1
|
Kuang J, Zhao L, Ruan S, Sun Y, Wu Z, Zhang H, Zhang M, Hu P. The integration platform for exosome capture and colorimetric detection: Site occupying effect-modulated MOF-aptamer interaction and aptamer-Au NPs-dopamine interaction. Anal Chim Acta 2024; 1329:343234. [PMID: 39396297 DOI: 10.1016/j.aca.2024.343234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Exosomes are extracellular vesicles of 30-200 nm in diameter that inherit molecular markers from their parent cells, including proteins, lipids, nucleic acids, and glycoconjugates. The detection and protein profiling of exosome could provide noninvasive access to disease diagnosis and treatment. In recent years, it has been found that Zr-MOFs can capture exosomes by forming Zr-O-P bonds through the phospholipid bilayer of exosomes. In addition, gold nanoparticles with optical response are used for colorimetric biological analysis, such as proteins, peptides, DNA. In this work, we proposed an aptasensor for exosome capture and sensitive colorimetric detection. The Zr-MOF (PCN-224) is innovatively used to capture exosome by Zr-O-P bond, and sodium tripolyphosphate (STPP) is used to block the non-specific adsorption of DNA aptamers on the surface of PCN-224 by site occupying effect. The aptamer binds to exosome immunity, and the remaining aptamer binds to Au NPs, resulting in an increase in steric hindrance and electrostatic repulsion, which makes the dispersion of Au NPs better and avoids the aggregation of Au NPs induced by dopamine (DA). The ratio of absorbance A650/A520 represents the aggregate degree of Au NPs, which correlates with the concentration of exosomes, and achieves sensitive colorimetric detection of exosomes with a linear range of 1.0 × 105-1.0 × 107 particles/mL. Further studies reveal that our work has excellent selectivity and anti-interference, breast cancer patients and healthy individuals can be distinguished by analyzing the differences in the expression of CD63 protein on exosome. The proposed biosensor integrates the capture and detection of exosomes, the multiple colors of Au NPs changed significantly from red to gray, which was conducive to the naked-eye identification of exosome detection.
Collapse
Affiliation(s)
- Jingjing Kuang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengli Ruan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yangkun Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zeyu Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
3
|
Medina H, Farmer C. Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field. TOXICS 2024; 12:610. [PMID: 39195712 PMCID: PMC11358922 DOI: 10.3390/toxics12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The Environmental Protection Agency (EPA) of the United States recently released the first-ever federal regulation on per- and polyfluoroalkyl substances (PFASs) for drinking water. While this represents an important landmark, it also brings about compliance challenges to the stakeholders in the drinking water industry as well as concerns to the general public. In this work, we address some of the most important challenges associated with measuring low concentrations of PFASs in drinking water in the field in real drinking water matrices. First, we review the "continuous monitoring for compliance" process laid out by the EPA and some of the associated hurdles. The process requires measuring, with some frequency, low concentrations (e.g., below 2 ppt or 2 ng/L) of targeted PFASs, in the presence of many other co-contaminants and in various conditions. Currently, this task can only (and it is expected to) be accomplished using specific protocols that rely on expensive, specialized, and laboratory-scale instrumentation, which adds time and increases cost. To potentially reduce the burden, portable, high-fidelity, low-cost, real-time PFAS sensors are desirable; however, the path to commercialization of some of the most promising technologies is confronted with many challenges, as well, and they are still at infant stages. Here, we provide insights related to those challenges based on results from ab initio and machine learning studies. These challenges are mainly due to the large amount and diversity of PFAS molecules and their multifunctional behaviors that depend strongly on the conditions of the media. The impetus of this work is to present relevant and timely insights to researchers and developers to accelerate the development of suitable PFAS monitoring systems. In addition, this work attempts to provide water system stakeholders, technicians, and even regulators guidelines to improve their strategies, which could ultimately translate in better services to the public.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, Lynchburg, VA 24515, USA
| | | |
Collapse
|
4
|
Renzi E, Esposito A, Leone L, Chávez M, Pineda T, Lombardi A, Nastri F. Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles. NANOSCALE ADVANCES 2024; 6:3533-3542. [PMID: 38989515 PMCID: PMC11232542 DOI: 10.1039/d4na00344f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
The immobilization of biocatalysts on inorganic supports allows the development of bio-nanohybrid materials with defined functional properties. Gold nanomaterials (AuNMs) are the main players in this field, due to their fascinating shape-dependent properties that account for their versatility. Even though incredible progress has been made in the preparation of AuNMs, few studies have been carried out to analyze the impact of particle morphology on the behavior of immobilized biocatalysts. Herein, the artificial peroxidase Fe(iii)-Mimochrome VI*a (FeMC6*a) was conjugated to two different anisotropic gold nanomaterials, nanorods (AuNRs) and triangular nanoprisms (AuNTs), to investigate how the properties of the nanosupport can affect the functional behavior of FeMC6*a. The conjugation of FeMC6*a to AuNMs was performed by a click-chemistry approach, using FeMC6*a modified with pegylated aza-dibenzocyclooctyne (FeMC6*a-PEG4@DBCO), which was allowed to react with azide-functionalized AuNRs and AuNTs, synthesized from citrate-capped AuNMs. To this end, a literature protocol for depleting CTAB from AuNRs was herein reported for the first time to prepare citrate-AuNTs. The overall results suggest that the nanomaterial shape influences the nanoconjugate functional properties. Besides giving new insights into the effect of the surfaces on the artificial peroxidase properties, these results open up the way for creating novel nanostructures with potential applications in the field of sensing devices.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Miriam Chávez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| |
Collapse
|
5
|
Chen T, Ge Y, Lu X, Hu J, Karimi-Maleh H, Wen Y, Wang X, Huang Z, Li M. Ultrasound-electrochemistry assisted liquid-phase co-exfoliation of phosphorene decorated by Au-Ag bimetallic nanoparticles as nanozyme for smartphone-based portable sensing of 4-nitrophenol. Mikrochim Acta 2024; 191:446. [PMID: 38963446 DOI: 10.1007/s00604-024-06518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses. Bimetallic salts are induced to efficiently occupy oxidative sites of BP to form highly stable Au-AgNPs-BP nanozyme and guarantee the integrity of the lamellar BP. The electrochemistry shortens the exfoliation time of the BP nanosheet and contributes to the loading efficiency of bimetallic nanoparticles on the BP nanosheet. Au-AgNPs-BP-modified screen-printed carbon electrode coupled with palm-sized smartphone-controlled wireless electrochemical analyzer as a portable wireless intelligent sensing platform was applied to the determination of 4-NP in a linear range of 0.6-10 μM with a limit of detection of 63 nM. It enables on-site determination of 4-NP content in lake water, river water, and irrigation ditch water. This work will provide a reference for an eco-friendly one-step preparation of bimetallic nanoparticle-decorated graphene-like materials as nanozymes and their smartphone-based portable sensing application outdoors.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu Ge
- College of Animal Science and Technology, Hunan Agricultural University, Yuelushan Laboratory, Changsha, 410128, China
| | - Xinyu Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jiaqi Hu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hassan Karimi-Maleh
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China.
| | - Xiaoqiang Wang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong Huang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingfang Li
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
6
|
Gul Z, Ullah S, Khan S, Ullah H, Khan MU, Ullah M, Ali S, Altaf AA. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit Rev Anal Chem 2024; 54:44-60. [PMID: 35290138 DOI: 10.1080/10408347.2022.2049676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To maintain a green and sustainable environment for human beings, rapid detection of potentially toxic heavy metals like mercury (Hg(II)) has attracted great attention. Recently, sensors have been designed which can selectively detect Hg(II) over other common available cations and give a naked eye or fluorometric response. In the last two decades, the trend is shifting from bulky organic chemosensors toward nanoparticles due to their rapid response, low cost, eco-friendly and easy synthesis. In this review, promising nanoparticles-based sensors for Hg(II) detection are discussed. The nano-sensors are functionalized with nucleotide or other suitable materials which coordinate with Hg(II) ions and give clear color or fluorescence change. The operational mechanisms are discussed focusing on its four basic types. The nanoparticles-based sensors are even able to detect Hg in three different oxidation states (Hg(II), Hg(I) and Hg(0)). Recently, the trend has been shifted from ordinary nanoparticles to magnetic nanoparticles to simultaneously detect and remove Hg(II) ions from environmental samples. Furthermore, the nano-sensors for Hg(II) are compared with each other and with the reported organic chemosensors.
Collapse
Affiliation(s)
- Zarif Gul
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Misbah Ullah Khan
- Center for Nano-Science, University of Okara, Okara, Punjab, Pakistan
| | - Munzer Ullah
- Department of Biochemistry, University of Okara, Okara, Punjab, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, PR China
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
7
|
Zhao Z, Li H, Gao X. Microwave Encounters Ionic Liquid: Synergistic Mechanism, Synthesis and Emerging Applications. Chem Rev 2024; 124:2651-2698. [PMID: 38157216 DOI: 10.1021/acs.chemrev.3c00794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Progress in microwave (MW) energy application technology has stimulated remarkable advances in manufacturing and high-quality applications of ionic liquids (ILs) that are generally used as novel media in chemical engineering. This Review focuses on an emerging technology via the combination of MW energy and the usage of ILs, termed microwave-assisted ionic liquid (MAIL) technology. In comparison to conventional routes that rely on heat transfer through media, the contactless and unique MW heating exploits the electromagnetic wave-ions interactions to deliver energy to IL molecules, accelerating the process of material synthesis, catalytic reactions, and so on. In addition to the inherent advantages of ILs, including outstanding solubility, and well-tuned thermophysical properties, MAIL technology has exhibited great potential in process intensification to meet the requirement of efficient, economic chemical production. Here we start with an introduction to principles of MW heating, highlighting fundamental mechanisms of MW induced process intensification based on ILs. Next, the synergies of MW energy and ILs employed in materials synthesis, as well as their merits, are documented. The emerging applications of MAIL technologies are summarized in the next sections, involving tumor therapy, organic catalysis, separations, and bioconversions. Finally, the current challenges and future opportunities of this emerging technology are discussed.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hong Li
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xin Gao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Lyu Y, Becerril LM, Vanzan M, Corni S, Cattelan M, Granozzi G, Frasconi M, Rajak P, Banerjee P, Ciancio R, Mancin F, Scrimin P. The Interaction of Amines with Gold Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211624. [PMID: 36952309 DOI: 10.1002/adma.202211624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between amines and the surface of gold nanoparticles is important because of their role in the stabilization of the nanosystems, in the formation of the protein corona, and in the preparation of semisynthetic nanozymes. By using fluorescence spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and molecular simulation, a detailed picture of these interactions is obtained. Herein, it is shown that amines interact with surface Au(0) atoms of the nanoparticles with their lone electron pair with a strength linearly correlating with their basicity corrected for steric hindrance. The kinetics of binding depends on the position of the gold atoms (flat surfaces or edges) while the mode of binding involves a single Au(0) with nitrogen sitting on top of it. A small fraction of surface Au(I) atoms, still present, is reduced by the amines yielding a much stronger Au(0)-RN.+ (RN. , after the loss of a proton) interaction. In this case, the mode of binding involves two Au(0) atoms with a bridging nitrogen placed between them. Stable Au nanoparticles, as those required for robust semisynthetic nanozymes preparation, are better obtained when the protein is involved (at least in part) in the reduction of the gold ions.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | | | - Mirko Vanzan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Mattia Cattelan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Piu Rajak
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Pritam Banerjee
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Regina Ciancio
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| |
Collapse
|
9
|
Nazari-Vanani R, Negahdary M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. ENVIRONMENTAL RESEARCH 2024; 243:117850. [PMID: 38081349 DOI: 10.1016/j.envres.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In recent years, pathogenic microorganisms have caused significant mortality rates and antibiotic resistance and triggered exorbitant healthcare costs. These pathogens often have high transmission rates within human populations. Rapid diagnosis is crucial in controlling and reducing the spread of pathogenic infections. The diagnostic methods currently used against individuals infected with these pathogens include relying on outward symptoms, immunological-based and, some biomolecular ones, which mainly have limitations such as diagnostic errors, time-consuming processes, and high-cost platforms. Electrochemical aptasensors and genosensors have emerged as promising diagnostic tools for rapid, accurate, and cost-effective pathogen detection. These bio-electrochemical platforms have been optimized for diagnostic purposes by incorporating advanced materials (mainly nanomaterials), biomolecular technologies, and innovative designs. This review classifies electrochemical aptasensors and genosensors developed between 2021 and 2023 based on their use of different nanomaterials, such as gold-based, carbon-based, and others that employed other innovative assemblies without the use of nanomaterials. Inspecting the diagnostic features of various sensing platforms against pathogenic analytes can identify research gaps and open new avenues for exploration.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
10
|
Pang L, Pi X, Zhao Q, Man C, Yang X, Jiang Y. Optical nanosensors based on noble metal nanoclusters for detecting food contaminants: A review. Compr Rev Food Sci Food Saf 2024; 23:e13295. [PMID: 38284598 DOI: 10.1111/1541-4337.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Shao X, Yang D, Wang M, Yue Q. A colorimetric detection of Hg 2+ based on gold nanoparticles synthesized oxidized N-methylpyrrolidone as a reducing agent. Sci Rep 2023; 13:22208. [PMID: 38097761 PMCID: PMC10721636 DOI: 10.1038/s41598-023-49551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
In this study, a gold nanoparticles colorimetric probe (AuNPs) with direct response to mercury ions (Hg2+) were developed using treated N-methylpyrrolidone (NMP) and chloroauric acid (HAuCl4) as precursors. NMP showed good reducibility after high temperature hydrolysis and could be used as reducing and stabilizing agent to synthesize AuNPs. The prepared AuNPs have obvious characteristic absorption peaks and appear wine-red. At the same time, it was found that the presence of Hg2+ can cause the aggregation of AuNPs, increased the absorbance at 700 nm, and changed the color of the solution into blue-gray. This method is capable of sensitive and specific determination of Hg2+ ranging from 1 to 30 μM, with the limit of detection (LOD) at 0.3 μM. The method showed good specificity for the determination of Hg2+ and has the potential to be applied to Hg2+ detection in sewage samples in the environment.
Collapse
Affiliation(s)
- Xiaodong Shao
- State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an, 710077, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Dou Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
12
|
Hou Z, Gao T, Liu X, Guo W, Bai L, Wang W, Yang L, Yang H, Wei D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int J Biol Macromol 2023; 252:126473. [PMID: 37619684 DOI: 10.1016/j.ijbiomac.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 μmol/L-200.0 μmol/L), low detection limits (0.9 μmol/L) and high sensitivity (24.4 μA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.
Collapse
Affiliation(s)
- Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Teng Gao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Xinyue Liu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenzhe Guo
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
13
|
Gatou MA, Vagena IA, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2224. [PMID: 37570542 PMCID: PMC10421186 DOI: 10.3390/nano13152224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
14
|
Shafiq A, Deshmukh AR, AbouAitah K, Kim BS. Green Synthesis of Controlled Shape Silver Nanostructures and Their Peroxidase, Catalytic Degradation, and Antibacterial Activity. J Funct Biomater 2023; 14:325. [PMID: 37367289 DOI: 10.3390/jfb14060325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Nanoparticles with unique shapes have garnered significant interest due to their enhanced surface area-to-volume ratio, leading to improved potential compared to their spherical counterparts. The present study focuses on a biological approach to producing different silver nanostructures employing Moringa oleifera leaf extract. Phytoextract provides metabolites, serving as reducing and stabilizing agents in the reaction. Two different silver nanostructures, dendritic (AgNDs) and spherical (AgNPs), were successfully formed by adjusting the phytoextract concentration with and without copper ions in the reaction system, resulting in particle sizes of ~300 ± 30 nm (AgNDs) and ~100 ± 30 nm (AgNPs). These nanostructures were characterized by several techniques to ascertain their physicochemical properties; the surface was distinguished by functional groups related to polyphenols due to plant extract that led to critical controlling of the shape of nanoparticles. Nanostructures performance was assessed in terms of peroxidase-like activity, catalytic behavior for dye degradation, and antibacterial activity. Spectroscopic analysis revealed that AgNDs demonstrated significantly higher peroxidase activity compared to AgNPs when evaluated using chromogenic reagent 3,3',5,5'-tetramethylbenzidine. Furthermore, AgNDs exhibited enhanced catalytic degradation activities, achieving degradation percentages of 92.2% and 91.0% for methyl orange and methylene blue dyes, respectively, compared to 66.6% and 58.0% for AgNPs. Additionally, AgNDs exhibited superior antibacterial properties against Gram-negative E. coli compared to Gram-positive S. aureus, as evidenced by the calculated zone of inhibition. These findings highlight the potential of the green synthesis method in generating novel nanoparticle morphologies, such as dendritic shape, compared with the traditionally synthesized spherical shape of silver nanostructures. The synthesis of such unique nanostructures holds promise for various applications and further investigations in diverse sectors, including chemical and biomedical fields.
Collapse
Affiliation(s)
- Ayesha Shafiq
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Aarti R Deshmukh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Beom-Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
15
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. A detection method for Prorocentrum minimum by an aptamer-gold nanoparticles based colorimetric assay. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131043. [PMID: 36827721 DOI: 10.1016/j.jhazmat.2023.131043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Here, to give early waring for harmful algal blooms caused by Prorocentrum minimum, we reported a simple and rapid colorimetric assay that is named aptamer-gold nanoparticles (GNPs) based colorimetric assay (AGBCA). The GNPs maintain a dispersed state and have a strong characteristic absorption peak at 520 nm. With the addition of NaCl, the stability of the solution will be destroyed and the dispersed GNPs will aggregate. Therefore, the characteristic absorption peak of the GNPs solution will change from 520 nm to 670 nm. Aptamers can be adsorbed on the surface of GNPs, effectively preventing the aggregation of GNPs. In the presence of P. minimum, aptamers will specifically bind to P. minimum, causing the dissociation of the aptamers from GNPs. Consequently, the GNPs will aggregate in the NaCl solution, corresponding to a new absorption peak at 670 nm. A linear relationship between the absorbance ratio variation (ΔA670/A520) and the P. minimum concentration was observed in the concentration range of 1 × 102 - 1 × 107 cells mL-1, with a low detection limit of 8 cells mL-1. The developed AGBCA is characterized by simplicity, strong specificity, and high sensitivity and is thus promising for the quantitative detection of P. minimum in natural samples.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yu Duan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinju Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| |
Collapse
|
16
|
Curulli A. Functional Nanomaterials Enhancing Electrochemical Biosensors as Smart Tools for Detecting Infectious Viral Diseases. Molecules 2023; 28:molecules28093777. [PMID: 37175186 PMCID: PMC10180161 DOI: 10.3390/molecules28093777] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electrochemical biosensors are known as analytical tools, guaranteeing rapid and on-site results in medical diagnostics, food safety, environmental protection, and life sciences research. Current research focuses on developing sensors for specific targets and addresses challenges to be solved before their commercialization. These challenges typically include the lowering of the limit of detection, the widening of the linear concentration range, the analysis of real samples in a real environment and the comparison with a standard validation method. Nowadays, functional nanomaterials are designed and applied in electrochemical biosensing to support all these challenges. This review will address the integration of functional nanomaterials in the development of electrochemical biosensors for the rapid diagnosis of viral infections, such as COVID-19, middle east respiratory syndrome (MERS), influenza, hepatitis, human immunodeficiency virus (HIV), and dengue, among others. The role and relevance of the nanomaterial, the type of biosensor, and the electrochemical technique adopted will be discussed. Finally, the critical issues in applying laboratory research to the analysis of real samples, future perspectives, and commercialization aspects of electrochemical biosensors for virus detection will be analyzed.
Collapse
Affiliation(s)
- Antonella Curulli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 00161 Rome, Italy
| |
Collapse
|
17
|
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. Constructing functional metal-organic frameworks by ligand design for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130848. [PMID: 36696779 DOI: 10.1016/j.jhazmat.2023.130848] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) with unique physical and chemical properties are composed of metal ions/clusters and organic ligands, including high porosity, large specific surface area, tunable structure and functionality, which have been widely used in chemical sensing, environmental remediation, and other fields. Organic ligands have a significant impact on the performance of MOFs. Selecting appropriate types, quantities and properties of ligands can well improve the overall performance of MOFs, which is one of the critical issues in the synthesis of MOFs. This article provides a comprehensive review of ligand design strategies for functional MOFs from the number of different types of organic ligands. Single-, dual- and multi-ligand design strategies are systematically presented. The latest advances of these functional MOFs in environmental applications, including pollutant sensing, pollutant separation, and pollutant degradation are further expounded. Furthermore, an outlook section of providing some insights on the future research problems and prospects of functional MOFs is highlighted with the purpose of conquering current restrictions by exploring more innovative approaches.
Collapse
Affiliation(s)
- Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenjing Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenfang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
18
|
Cheng Y, Chen C, Wang F, Chen Z. A highly sensitive signal-on biosensor based on restriction enzyme-mediated molecular switch for detection of TET1. Bioelectrochemistry 2023; 152:108433. [PMID: 37031472 DOI: 10.1016/j.bioelechem.2023.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Ten-eleven translocation 1 (TET1) is a member of the TET enzyme family of dioxygenases, which plays an important role in active DNA demethylation. Therefore, the sensitive TET1 detection could help us better understand DNA methylation-demethylation in epigenetics. Here we report a detection method that consists of electrode fabrication, TET1 modification, DNA digestion, signal-on oxidoreduction, and current peak monitoring. An exquisitely designed 5'end-G-rich oligodeoxynucleotide was synthesized bearing a methylated cytosine (5-mC), which formed into hairpin dsDNA with the MspI recognition sequence (CmCGG/GGCC). Then hairpin dsDNA was fabricated onto gold nanoparticles modified glassy carbon electrode (DNA/AuNPs/GCE) via Au-S bond. The combination uses of restriction enzyme MspI and hemin converted fabricated-dsDNA into peroxidase-mimicking DNAzyme, thereby promoting the reduction of H2O2 with a current peak. However, the current peak was extremely decreased once TET1 and T4 β-GT were used in advance. We confirmed a delicately linear relationship matching between the current difference and TET1 activity from 0.7 to 10.5 ng μL-1 with a detection limit of 0.027 ng μL-1, which outcompeted the former methods at least one order of magnitudes. The TET1 activity evaluation in the existence of Bobcat339 was also tested as the proof of concept of inhibitors screening. Our strategy provides a novel, label-free, and sensitive electrochemical approach that enables us to complete both TET1 activity evaluation and potential TET1 inhibitors screening.
Collapse
|
19
|
Yan Y, Liu Z, Zhou W, Gao H, Lu R. Construction of multiple modes using gold nanoparticles as probes for the rapid detection of fenpyroximate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1713-1721. [PMID: 36938594 DOI: 10.1039/d3ay00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, three patterns for the detection of fenpyroximate based on the response signal of gold nanoparticles are described. The strong interaction between the guanidine group of arginine-modified gold nanoparticles and the ester group of fenpyroximate led to the aggregation of the nanoparticles and to a variation of ultraviolet-visible light spectrum and color of the solution. Sensors were constructed based on the correlation of the concentration of fenpyroximate with the absorbance ratio (A650/A525) and the R value was obtained by extracting the color of the test solution by using a smartphone to take a photo of the solution, which was then analyzed by colorimeter software. The absorbance ratio increased linearly in the range of 0.225-0.375 mg L-1 and the limit of detection was 0.215 mg L-1, while the R value declined linearly in the range of 0.20-0.40 mg L-1 and the limit of detection was 0.21 mg L-1. Further, the gold nanoparticles could cause a fluorescence quenching of fluorescent dyes, such as rhodamine B, and it was found that the fluorescence could be quenched and then restored after aggregation; therefore, a fluorescence method based on fluorescence "off-on" was constructed, and the fluorescence quenching was found to increase linearly in the range of 0.0-1.0 mg L-1 and the limit of detection was 0.013 mg L-1. These three patterns indicated highly selective and sensitive response signals for fenpyroximate, and all were applied to the detection of fenpyroximate in apple juice, pear juice, and environmental water samples, with the results showing that the three methods could be mutually verified, with the recoveries ranging from 94.15% to 110.65%.
Collapse
Affiliation(s)
- Yumei Yan
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Zhili Liu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Wenfeng Zhou
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Haixiang Gao
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Runhua Lu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
20
|
Quinson J. On the Importance of Fresh Stock Solutions for Surfactant-Free Colloidal Syntheses of Gold Nanoparticles in Alkaline Alcohol and Water Mixtures. INORGANICS 2023. [DOI: 10.3390/inorganics11040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
A room temperature surfactant-free synthesis of gold nanoparticles in the size range 10–20 nm that only requires HAuCl4 as the precursor, NaOH as the base, water as the solvent and a mono-alcohol such as methanol or ethanol as the reducing agent, has recently been detailed. This approach is promisingly simple to obtain colloids stable for months. Here, it is shown that the use of fresh stock solutions of base is one key to ensure the formation of stable surfactant-free small-sized gold nanoparticles. The need for relatively freshly prepared stock solutions of base does not appear to be as crucial for syntheses using stabilizers and/or viscous solvents such as glycerol. The possibly overlooked importance of the age of the stock solution of base might account for the limited interest to date for the simple room temperature synthesis in low viscosity mono-alcohols highlighted.
Collapse
|
21
|
Advantages of aggregation-induced luminescence microspheres compared with fluorescent microspheres in immunochromatography assay with sandwich format. Anal Chim Acta 2023; 1247:340869. [PMID: 36781245 DOI: 10.1016/j.aca.2023.340869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Organic fluorescein dye-embedded fluorescent microspheres (FMs) are currently the most established commercially fluorescent markers, and they have been widely used to improve the sensitivity of immunochromatography assay (ICA). However, these FMs have natural defects, such as the aggregation-caused quenching effect and small Stokes shift, which are not conducive to improving the detection performance of ICA. Herein, two green emitted FMs, namely aggregation-induced emission FMs (AIEFMs) and fluorescein isothiocyanate FMs (FITCFMs), were prepared by swelling the AIE luminogens and FITC dyes into the carboxyl group-modified polystyrene microspheres. The average diameters of AIEFMs and FITCFMs were 350 and 450 nm, respectively. Compared with FITCFMs, the AIEFMs exhibited stronger fluorescence intensity and a larger Stokes shift. These two FMs were used as the labeling markers of ICA for procalcitonin (PCT) detection with the sandwich format. Among them, AIEFM-ICA showed dynamic linear detection of PCT from 7.6 pg mL-1 to 125 ng mL-1 with the limit of detection (LOD) at 3.8 pg mL-1. These values were remarkably superior to those of FITCFM-ICA (linear range from 61 pg mL-1 to 62.5 ng mL-1 and LOD value at 60 pg mL-1). Furthermore, the average recoveries of the intra- and inter-assays of AIEFM-ICA ranged from 86% to 112%, with coefficients of variation ranging from 1.2% to 8.8%, indicating accuracy and precision for PCT quantitative detection. Additionally, the reliability of the developed AIEFM-ICA was further assessed by analyzing 30 real serum samples from systemic inflammatory response by infectious diseases, and the results showed good agreement with the chemiluminescence immunoassay. In conclusion, compared with traditional FITCFMs, green emitted AIEFMs as a novel fluorescent label, exhibits greater potential to enhance the detection performance of the ICA platform.
Collapse
|
22
|
Takayanagi T, Miyake K, Seto M, Mizuguchi H, Okabe H, Matsuda N. Conjugation monitoring of gold nanoparticles with alkanedithiols by capillary zone electrophoresis. ANAL SCI 2023:10.1007/s44211-023-00299-4. [PMID: 36811184 DOI: 10.1007/s44211-023-00299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Alkanedithiols were used for the conjugation of gold nanoparticles (AuNP) prepared by a solution plasma process. Capillary zone electrophoresis was utilized for the monitoring of the conjugated AuNP. When 1,6-hexanedithiol (HDT) was used as a linker, a resolved peak from the AuNP was detected in the electropherogram; the resolved peak was attributed to the conjugated AuNP. The resolved peak was developed with increasing concentrations of HDT, while the peak of the AuNP decreased complementary. The resolved peak also tended to develop along with the standing time at least up to 7 weeks. The electrophoretic mobility of the conjugated AuNP was almost identical over the HDT concentrations examined, suggesting that the conjugation of the AuNP did not proceed further, such as aggregate/agglomerate formation. The conjugation monitoring was also examined with some dithiols and monothiols. Resolved peak of the conjugated AuNP was also detected with 1,2-ethanedithiol and 2-aminoethanethiol.
Collapse
Affiliation(s)
- Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan.
| | - Koji Miyake
- Graduate School of Science and Technology for Innovation, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Minamo Seto
- Faculty of Science and Technology, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotaka Okabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, 841-0052, Japan
| | - Naoki Matsuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, 841-0052, Japan.
| |
Collapse
|
23
|
Della Sala F, Ceresara E, Micheli F, Fontana S, Prins LJ, Scrimin P. Exploiting multivalency and cooperativity of gold nanoparticles for binding phosphatidylinositol (3,4,5)-trisphosphate at sub-nanomolar concentrations. Org Biomol Chem 2023; 21:743-747. [PMID: 36601663 DOI: 10.1039/d2ob02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic, monolayer-protected gold nanoparticles provide a multivalent charged surface and a hydrophobic monolayer that synergistically contribute to the binding of phosphatidylinositol (3,4,5)-trisphosphate, a relevant biomarker. The observed dissociation constant is in the picomolar region, providing the possibility of using these gold nanoparticles for the selective extraction of this molecule from biological fluids.
Collapse
Affiliation(s)
- Flavio Della Sala
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy. .,Department of Chemistry, University of Manchester, M13 9LP, UK
| | - Elisa Ceresara
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Fabrizio Micheli
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Stefano Fontana
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Leonard J Prins
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| |
Collapse
|
24
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Zhu Y, Qi Y, Xu M, Luo J. Flexible Biosensor Based on Signal Amplification of Gold Nanoparticles-Composite Flower Clusters for Glucose Detection in Sweat. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Tian L, Song X, Liu T, Li A, Ning Y, Hua X, Dong D, Liang D. A combined UV-visible with fluorescence detection method based on an unlabeled aptamer and AuNPs for the sensitive detection of acetamiprid. NEW J CHEM 2023. [DOI: 10.1039/d3nj00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
A simple spectral method with a wider detection range is proposed for the detection of acetamiprid.
Collapse
Affiliation(s)
- Liran Tian
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, P. R. China
| | - Xiangwei Song
- School of Life Sciences, Changchun Normal University, Changchun 130031, P. R. China
| | - Tianjiao Liu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, P. R. China
| | - Anfeng Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, P. R. China
| | - Yang Ning
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, P. R. China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, P. R. China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, P. R. China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
27
|
Farhan A, Arshad J, Rashid EU, Ahmad H, Nawaz S, Munawar J, Zdarta J, Jesionowski T, Bilal M. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. CHEMOSPHERE 2023; 310:136835. [PMID: 36243091 DOI: 10.1016/j.chemosphere.2022.136835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation is one of the most promising technologies available for removing a variety of synthetic and organic pollutants from the environmental matrices because of its high catalytic activity, reduced energy consumption, and low total cost. Due to its acceptable bandgap, broad light-harvesting efficiency, significant renewability, and stability, Fe2O3 has emerged as a fascinating material for the degradation of organic contaminants as well as numerous dyes. This study thoroughly reviewed the efficiency of Fe2O3-based nanocomposite and nanomaterials for water remediation. Iron oxide structure and various synthetic methods are briefly discussed. Additionally, the electrocatalytic application of Fe2O3-based nanocomposites, including oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, and overall water splitting efficiency, was also highlighted to illustrate the great promise of these composites. Finally, the ongoing issues and future prospects are directed to fully reveal the standards of Fe2O3-based catalysts. This review is intended to disseminate knowledge for further research on the possible applications of Fe2O3 as a photocatalyst and electrocatalyst.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Javeria Arshad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100029, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
28
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Rotem R, Giustra M, Arrigoni F, Bertolini JA, Garbujo S, Rizzuto MA, Salvioni L, Barbieri L, Bertini L, De Gioia L, Colombo M, Prosperi D. Conjugation of gold nanoparticles with multidentate surfactants for enhanced stability and biological properties. J Mater Chem B 2022; 11:61-71. [PMID: 36373865 DOI: 10.1039/d2tb01528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work originated from the need to functionalize surfactant-coated inorganic nanoparticles for biomedical applications, a process that is limited by excess unbound surfactant. These limitations are connected to the bioconjugation of targeting molecules that are often in equilibrium between the free aliquot in solution and that which binds the surface of the nanoparticles. The excess in solution can play a role in the biocompatability in vitro and in vivo of the final nanoparticles stock. For this purpose, we tested the ability of common surfactants - monothiolated polyethylene glycol and amphiphilic polymers - to colloidally stabilize nanoparticles as excess surfactant is removed and compared them to newly appearing multidentate surfactants endowed with high avidity for inorganic nanoparticles. Our results showed that monothiolated polyethylene glycol or amphiphilic polymers have an insufficient affinity to the nanoparticles and as the excess surfactant is removed the colloidal stability is lost, while multidentate high-avidity surfactants excel in the same regard, possibly allowing improvement in an array of nanoparticle applications, especially in those stated.
Collapse
Affiliation(s)
- Rany Rotem
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Marco Giustra
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Federica Arrigoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Jessica A Bertolini
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Stefania Garbujo
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Maria A Rizzuto
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Lucia Salvioni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Linda Barbieri
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Luca Bertini
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Luca De Gioia
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Miriam Colombo
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Davide Prosperi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| |
Collapse
|
30
|
Ye Z, Du J, Li K, Zhang Z, Xiao P, Yan T, Han B, Zuo G. Coupled Gold Nanoparticles with Aptamers Colorimetry for Detection of Amoxicillin in Human Breast Milk Based on Image Preprocessing and BP-ANN. Foods 2022; 11:4101. [PMID: 36553847 PMCID: PMC9778062 DOI: 10.3390/foods11244101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic residues in breast milk can have an impact on the intestinal flora and health of babies. Amoxicillin, as one of the most used antibiotics, affects the abundance of some intestinal bacteria. In this study, we developed a convenient and rapid process that used a combination of colorimetric methods and artificial intelligence image preprocessing, and back propagation-artificial neural network (BP-ANN) analysis to detect amoxicillin in breast milk. The colorimetric method derived from the reaction of gold nanoparticles (AuNPs) was coupled to aptamers (ssDNA) with different concentrations of amoxicillin to produce different color results. The color image was captured by a portable image acquisition device, and image preprocessing was implemented in three steps: segmentation, filtering, and cropping. We decided on a range of detection from 0 µM to 3.9 µM based on the physiological concentration of amoxicillin in breast milk and the detection effect. The segmentation and filtering steps were conducted by Hough circle detection and Gaussian filtering, respectively. The segmented results were analyzed by linear regression and BP-ANN, and good linear correlations between the colorimetric image value and concentration of target amoxicillin were obtained. The R2 and MSE of the training set were 0.9551 and 0.0696, respectively, and those of the test set were 0.9276 and 0.1142, respectively. In prepared breast milk sample detection, the recoveries were 111.00%, 98.00%, and 100.20%, and RSDs were 6.42%, 4.27%, and 1.11%. The result suggests that the colorimetric process combined with artificial intelligence image preprocessing and BP-ANN provides an accurate, rapid, and convenient way to achieve the detection of amoxicillin in breast milk.
Collapse
Affiliation(s)
- Ziqian Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jinglong Du
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Keyu Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhilun Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Peng Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Taocui Yan
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Baoru Han
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
31
|
Zapp E, Brondani D, Silva TR, Girotto E, Gallardo H, Vieira IC. Label-Free Immunosensor Based on Liquid Crystal and Gold Nanoparticles for Cardiac Troponin I Detection. BIOSENSORS 2022; 12:1113. [PMID: 36551080 PMCID: PMC9775587 DOI: 10.3390/bios12121113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. The development of electrochemical biosensors for CVD markers detection, such as cardiac troponin I (cTnI), becomes an important diagnostic strategy. Thus, a glassy carbon electrode (GCE) was modified with columnar liquid crystal (LCcol) and gold nanoparticles stabilized in polyallylamine hydrochloride (AuNPs-PAH), and the surface was employed to evaluate the interaction of the cTnI antibody (anti-cTnI) and cTnI for detection in blood plasma. Morphological and electrochemical investigations were used in the characterization and optimization of the materials used in the construction of the immunosensor. The specific interaction of cTnI with the surface of the immunosensor containing anti-cTnI was monitored indirectly using a redox probe. The formation of the immunocomplex caused the suppression of the analytical signal, which was observed due to the insulating characteristics of the protein. The cTnI-immunosensor interaction showed linear responses from 0.01 to 0.3 ng mL-1 and a low limit of detection (LOD) of 0.005 ng mL-1 for linear sweep voltammetry (LSV) and 0.01 ng mL-1 for electrochemical impedance spectroscopy (EIS), showing good diagnostic capacity for point-of-care applications.
Collapse
Affiliation(s)
- Eduardo Zapp
- Department of Exact Science and Education, Federal University of Santa Catarina, Campus Blumenau, Blumenau 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Science and Education, Federal University of Santa Catarina, Campus Blumenau, Blumenau 89036-256, Brazil
| | - Tânia Regina Silva
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Edivandro Girotto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Hugo Gallardo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
32
|
Azhar A, Aanish Ali M, Ali I, Joo Park T, Abdul Basit M. Effective Strategies for Improved Optoelectronic Properties of Graphitic Carbon Nitride: A Review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
33
|
Recent developments in the colorimetric sensing of biological molecules using gold nanoparticles-based probes. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Creyer MN, Jin Z, Retout M, Yim W, Zhou J, Jokerst JV. Gold-Silver Core-Shell Nanoparticle Crosslinking Mediated by Protease Activity for Colorimetric Enzyme Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14200-14207. [PMID: 36351199 DOI: 10.1021/acs.langmuir.2c02219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles produce a localized surface plasmon resonance (LSPR) under optical excitation. The LSPR of nanoparticles can shift in response to changes in the local dielectric environment and produce a color change. This color change can be observed by the naked eye due to the exceptionally large extinction coefficients (108-1011 M-1 cm-1) of plasmonic nanoparticles. Herein, we investigate the optical shifts (i.e., color change) of three unique gold-silver core-shell nanoparticle structures in response to changes in their dielectric environment upon nanoparticle aggregation. Aggregation is induced by a cysteine-containing peptide that has a sulfhydryl near its N and C termini, which crosslinks nanoparticles. Furthermore, we demonstrate that adding proline spacers between the cysteines impacts the degree of aggregation and, ultimately, the color response. Using this information, we construct a colorimetric enzyme assay, where the signal produced from nanoparticle aggregation is modulated by proteolysis. The degree of aggregation and the resulting optical shift can be correlated with enzyme concentration with high linearity (R2 = 0.998). Overall, this study explores the optical properties of gold-silver core-shell nanoparticles in a dispersed vs aggregated state and leverages that information to develop an enzyme sensor with a spectral LOD of 0.47 ± 0.09 nM.
Collapse
|
35
|
Quinson J. Osmium and OsO x nanoparticles: an overview of syntheses and applications. OPEN RESEARCH EUROPE 2022; 2:39. [PMID: 37645302 PMCID: PMC10446100 DOI: 10.12688/openreseurope.14595.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 08/31/2023]
Abstract
Precious metal nanoparticles are key for a range of applications ranging from catalysis and sensing to medicine. While gold (Au), silver (Ag), platinum (Pt), palladium (Pd) or ruthenium (Ru) nanoparticles have been widely studied, other precious metals are less investigated. Osmium (Os) is one of the least studied of the precious metals. However, Os nanoparticles are interesting materials since they present unique features compared to other precious metals and Os nanomaterials have been reported to be useful for a range of applications, catalysis or sensing for instance. With the increasing availability of advanced characterization techniques, investigating the properties of relatively small Os nanoparticles and clusters has become easier and it can be expected that our knowledge on Os nanomaterials will increase in the coming years. This review aims to give an overview on Os and Os oxide materials syntheses and applications.
Collapse
Affiliation(s)
- Jonathan Quinson
- Chemistry, University of Copenhagen, Copenhagen, Denmark
- Biochemical and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Takayanagi T, Miyake K, Iwasaki S, Uehara D, Mizuguchi H, Okabe H, Matsuda N. Highly stable gold nanoparticles in an aqueous solution without any stabilizer prepared by a solution plasma process evaluated through capillary zone electrophoresis. ANAL SCI 2022; 38:1199-1206. [PMID: 35788911 DOI: 10.1007/s44211-022-00149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Gold nanoparticles (AuNP) were prepared by a solution plasma process in the presence of H2O2, and they were dispersed in an aqueous solution without any stabilizer generally used. The dispersion stability of the AuNP in an aqueous solution was evaluated by capillary zone electrophoresis (CZE). An anionic broad peak was detected with the AuNP by CZE based on its wide variations in size and net charge. The broad peak also suggests that the AuNP were well dispersed in an aqueous solution. The dispersion stability of AuNP was evaluated from the viewpoints of long-term dispersion, salt concentration, and organic co-solvent. The anionic broad peak attributed to the dispersed AuNP was successfully detected for at least 55 weeks from the preparation with less shot signals of the aggregates. The AuNP was also well dispersed in aqueous NaCl solutions with its concentrations up to 30 mmol L-1, as well as with ethanol co-solvent up to 40%(v/v). The AuNP prepared by the solution plasma process was proved to be highly stable in an aqueous solution.
Collapse
Affiliation(s)
- Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan.
| | - Koji Miyake
- Raduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Sohta Iwasaki
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Daiki Uehara
- Department of Science and Technology, Faculty of Science and Technology, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotaka Okabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, Saga, 841-0052, Japan
| | - Naoki Matsuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, Saga, 841-0052, Japan.
| |
Collapse
|
37
|
Zhang K, Song H, Su Y, Li Q, Sun M, Lv Y. Flower-like Gold Nanoparticles for In Situ Tailoring Luminescent Molecules for Synergistic Enhanced Chemiluminescence. Anal Chem 2022; 94:8947-8957. [PMID: 35700395 DOI: 10.1021/acs.analchem.2c00727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their ease of surface modification, excellent biocompatibility, and extraordinary optoelectronic and catalytic activities. Herein, based on a AuNP-catalyzed reaction, a strategy for tailoring luminescent molecules in situ is proposed to trigger an ultrastrong chemiluminescence (CL). In the strategy, flower-like AuNPs are prepared using CL molecular probes (Probe-OH for NaClO/ONOO-) via one-pot synthesis and subsequently act as a tailor for Probe-OH to generate novel CL molecules, allowing a synergistic CL enhancement about 4 times that of initial Probe-OH. Furthermore, by modification with poly(vinylpyrrolidone) (PVP) on the surface, the CL signals (only for NaClO) are amplified by 100 times based on an intermolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Given the improved sensitivity and selectivity over Probe-OH, the thus-formed CIEEL nanoplatform (PVP-Au) is successfully developed for detecting NaClO in a wide range of 2.5-100 μM, and the detection limit is 10.68 nM. This work provides unprecedented perspectives for expanding this facile and effective strategy for CL amplification based on AuNP catalysis.
Collapse
Affiliation(s)
- Kexin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Qiuyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
38
|
Sindhu R, Sindhu S, Dagar MW, Nagoria S. Gold Nanoparticles as Antimicrobial Agents: A Mini-Review. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22300024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metal nanoparticles, such as gold nanoparticles, have abundant unusual chemical and physical properties owing to the effects of their quantum size and their large surface area, in comparison with other metal atoms. Gold nanoparticles (AuNPs), in particular, are becoming increasingly popular due to their biocompatibility, multifunctional and aqueous solubility. Many scientific reports described the important antimicrobial properties possessed by the gold nanoparticles. Therefore, the present mini-review summarizes an overview of gold nanoparticles as broad spectrum antimicrobial agents for biomedical applications.
Collapse
Affiliation(s)
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Mukhan Wati Dagar
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Savita Nagoria
- Department of Chemistry, Government College, Hisar 125001, Haryana, India
| |
Collapse
|
39
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Cu2+-Assisted Synthesis of Au@AgI Core/Shell Nanorods via In Situ Oxidation of Iodide: A Strategy for Colorimetric Iodide Sensing. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity. EDUCATION SCIENCES 2022. [DOI: 10.3390/educsci12050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanotechnology is an interdisciplinary field that promises to reshape many spheres of our lives. One core activity in nanotechnology is the synthesis of nanoparticles. Here, we introduce a research-based activity centered on the use of zein, the main constitutive protein in maize, as a raw material for the synthesis of nanoparticles. In the context of the contingency imposed by COVID-19, this experimental activity was designed to be independent of a central laboratory. Therefore, it was enabled by a portable heating do-it-yourself (DIY) device that the students assembled in their own home. We describe the implementation of this activity as part of a graduate-level seminar series, and share our observations. We assessed the students’ knowledge on seven topics related to nanotechnology, do-it-yourself devices, and protein synthesis. The students appeared to perceive that their degree of knowledge had advanced (on average) in all the learning topics; the students stated that their degree of knowledge in the topics of assembly of devices and protein structure had advanced the most. The results of this assessment suggest that this simple, hands-on, research-based activity effectively engaged students in a learning process that allowed them to integrate knowledge while exercising their experimental skills. In addition, we show that these types of activities are suitable for implementation even in circumstances of restricted access to laboratory facilities, such as the ones recently experienced during the pandemic.
Collapse
|
42
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Reduced Genotoxicity of Gold Nanoparticles With Protein Corona in Allium cepa. Front Bioeng Biotechnol 2022; 10:849464. [PMID: 35449594 PMCID: PMC9016219 DOI: 10.3389/fbioe.2022.849464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Increased usage of gold nanoparticles (AuNPs) in biomedicine, biosensing, diagnostics and cosmetics has undoubtedly facilitated accidental and unintentional release of AuNPs into specific microenvironments. This is raising serious questions concerning adverse effects of AuNPs on off-target cells, tissues and/or organisms. Applications utilizing AuNPs will typically expose the nanoparticles to biological fluids such as cell serum and/or culture media, resulting in the formation of protein corona (PC) on the AuNPs. Evidence for PC altering the toxicological signatures of AuNPs is well studied in animal systems. In this report, we observed significant genotoxicity in Allium cepa root meristematic cells (an off-target bioindicator) treated with high concentrations (≥100 µg/ml) of green-synthesized vanillin capped gold nanoparticles (VAuNPs). In contrast, protein-coated VAuNPs (PC-VAuNPs) of similar concentrations had negligible genotoxic effects. This could be attributed to the change in physicochemical characteristics due to surface functionalization of proteins on VAuNPs and/or differential bioaccumulation of gold ions in root cells. High elemental gold accumulation was evident from µ-XRF mapping in VAuNPs-treated roots compared to treatment with PC-VAuNPs. These data infer that the toxicological signatures of AuNPs are influenced by the biological route that they follow to reach off-target organisms such as plants. Hence, the current findings highlight the genotoxic risk associated with AuNPs, which, due to the enhanced utility, are emerging as new pollutants. As conflicting observations on the toxicity of green-synthesized AuNPs are increasingly reported, we recommend that detailed studies are required to investigate the changes in the toxicological signatures of AuNPs, particularly before and after their interaction with biological media and systems.
Collapse
Affiliation(s)
- Sagar S Arya
- The Energy and Resources Institute, TERI-Deakin Nanobiotechnology Centre, Gurugram, India.,School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Sangram K Lenka
- The Energy and Resources Institute, TERI-Deakin Nanobiotechnology Centre, Gurugram, India
| |
Collapse
|
43
|
Razmi N, Hasanzadeh M, Willander M, Nur O. Electrochemical genosensor based on gold nanostars for the detection of Escherichia coli O157:H7 DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1562-1570. [PMID: 35357389 DOI: 10.1039/d2ay00056c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is an enterohemorrhagic E. coli (EHEC), which has been issued as a major threat to public health worldwide due to fatal contamination of water and food. Thus, its rapid and accurate detection has tremendous importance in environmental monitoring and human health. In this regard, we report a simple and sensitive electrochemical DNA biosensor by targeting Z3276 as a genetic marker in river water. The surface of the designed gold electrode was functionalized with gold nanostars and an aminated specific sensing probe of E. coli O157:H7 to fabricate the genosensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques were applied for electrochemical characterization and detection. The synthesized gold nanostars were characterized using different characterization techniques. The fabricated DNA-based sensor exhibited a high selective ability for one, two, and three-base mismatched sequences. Regeneration, stability, selectivity, and kinetics of the bioassay were investigated. Under optimal conditions, the fabricated genosensor exhibited a linear response range of 10-5 to 10-17 μM in the standard sample and 7.3 to 1 × 10-17 μM in water samples with a low limit of quantification of 0.01 zM in water samples. The detection strategy based on silver plated gold nanostars and DNA hybridization improved the sensitivity and specificity of the assay for E. coli O157:H7 detection in real water samples without filtration. The detection assay has the advantages of high selectivity, sensitivity, low amounts of reagents, short analysis time, commercialization, and potential application for the determination of other pathogenic bacteria.
Collapse
Affiliation(s)
- Nasrin Razmi
- Physics and Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Magnus Willander
- Physics and Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden.
| | - Omer Nur
- Physics and Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden.
| |
Collapse
|
44
|
Petrucci R, Bortolami M, Di Matteo P, Curulli A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:959. [PMID: 35335772 PMCID: PMC8950254 DOI: 10.3390/nano12060959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.
Collapse
Affiliation(s)
- Rita Petrucci
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Martina Bortolami
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Paola Di Matteo
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Support, Sapienza, 00161 Rome, Italy
| |
Collapse
|
45
|
Fu Y, Yin Z, Qin L, Huang D, Yi H, Liu X, Liu S, Zhang M, Li B, Li L, Wang W, Zhou X, Li Y, Zeng G, Lai C. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126950. [PMID: 34449327 DOI: 10.1016/j.jhazmat.2021.126950] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 05/23/2023]
Abstract
With the increasing serious water pollutions, an increasing interest has given for the nanocomposites as environmental catalysts. To date, noble metals-based nanocomposites have been extensively studied by researchers in environmental catalysis. In detail, serving as key functional parts, noble metals are usually combined with other nanomaterials for rationally designing nanocomposites, which exhibit enhanced catalytic properties in pollutants removal. Noble metals in the nanocomposites possess tailored properties, thus playing different important roles in catalytic oxidation reactions for pollutants removal. To motivate the research and elaborate the progress of noble metals, this review (i) summarizes advanced characterization techniques and rising technology of theoretical calculation for evaluating noble metal, and (ii) classifies the roles according to their disparate mechanism in different catalytic oxidation reactions. Meanwhile, the enhanced mechanism and influence factors are discussed. (iii) The conclusions, facing challenges and perspectives are proposed for further development of noble metals-based nanocomposites as environmental catalysts.
Collapse
Affiliation(s)
- Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Lei Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
46
|
A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Zhao Y, Zhu P, Pan L, Xie Y, Ng SW, Zhang KL. Preparation and characterization of a newly constructed multifunctional Co( ii)–organic framework: proton conduction and adsorption of Congo red in aqueous medium. CrystEngComm 2022. [DOI: 10.1039/d2ce00330a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient adsorption of CR over Co-MOF 1 as well as the pH-dependent proton-conducting mechanism of the composite Co-MOF–Nafion membrane.
Collapse
Affiliation(s)
- Yanzhu Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lingwei Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yiqing Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Seik Weng Ng
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Kou-Lin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
48
|
Yu L, Jiang C, Xi L, Zhang X, Tong J, Chen Z, Chen R, He H. Colorimetric Detection of Benzoyl Peroxide in the Flour Samples Based on the Morphological Transition of Silver Nanoprisms. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Li Z, Wang L, Qin L, Lai C, Wang Z, Zhou M, Xiao L, Liu S, Zhang M. Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. CHEMOSPHERE 2021; 285:131432. [PMID: 34273693 DOI: 10.1016/j.chemosphere.2021.131432] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 05/24/2023]
Abstract
Heavy metals pollution in water is a global environmental issue, which has threatened the human health and environment. Thus, it is important to remove them under practical water environment. In recent years, metal-organic frameworks (MOFs) with water-stable properties have attracted wide interest with regard to the capture of hazardous heavy metal ions in water. In this review, the synthesis strategy and postsynthesis modification preparation methods are first summarized for water-stable MOFs (WMOFs), and then the recent advances on the adsorption and photocatalytic reduction of heavy metal ions in water by WMOFs are reviewed. In contrast to the conventional adsorption materials, WMOFs not only have excellent adsorption properties, but also lead to photocatalytic reduction of heavy metal ions. WMOFs have coupling and synergistic effects on the adsorption and photocatalysis of heavy metal ions in water, which make it more effective in treating single pollutants or different pollutants. In addition, by introducing appropriate functional groups into MOFs or synthesizing MOF-based composites, the stability and ability to remove heavy metal ions of MOFs can be effectively enhanced. Although WMOFs and WMOF-based composites have made great progress in removing heavy metal ions from water, they still face many problems and challenges, and their application potential needs to be further improved in future research. Finally, this review aims at promoting the development and practical application of heavy metal ions removal in water by WMOFs.
Collapse
Affiliation(s)
- Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Lei Wang
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhihong Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mi Zhou
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Linhui Xiao
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
50
|
Yue N, Li D, Fan A. A Simple Colorimetric Analytical Assay for the Determination of Tetracyclines Based on In-situ Generation of Gold Nanoparticles Coupling with a Gold Staining Technique. ANAL SCI 2021; 37:1583-1587. [PMID: 33994417 DOI: 10.2116/analsci.21p115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of simple and sensitive detection methods for tetracyclines (TCs) is crucial for their routine detection. The present study developed a colorimetric method for the detection of TCs based on the in-situ generation of AuNPs, which were subsequently coupled with a gold staining reaction. Briefly, TCs containing phenolic groups reduce HAuCl4 to form gold nanoparticles (AuNPs) as gold seeds. In the gold staining process, the gold seeds catalyze the reduction of HAuCl4 by NH2OH to form gold atoms that deposit on the surface of AuNPs, resulting in the enlargement of AuNPs. Sensitive detection of TCs was achieved by employing the gold staining technique. As low as 14, 18.9, and 1.98 nM of oxytetracycline (OTC), tetracycline (TC), and doxycycline (DC), respectively, could be sensitively detected. The proposed method also exhibited good repeatability and specificity, and then was applied to the determination of OTC in milk samples.
Collapse
Affiliation(s)
- Ningning Yue
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University
| | - Dongmei Li
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University
| |
Collapse
|