1
|
Liu L, Xie K, Wang Y, Wang H, Wang J, Zhuang Y, Zhang Y. Polyhedral oligomeric silsesquioxane-modulated mesoporous amorphous bimetallic organic frameworks for the efficient isolation of immunoglobulin G. Talanta 2025; 282:126949. [PMID: 39341058 DOI: 10.1016/j.talanta.2024.126949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The efficient and accurate separation of immunoglobulin G (IgG) plays a vital role for disease diagnosis and therapy, but it is always hampered by the huge geometric size and complex structure of IgG. In this work, an amorphous Fe/Co bimetallic organic framework (denoted as PMOF-Fe/Co) is fabricated for IgG separation, with octa-carboxyl polyhedral oligomeric silsesquioxane (OCPOSS) as modulator for the first time. Benefiting from the rigid nanostructure and competitive coordination of OCPOSS, the aperture of PMOF-Fe/Co is enlarged to ∼20 nm along with the generation of enormous structural defects, which enables the accommodation of protein species with high molecular weights and large sizes. OCPOSS is also found exerting a positive impact on mediating the specific recognition and adsorption ability of PMOF-Fe/Co towards IgG through metal affinity, hydrophilic and hydrophobic interactions. Consequently, the multimode and multivalent affinity of PMOF-Fe/Co gives rise to an extraordinary adsorption capacity (2691.7 mg g-1) and satisfactory practical application performance. This study is convinced to provide a simple avenue for the efficient separation of specific large-sized proteins, as well as the engineering of abiotic affinity reagents with compositional and architectural complexity.
Collapse
Affiliation(s)
- Lan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kai Xie
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuheng Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoran Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Wang B, Ke J, Huang H, Ren P, Zhang J. From Ductile to Brittle: Defect-Engineered Mechanical Properties of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39721986 DOI: 10.1021/acsami.4c19632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The introduction of defects in metal-organic frameworks (MOFs) is an effective method to improve the performance of MOFs in many applications, but it also compromises the mechanical properties of MOFs. Thus, a comprehensive understanding of the mechanical properties of defective MOFs becomes important for the defect engineering in MOFs. Herein, using the in situ compression tests, we directly observe very different mechanical responses in HKUST-1 MOFs with various defect concentrations. The elastic-plastic deformation followed by a ductile flattened failure is found in the defective HKUST-1 with a small defect concentration, while a hyperelastic-plastic behavior accompanied by the brittle fracture failure could occur in the HKUST-1 with a large defect concentration. The strong dependence of deformation and failure behaviors of defective HKUST-1 crystals on the defect concentration is ascribed to the change in their local deformation mechanism and stress distribution with varying defect concentration, according to the analysis by finite element and molecular dynamics (MD) simulations. Our compression experiments and MD simulations also indicate a significant reduction in both Young's modulus and yield strength of HKUST-1 with growing defect concentration, which agrees well with the theoretical predictions of micromechanics theory. This study is expected to provide a more precise understanding of the mechanical properties of defective MOFs.
Collapse
Affiliation(s)
- Bing Wang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Jin Ke
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Hongbiao Huang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Peng Ren
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Jin Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| |
Collapse
|
3
|
Zhu L, Yang H, Xu T, Shen F, Si C. Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks. NANO-MICRO LETTERS 2024; 17:87. [PMID: 39658670 PMCID: PMC11631836 DOI: 10.1007/s40820-024-01558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024]
Abstract
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices. Among them, metal-organic frameworks (MOFs) present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity, designability, and porosity. In particular, several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors, such as charged network construction, ligand functionalization, metal-center manipulation, defective engineering, guest molecule incorporation, and pore-space manipulation. With the implementation of these strategies, proton-conducting MOFs have developed significantly and profoundly within the last decade. Therefore, in this review, we critically discuss and analyze the fundamental principles, design strategies, and implementation methods targeted at improving the proton conductivity of MOFs through representative examples. Besides, the structural features, the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously. Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research. We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials.
Collapse
Affiliation(s)
- Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China
| | - Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| | - Feng Shen
- Agro-Environmenta Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, People's Republic of China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Cheng C, Guo X, Feng Y, Yu J, Huang S, Zhang L, Wu Y, Shao L, Xu X, Feng L. Enhanced activity of enzymes encapsulated in spheres metal azolate framework-7 with defects. Int J Biol Macromol 2024; 283:137689. [PMID: 39561823 DOI: 10.1016/j.ijbiomac.2024.137689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Developing metal-organic frameworks (MOFs) with specific structures is critical for improving the activity of embedded enzymes, and defects may be one of the effective methods. Several methods have been demonstrated to be effective in creating defects in MOFs, including post-synthetic treatments, the use of acid as a modulator, and the use of ordinary or thermally sensitive linkers. However, these methods necessitate the utilization of additional substances. Metal azolate framework-7 (MAF-7) is a kind of MOF that was formed by the coordination of Zn2+ with 3-methyl-1,2,4-triazole (Hmtz). This paper presents a method for the preparation of defect MAF-7 by changing the sequence of reactants without the introduction of additional substances. The defects were characterized by a range of techniques, including scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and powder X-ray diffraction. The activity of microcystinase A (MlrA) encapsulated in defective MAF-7 (CMlrA@DMAF-7) was found to be significantly increased in comparison to non-porous MAF-7 (NMAF-7), and was largely unaffected by alterations in synthesis conditions. It is also noteworthy that lysozyme (LZ) and horseradish peroxidase (HRP), which are commonly used in industry, also demonstrated enhanced activity when encapsulated in DMAF-7. It was therefore anticipated that modifying the sequence of reactant addition would be a straightforward and simple method of introducing defects into MAF-7, thereby improving enzyme utilization.
Collapse
Affiliation(s)
- Cai Cheng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoliang Guo
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China
| | - Yu Feng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Yu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi Huang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Liexiong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linna Shao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xuehan Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China.
| |
Collapse
|
5
|
Asselin P, Harvey PD. Thoughts on the Rational Design of MOF-Guest Interactions for Future Intelligent Materials. SMALL METHODS 2024; 8:e2400584. [PMID: 39428953 DOI: 10.1002/smtd.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Indexed: 10/22/2024]
Abstract
The MOF-guest relationship is broken down in elementary phases, descriptors, and parameters. These descriptors and parameters allow precise descriptions of processes, whether they occur at the point when the guest enters the MOF, during the stay, or at the point of exiting. Description of these three phases is possible according to the location of the guest inside the MOF, the activity between MOF and guest, whether stimuli can be used, and whether a selective action can be exercised. The vocabulary provided herein can be useful to better formulate requirements when designing host-guest interactions in, and building new classes of, intelligent materials.
Collapse
Affiliation(s)
- Paul Asselin
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
6
|
Ramezani MA, Najafi M, Karimi-Harandi MH. Highly sensitive determination of trace arsenic(III) onto carbon paste electrode modified with graphitic carbon nitride decorated Fe-MOF. Food Chem 2024; 458:140296. [PMID: 38959806 DOI: 10.1016/j.foodchem.2024.140296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
An effective electrochemical sensor was developed to detect and determine of the As(III) by modifying the carbon paste electrode (CPE) with graphitic carbon nitride decorated with iron-based metal-organic frameworks (Fe-MOF/g-C3N5). The differential pulse anodic stripping voltammetry (DPASV) method was used to analyze As(III) ions in a phosphate buffer solution (0.10 M, pH = 5). Fe-MOF/g-C3N5/CPE showed high sensitivity (4.24 μA μg-1 L), satisfactory linear range (0.50 μg L-1-5.00 μg L-1 and 5.00 μg L-1-30.00 μg L-1), and low detection limit (LOD, 0.013 μg L-1). The prepared sensor was showed an excellent repeatability and selectivity, and successfully used for determination of the As(III) ion in ambient waters and apple juice samples.
Collapse
Affiliation(s)
| | - Mostafa Najafi
- Department of Chemistry, Imam Hossein University, Tehran, Iran.
| | | |
Collapse
|
7
|
Ge K, Chen G, Zhang D, Hao JN, Li Y. Leap-Type Response of Redox/Photo-Active Lanthanide-Based Metal-Organic Frameworks for Early and Accurate Screening of Prostate Cancer. Angew Chem Int Ed Engl 2024; 63:e202411956. [PMID: 39031278 DOI: 10.1002/anie.202411956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The development of high-accuracy technologies to distinguish the quite tiny concentration change of tumor markers between negative and positive is of vital significance for early screening and diagnosis of cancers, but is still a great challenge for the conventional biosensors because of their "gradual" detection mode. Herein, a unique "leap-type" responsive lanthanide MOF-based biosensor (designated as Tb-CeMOF-X) with defect-mediated redox-/photo-activities is developed for precisely identifying acid phosphatase (ACP), an early pathological marker of prostate cancer (PCa) in serum. The engineered Tb-CeMOF-X probe achieves a bursting switch-on luminescence at the critical concentration of ACP (9 U ⋅ L-1), while keeping silent below this threshold, undergoing a qualitative signal change from "zero" to "one" between negative and positive indicators and thus significantly improving the identification precision. Significantly, such "leap-type" response performance can be further edited and amplified by rational defect engineering in the crystal structure to improve the accessibility of active centers, consequently maximizing the detection sensitivity toward ACP in the complex biological media. This study proposes the first paradigm for the development of "leap-type" biosensors with ultra-sensitive differentiation capability between negative and positive, and provides a potentially valuable tool for early and accurate screening of PCa.
Collapse
Affiliation(s)
- Kaiming Ge
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoli Chen
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dapeng Zhang
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ji-Na Hao
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
8
|
Shao LY, Wang S, Li SN, Meng J, Yue JN, Yuan WY, Wang Y, Zhai QG. Modulation of p-Block Electron Orbits in Metal-Organic Frameworks for CO 2 Capture and Electrochemical Reduction. Inorg Chem 2024; 63:19355-19363. [PMID: 39331497 DOI: 10.1021/acs.inorgchem.4c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Developing catalysts with excellent CO2 capture capability and electrochemical CO2 reduction reaction (CO2RR) at a wide potential range simultaneously is significant but remains a formidable challenge. Here, two novel InMg defective trinuclear cluster-based MOFs (SNNU-41 and SNNU-42) with abundant p-block unsaturated coordinated sites were reported and exhibited good CO2 capture and CO2RR performance simultaneously. Due to the suitable micropores, SNNU-41 showed higher CO2 capture ability at different adsorption pressure conditions. On account of the rigid framework and the closer p band center to Fermi level, SNNU-42 accelerated the conversion of CO2 molecule to C1 efficiency. Notably, via adjusting the ratio of p-block metal (In) in the SNNU-42 framework, the performance of the CO2RR was promoted drastically. SNNU-42 with the InMg (1:1.8) mixed cluster delivered an excellent Faradaic efficiency of 91.3% for C1 products and high selectivity of 72.0% for HCOOH at -2.5 V (vs Ag/Ag+) with a total current density of 77.2 mA cm-2. This work provides a possibility for efficient CO2 capture and CO2RR electrocatalysts through the modulation of electronic structures and composition in MOFs.
Collapse
Affiliation(s)
- Li-Yang Shao
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Shuo Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jie Meng
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jiao-Na Yue
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Wen-Yu Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| |
Collapse
|
9
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
10
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
11
|
Niu X, Wang Y, Liu Y, Yuan M, Zhang J, Li H, Wang K. Defect-engineered chiral metal-organic frameworks. Mikrochim Acta 2024; 191:458. [PMID: 38985164 DOI: 10.1007/s00604-024-06534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Chirality has an important impact on chemical and biological research, as most active substances are chiral. In recent decades, metal-organic frameworks (MOFs), which are assembled from metal ions or clusters and organic linkers via metal-ligand bonding, have attracted considerable scientific interest due to their high crystallinity, exceptional porosity and tunable pore sizes, high modularity, and diverse functionalities. Since the discovery of the first functional chiral metal-organic frameworks (CMOFs), CMOFs have been involved in a variety of disciplines such as chemistry, physics, optics, medicine, and pharmacology. The introduction of defect engineering theory into CMOFs allows the construction of a class of defective CMOFs with high hydrothermal stability and multi-stage pore structure. The introduction of defects not only increases the active sites but also enlarges the pore sizes of the materials, which improves chiral recognition, separation, and catalytic reactions, and has been widely investigated in various fields. This review describes the design and synthesis of various defective CMOFs, their characterization, and applications. Finally, the development of the materials is summarized, and an outlook is given. This review should provide researchers with an insight into the design and study of complex defective CMOFs.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| |
Collapse
|
12
|
Mashhadikhan S, Amooghin AE, Masoomi MY, Sanaeepur H, Garcia H. Defect-Engineered Metal-Organic Framework/Polyimide Mixed Matrix Membrane for CO 2 Separation. Chemistry 2024; 30:e202401181. [PMID: 38700479 DOI: 10.1002/chem.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Defect-engineered metal-organic frameworks (MOFs) with outstanding structural and chemical features have become excellent candidates for specific separation applications. The introduction of structural defects in MOFs as an efficient approach to manipulate their functionality provides excellent opportunities for the preparation of MOF-based mixed matrix membranes (MMMs). However, the use of this strategy to adjust the properties and develop the separation performance of gas separation membranes is still in its early stages. Here, a novel defect-engineered MOF (quasi ZrFum or Q-ZrFum) was synthesized via a controlled thermal deligandation process and incorporated into a CO2-philic 6FDA-durene polyimide (PI) matrix to form Q-ZrFum loaded MMMs. Defect-engineered MOFs and fabricated MMMs were investigated regarding their characteristic properties and separation performance. The incorporation of defects into the MOF structure increases the pore size and provides unsaturated active metal sites that positively affect CO2 molecule transport. The interfacial compatibility between the Q-ZrFum particles and the PI matrix increases via the deligandation process, which improves the mechanical strength of Q-ZrFum loaded membranes. MMM containing 5 wt.% of defect-engineered Q-ZrFum exhibits excellent CO2 permeability of 1308 Barrer, which increased by 99 % compared to the pure PI membrane (656 Barrer) at a feed pressure of 2 bar. CO2/CH4 and CO2/N2 selectivity reached 44 and 26.6 which increased by about 70 and 16 %, respectively. This study emphasizes that defect-engineered MOFs can be promising candidates for use as fillers in the preparation of MMMs for the future development of membrane-based gas separation applications.
Collapse
Affiliation(s)
- Samaneh Mashhadikhan
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | | | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Hermenegildo Garcia
- Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Universitat Politècnica de València, Av. De los naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
13
|
Jiang HY, Wang ZM, Sun XQ, Zeng SJ, Guo YY, Bai L, Yao MS, Zhang XP. Advanced Materials for NH 3 Capture: Interaction Sites and Transport Pathways. NANO-MICRO LETTERS 2024; 16:228. [PMID: 38935160 PMCID: PMC11211316 DOI: 10.1007/s40820-024-01425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
Ammonia (NH3) is a carbon-free, hydrogen-rich chemical related to global food safety, clean energy, and environmental protection. As an essential technology for meeting the requirements raised by such issues, NH3 capture has been intensively explored by researchers in both fundamental and applied fields. The four typical methods used are (1) solvent absorption by ionic liquids and their derivatives, (2) adsorption by porous solids, (3) ab-adsorption by porous liquids, and (4) membrane separation. Rooted in the development of advanced materials for NH3 capture, we conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with NH3 molecules and construction of transport pathways, as well as the structure-property relationship, with specific examples discussed. Finally, the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zao-Ming Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-Ku, YoshidaKyoto, 606-8501, Japan
| | - Xue-Qi Sun
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Shao-Juan Zeng
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yang-Yang Guo
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lu Bai
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Ming-Shui Yao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiang-Ping Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- China University of Petroleum, Beijing, 102249, People's Republic of China.
| |
Collapse
|
14
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
15
|
Kulandaivel S, Yang CC, Yeh YC, Lin CH. Defect Induced Structural Transition and Lipase Immobilization in Mesoporous Aluminum Metal-Organic Frameworks. Chemistry 2024; 30:e202400603. [PMID: 38613137 DOI: 10.1002/chem.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
The transition from disorder to order and structural transformation are distinctive metal-organic framework (MOF) features. How to adapt or control both behaviors in MOF has rarely been studied. In this case, we demonstrate that our successful synthesis of [Al(OH)(PDA)]n (AlPDA-53-DEF, AlPDA-53-H, and AlPDA-68) with H2PDA=4,4'-[1,4-phenylenebis(ethyne-2,1-diyl)]-di benzoic acid has shown the intricate world of Aluminum Metal-Organic Frameworks (Al-MOFs). It offers profound insights into defect structures to order and transformations. AlPDA-53-DEF, in particular, revealed a fascinating interplay of various pore sizes within both micro and mesoporous regions, unveiling a unique lattice rearrangement phenomenon upon solvent desorption. Defects and disorders emerged as crucial impacts of transforming AlPDA-53-DEF, with its initially imperfect crystallinity, into the highly crystalline, hierarchically porous AlPDA-53-H.
Collapse
Affiliation(s)
| | - Chun-Chuen Yang
- Department of Physics, National Central University, Taoyuan City, 32023, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| |
Collapse
|
16
|
Chetry S, Lukman MF, Bon V, Warias R, Fuhrmann D, Möllmer J, Belder D, Gopinath CS, Kaskel S, Pöppl A, Krautscheid H. Exploring Defect-Engineered Metal-Organic Frameworks with 1,2,4-Triazolyl Isophthalate and Benzoate Linkers. Inorg Chem 2024; 63:10843-10853. [PMID: 38810089 PMCID: PMC11167641 DOI: 10.1021/acs.inorgchem.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Synthesis and characterization of DEMOFs (defect-engineered metal-organic frameworks) with coordinatively unsaturated sites (CUSs) for gas adsorption, catalysis, and separation are reported. We use the mixed-linker approach to introduce defects in Cu2-paddle wheel units of MOFs [Cu2(Me-trz-ia)2] by replacing up to 7% of the 3-methyl-triazolyl isophthalate linker (1L2-) with the "defective linker" 3-methyl-triazolyl m-benzoate (2L-), causing uncoordinated equatorial sites. PXRD of DEMOFs shows broadened reflections; IR and Raman analysis demonstrates only marginal changes as compared to the regular MOF (ReMOF, without a defective linker). The concentration of the integrated defective linker in DEMOFs is determined by 1H NMR and HPLC, while PXRD patterns reveal that DEMOFs maintain phase purity and crystallinity. Combined XPS (X-ray photoelectron spectroscopy) and cw EPR (continuous wave electron paramagnetic resonance) spectroscopy analyses provide insights into the local structure of defective sites and charge balance, suggesting the presence of two types of defects. Notably, an increase in CuI concentration is observed with incorporation of defective linkers, correlating with the elevated isosteric heat of adsorption (ΔHads). Overall, this approach offers valuable insights into the creation and evolution of CUSs within MOFs through the integration of defective linkers.
Collapse
Affiliation(s)
- Sibo Chetry
- Faculty
of Chemistry and Mineralogy, Universität
Leipzig, Johannisallee
29, Leipzig 04103, Germany
| | - Muhammad Fernadi Lukman
- Felix-Bloch-Institute
of Solid-State Physics, Faculty of Physics and Earth Sciences, Universität Leipzig, Linnéstrasse 5, Leipzig 04103, Germany
| | - Volodymyr Bon
- Faculty
of Chemistry and Food Chemistry, Department of Inorganic Chemistry
I, Technische Universität Dresden, Bergstrasse 66, Dresden 01069, Germany
| | - Rico Warias
- Faculty
of Chemistry and Mineralogy, Universität
Leipzig, Johannisallee
29, Leipzig 04103, Germany
| | - Daniel Fuhrmann
- Faculty
of Chemistry and Mineralogy, Universität
Leipzig, Johannisallee
29, Leipzig 04103, Germany
| | - Jens Möllmer
- Institut
für Nichtklassische Chemie e.V., Permoserstraße 15, Leipzig 04318, Germany
| | - Detlev Belder
- Faculty
of Chemistry and Mineralogy, Universität
Leipzig, Johannisallee
29, Leipzig 04103, Germany
| | - Chinnakonda S. Gopinath
- Catalysis
and Inorganic Chemistry Division, CSIR −
National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India
| | - Stefan Kaskel
- Faculty
of Chemistry and Food Chemistry, Department of Inorganic Chemistry
I, Technische Universität Dresden, Bergstrasse 66, Dresden 01069, Germany
| | - Andreas Pöppl
- Felix-Bloch-Institute
of Solid-State Physics, Faculty of Physics and Earth Sciences, Universität Leipzig, Linnéstrasse 5, Leipzig 04103, Germany
| | - Harald Krautscheid
- Faculty
of Chemistry and Mineralogy, Universität
Leipzig, Johannisallee
29, Leipzig 04103, Germany
| |
Collapse
|
17
|
Zhang S, Li H, Xia Q, Yang D, Yang Y. Zirconium-porphyrin-MOF-based oxidase-like nanozyme with oxygen vacancy for aflatoxin B1 colorimetric sensing. J Food Sci 2024; 89:3618-3628. [PMID: 38685872 DOI: 10.1111/1750-3841.17077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
In this study, a porous coordination network zirconium-porphyrin-based nanoparticle with oxygen vacancies (OVs) was prepared using acetic acid and benzoic acid as modulators via a simple hydrothermal method. The presence of OVs was confirmed by various characterization methods and was found to enhance oxygen uptake and activation. This resulted in the generation of more reactive peroxyl radicals (•O2 -) and led to an improved oxidase (OXD) mimetic activity. Additionally, it promoted 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) oxidation, with a low Km value of 0.07 mM and a high Vmax of 1.47 × 10-7 M·s-1. As aflatoxin B1 (AFB1) inhibits the Pt@PCN-222-ABTS nanozyme system, a colorimetric probe for AFB1 detection was constructed. The limit of detection (LOD) was 0.074 µg·L-1. This research presents a novel approach for designing a nanozymatic-based colorimetric method to analyze trace AFB1 residues in food.
Collapse
Affiliation(s)
- Shengyuan Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qinghai Xia
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
18
|
A Mohamed W, Chakraborty J, Bourda L, Lavendomme R, Liu C, Morent R, De Geyter N, Van Hecke K, Kaczmarek AM, Van Der Voort P. Engineering Porosity and Functionality in a Robust Twofold Interpenetrated Bismuth-Based MOF: Toward a Porous, Stable, and Photoactive Material. J Am Chem Soc 2024; 146:13113-13125. [PMID: 38700843 DOI: 10.1021/jacs.3c14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Jeet Chakraborty
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Laurens Bourda
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Roy Lavendomme
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- Laboratoire de Chimie Organique (LCO), Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels B-1050, Belgium
| | - Chunhui Liu
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- NanoSensing, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Rino Morent
- RUPT-Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41-B4, Ghent 9000, Belgium
| | - Nathalie De Geyter
- RUPT-Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41-B4, Ghent 9000, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Anna M Kaczmarek
- NanoSensing, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| |
Collapse
|
19
|
Zhong S, Mo F, Chen L, Qin W, Zhang L, Lu J, Sun D. AgAu-modified quasi-MIL-53 hybrid nanozymes with triple enzyme-like activities for boosting biocatalytic disinfection. J Colloid Interface Sci 2024; 661:520-532. [PMID: 38308892 DOI: 10.1016/j.jcis.2024.01.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Metal-organic frameworks (MOFs) have great potential for combating pathogenic bacterial infections and are expected to become an alternative to antibiotics. However, organic linkers obstruct and saturate the inorganic nodes of MOF structures, making it challenging to utilize the applied potential of metal centers. Here, we combined controlled ligand decarboxylation with noble metal nanoparticles to rationally remodel MIL-53, resulting in a hybrid nanozyme (AgAu@QMIL-53, AAQM) with excellent multiple enzyme-like activities that both eradicate bacteria and promote diabetic wound healing. Specifically, benefitting from oxidase (OXD)-like and peroxidase (POD)-like activities, AAQM converts oxygen (O2) and hydrogen peroxide (H2O2) into superoxide anion radicals (O2-) and hydroxyl radicals (OH) to eradicate bacteria. In in vitro antibacterial experiments, AAQM exhibited favorable killing efficacy against Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) (>99 %). Notably, due to its superoxide (SOD)-like activity and outstanding reactive nitrogen species (RNS) elimination capacity, AAQM can produce adequate O2 and alleviate oxidative stress in diabetic wounds. Benefiting from the rational modification of MIL-53, the synthesized hybrid nanozyme can effectively kill bacteria while alleviating oxidative stress and ultimately promote infected diabetic wound healing. Overall, this biomimetic enzyme-catalyzed strategy will bring enlightenment to the design of self-antibacterial agents for efficient disinfection and wound healing simultaneously.
Collapse
Affiliation(s)
- Sheng Zhong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Linxi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
20
|
Yin X, Sun Y, Geng K, Cui Y, Huang J, Hou H. Ingenious Modulation of Third-Order Nonlinear Optical Response of Zr-MOFs through Defect Engineering Based on a Mixed-Linker Strategy. Inorg Chem 2024; 63:6723-6733. [PMID: 38569126 DOI: 10.1021/acs.inorgchem.3c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Defect engineering plays a pivotal role in regulating electronic structure and facilitating charge transfer, yielding captivating effects on third-order nonlinear optical (NLO) properties. In this work, we utilized a mixed-linker strategy to intentionally disrupt the initial periodic arrangement of UiO-66 and construct defects. Specifically, we incorporated tetrakis(4-carboxyphenyl)porphyrin (TCPP) with an exceptionally electron-rich delocalization system into the framework of UiO-66 using a one-pot solvothermal method, ingeniously occupying the partial distribution sites of the Zr6 clusters. Compared to UiO-66, the NLO absorption and refraction performance of TCPP/UiO-66 were significantly improved. Additionally, due to the presence of nitrogen-rich sites that can accommodate metal ions in the porphyrin ring of TCPP, Co(II), Ni(II), Cu(II), and Zn(II) are introduced into TCPP/UiO-66, extending the d-π conjugation effect to further regulate the defects. The NLO absorption behavior transforms saturation absorption (SA) to reverse saturation absorption (RSA), while the refraction behavior shifts from self-defocusing to self-focusing. This work shows that defects can effectively regulate the electronic structure, while TCPP plays a crucial role in significantly enhancing electron delocalization.
Collapse
Affiliation(s)
- Xiaoyu Yin
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yupei Sun
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangshuai Geng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing Huang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
21
|
Peng W, Lin Z, Cao W, Zhang K, Heng W, Pang Z, Qian S, Gao Y, Zhang J, Wei Y. Crystal defects creation in Mannitol@CaCl 2 metal-organic framework by induced dehydration strategy for enhanced excipient mechanical properties. Int J Pharm 2024; 652:123837. [PMID: 38262584 DOI: 10.1016/j.ijpharm.2024.123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
The mechanical properties of solid pharmaceutical excipients are important for assisting drug tables production, and they determine the quality of the drug tablets. The purpose of this study was to explore the potential and mechanism of crystal defect engineering to improve the mechanical properties of Mannitol@CaCl2 MOF, a pharmaceutical excipient with metal-organic framework (MOF) structure designed and prepared in our previous study. In this study, a simple and efficient "induced dehydration strategy" was proposed to prepare Mannitol@CaCl2 MOF with crystal defects (DEMOF). SEM, TEM, HRTEM, PXRD, FTIR, DSC-TGA, and N2 adsorption-desorption isotherm revealed the successful introduction of lattice vacancy and macrostructural defects while preserving MOF's skeleton structure. Tabletability profiles indicated that DEMOF presented much better mechanical properties than the original MOF at the powder level. On single crystal and atomic scales, nanoindentation and DFT calculations revealed that the defect structure increased plasticity, decreased brittleness, and improved compressibility, resulting in DEMOF tablets with much higher tensile strength that met the criteria for direct compression excipients. The achieved performance modification illustrated the capability of defect engineering to tune mechanical properties of MOFs, and the Mannitol@CaCl2 DEMOF exhibited great potential to serve as a new direct compression pharmaceutical excipient.
Collapse
Affiliation(s)
- Wen Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Changzhou Siyao Pharmaceuticals Co., LTD, Chang Zhou, Jiangsu 213018, PR China
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ke Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
22
|
Fei L, Shen L, Chen C, Xu J, Wang B, Li B, Lin H. Assembling 99% MOFs into Bioinspired Rigid-Flexible Coupled Membrane with Significant Permeability: The Impacts of Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306528. [PMID: 37922525 DOI: 10.1002/smll.202306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Assembling metal-organic frameworks (MOFs) into high-performance macroscopic membranes is crucial but still challenging. MOF-containing hybrid membranes can effectively integrate the advantages of flexible guest materials and MOFs. Nevertheless, the inherent limitations in fully harnessing the distinct characteristics of MOFs persist due to the substantial guest material content necessitated in membrane fabrication. Herein, inspired by the rigid and flexible structures in biological systems, rigid MIP-202(Zr) and defective MIP-202(Zr) (D-MIP-202(Zr)) modified flexible graphene oxide (GO) sheets are synthesized in situ and then assembled into a rigid-flexible coupled MOF-based membrane. The defects in D-MIP-202(Zr) are introduced by using acetic acid as the modulation agent. The obtained GO@MIP-202(Zr) membrane possesses a hierarchical porous structure with a 99 wt% MOF proportion, which is higher than the GO@D-MIP-202(Zr) (75 wt%) membrane with a compact bulge-structured surface. The water permeability of the GO@MIP-202(Zr) membrane attains remarkedly 5762.92 L h-1 m-2 bar-1 , which is 960 and 2.6 times higher than that of the GO membrane and GO@D-MIP-202(Zr) membrane. Additionally, benefiting from the superhydrophilicity and underwater superoleophobicity, the resultant membrane not only demonstrates high rejection for oil-water emulsions but also exhibits exceptional recyclability and anti-fouling ability. These findings provide valuable insights into the assembly of MOFs into high-performance membranes.
Collapse
Affiliation(s)
- Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
23
|
Kim Y, Lee S, Chen YP, Lee B, Lee S, Park J. Partial-Interpenetration-Controlled UiO-Type Metal-Organic Framework and its Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305999. [PMID: 37840400 DOI: 10.1002/smll.202305999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 10/17/2023]
Abstract
An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.
Collapse
Affiliation(s)
- Yeonghun Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sanghyeop Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ying-Pin Chen
- Electrode Engineering, Panasonic Energy of North America, Reno, NV, 89502, USA
| | - Byeongchan Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
24
|
Wachholz Junior D, Hryniewicz BM, Tatsuo Kubota L. Advanced Hybrid materials in electrochemical sensors: Combining MOFs and conducting polymers for environmental monitoring. CHEMOSPHERE 2024; 352:141479. [PMID: 38367874 DOI: 10.1016/j.chemosphere.2024.141479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The integration of conducting polymers (CPs) with metal-organic frameworks (MOFs) has arisen as a dynamic and innovative approach to overcome some intrinsic limitations of both materials, representing a transformative method to address the pressing need for high-performance environmental monitoring tools. MOFs, with their intricate structures and versatile functional groups, provide tuneable porosity and an extensive surface area, facilitating the selective adsorption of target analytes. Conversely, CPs, characterized by their exceptional electrical conductivity and redox properties, serve as proficient signal transducers. By combining these two materials, a novel class of hybrid materials emerges, capitalizing on the unique attributes of both components. These MOF/CP hybrids exhibit heightened sensitivity, selectivity, and adaptability, making them primordial in detecting and quantifying environmental contaminants. This review examines the synergy between MOFs and CPs, highlighting recent advancements, challenges, and prospects, thus offering a promising solution for developing advanced functional materials with tailored properties and multifunctionality to be applied in electrochemical sensors for environmental monitoring.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Bruna M Hryniewicz
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Lauro Tatsuo Kubota
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| |
Collapse
|
25
|
Niu X, Yuan M, Zhao R, Liu Y, Wang L, Pang Z, Wan S, Zhao H, Li H, Wang K. pH-Tuned Enantioselectivity Reversal in a Defective Chiral Metal Organic Framework. ACS Sens 2024; 9:923-931. [PMID: 38335470 DOI: 10.1021/acssensors.3c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The introduction of chirality into easy-scalable metal-organic frameworks (MOFs) gives rise to the development of advanced electrochemical sensors. However, integrating chirality by directly connecting metal ions and chiral ligands is unpredictable. Postmodification synthesis is a common method for synthesizing chiral MOFs, but it reduces the size of chiral channels and poses obstacles to the approach of chiral guest molecules. In this work, missing connection defects were introduced into the chiral MOFs through defect engineering strategies, which enhance the recognition of the target enantiomers. pH can tune enantioselectivity reversal in defective chiral MOFs. The chiral MOFs show enantioselectivity for d-Trp at pH = 5 and l-Trp at pH = 8. From the results of zeta potential, regardless of pH 5 or 8, the chiral MOF has a positive potential. The chiral MOFs are positively charged, while tryptophan is negatively charged when pH = 8. The difference in the positive and negative charge interactions between the two amino acids and chiral MOFs leads to chiral recognition. However, the difference in π-π interaction between chiral MOF and Trp enantiomers mainly drives chiral recognition under pH = 5. This study paves a pathway for the synthesis of defective chiral MOFs and highlights the pH-tuned enantioselectivity reversal.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Luhua Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Shenteng Wan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
26
|
Hashem K, Krishnan R, Yang K, Anjali BA, Zhang Y, Jiang J. Computational design of metal hydrides on a defective metal-organic framework HKUST-1 for ethylene dimerization. Phys Chem Chem Phys 2024; 26:7109-7123. [PMID: 38348573 DOI: 10.1039/d3cp06257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Catalytic ethylene dimerization to 1-butene is a crucial reaction in the chemical industry, as 1-butene is used for the production of most common plastics (e.g., polyethylene). With well-defined tuneable structures and unsaturated active sites, defective metal-organic frameworks have recently emerged as potential catalysts for ethylene dimerization. Herein, we computationally design a series of metal hydrides on defective HKUST-1 namely H-M-DHKUST-1 (M: Co, Ni, Cu, Ru, Rh and Pd), and subsequently assess their catalytic activity for ethylene dimerization by density functional theory calculations. Due to the antiferromagnetic behavior of dimeric metal-based clusters, we comprehensively investigate all possible multiplicity states on H-M-DHKUST-1 and observe multiplicity crossing. The ground-state reaction barriers for four elementary steps (initiation, C-C coupling, β-hydride elimination and 1-butene desorption) are rationalized and C-C coupling is revealed to be the rate-determining step on H-Co-, H-Ni-, H-Ru-, H-Rh- and H-Pd-DHKUST-1. The energy barrier for β-hydride elimination is found to be the lowest on H-Ru- and H-Rh-DHKUST-1, attributed to the weak stability of agostic arrangement; however, the energy barrier for 1-butene desorption is the highest on H-Rh-DHKUST-1. Among the designed H-M-DHKUST-1, Co- and Ni-based ones are predicted to exhibit the best overall catalytic performance. The mechanistic insights from this study may facilitate the development of new MOFs toward efficient ethylene dimerization and other industrially important reactions.
Collapse
Affiliation(s)
- Karam Hashem
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pasek Road Jurong Island, 627833, Singapore
| | - Ramakrishna Krishnan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Bai Amutha Anjali
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Yugen Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pasek Road Jurong Island, 627833, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
27
|
Chen C, Fei L, Wang B, Xu J, Li B, Shen L, Lin H. MOF-Based Photocatalytic Membrane for Water Purification: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305066. [PMID: 37641187 DOI: 10.1002/smll.202305066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Photocatalytic membranes can effectively integrate membrane separation and photocatalytic degradation processes to provide an eco-friendly solution for efficient water purification. It is of great significance to develop highly efficient photocatalytic membranes driven by visible light to ensure the long-term stability of membrane separation systems and the maximum utilization of solar energy. Metal-organic framework (MOF) is an emerging photocatalyst with a well-defined structure and tunable chemical properties, showing a broad application prospect in the construction of high-performance photocatalytic membranes. Herein, this work provides a comprehensive review of recent advancements in MOF-based photocatalytic membranes. Initially, this work outlines the main tailoring strategies that facilitate the enhancement of the photocatalytic activity of MOF-based photocatalysts. Next, this work introduces commonly used methods for fabricating MOF-based photocatalytic membranes. Subsequently, this work discusses the application and mechanisms of MOF-based photocatalytic membranes toward organic pollutant degradation, metal ion removal, and membrane fouling mitigation. Finally, challenges in developing MOF-based photocatalytic membranes and their practical applications are presented, while also pointing out future research directions toward overcoming these existing limitations.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
28
|
Chen J, Zhang M, Shu J, Liu S, Dong X, Li C, He L, Yuan M, Wu Y, Xu J, Zhang D, Ma F, Wu G, Chai Z, Wang S. Radiation-Induced De Novo Defects in Metal-Organic Frameworks Boost CO 2 Sorption. J Am Chem Soc 2023; 145:23651-23658. [PMID: 37859406 DOI: 10.1021/jacs.3c07778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Defects in metal-organic frameworks (MOFs) can significantly change their local microstructures, thus notably leading to an alteration-induced performance in sorption or catalysis. However, achieving de novo defect engineering in MOFs under ambient conditions without the scarification of their crystallinity remains a challenge. Herein, we successfully synthesize defective ZIF-7 through 60Co gamma ray radiation under ambient conditions. The obtained ZIF-7 is defect-rich but also has excellent crystallinity, enhanced BET surface area, and hierarchical pore structure. Moreover, the amount and structure of these defects within ZIF-7 were determined from the two-dimensional (2D) 13C-1H frequency-switched Lee-Goldburg heteronuclear correlation (FSLG-HETCOR) spectra, continuous rotation electron diffraction (cRED), and high-resolution transmission electron microscopy (HRTEM). Interestingly, the defects in ZIF-7 all strongly bind to CO2, leading to a remarkable enhancement of the CO2 sorption capability compared with that synthesized by the solvothermal method.
Collapse
Affiliation(s)
- Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiao Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yutian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahui Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuyin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
29
|
Chen Y, Lu W, Schröder M, Yang S. Analysis and Refinement of Host-Guest Interactions in Metal-Organic Frameworks. Acc Chem Res 2023; 56:2569-2581. [PMID: 37646412 PMCID: PMC10552526 DOI: 10.1021/acs.accounts.3c00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 09/01/2023]
Abstract
ConspectusMetal-organic frameworks (MOFs) are a class of hybrid porous materials characterized by their periodic assembly using metal ions and organic ligands through coordination bonds. Their high crystallinity, extensive surface area, and adjustable pore sizes make them promising candidates for a wide array of applications. These include gas adsorption and separation, substrate binding, and catalysis, of relevance to tackling pressing global issues such as climate change, energy challenges, and pollution. In comparison to traditional porous materials such as zeolites and activated carbons, the design flexibility of organic ligands in MOFs, coupled with their orderly arrangement with associated metal centers, allows for the precise engineering of uniform pore environments. This unique feature enables a rich variety of interactions between the MOF host and adsorbed gas molecules, which are fundamental to understanding the observed uptake capacity and selectivity for target gas molecules and thus the overall performance of the material.In this Account, a data set for three-dimensional MOFs has been constructed based upon the structural analysis of host-guest interactions using the largest experimental database, the Cambridge Structural Database (CSD). A full screening was performed on structures with guest molecules of H2, C2H2, CO2, and SO2, and the relationship between the primary binding site, the isosteric heats of adsorption (Qst), and the adsorption uptake was extracted and established. We review the methodologies to refine host-guest interactions based primarily on our studies on the host-guest chemistry of MOFs. The methods include ligand functionalization, variation of metal centers, formation of defects, addition of single atom sites, and control of pore size and structure. In situ structural and dynamic investigations using diffraction and spectroscopic techniques are powerful tools to visualize the details of host-guest interactions upon the above modifications, affording key insights into functional performance at a molecular level. Finally, we give an outlook of future research priorities in the study of host-guest chemistry in MOF materials. We hope this Account will encourage the rational development and improvement of future MOF-based sorbents for applications in challenging gas adsorption, separations, and catalysis.
Collapse
Affiliation(s)
- Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Nandi S, Mansouri A, Dovgaliuk I, Boullay P, Patriarche G, Cornu I, Florian P, Mouchaham G, Serre C. A robust ultra-microporous cationic aluminum-based metal-organic framework with a flexible tetra-carboxylate linker. Commun Chem 2023; 6:144. [PMID: 37414866 DOI: 10.1038/s42004-023-00938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Al-based cationic metal-organic frameworks (MOFs) are uncommon. Here, we report a cationic Al-MOF, MIP-213(Al) ([Al18(μ2-OH)24(OH2)12(mdip)6]6Cl·6H2O) constructed from flexible tetra-carboxylate ligand (5,5'-Methylenediisophthalic acid; H4mdip). Its crystal structure was determined by the combination of three-dimensional electron diffraction (3DED) and high-resolution powder X-ray diffraction. The structure is built from infinite corner-sharing chains of AlO4(OH)2 and AlO2(OH)3(H2O) octahedra forming an 18-membered rings honeycomb lattice, similar to that of MIL-96(Al), a scarce Al-polycarboxylate defective MOF. Despite sharing these structural similarities, MIP-213(Al), unlike MIL-96(Al), lacks the isolated μ3-oxo-bridged Al-clusters. This leads to an ordered defective cationic framework whose charge is balanced by Cl- sandwiched between two Al-trimers at the corner of the honeycomb, showing strong interaction with terminal H2O coordinated to the Al-trimers. The overall structure is endowed by a narrow quasi-1D channel of dimension ~4.7 Å. The Cl- in the framework restrains the accessibility of the channels, while the MOF selectively adsorbs CO2 over N2 and possesses high hydrolytic stability.
Collapse
Affiliation(s)
- Shyamapada Nandi
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India
| | - Asma Mansouri
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Iurii Dovgaliuk
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Philippe Boullay
- Normandie Université, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14050, Caen, France
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - Ieuan Cornu
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Pierre Florian
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Georges Mouchaham
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France.
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France.
| |
Collapse
|
31
|
Fu Y, Yao Y, Forse AC, Li J, Mochizuki K, Long JR, Reimer JA, De Paëpe G, Kong X. Solvent-derived defects suppress adsorption in MOF-74. Nat Commun 2023; 14:2386. [PMID: 37185270 PMCID: PMC10130178 DOI: 10.1038/s41467-023-38155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Defects in metal-organic frameworks (MOFs) have great impact on their nano-scale structure and physiochemical properties. However, isolated defects are easily concealed when the frameworks are interrogated by typical characterization methods. In this work, we unveil the presence of solvent-derived formate defects in MOF-74, an important class of MOFs with open metal sites. With multi-dimensional solid-state nuclear magnetic resonance (NMR) investigations, we uncover the ligand substitution role of formate and its chemical origin from decomposed N,N-dimethylformamide (DMF) solvent. The placement and coordination structure of formate defects are determined by 13C NMR and density functional theory (DFT) calculations. The extra metal-oxygen bonds with formates partially eliminate open metal sites and lead to a quantitative decrease of N2 and CO2 adsorption with respect to the defect concentration. In-situ NMR analysis and molecular simulations of CO2 dynamics elaborate the adsorption mechanisms in defective MOF-74. Our study establishes comprehensive strategies to search, elucidate and manipulate defects in MOFs.
Collapse
Affiliation(s)
- Yao Fu
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
- Univ. Grenoble Alpes, CEA, IRIG-MEM, Grenoble, France
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yifeng Yao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Alexander C Forse
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Jianhua Li
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, PR China
| | - Kenji Mochizuki
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, IRIG-MEM, Grenoble, France
| | - Xueqian Kong
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
32
|
Fan M, Yan J, Cui Q, Shang R, Zuo Q, Gong L, Zhang W. Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review. Molecules 2023; 28:molecules28083622. [PMID: 37110856 PMCID: PMC10143358 DOI: 10.3390/molecules28083622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic framework (MOF) materials possess a large specific surface area, high porosity, and atomically dispersed metal active sites, which confer excellent catalytic performance as peroxide (peroxodisulfate (PDS), peroxomonosulfate (PMS), and hydrogen peroxide (H2O2)) activation catalysts. However, the limited electron transfer characteristics and chemical stability of traditional monometallic MOFs restrict their catalytic performance and large-scale application in advanced oxidation reactions. Furthermore, the single-metal active site and uniform charge density distribution of monometallic MOFs result in a fixed activation reaction path of peroxide in the Fenton-like reaction process. To address these limitations, bimetallic MOFs have been developed to improve catalytic activity, stability, and reaction controllability in peroxide activation reactions. Compared with monometallic MOFs, bimetallic MOFs enhance the active site of the material, promote internal electron transfer, and even alter the activation path through the synergistic effect of bimetals. In this review, we systematically summarize the preparation methods of bimetallic MOFs and the mechanism of activating different peroxide systems. Moreover, we discuss the reaction factors that affect the process of peroxide activation. This report aims to expand the understanding of bimetallic MOF synthesis and their catalytic mechanisms in advanced oxidation processes.
Collapse
Affiliation(s)
- Mengke Fan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jingwei Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Quantao Cui
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Run Shang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Qiting Zuo
- School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Gong
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Faculty of Environmental and Municipal Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, China
| |
Collapse
|
33
|
Curcumin-regulated constructing of defective zinc-based polymer-metal-organic framework as long-acting antibacterial platform for efficient wound healing. J Colloid Interface Sci 2023; 641:59-69. [PMID: 36924546 DOI: 10.1016/j.jcis.2023.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
A dual-modal antibacterial platform has been established for highly efficient wound healing infected by bacteria based on a defective zinc-based metal-organic framework composite, which was synthesized using 1,4-phthalic acid-based polyether polymer (L8) as ligand, curcumin as regulator, and Zn2+ as metal coordinated center (Cur@Zn-MOF). In addition to the integration of the features of polymer-MOF synthesized using L8 (such as high water stability and controllable and long-term release of Zn2+) and Zn-bioMOF prepared using curcumin as ligand (such as feasible release of curcumin and Zn2+ and good biocompatibility), the Cur@Zn-MOF bioplatform also possessed plenty of structure defects. Comparing with Zn-bioMOF and polyZn-MOF synthesized using the sole ligand, the smaller released amount of curcumin (6.08 μg mL-1) and higher release level of Zn2+ ions (5.68 μg mL-1) were simultaneously achieved for the defective Cur@Zn-MOF within a long-term duration (48 h). The synergistic effect afforded Cur@Zn-MOF the high sterilization performance toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) even at the low usage of 125 μg mL-1. The in vivo wound healing effect further confirmed the superior treatment ability of Cur@Zn-MOF toward the bacterium-infected wound. Also, the negligible cytotoxicity and low hemolysis of Cur@Zn-MOF greatly promoted the viability of human skin fibroblasts. Accordingly, this work can provide a new dual-modal bioplatform based on the functional MOF via the controllable release of antibacterial drug and metal ions for the efficient wound healing.
Collapse
|
34
|
Li S, Chai H, Zhang L, Xu Y, Chen J, Jiao Y. Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion. J Colloid Interface Sci 2023; 642:235-245. [PMID: 37004258 DOI: 10.1016/j.jcis.2023.03.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Oxygen vacancies can regulate the coordination structure and electronic states of atoms, thus promoting the formation of surface-active sites and increasing the conductivity of the electrode material. This work presents a design for MXene@Ce-MOF composites with abundant oxygen vacancies. The hydroxyl groups on the surface of monolayer MXene attract cerium ions, which create surface defects in Ce-MOF and further promote the formation of oxygen vacancies. This results in a significant improvement in energy storage capacity, as well as performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The MXene@Ce-MOF composite exhibits a specific capacity of 496 F g-1, which is 1.8 times higher than that of pure Ce-MOF and 3.5 times higher than MXene alone. At a current density of 10 mA cm-2, the overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is as low as 270 and 220 mV, respectively, and the composite exhibits excellent cycling stability. Oxygen vacancy-based MOF composites play a crucial role in electrocatalysis and energy conversion.
Collapse
|
35
|
Mai T, Li DD, Chen L, Ma MG. Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydr Polym 2023; 302:120359. [PMID: 36604046 DOI: 10.1016/j.carbpol.2022.120359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the star nanomaterial in functional polymers, have a large surface area, high porosity, and adjustable structure. The collaboration of nanocellulose and MOFs is a desirable strategy to make composites especially interesting for multifunctional and multi-field applications. What sparks will be produced by the collaboration of two-star nanomaterials? In this review article, we highlight an up-to-date overview of nanocellulose-based MOFs composites. The sewage treatment, gas separation, energy storage, and biomedical applications are mainly summarized. Finally, the challenges and research trends of nanocellulose-based MOFs composites are prospected. We hope this review may provide a valuable reference for the development and applications of carbohydrate polymer composites soon.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Dan-Dan Li
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
36
|
Oh KR, Lee H, Yun GN, Yoo C, Yoon JW, Awad A, Jeong HW, Hwang YK. Fabrication of Hierarchical, Porous, Bimetallic, Zeolitic Imidazolate Frameworks with the Incorporation of Square Planar Pd and Its Catalytic Application. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9296-9306. [PMID: 36779840 DOI: 10.1021/acsami.2c20240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bimetallic zeolitic imidazolate frameworks (ZIFs) containing two different metal ions can exhibit superior performances when applied in heterogeneous catalysis. Herein, we present a facile one-pot synthesis method for PdCo-ZIFs with various Pd/Co ratios, where Pd(II) ions are successfully incorporated into the Co node sites of the ZIF structure. The local structure of the bimetallic ZIFs was comprehensively investigated by pore-structure, X-ray absorption fine structure, and in situ CO adsorption Fourier transform infrared analyses. The results demonstrated that the framework comprises different coordination geometries of Co (tetrahedral) and Pd (square planar) ions connected by the benzimidazolate ligand. Notably, the inherently nonporous, 2D Co-ZIF structure was transformed into a hierarchical porous structure, and the PdCo-ZIFs exhibited a significantly increased concentration of defects and distorted Co sites. Based on these results, the catalytic performances of the synthesized ZIFs in the cycloaddition of CO2 to epoxides were evaluated under a cocatalyst and solvent-free conditions. The PdCo-ZIFs exhibited significantly higher catalytic activity (maximum turnover frequency, TOF = 2501 h-1) than Co-ZIF (TOF = 65 h-1) and Pd-ZIF (no activity), which revealed that the undercoordinated Co sites with distorted structure are the active sites rather than the incorporated Pd ions. This study provides a facile one-pot method for synthesizing bimetallic ZIFs with mixed-coordination modes, hierarchical porous structures, and modified defect concentrations, which would expand the library of structurally diverse bimetallic ZIFs toward various applications.
Collapse
Affiliation(s)
- Kyung-Ryul Oh
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Hyunjoon Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea
| | - Gwang-Nam Yun
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon 34113, Korea
| | - Changho Yoo
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Ji Woong Yoon
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Ali Awad
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon 34113, Korea
| | - Hyun-Wook Jeong
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Young Kyu Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
37
|
Design and synthesis of α-Fe2O3/MIL-53(Fe) composite as a photo-Fenton catalyst for efficient degradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Jia C, He T, Wang GM. Zirconium-based metal-organic frameworks for fluorescent sensing. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Effect of Modulation and Functionalization of UiO-66 Type MOFs on Their Surface Thermodynamic Properties and Lewis Acid–Base Behavior. Catalysts 2023. [DOI: 10.3390/catal13010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, we investigated the surface thermodynamic properties of four MOF structures of the UiO-66 series, by employing seven molecular models, a thermal model, and three other methods using the inverse gas chromatography (IGC) technique at infinite dilution. We first determined the effect of the modulation of UiO-66 by an acid (e.g., formic acid and acetic acid) and on the other hand, we studied the effect of the functionalization of the organic linker by an amine group (NH2) on their dispersive component of the surface energy and on their Lewis acid–base properties. We found that all the studied MOFs presented an amphoteric character with a strong acidity whose acidity/basicity ratio is greater than 1 using all the models and methods in IGC. Moreover, the introduction of a modulator such as acetic acid or formic acid in the synthesis of these MOFs increased the number of structural defects and therefore increased the acidity of these MOFs. Similarly, the functionalization of the MOF by the NH2 group leads to an increase in the basicity constant of the functionalized MOF while remaining smaller than their acidity constant. In addition, the use of acids as modulators and amine groups as functional groups resulted in an increase in the dispersive component of the surface energy of the MOFs. Finally, comparing the results obtained by the different models and methods and based on the increasing order of the acidity of each MOF, it was clear that the thermal model resulted in more exact and precise values than the others. Our findings pave the way for the design and development of new acid catalysts based on UiO-66 structures.
Collapse
|
40
|
Metal-Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics 2023; 15:pharmaceutics15010274. [PMID: 36678903 PMCID: PMC9861052 DOI: 10.3390/pharmaceutics15010274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing global crisis with an increasing number of untreatable or exceedingly difficult-to-treat bacterial infections, due to their growing resistance to existing drugs. It is predicted that AMR will be the leading cause of death by 2050. In addition to ongoing efforts on preventive strategies and infection control, there is ongoing research towards the development of novel vaccines, antimicrobial agents, and optimised diagnostic practices to address AMR. However, developing new therapeutic agents and medicines can be a lengthy process. Therefore, there is a parallel ongoing worldwide effort to develop materials for optimised drug delivery to improve efficacy and minimise AMR. Examples of such materials include functionalisation of surfaces so that they can become self-disinfecting or non-fouling, and the development of nanoparticles with promising antimicrobial properties attributed to their ability to damage numerous essential components of pathogens. A relatively new class of materials, metal-organic frameworks (MOFs), is also being investigated for their ability to act as carriers of antimicrobial agents, because of their ultrahigh porosity and modular structures, which can be engineered to control the delivery mechanism of loaded drugs. Biodegradable polymers have also been found to show promising applications as antimicrobial carriers; and, recently, several studies have been reported on delivery of antimicrobial drugs using composites of MOF and biodegradable polymers. This review article reflects on MOFs and polymer-MOF composites, as carriers and delivery agents of antimicrobial drugs, that have been studied recently, and provides an overview of the state of the art in this highly topical area of research.
Collapse
|
41
|
Wang S, Song L, Liu S, Pei X, Zhao Y, Min C, Shao R, Ma T, Yin Y, Xu Z, Wang C. Metal-organic framework nanoparticles as a free radical scavenger improving the stability of epoxy under high dose gamma irradiation. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Mohan B, Kamboj A, Virender, Singh K, Priyanka, Singh G, JL Pombeiro A, Ren P. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental Safetyaj. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Zeng Y, Ouyang Q, Yu Y, Tan L, Liu X, Zheng Y, Wu S. Defective Homojunction Porphyrin-Based Metal-Organic Frameworks for Highly Efficient Sonodynamic Therapy. SMALL METHODS 2023; 7:e2201248. [PMID: 36549891 DOI: 10.1002/smtd.202201248] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) with non-invasiveness and high tissue-penetrating ability has attracted widespread interest in treating deep-seated tumors or infections. To enhance the treatment efficacy of SDT, the development of high-efficiency and stable sonosensitizers are still needed. Herein, a defective homojunction porphyrin-based metal-organic framework (MOF) with greatly enhanced sonocatalytic ability is easily prepared and used for SDT of osteomyelitis infected by methicillin-resistant Staphylococcus aureus (MRSA). Acetic acid and benzoic acid are chosen as modulators during the hydrothermal synthesis of porphyrin-based MOF. It is found that the crystal structure of MOF shifts from PCN-222 to PCN-224 as the amount of acetic acid increases. Interestingly, the defective PCN (D-PCN) contains a two-phase homojunction structure of PCN-222/PCN-224. The sonocatalytic reactive oxygen species production presents a volcano-type trend with increased acetic acid, among which D-PCN-2 with more content of PCN-224 has the best sonocatalytic antibacterial ability. The reduced band gap introduced a defect, and type-II homojunction structures of D-PCN-2 improve the separation of the ultrasound-triggered electron hole, which significantly enhances the SDT effect. Through a mixed linker approach, this work develops a new defect-induced homojunction MOF with great performance for SDT of MRSA-infected osteomyelitis.
Collapse
Affiliation(s)
- Yuxuan Zeng
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Qunle Ouyang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yi Yu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
44
|
Sohrabi H, Ghasemzadeh S, Shakib S, Majidi MR, Razmjou A, Yoon Y, Khataee A. Metal–Organic Framework-Based Biosensing Platforms for the Sensitive Determination of Trace Elements and Heavy Metals: A Comprehensive Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Shahin Ghasemzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Sama Shakib
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, Perth, WA6027, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales2007, Australia
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju26493, Republic of Korea
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
- Department of Environmental Engineering, Gebze Technical University, 41400Gebze, Turkey
| |
Collapse
|
45
|
Liu Y, Qiu G, Yan A, Liu Y, Niu Y, Qu R, Ji C. Preparation of metal organic framework materials with defects via a mixed-metallic centers strategy for enhanced removal of organic dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Synthesis of defective MOF-801 via an environmentally benign approach for diclofenac removal from water streams. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Bagheri M, Masoomi MY. Quasi-metal organic frameworks: Preparation, applications and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Darabdhara J, Ahmaruzzaman M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. CHEMOSPHERE 2022; 304:135261. [PMID: 35697109 DOI: 10.1016/j.chemosphere.2022.135261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.
Collapse
Affiliation(s)
- Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
49
|
|
50
|
Zheng Y, Zhang S, Guo J, Shi R, Yu J, Li K, Li N, Zhang Z, Chen Y. Green and Scalable Fabrication of High‐Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angew Chem Int Ed Engl 2022; 61:e202208744. [DOI: 10.1002/anie.202208744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Yunlong Zheng
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Sainan Zhang
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Ruixuan Shi
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Jiangyue Yu
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Kaipeng Li
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| |
Collapse
|