediate-spin state and other low-lying states of the same spin-multiplicity overpowers the spin–orbit coupling between the intermediate-spin and high-spin states, thereby lowering the chances of spin-crossover while exhibiting ultrafast relaxation among the intermediate-spin states. In a special case, where the population transfer pathway via the non-relativistic vibronic coupling is blocked, the probability of the spin-crossover is found to increase. This suggests that a careful modification of the complex by incorporation of heavier atoms with stronger relativistic effects can enhance the spin-crossover potential of Fe(III) intermediate-spin complexes.
Collapse
Affiliation(s)
- Kishan Kumar Dakua
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Karunamoy Rajak
- Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
50
|
Castro Júnior JGM, Rocha WR. Theoretical investigation of [Ru(bpy) 2(HAT)] 2+ (HAT = 1,4,5,8,9,12-hexaazatriphenylene; bpy = 2,2'-bipyridine): Photophysics and reactions in excited state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120817. [PMID: 35030417 DOI: 10.1016/j.saa.2021.120817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In this article, Density Functional Theory based calculations, including dispersion corrections, PBE0(D3BJ)/Def2-TZVP(-f), were performed to elucidate the photophysics of the [Ru(bpy)2(HAT)]2+ complex in water. In addition, the thermodynamics of the charge and electron transfer excited state reactions of this complex with oxygen, nitric oxide and Guanosine-5'-monophosphate nucleotide (GMP) were investigated. The first singlet excite state, S1, strongly couples with the second and third triplet excited states (T2 and T3) giving rise to a high intersystem crossing rate of 6.26 × 1011 s-1 which is ∼106 greater than the fluorescence rate decay. The thermodynamics of the excited reactions revealed that all electron transfer reactions investigated are highly favorable, due mainly to the high stability of the triply charged radical cation 2PS•3+ species formed after the electron has been transferred. Excited state electron transfer from the GMP nucleotide to the complex is also highly favorable (ΔGsol = -92.6 kcal/mol), showing that this complex can be involved in the photooxidation of DNA, in line with experimental findings. Therefore, the calculations allow to conclude that the [Ru(bpy)2(HAT)]2+ complex can act in Photodynamic therapy through both mechanisms type I and II, through electron transfer from and to the complex and triplet-triplet energy transfer, generating ROS, RNOS and through DNA photooxidation. In addition, the work also opens a perspective of using this complex for the in-situ generation of the singlet nitroxyl (1NO-) species, which can have important applications for the generation of HNO and may have, therefore, important impact for physiological studies involving HNO.
Collapse
Affiliation(s)
- José Geraldo M Castro Júnior
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo(lab), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Pampulha, Belo Horizonte, MG, Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo(lab), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|