1
|
Ma M, Chen J, Dong L, Su Y, Tian S, Zhou Y, Li M. Polyoxometalates and their composites for antimicrobial applications: Advances, mechanisms and future prospects. J Inorg Biochem 2025; 262:112739. [PMID: 39293326 DOI: 10.1016/j.jinorgbio.2024.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The overuse of antibiotics can lead to the development of antibiotic-resistant bacteria, which can be even more difficult to treat and pose an even greater threat to public health. In order to address the issue of antibiotic-resistant bacteria, researchers currently are exploring alternative methods of sterilization that are both effective and sustainable. Polyoxometalates (POMs), as emerging transition metal oxide compounds, exhibit significant potential in various applications due to their remarkable tunable physical and chemical performance, especially in antibacterial fields. They constitute a diverse family of inorganic clusters, characterized by a wide array of composition, structures and charges. Presently, several studies indicated that POM-based composites have garnered extensive attention in the realms of the antibacterial field and may become promising materials for future medical applications. Moreover, this review will focus on exploring the antibacterial properties and mechanisms of different kinds of organic-inorganic hybrid POMs, POM-based composites, films and hydrogels with substantial bioactivity, while POM-based composites have the dual advantages of POMs and other materials. Additionally, the potential antimicrobial mechanisms have also been discussed, mainly encompassing cell wall/membrane disruption, intracellular material leakage, heightened intracellular reactive oxygen species (ROS) levels, and depletion of glutathione (GSH). These findings open up exciting possibilities for POMs as exemplary materials in the antibacterial arena and expand their prospective applications.
Collapse
Affiliation(s)
- Min Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Liuyang Dong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yue Su
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, China.
| | - Yuemin Zhou
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China.
| |
Collapse
|
2
|
Liu L, Cui L, Jiang J, Chen L, Zhao J. Nicotinate-Modified Lanthanide-Substituted Selenotungstate and Its Catalase-like Activity for the Detection of H 2O 2 and Ascorbic Acid. Inorg Chem 2024; 63:20531-20540. [PMID: 39423351 DOI: 10.1021/acs.inorgchem.4c03165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
A rigid nicotinate-modified lanthanide-substituted selenotungstate [H2N(CH3)2]6Na3H[La4SeW8(H2O)16(nica)2O28][SeW9O33]2·32H2O (1, Hnica = nicotinic acid) was synthesized and consists of two trivacant Keggin [B-α-SeW9O33]8- fragments and one unusual [SeW4O18]8- fragment bridged by a heterometallic [La4W4(H2O)16(nica)2O28]18- cluster. In the heterometallic cluster, two carboxyl O atoms in two nicotinate ligands directly coordinate with two W atoms in a stable C-O-W-O-W-O six-membered ring fashion. According to its catalase-like activity, 1 was utilized to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce blue oxidized TMB (ox-TMB), which can be used to establish a colorimetric sensing method for the detection of ascorbic acid. This work not only provides a promising platform for detecting H2O2 and ascorbic acid but also expands the application potential of polyoxometalate-based materials in biological and clinical analyses.
Collapse
Affiliation(s)
- Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Limin Cui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
3
|
Kondinski A. Configurational Isomerism in Bimetallic Decametalates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3624. [PMID: 39063915 PMCID: PMC11278824 DOI: 10.3390/ma17143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10-x'O28q. For x being a natural number in the range of 0 to 10, the algorithm identifies 318 unique configurational isomers. The algorithm is used to generate mixed molybdenum(VI)-vanadium(V) systems MoxV10-xO288- for x=0,1,2, and 3 that are of experimental relevance. The application of the density functional theory (DFT) effectively predicts stability trends that correspond well with empirical observations. In dimolybdenum-substituted decavanadate systems, we discover that a two-electron reduction preferentially stabilizes a configurational isomer due to the formation of metal-metal bonding. The particular polyoxometalate structure is of interest for further experimental studies.
Collapse
Affiliation(s)
- Aleksandar Kondinski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
4
|
Tsukamoto T. Recent advances in atomic cluster synthesis: a perspective from chemical elements. NANOSCALE 2024; 16:10533-10550. [PMID: 38651597 DOI: 10.1039/d3nr06522g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Despite its potential significance, "cluster chemistry" remains a somewhat marginalized topic within the chemistry field. However, atomic clusters with their unusual and unique structures and properties represent a novel material group situated between molecules and nanoparticles or solid matter, judging from both scientific standpoints and historical backgrounds. Surveying an entire material group, including all substances that can be regarded as a cluster, is essential for establishing cluster chemistry as a more prominent chemistry field. This review aims to provide a comprehensive understanding by categorizing, summarizing, and reviewing clusters, focusing on their constituent elements in the periodic table. However, because numerous disparate synthetic processes have been individually developed to date, their straightforward and uniform classification is a challenging task. As such, comprehensively reviewing this field from a chemical composition viewpoint presents significant obstacles. It should be therefore noted that despite adopting a synthetic method-based classification in this review, the discussions presented herein could entail inaccuracies. Nevertheless, this unorthodox viewpoint unfolds a new scientific perspective which accentuates the common ground between different development processes by emphasizing the lack of a definitive border between their synthetic methods and material groups, thus opening new avenues for cementing cluster chemistry as an attractive chemistry field.
Collapse
Affiliation(s)
- Takamasa Tsukamoto
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- JST PRESTO, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
5
|
Salazar Marcano DE, Lentink S, Chen JJ, Anyushin AV, Moussawi MA, Bustos J, Van Meerbeek B, Nyman M, Parac-Vogt TN. Supramolecular Self-Assembly of Proteins Promoted by Hybrid Polyoxometalates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312009. [PMID: 38213017 DOI: 10.1002/smll.202312009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Controlling the formation of supramolecular protein assemblies and endowing them with new properties that can lead to novel functional materials is an important but challenging task. In this work, a new hybrid polyoxometalate is designed to induce controlled intermolecular bridging between biotin-binding proteins. Such bridging interactions lead to the formation of supramolecular protein assemblies incorporating metal-oxo clusters that go from several nanometers in diameter up to the micron range. Insights into the self-assembly process and the nature of the resulting biohybrid materials are obtained by a combination of Small Angle X-ray Scattering (SAXS), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), along with fluorescence, UV-vis, and Circular Dichroism (CD) spectroscopy. The formation of hybrid supramolecular assemblies is determined to be driven by biotin binding to the protein and electrostatic interactions between the anionic metal-oxo cluster and the protein, both of which also influence the stability of the resulting assemblies. As a result, the rate of formation, size, and stability of the supramolecular assemblies can be tuned by controlling the electrostatic interactions between the cluster and the protein (e.g., through varying the ionic strength of the solution), thereby paving the way toward biomaterials with tunable assembly and disassembly properties.
Collapse
Affiliation(s)
| | - Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jenna Bustos
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | | |
Collapse
|
6
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
7
|
Petrovskii SK, Grachova EV, Monakhov KY. Bioorthogonal chemistry of polyoxometalates - challenges and prospects. Chem Sci 2024; 15:4202-4221. [PMID: 38516091 PMCID: PMC10952089 DOI: 10.1039/d3sc06284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
Collapse
Affiliation(s)
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
| |
Collapse
|
8
|
Zheng K, Ma P. Recent advances in lanthanide-based POMs for photoluminescent applications. Dalton Trans 2024; 53:3949-3958. [PMID: 38295380 DOI: 10.1039/d3dt03999d] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Since the first formation of the famous "Peacock-Weakley" anions [Ln(W5O18)2]8/9-, a steady stream of breakthroughs have been made in the chemistry of multitalented lanthanide (Ln)-based polyoxometalates (POMs) for their potentially desirable properties. In particular, LnIII ions are generally recognised as the "vitamins of the modern industry" owing to their ability to cover a wide emission range, endowing Ln-based POMs with great potential for versatile and diverse luminescence-related applications. In this frontier, we discuss the synthesis strategies and intramolecular energy transfer in Ln-based POM derivatives. Then, the progressive improvements achieved with Ln-based POMs in photoluminescence applications are highlighted, focusing mainly on luminescent and fluorescent probes. Finally, the challenges for Ln-based POM materials for photoluminescence applications are discussed.
Collapse
Affiliation(s)
- Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
9
|
Murmu G, Samajdar S, Ghosh S, Shakeela K, Saha S. Tungsten-based Lindqvist and Keggin type polyoxometalates as efficient photocatalysts for degradation of toxic chemical dyes. CHEMOSPHERE 2024; 346:140576. [PMID: 38303401 DOI: 10.1016/j.chemosphere.2023.140576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Photocatalytic dye degradation employing polyoxometalates (POMs) has been a research focus for several years. We report the facile synthesis of tungsten-based Lindqvist and Keggin-type POMs that degrade toxic chemical dyes, methyl orange (MO) and methylene blue (MB), respectively. The Lindqvist POM, sodium hexatungstate, Na2W6O19, degrades MO under 100 W UV light irradiation within 15 min, whereas the Keggin POM, Ag4PW11VO40, degrades MB under 20 W visible light source within 180 min. The effect of various operating parameters, such as photocatalyst concentration, pH, time, and initial dye concentration, were assessed in the degradation of both dyes. The photoelectrochemical performance of the as-synthesized polyoxometalates shows that the Ag4PW11VO40 shows 2.4 times higher photocurrent density than Na2W6O19 at a potential of 0.9 V vs. Ag/AgCl. Electrochemical impedance analysis reveals that Ag4PW11VO40 exhibits much lower charge transfer resistance as compared to Na2W6O19, which indicates facile charge transfer at the electrode-electrolyte interface. Further Mott-Schottky measurements reveal that both the catalysts possess n-type semiconductivity and the charge carrier concentration of Ag4PW11VO40 (5.89 × 1019 cm-3) is 1.4 times higher as compared to Na2W6O19 (4.25 × 1019 cm-3). This work offers a new paradigm for designing polyoxometalates suitable for efficient photocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Gajiram Murmu
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Soumita Samajdar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India; Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Srabanti Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India; Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - K Shakeela
- B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
10
|
Khlifi S, Yao S, Falaise C, Bauduin P, Guérineau V, Leclerc N, Haouas M, Salmi-Mani H, Roger P, Cadot E. Switchable Redox and Thermo-Responsive Supramolecular Polymers Based on Cyclodextrin-Polyoxometalate Tandem. Chemistry 2023:e202303815. [PMID: 38146753 DOI: 10.1002/chem.202303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Supramolecular polymers built from stimuli-responsive host-guest interactions represent an attractive way of tailoring smart materials. Herein, we exploit the chaotropic effect of polyoxometalates and related host-guest properties to design unconventional polymer systems with reversible redox and thermo-responsive sol-gel transition. These supramolecular networks result from the association of cyclodextrin-based oligomers and Keggin-type POMs acting as electro-active crosslinking agents. The structure and the dynamics of such self-assembly systems have been investigated using a multiscale approach involving MALDI-TOF, viscosity measurements, cyclic voltammetry, 1 H-NMR (1D and DOSY), and Small-Angle X-ray Scattering. Our results reveal that the chaotropic effect corresponds to a powerful and efficient force that can be used to induce responsiveness in hybrid supramolecular oligomeric systems.
Collapse
Affiliation(s)
- Soumaya Khlifi
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Sa Yao
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Pierre Bauduin
- Institut de Chimie Séparative de Marcoule, CNRS UMR 5257, CEA, Université de Marcoule, ENSCM, F-30207, Bagnols sur Cèze Cedex, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Hanene Salmi-Mani
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Philippe Roger
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| |
Collapse
|
11
|
Mihara A, Kojima T, Suda Y, Maezawa K, Sumi T, Mizoe N, Watanabe A, Iwamatsu H, Oda Y, Okamura Y, Ito T. Photoluminescent Layered Crystal Consisting of Anderson-Type Polyoxometalate and Surfactant toward a Potential Inorganic-Organic Hybrid Laser. Int J Mol Sci 2023; 25:345. [PMID: 38203515 PMCID: PMC10778674 DOI: 10.3390/ijms25010345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The hybridization of inorganic and organic components is a promising strategy to build functional materials. Among several functions, luminescence is an important function which should be considered for practical usage. Inorganic-organic hybrid luminescent materials have been investigated as phosphors, sensors, and lasers. Organic luminescent centers such as dye molecules have often been hybridized with inorganic matrices. Polyoxometalate anions (POMs) are effective inorganic luminescent centers due to their luminescent properties and structural designability. However, most luminescent POM components are limited to lanthanide-based POMs. In this report, a photoluminescent inorganic-organic hybrid crystal based on a non-lanthanide POM was successfully synthesized as a single crystal. Anderson-type hexamolybdochromate ([CrMo6O18(OH)6]3-, CrMo6) anion exhibiting emission derived from Cr3+ was utilized with n-dodecylammonium ([C12H25NH3]+, C12NH3) surfactant cation to obtain a photoluminescent hybrid crystal. The grown single crystal of C12NH3-CrMo6 comprised a distinct layered structure consisting of inorganic CrMo6 layers and interdigitated C12NH3 layers. In the CrMo6 layers, the CrMo6 anions were associated with water molecules by hydrogen bonding to form a densely packed two-dimensional network. Steady-state and time-resolved photoluminescence spectroscopy revealed that the C12NH3-CrMo6 hybrid crystal exhibited characteristic emission from the CrMo6 anion. Preliminary lasing properties were also observed for C12NH3-CrMo6, which shows the possibility of using the C12NH3-CrMo6 hybrid crystal as an inorganic-organic hybrid laser.
Collapse
Affiliation(s)
- Ayaka Mihara
- Department of Chemistry, School of Science, Tokai University, Hiratsuka 259-1292, Japan
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology, Kobe 651-2194, Japan
| | - Yoriko Suda
- Department of Electric and Electronic Engineering, School of Engineering, Tokyo University of Technology, Hachioji 192-0982, Japan
| | - Kyoka Maezawa
- Department of Chemistry, School of Science, Tokai University, Hiratsuka 259-1292, Japan
| | - Toshiyuki Sumi
- Department of Chemistry, School of Science, Tokai University, Hiratsuka 259-1292, Japan
| | - Naoyuki Mizoe
- Department of Chemistry, School of Science, Tokai University, Hiratsuka 259-1292, Japan
| | - Ami Watanabe
- Department of Chemistry, School of Science, Tokai University, Hiratsuka 259-1292, Japan
| | - Hironori Iwamatsu
- Department of Applied Chemistry, School of Engineering, Tokai University, Hiratsuka 259-1292, Japan
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, Hiratsuka 259-1292, Japan
| | - Yosuke Okamura
- Department of Applied Chemistry, School of Engineering, Tokai University, Hiratsuka 259-1292, Japan
| | - Takeru Ito
- Department of Chemistry, School of Science, Tokai University, Hiratsuka 259-1292, Japan
| |
Collapse
|
12
|
Li S, Ma Y, Zhao Y, Liu R, Zhao Y, Dai X, Ma N, Streb C, Chen X. Hydrogenation Catalysis by Hydrogen Spillover on Platinum-Functionalized Heterogeneous Boronic Acid-Polyoxometalates. Angew Chem Int Ed Engl 2023; 62:e202314999. [PMID: 37889729 DOI: 10.1002/anie.202314999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
The activation of molecular hydrogen is a key process in catalysis. Here, we demonstrate how polyoxometalate (POM)-based heterogeneous compounds functionalized with Platinum particles activate H2 by synergism between a hydrogen spillover mechanism and electron-proton transfer by the POM. This interplay facilitates the selective catalytic reduction of olefins and nitroarenes with high functional group tolerance. A family of polyoxotungstates covalently functionalized with boronic acids is reported. In the solid-state, the compounds are held together by non-covalent interactions (π-π stacking and hydrogen bonding). The resulting heterogeneous nanoscale particles form stable colloidal dispersions in acetonitrile and can be surface-functionalized with platinum nanoparticles by in situ photoreduction. The resulting materials show excellent catalytic activity in hydrogenation of olefins and nitrobenzene derivatives under mild conditions (1 bar H2 and room temperature).
Collapse
Affiliation(s)
- Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yubin Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yue Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Rongji Liu
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Yupeng Zhao
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Xusheng Dai
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
13
|
Zhang J, Bhattacharya S, Nisar T, Wagner V, Kortz U. Discrete Platinum(II/IV)-Arsenito Clusters with Pt-As and Pt-O Bonding: [Pt IV(As 3O 6) 2] 2-, [Pt 4II(H 2AsO 3) 6(HAsO 3) 2] 2-, and [Pt 2IIAs 6W 4O 28] 10. Inorg Chem 2023; 62:19603-19611. [PMID: 37971601 DOI: 10.1021/acs.inorgchem.3c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The first two discrete, fully inorganic platinum(II/IV)-arsenito clusters, [fac-PtIV(As3O6)2]2- (PtAs6) and [Pt4II(H2AsO3)6(HAsO3)2]2- (Pt4As8), as well as the platinum(II)-arsenito heteropolytungstate [Pt2IIAs6W4O28]10- (Pt2As6W4), have been synthesized in aqueous media using simple one-pot reaction conditions. In PtAs6, a PtIV ion is coordinated to two cyclic, tridentate As3O6 units via oxo-donation (PtIV-O ∼ 2.02 Å). In Pt4As8, each PtII ion is coordinated to four AsO3 ligands via two oxygens and two AsIII atoms in a square-planar fashion (PtII-AsIII 2.31 Å, PtII-O 2.07 Å), resulting in an open cage-like structure, which forms a strong tetrameric assembly in the solid state mediated by two K+ counterions. In Pt2As6W4, each PtII ion is coordinated by the As atoms of three AsO3 ligands (PtII-AsIII 2.38 Å) and an oxo group (PtII-O 2.07 Å) in addition to bridging two tungsten ions, and this polyanion was characterized in solution by 195Pt NMR.
Collapse
Affiliation(s)
- Jiayao Zhang
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Saurav Bhattacharya
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
- Department of Chemistry, BITS Pilani K. K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Talha Nisar
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Veit Wagner
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kortz
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
14
|
Li AJ, Huang SL, Yang GY. Anderson-type polyoxometalates for catalytic applications. Dalton Trans 2023. [PMID: 37997776 DOI: 10.1039/d3dt03274d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Anderson-type polyoxometalates have exhibited remarkable catalytic capabilities in a wide range of reactions. This discourse delves into the distinct categories of Anderson POMs and their respective catalytic reactions, which are examined in separate segments. These encompass the straightforward {XMo6} POMs, the organic grafting {XMo6} POMs, and the integration of POMs into POM cluster organic frameworks. It is important to highlight that specific catalytic functionalities can solely be accomplished via the utilization of Anderson-type POMs, thus emphasizing their indispensable role in future explorations.
Collapse
Affiliation(s)
- Ai-Juan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
15
|
AVCI ÖZBEK H. Synthesis and characterization of Anderson-Evans type polyoxometalates, antibacterial properties. Turk J Chem 2023; 47:742-748. [PMID: 38174059 PMCID: PMC10760579 DOI: 10.55730/1300-0527.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/25/2023] [Accepted: 06/07/2023] [Indexed: 01/05/2024] Open
Abstract
In the present work, the new aluminium-substituted polyoxometalates of the Anderson-Evans type have been prepared and structurally defined by the reaction of aluminium (III) chloride hexahydrate and sodium tungstate dihydrate/sodium molybdate dihydrate in an aqueous basic medium. Elemental analysis, FT-IR, TGA, 1H NMR, and 31P NMR analysis revealed that these polyoxometalates had the following formula: [Ph4P]3[Al(OH)6Mo6O18]·4H2O 1, [Ph4P]3[Al(OH)6W6O18]·4H2O 2, [C7H10N]3[Al(OH)6Mo6O18]·4H2O 3, [C7H10N]3[Al(OH)6W6O18]·4H2O 4. The compounds 1 and 2 show promising antibacterial activity against gram-positive Staphylcoccus aureus ATCC 25923 and gram-negative Escherichia coli ATCC 25922 bacteria.
Collapse
Affiliation(s)
- Hülya AVCI ÖZBEK
- Department of Chemistry, Faculty of Sciences and Liberal Arts, Manisa Celal Bayar University, Manisa,
Turkiye
| |
Collapse
|
16
|
Jiang F, Wang J, Li B, Wu L. Organic-Cation Modulated Assembly Behaviors of a Ureidopyrimidone-Grafting Cluster. Molecules 2023; 28:molecules28093677. [PMID: 37175087 PMCID: PMC10180284 DOI: 10.3390/molecules28093677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Ureidopyrimidone (UPy) is an important building block for constructing functional supramolecular polymers and soft materials based on their characteristic quadruple hydrogen bonds. While the evidence from the single-crystal X-ray diffraction data for the existence of linear hydrogen bonding has still been absent up to now. To obtain the crystals of UPy-containing molecules with high quality, enhanced rigidity and crystallinity are expected. Herein, an inorganic Anderson-Evans type cluster [Mn(OH)6Mo6O18]3-, which can provide suitable stiffness and charge, is used as a linker to covalently anchor two UPy units. The prepared organic-inorganic polyanion with three negative charges has a linear architecture, which is prone to form an infinite one-dimensional structure based on the supramolecular forces. The results indicate that the combination models of UPy units can be conveniently modulated by organic counter cations with different sizes, and therefore three unreported models are observed under various conditions. The present study gives a unique understanding of the intermolecular interactions in UPy-based supramolecular polymers and also provides a simple tuning method, which benefits the construction of functional materials and the adjustment of their properties.
Collapse
Affiliation(s)
- Fengrui Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiaxu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Organic macrocycle-polyoxometalate hybrids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Duan J, Shabbir H, Chen Z, Bi W, Liu Q, Sui J, Đorđević L, Stupp SI, Chapman KW, Martinson ABF, Li A, Schaller RD, Goswami S, Getman RB, Hupp JT. Synthetic Access to a Framework-Stabilized and Fully Sulfided Analogue of an Anderson Polyoxometalate that is Catalytically Competent for Reduction Reactions. J Am Chem Soc 2023; 145:7268-7277. [PMID: 36947559 DOI: 10.1021/jacs.2c12992] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Polyoxometalates (POMs) featuring 7, 12, 18, or more redox-accessible transition metal ions are ubiquitous as selective catalysts, especially for oxidation reactions. The corresponding synthetic and catalytic chemistry of stable, discrete, capping-ligand-free polythiometalates (PTMs), which could be especially attractive for reduction reactions, is much less well developed. Among the challenges are the propensity of PTMs to agglomerate and the tendency for agglomeration to block reactant access of catalyst active sites. Nevertheless, the pervasive presence of transition metal sulfur clusters metalloenzymes or cofactors that catalyze reduction reactions and the justifiable proliferation of studies of two-dimensional (2D) metal-chalcogenides as reduction catalysts point to the promise of well-defined and controllable PTMs as reduction catalysts. Here, we report the fabrication of agglomeration-immune, reactant-accessible, capping-ligand-free CoIIMo6IVS24n- clusters as periodic arrays in a water-stable, hierarchically porous Zr-metal-organic framework (MOF; NU1K) by first installing a disk-like Anderson polyoxometalate, CoIIIMo6VIO24m-, in size-matched micropores where the siting is established via difference electron density (DED) X-ray diffraction (XRD) experiments. Flowing H2S, while heating, reduces molybdenum(VI) ions to Mo(IV) and quantitatively replaces oxygen anions with sulfur anions (S2-, HS-, S22-). DED maps show that MOF-templated POM-to-PTM conversion leaves clusters individually isolated in open-channel-connected micropores. The structure of the immobilized cluster as determined, in part, by X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analysis, and pair distribution function (PDF) analysis of total X-ray scattering agrees well with the theoretically simulated structure. PTM@MOF displays both electrocatalytic and photocatalytic competency for hydrogen evolution. Nevertheless, the initially installed PTM appears to be a precatalyst, gaining competency only after the loss of ∼3 to 6 sulfurs and exposure to hydride-forming metal ions.
Collapse
Affiliation(s)
- Jiaxin Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hafeera Shabbir
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Wentuan Bi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Qin Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jingyi Sui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology and Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Alex B F Martinson
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Alice Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Knoll S, Hänle M, Mengele AK, Sorsche D, Rau S, Streb C. Supramolecular Aggregation Control in Polyoxometalates Covalently Functionalized with Oligoaromatic Groups. Chemistry 2023; 29:e202203469. [PMID: 36519520 DOI: 10.1002/chem.202203469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
CLICK-chemistry has become a universal route to covalently link organic molecules functionalized with azides and alkynes, respectively. Here, we report how CLICK-chemistry can be used to attach oligoaromatic organic moieties to Dawson-type polyoxometalates. In step one, the lacunary Dawson anion [α2 -P2 W17 O61 ]6- is functionalized with phosphonate anchors featuring peripheral azide groups. In step two, this organic-inorganic hybrid undergoes microwave-assisted CLICK coupling. We demonstrate the versatility of this route to access a series of Dawson anions covalently functionalized with oligoaromatic groups. The supramolecular chemistry and aggregation of these systems in solution is explored, and we report distinct changes in charge-transfer behavior depending on the size of the oligoaromatic π-system.
Collapse
Affiliation(s)
- Sebastian Knoll
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias Hänle
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dieter Sorsche
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
20
|
Knoll S, Streb C. Initial Steps of the Acid-Catalyzed Polyoxometalate-Functionalization with Phosphonic Acid Esters. Inorg Chem 2023; 62:1218-1225. [PMID: 36630536 DOI: 10.1021/acs.inorgchem.2c03704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The organo-functionalization of metal oxides is a key strategy to introduce new functionalities. Often, phosphonates are used to anchor organic moieties to a range of metal oxides. Despite their widespread use, there is a lack of understanding of the parameters which enable selective and efficient formation of organophosphonate-metal oxide hybrids. Here, we report fundamental insights into the mechanism of phosphonate anchoring to a molecular metal oxide model. Specifically, we use in situ 31P NMR spectroscopy to follow the acid-catalyzed deprotection of a model phosphonate and its subsequent condensation to form a phosphonate-functionalized Dawson-polyoxometalate. Our study shows that the nucleophilicity of the acid anion is a key parameter which controls the clean and selective deprotection and polyoxometalate attachment of phosphonates. This insight will allow researchers to expand the scope of phosphonate anchoring to metal oxides by enabling the development of mild and scalable syntheses.
Collapse
Affiliation(s)
- Sebastian Knoll
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany.,Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128Mainz, Germany
| |
Collapse
|
21
|
Colla CA, Colliard I, Sawvel AM, Nyman M, Mason HE, Deblonde GJP. Contrasting Trivalent Lanthanide and Actinide Complexation by Polyoxometalates via Solution-State NMR. Inorg Chem 2022; 62:6242-6254. [PMID: 36580490 DOI: 10.1021/acs.inorgchem.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium-POM and curium-POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM-NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397- was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4- and [MIII(PW11O39)2]11-. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM-NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides.
Collapse
Affiliation(s)
- Christopher A Colla
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ian Colliard
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon97331, United States
| | - April M Sawvel
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon97331, United States
| | - Harris E Mason
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Gauthier J-P Deblonde
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| |
Collapse
|
22
|
Anticancer, antimicrobial and biomedical features of polyoxometalate as advanced materials: A review study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Colliard I, Lee JRI, Colla CA, Mason HE, Sawvel AM, Zavarin M, Nyman M, Deblonde GJP. Polyoxometalates as ligands to synthesize, isolate and characterize compounds of rare isotopes on the microgram scale. Nat Chem 2022; 14:1357-1366. [PMID: 36050378 DOI: 10.1038/s41557-022-01018-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/04/2022] [Indexed: 01/04/2023]
Abstract
The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium-POM complexes were prepared, using just 1-10 μg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element-POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.
Collapse
Affiliation(s)
- Ian Colliard
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Jonathan R I Lee
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Christopher A Colla
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Harris E Mason
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - April M Sawvel
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Gauthier J-P Deblonde
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
24
|
Huang Y, Zhou W, Kong W, Chen L, Lu X, Cai H, Yuan Y, Zhao L, Jiang Y, Li H, Wang L, Wang L, Wang H, Zhang J, Gu J, Fan Z. Atomically Interfacial Engineering on Molybdenum Nitride Quantum Dots Decorated N-doped Graphene for High-Rate and Stable Alkaline Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204949. [PMID: 36285692 PMCID: PMC9799021 DOI: 10.1002/advs.202204949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The development of low-cost, high-efficiency, and stable electrocatalysts for hydrogen evolution reaction (HER) under alkaline conditions is a key challenge in water electrolysis. Here, an interfacial engineering strategy that is capable of simultaneously regulating nanoscale structure, electronic structure, and interfacial structure of Mo2 N quantum dots decorated on conductive N-doped graphene via codoping single-atom Al and O (denoted as AlO@Mo2 N-NrGO) is reported. The conversion of Anderson polyoxometalates anion cluster ([AlMo6 O24 H6 ]3- , denoted as AlMo6) to Mo2 N quantum dots not only result in the generation of more exposed active sites but also in situ codoping atomically dispersed Al and O, that can fine-tune the electronic structure of Mo2 N. It is also identified that the surface reconstruction of AlOH hydrates in AlO@Mo2 N quantum dots plays an essential role in enhancing hydrophilicity and lowering the energy barriers for water dissociation and hydrogen desorption, resulting in a remarkable alkaline HER performance, even better than the commercial 20% Pt/C. Moreover, the strong interfacial interaction (MoN bonds) between AlO@Mo2 N and N-doped graphene can significantly improve electron transfer efficiency and interfacial stability. As a result, outstanding stability over 300 h at a current density higher than 100 mA cm-2 is achieved, demonstrating great potential for the practical application of this catalyst.
Collapse
Affiliation(s)
- Yichao Huang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Wenbo Zhou
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Weichao Kong
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lulu Chen
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Xiaolong Lu
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Hanqing Cai
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Yongrui Yuan
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lianming Zhao
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Yangyang Jiang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Haitao Li
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Limin Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lin Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Hang Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Jiangwei Zhang
- College of Energy Material and ChemistryCollege of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
| | - Jing Gu
- Department of Chemistry and BiochemistrySan Diego State University5500 Campanile DriveSan DiegoCA92182‐1030USA
| | - Zhuangjun Fan
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| |
Collapse
|
25
|
Recent advances on high-nuclear polyoxometalate clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zheng K, Ye Y, Shi Y, Xu Y, Yang Z, Ma P, Wang J, Niu J. dl-Serine Covalently Ornamented and Ln 3+-Incorporated Arsenotungstates with Fast-Responsive Photochromic and Photoinduced Luminescent Switchable Behaviors. Inorg Chem 2022; 61:15871-15879. [PMID: 36174202 DOI: 10.1021/acs.inorgchem.2c01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three isostructural dl-serine covalently functionalized and multinuclear lanthanide (Ln3+)-embedded arsenotungstates, K2[{As4W44O137(OH)18(H2O)2(dl-Ser)2}{Ln2(H2O)4(dl-Ser)}2{Ln(H2O)7}2]·70H2O (Ln = Sm (1), Eu (2), and Gd (3); dl-Ser = C3H7NO3), were prepared, where the centrosymmetric [{As4W44O137(OH)18(H2O)2(dl-Ser)2}{Ln2(H2O)4(dl-Ser)}2]8- polyanion consists of two {As2W19O59(OH)8(H2O)}6- fragments, integrated with a two-dl-serine-ornamented [W6O23(OH)2(dl-Ser)2{Ln2(H2O)4}2]8- segment. In addition, the photochromic transformation of solid-state compounds 1-3 was observed from colorless to blue after a UV illumination of 4 min, and the decay process lasted as long as ∼20 h in the dark. The coloration kinetic half-life (t1/2) values of compounds 1, 2, and 3 were calculated to be 0.597, 0.920, and 0.723 min, respectively. Furthermore, the luminescent properties and energy migration from arsenotungstates and organic chromophores to Sm3+ and Eu3+ ions in 1 and 2 have been intensively investigated. Further analysis manifests that 1 possesses an effective luminescent switchable behavior, triggered by its fast-responsive photochromism effect.
Collapse
Affiliation(s)
- Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yajing Ye
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yanan Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yaxuan Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ziyu Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
27
|
Ramezani-Aliakbari M, Varshosaz J, Mirian M, Khodarahmi G, Rostami M. pH-responsive Glucosamine Anchored Polydopamine Coated Mesoporous Silica Nanoparticles for delivery of Anderson-type Polyoxomolybdate in Breast Cancer. J Microencapsul 2022; 39:433-451. [PMID: 35762905 DOI: 10.1080/02652048.2022.2096139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AIM This study aimed to develop novel pH-sensitive Glucosamine (Glu) targeted Polydopamine (PDA) coated mesoporous silica (SBA-15) nanoparticles (NPs) for selective delivery of anticancer Anderson-type manganese polyoxomolybdate (POMo) to breast cancer. METHODS The POMo@SBA-PDA-Glu NPs were prepared via direct hydrothermal synthesis of SBA, POMo loading, in situ PDA post functionalization, and Glu anchoring; the chemical structures were fully studied by different characterization methods. The anticancer activity was studied by MTT method and Annexin V-FITC apoptosis detection kit. RESULTS The optimized NPs had a hydrodynamic size (HS) of 195 nm, a zeta potential (ZP) of -18.9 mV, a loading content percent (LC%) of 45%, and a pH-responsive release profile. The targeted NPs showed increased anticancer activity against breast cancer cell lines compared to the free POMo with the highest cellular uptake and apoptosis level in the MDA-MB-231 cells. CONCLUSIONS POMo@SBA-PDA-Glu NPs could be a promising anticancer candidate for further studies.
Collapse
Affiliation(s)
- Maryam Ramezani-Aliakbari
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Ph.D student of Medicinal chemistry, Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Varshosaz
- Ph.D student of Medicinal chemistry, Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences and, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
|
29
|
Mahfouz N, Ghaida FA, El Hajj Z, Diab M, Floquet S, Mehdi A, Naoufal D. Recent Achievements on Functionalization within closo‐Decahydrodecaborate [B
10
H
10
]
2−
Clusters. ChemistrySelect 2022. [DOI: 10.1002/slct.202200770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nadine Mahfouz
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
- Institut Charles Gerhardt ICGM Université de Montpellier CNRS, ENSCM Montpellier France
| | - Fatima Abi Ghaida
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
| | - Zeinab El Hajj
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
- Institut Lavoisier de Versailles CNRS UVSQ Université Paris-Saclay 45 av. des Etats-Unis 78035 Versailles France
| | - Manal Diab
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
| | - Sebastien Floquet
- Institut Lavoisier de Versailles CNRS UVSQ Université Paris-Saclay 45 av. des Etats-Unis 78035 Versailles France
| | - Ahmad Mehdi
- Institut Charles Gerhardt ICGM Université de Montpellier CNRS, ENSCM Montpellier France
| | - Daoud Naoufal
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
| |
Collapse
|
30
|
Kondinski A, Rasmussen M, Mangelsen S, Pienack N, Simjanoski V, Näther C, Stares DL, Schalley CA, Bensch W. Composition-driven archetype dynamics in polyoxovanadates. Chem Sci 2022; 13:6397-6412. [PMID: 35733899 PMCID: PMC9159092 DOI: 10.1039/d2sc01004f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular metal oxides often adopt common structural frameworks (i.e. archetypes), many of them boasting impressive structural robustness and stability. However, the ability to adapt and to undergo transformations between different structural archetypes is a desirable material design feature offering applicability in different environments. Using systems thinking approach that integrates synthetic, analytical and computational techniques, we explore the transformations governing the chemistry of polyoxovanadates (POVs) constructed of arsenate and vanadate building units. The water-soluble salt of the low nuclearity polyanion [V6As8O26]4- can be effectively used for the synthesis of the larger spherical (i.e. kegginoidal) mixed-valent [V12As8O40]4- precipitate, while the novel [V10As12O40]8- POVs having tubular cyclic structures are another, well soluble product. Surprisingly, in contrast to the common observation that high-nuclearity polyoxometalate (POM) clusters are fragmented to form smaller moieties in solution, the low nuclearity [V6As8O26]4- anion is in situ transformed into the higher nuclearity cluster anions. The obtained products support a conceptually new model that is outlined in this article and that describes a continuous evolution between spherical and cyclic POV assemblies. This new model represents a milestone on the way to rational and designable POV self-assemblies.
Collapse
Affiliation(s)
- Aleksandar Kondinski
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive S CB3 0AS UK
| | - Maren Rasmussen
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24118 Kiel Germany
| | - Sebastian Mangelsen
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24118 Kiel Germany
| | - Nicole Pienack
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24118 Kiel Germany
| | - Viktor Simjanoski
- Primer affiliate of University of Chicago Master Program Chicago IL USA
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24118 Kiel Germany
| | - Daniel L Stares
- Institut für Chemie und Biochemie der Freien Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie der Freien Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Wolfgang Bensch
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24118 Kiel Germany
| |
Collapse
|
31
|
Chi M, Li H, Xin X, Qin L, Lv H, Yang GY. All-Inorganic Bis-Sb 3O 3-Functionalized A-Type Anderson–Evans Polyoxometalate for Visible-Light-Driven Hydrogen Production. Inorg Chem 2022; 61:8467-8476. [DOI: 10.1021/acs.inorgchem.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manzhou Chi
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Huijie Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xing Xin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Lin Qin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
32
|
Fuior A, Cebotari D, Haouas M, Marrot J, Espallargas GM, Guérineau V, Touboul D, Rusnac RV, Gulea A, Floquet S. Synthesis, Structures, and Solution Studies of a New Class of [Mo 2O 2S 2]-Based Thiosemicarbazone Coordination Complexes. ACS OMEGA 2022; 7:16547-16560. [PMID: 35601294 PMCID: PMC9118386 DOI: 10.1021/acsomega.2c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
This paper deals with the synthesis, structural studies, and behavior in solution of unprecedented coordination complexes built by the association of a panel of 14 representative thiosemicarbazone ligands with the cluster [Mo2O2S2]2+. These complexes have been thoroughly characterized both in the solid state and in solution by XRD and by NMR, respectively. In particular, HMBC 1H{15N} and 1H DOSY NMR experiments bring important elements for understanding the complexes' behavior in solution. These studies demonstrate that playing on the nature and the position of various substituents on the ligands strongly influences the coordination modes of the ligands as well as the numbers of isomers in solution, mainly 2 products for the majority of complexes and up to 5 for some of them.
Collapse
Affiliation(s)
- Arcadie Fuior
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Diana Cebotari
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Mohamed Haouas
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | - Jérôme Marrot
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | | | - Vincent Guérineau
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - David Touboul
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - Roman V. Rusnac
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Aurelian Gulea
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Sébastien Floquet
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| |
Collapse
|
33
|
Wang Y, Duan F, Liu X, Li B. Cations Modulated Assembly of Triol-Ligand Modified Cu-Centered Anderson-Evans Polyanions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092933. [PMID: 35566286 PMCID: PMC9101508 DOI: 10.3390/molecules27092933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
Counter-cations are essential components of polyoxometalates (POMs), which have a distinct influence on the solubility, stabilization, self-assembly, and functionality of POMs. To investigate the roles of cations in the packing of POMs, as a systematic investigation, herein, a series of triol-ligand covalently modified Cu-centered Anderson-Evans POMs with different counter ions were prepared in an aqueous solution and characterized by various techniques including single-crystal X-ray diffraction. Using the strategy of controlling Mo sources, in the presence of triol ligand, NH4+, Cu2+ and Na+ were introduced successfully into POMs. When (NH4)6Mo7O24 was selected, the counter cations of the produced POMs were ammonium ions, which resulted in the existence of clusters in the discrete state. Additionally, with the modulation of the pH of the solutions, the modified sites of triol ligands on the cluster can be controlled to form δ- or χ-isomers. By applying MoO3 in the same reaction, Cu2+ ions served as linkers to connect triol-ligand modified polyanions into chains. When Na4Mo8O26 was employed as the Mo source to react with triol ligands in the presence of CuCl2, two 2-D networks were obtained with {Na4(H2O)14} or {{Na2(H2O)4} sub-clusters as linkers, where the building blocks were δ/δ- and χ/χ-isomers, respectively. The present investigation reveals that the charges, sizes and coordination manners of the counter cations have an obvious influence on the assembled structure of polyanions.
Collapse
|
34
|
Haroon M, Janjua MRSA. Computationally Assisted Design and Prediction of Remarkably Boosted NLO Response of Organoimido‐Substituted Hexamolybdates. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muhammad Haroon
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran Kingdom of Saudi Arabia
| | | |
Collapse
|
35
|
Liu Q, Lin H, Lu J, Zhang Y, Wang X. Three Anderson-type POMOFs with bis(pyrimidine)-bis(amide) ligands: Synthesis, fascinating structures and performances of electrochemical sensing and dye adsorption. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Salazar Marcano DE, Moussawi MA, Anyushin AV, Lentink S, Van Meervelt L, Ivanović-Burmazović I, Parac-Vogt TN. Versatile post-functionalisation strategy for the formation of modular organic-inorganic polyoxometalate hybrids. Chem Sci 2022; 13:2891-2899. [PMID: 35382468 PMCID: PMC8905796 DOI: 10.1039/d1sc06326j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R-POM1-R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2-R-POM1-R-POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson-Evans {XMo6} (X = Cr or Al) and trisubstituted Wells-Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.
Collapse
Affiliation(s)
- David E Salazar Marcano
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Mhamad Aly Moussawi
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Alexander V Anyushin
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Sarah Lentink
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13, Haus D 81377 Munich Germany
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
37
|
Alizadeh M, Yadollahi B. Niobium polyoxometalate–folic acid conjugate as a hybrid drug for cancer therapeutics. NEW J CHEM 2022. [DOI: 10.1039/d2nj01766k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, covalently bonded folic acid to niobium substituted Wells-Dawson polyoxometalate, (Bu4N)5H4[P2W15Nb3O62]-folic acid, has been synthesized and characterized. Afterward, the bioactivity behavior of this hybrid compound against cervical (HeLa)...
Collapse
|
38
|
Borzenko MI, Zagrebin PA, Spector EA, Nazmutdinov RR, Tsirlina GA. Inhibition and self-inhibition phenomena in mixed solutions of Anderson type polyoxometalates. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Cameron JM, Guillemot G, Galambos T, Amin SS, Hampson E, Mall Haidaraly K, Newton GN, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem Soc Rev 2021; 51:293-328. [PMID: 34889926 DOI: 10.1039/d1cs00832c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.
Collapse
Affiliation(s)
- Jamie M Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Theodor Galambos
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Sharad S Amin
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Kevin Mall Haidaraly
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Graham N Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
40
|
Maloul S, van den Borg M, Müller C, Zedler L, Mengele AK, Gaissmaier D, Jacob T, Rau S, Dietzek‐Ivanšić B, Streb C. Multifunctional Polyoxometalate Platforms for Supramolecular Light-Driven Hydrogen Evolution*. Chemistry 2021; 27:16846-16852. [PMID: 34719797 PMCID: PMC9299148 DOI: 10.1002/chem.202103817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Multifunctional supramolecular systems are a central research topic in light-driven solar energy conversion. Here, we report a polyoxometalate (POM)-based supramolecular dyad, where two platinum-complex hydrogen evolution catalysts are covalently anchored to an Anderson polyoxomolybdate anion. Supramolecular electrostatic coupling of the system to an iridium photosensitizer enables visible light-driven hydrogen evolution. Combined theory and experiment demonstrate the multifunctionality of the POM, which acts as photosensitizer/catalyst-binding-site[1] and facilitates light-induced charge-transfer and catalytic turnover. Chemical modification of the Pt-catalyst site leads to increased hydrogen evolution reactivity. Mechanistic studies shed light on the role of the individual components and provide a molecular understanding of the interactions which govern stability and reactivity. The system could serve as a blueprint for multifunctional polyoxometalates in energy conversion and storage.
Collapse
Affiliation(s)
- Salam Maloul
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | | | - Carolin Müller
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technologies (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Linda Zedler
- Leibniz Institute of Photonic Technologies (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Daniel Gaissmaier
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021 KarlsruheKarlsruheGermany
| | - Timo Jacob
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021 KarlsruheKarlsruheGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technologies (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
41
|
Cao Z, Yang W, Min X, Liu J, Cao X. Recent advances in synthesis and anti-tumor effect of organism-modified polyoxometalates inorganic organic hybrids. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Ali Khan M, Shakoor Z, Akhtar T, Sajid M, Muhammad Asif H. Exploration on χ-Anderson type Polyoxometalates based hybrids towards photovoltaic response in solar cell. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Kong H, Liu S, Wang Y, Xu Q, Li K, Ma P, Wang J, Niu J. Assembly of a Hexameric Cluster of Polyoxomolybdotriphosphonate Builts from [Zn(H 2O){TeMo 6O 21}{N(CH 2PO 3) 3}] 6- Subunits and Its Optical and Catalytic Properties. Inorg Chem 2021; 60:15759-15767. [PMID: 34606253 DOI: 10.1021/acs.inorgchem.1c02417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crown-shaped organotriphosphonate-modified 36-molybdenum cluster (NH4)18Na7H11[Zn(H2O)TeMo6O21{N(CH2PO3)3}]6·23H2O (1) has been synthesized, which is the largest zinc-containing organophosphonate-based polyoxometalate to date. Compound 1 was prepared in buffer solution (pH 5.5) with heptamolybdate and amino trimethylene phosphonic acid (ATMP) as the organic ligand. The polyanion constructed from a hexmeric assembly of [Zn(H2O){TeMo6O21}{N(CH2PO3)3}]6- subunits has been fully investigated by a few characterization methods. In this work, we discovered that 1 exhibited reversible photochromism and it changed from white to reddish brown upon UV irradiation. In addition, compound 1, as a catalyst, can oxidize sulfides to sulfoxides, showing a high yield/conversion and a good selectivity.
Collapse
Affiliation(s)
- Hui Kong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Siyu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yaqiong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Qian Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Keli Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
44
|
Ma X, Hua J, Xu C, Zhang L, Wang Y, Zhang J, Cao L, Niu Y, Ma P. A Heterogeneous Catalyzed Oxidase Consists of Zinc-Substituted Arsenomolybdate with Reactive Oxygen Species Catalytic Ability. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02185-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Lampl R, Breibeck J, Gumerova NI, Galanski MS, Rompel A. Wells-Dawson phosphotungstates as mushroom tyrosinase inhibitors: a speciation study. Sci Rep 2021; 11:19354. [PMID: 34588468 PMCID: PMC8481536 DOI: 10.1038/s41598-021-96491-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/06/2021] [Indexed: 01/28/2023] Open
Abstract
In order to elucidate the active polyoxotungstate (POT) species that inhibit fungal polyphenol oxidase (AbPPO4) in sodium citrate buffer at pH 6.8, four Wells-Dawson phosphotungstates [α/β-PV2WVI18O62]6- (intact form), [α2-PV2WVI17O61]10- (monolacunary), [PV2WVI15O56]12- (trilacunary) and [H2PV2WVI12O48]12- (hexalacunary) were investigated. The speciation of the POT solutions under the dopachrome assay (50 mM Na-citrate buffer, pH 6.8; L-3,4-dihydroxyphenylalanine as a substrate) conditions were determined by 183W-NMR, 31P-NMR spectroscopy and mass spectrometry. The intact Wells-Dawson POT [α/β-PV2WVI18O62]6- shows partial (~ 69%) disintegration into the monolacunary [α2-PV2WVI17O61]10- anion with moderate activity (Ki = 9.7 mM). The monolacunary [α2-PV2WVI17O61]10- retains its structural integrity and exhibits the strongest inhibition of AbPPO4 (Ki = 6.5 mM). The trilacunary POT [PV2WVI15O56]12- rearranges to the more stable monolacunary [α2-PV2WVI17O61]10- (~ 62%) accompanied by release of free phosphates and shows the weakest inhibition (Ki = 13.6 mM). The hexalacunary anion [H2PV2WVI12O48]12- undergoes time-dependent hydrolysis resulting in a mixture of [H2PV2WVI12O48]12-, [PV8WVI48O184]40-, [PV2WVI19O69(H2O)]14- and [α2-PV2WVI17O61]10- which together leads to comparable inhibitory activity (Ki = 7.5 mM) after 48 h. For the solutions of [α/β-PV2WVI18O62]6-, [α2-PV2WVI17O61]10- and [PV2WVI15O56]12- the inhibitory activity is correlated to the degree of their rearrangement to [α2-PV2WVI17O61]10-. The rearrangement of hexalacunary [H2PV2WVI12O48]12- into at least four POTs with a negligible amount of monolacunary anion interferes with the correlation of activity to the degree of their rearrangement to [α2-PV2WVI17O61]10-. The good inhibitory effect of the Wells-Dawson [α2-PV2WVI17O61]10- anion is explained by the low charge density of its protonated forms Hx[α2-PV2WVI17O61](10-x)- (x = 3 or 4) at pH 6.8.
Collapse
Affiliation(s)
- Raphael Lampl
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Joscha Breibeck
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Nadiia I Gumerova
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Mathea Sophia Galanski
- Fakultät für Chemie, Institut für Anorganische Chemie und NMR Zentrum, Universität Wien, Währinger Str. 42, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
46
|
Polyoxometalates and Metal–Organic Frameworks Based Dual-Functional Catalysts for Detoxification of Bis(2-Chloroethyl) Sulfide and Organophosphorus Agents. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
The fascinating polyoxometalates. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Naulakha P, Mishra NK, Tanmaya Kumar N, Supriya S. Unusual redox activity of the central heteroatom manganese in Anderson anion: Modulating its oxidation state in a gas solid reaction. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
|
50
|
Srinivasan BR, Kundaikar SA, Morajkar SM, Näther C, Bensch W. Synthesis, crystal structure and properties of hepta(ammonium) penta(1H-imidazol-3-ium) paratungstate B tetrahydrate. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1965996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Wolfgang Bensch
- Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|