1
|
Lu W, Yan W, Guo R, Zheng J, Bian Z, Liu Z. Upconversion Luminescence in a Photostable Ion-Paired Yb-Eu Heteronuclear Complex. Angew Chem Int Ed Engl 2024; 63:e202413069. [PMID: 39045802 DOI: 10.1002/anie.202413069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Lanthanide-based upconversion molecular complexes have potential application in diverse fields and attracted considerable research interest in recent years. However, the similar coordination reactivity of lanthanide ions has constrained the designability of target molecule with well-defined structure, and many attempts obtained statistical mixtures. Herein, an ion-paired Yb-Eu heteronuclear complex [Eu(TpPy)2][Yb(ND)4] (TpPy=tris[3-(2-pyridyl)pyrazolyl]hydroborate, ND=3-cyano-2-methyl-1,5-naphthyridin-4-olate) was designed and synthesized. Thanks to the radius difference between Eu3+ (1.07 Å) and Yb3+ (0.98 Å) ions, the hexadentate TpPy ligand was selected to coordinate with Eu3+ and the Yb3+ with a smaller radius was chelated by bidentate ND ligand. As a result, the sites of Eu3+ and Yb3+ in the complex can be clarified by high-resolution mass spectrometry and single-crystal structure analysis. Upon the excitation of Yb3+ at 980 nm, the upconversion emission of Eu3+ was realized through a cooperative sensitization process. Furthermore, [Eu(TpPy)2][Yb(ND)4] demonstrated excellent photostability during continuous high-power density 980 nm laser irradiation, with a LT95 (the time to 95 % of the initial emission intensity) of 420 minutes. This work provides the first example of a pure ion-paired Yb-Eu heteronuclear complex upconversion system and may bring insights into rational design of lanthanide-based upconversion molecular complexes.
Collapse
Affiliation(s)
- Wen Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayin Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Xu L, Li Y, Liu W, Yang Y. Upconversion circularly polarized luminescence of cholesteric liquid crystal polymer networks with NaYF 4:Yb,Tm UCNPs. MATERIALS HORIZONS 2024. [PMID: 39385583 DOI: 10.1039/d4mh00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Upconversion circularly polarized luminescence (UC-CPL) exhibits promising potential for application for anti-counterfeiting and displays. Upconversion nanoparticles (UCNPs), NaYF4:Yb,Tm, with uniform morphology and high crystallinity, were prepared via a simple solvothermal method. These UCNPs were embedded into cholesteric liquid crystal polymer network (CLCN) films. The UC-CPL performance of these films was investigated using left- and right-handed circular polarizers. After calibration, the |gcallum| values (up to 0.33) were obtained for the free-standing CLCN-UCNPs films, while a |gcallum| value of 0.43 was achieved for the CLCN-UCNPs-coated PET film. Moreover, a combined system comprising a PMMA-UCNPs layer and a CLCN layer yielded an ultra-large |gcallum| value of up to 1.73. Flexible and colourful patterned CLCN films were fabricated using photomasks, offering potential applications in anti-counterfeiting. This study not only successfully prepared UC-CPL-active materials based on CLCNs and UCNPs, but also demonstrated the chiral filtering effect of CLCN films in upconversion luminescent materials.
Collapse
Affiliation(s)
- Liting Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
3
|
Wang S, McCoy CP, Li P, Li Y, Zhao Y, Andrews GP, Wylie MP, Ge Y. Carbon Dots in Photodynamic/Photothermal Antimicrobial Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1250. [PMID: 39120355 PMCID: PMC11314369 DOI: 10.3390/nano14151250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Antimicrobial resistance (AMR) presents an escalating global challenge as conventional antibiotic treatments become less effective. In response, photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising alternatives. While rooted in ancient practices, these methods have evolved with modern innovations, particularly through the integration of lasers, refining their efficacy. PDT harnesses photosensitizers to generate reactive oxygen species (ROS), which are detrimental to microbial cells, whereas PTT relies on heat to induce cellular damage. The key to their effectiveness lies in the utilization of photosensitizers, especially when integrated into nano- or micron-scale supports, which amplify ROS production and enhance antimicrobial activity. Over the last decade, carbon dots (CDs) have emerged as a highly promising nanomaterial, attracting increasing attention owing to their distinctive properties and versatile applications, including PDT and PTT. They can not only function as photosensitizers, but also synergistically combine with other photosensitizers to enhance overall efficacy. This review explores the recent advancements in CDs, underscoring their significance and potential in reshaping advanced antimicrobial therapeutics.
Collapse
Affiliation(s)
| | - Colin P. McCoy
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.W.)
| | | | | | | | | | | | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.W.)
| |
Collapse
|
4
|
Panguluri SPK, Jourdain E, Chakraborty P, Klyatskaya S, Kappes MM, Nonat AM, Charbonnière LJ, Ruben M. Yb-to-Eu Cooperative Sensitization Upconversion in a Multifunctional Molecular Nonanuclear Lanthanide Cluster in Solution. J Am Chem Soc 2024; 146:13083-13092. [PMID: 38701172 DOI: 10.1021/jacs.3c14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Lanthanide metal clusters excel in combining molecular and material chemistry properties. Here, we report an efficient cooperative sensitization UC phenomenon of a Eu3+/Yb3+ nonanuclear lanthanide cluster in CD3OD. The synthesis and characterization of the heteronuclear cluster in the solid state and solution are described together with the UC phenomenon showing Eu3+ luminescence in the visible region upon 980 nm NIR excitation of Yb3+ at concentrations as low as 100 nM. Alongside being the Eu/Yb cluster to display UC (with a quantum yield value of 4.88 × 10-8 upon 1.13 W cm-2 excitation at 980 nm), the cluster exhibits downshifted light emission of Yb3+ in the NIR region upon 578 nm visible excitation of Eu3+, which is ascribed to sensitization pathways for Yb through the 5D0 energy levels of Eu3+. Additionally, a faint emission is also observed at ca. 500 nm upon 980 nm excitation, originating from the cooperative luminescence of Yb3+. The [Eu8Yb(BA)16(OH)10]Cl cluster (BA = benzoylacetonate) is also a field-induced single-molecular magnet (SMM) under 4K with a modest Ueff/kB of 8.48 K, thereby joining the coveted list of Yb-SMMs and emerging as a prototype system for next-generation devices, combining luminescence with single-molecular magnetism in a molecular cluster.
Collapse
Affiliation(s)
- Sai P K Panguluri
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Elsa Jourdain
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Aline M Nonat
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76311, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
- Centre Européen de Sciences Quantiques, Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg, Cedex 67083, France
| |
Collapse
|
5
|
Machová Urdzíková L, Mareková D, Vasylyshyn T, Matouš P, Patsula V, Oleksa V, Shapoval O, Vosmanská M, Liebl D, Benda A, Herynek V, Horák D, Jendelová P. Toxicity of Large and Small Surface-Engineered Upconverting Nanoparticles for In Vitro and In Vivo Bioapplications. Int J Mol Sci 2024; 25:5294. [PMID: 38791332 PMCID: PMC11121289 DOI: 10.3390/ijms25105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.
Collapse
Affiliation(s)
- Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| | - Taras Vasylyshyn
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 12000 Prague, Czech Republic; (P.M.); (V.H.)
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Magda Vosmanská
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16000 Prague, Czech Republic;
| | - David Liebl
- Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25250 Vestec-Jesenice u Prahy, Czech Republic; (D.L.); (A.B.)
| | - Aleš Benda
- Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25250 Vestec-Jesenice u Prahy, Czech Republic; (D.L.); (A.B.)
| | - Vít Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 12000 Prague, Czech Republic; (P.M.); (V.H.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| |
Collapse
|
6
|
Wang Q, Shangguan H, Yu H, Rong X, Zhou B, Tang Z, Li C, Liu S, Lu Y, Xu J. Fluorinated Hafnium and Zirconium Coenable the Tunable Biodegradability of Core-Multishell Heterogeneous Nanocrystals for Bioimaging. NANO LETTERS 2024; 24:2876-2884. [PMID: 38385324 DOI: 10.1021/acs.nanolett.3c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Upconversion (UC)/downconversion (DC)-luminescent lanthanide-doped nanocrystals (LDNCs) with near-infrared (NIR, 650-1700 nm) excitation have been gaining increasing popularity in bioimaging. However, conventional NIR-excited LDNCs cannot be degraded and eliminated eventually in vivo owing to intrinsic "rigid" lattices, thus constraining clinical applications. A biodegradability-tunable heterogeneous core-shell-shell luminescent LDNC of Na3HfF7:Yb,Er@Na3ZrF7:Yb,Er@CaF2:Yb,Zr (abbreviated as HZC) was developed and modified with oxidized sodium alginate (OSA) for multimode bioimaging. The dynamic "soft" lattice-Na3Hf(Zr)F7 host and the varying Zr4+ doping content in the outmoster CaF2 shell endowed HZC with tunable degradability. Through elaborated core-shell-shell coating, Yb3+/Er3+-coupled UC red and green and DC second near-infrared (NIR-II) emissions were, respectively, enhanced by 31.23-, 150.60-, and 19.42-fold when compared with core nanocrystals. HZC generated computed tomography (CT) imaging contrast effects, thus enabling NIR-II/CT/UC trimodal imaging. OSA modification not only ensured the exemplary biocompatibility of HZC but also enabled tumor-specific diagnosis. The findings would benefit the clinical imaging translation of LDNCs.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hang Shangguan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hongtao Yu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xinli Rong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Boyi Zhou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- School of Laboratory Medicine Wannan Medical College, Wuhu, Anhui 241002, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
7
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
8
|
Duan XF, Zhou LP, Li HR, Hu SJ, Zheng W, Xu X, Zhang R, Chen X, Guo XQ, Sun QF. Excited-Multimer Mediated Supramolecular Upconversion on Multicomponent Lanthanide-Organic Assemblies. J Am Chem Soc 2023; 145:23121-23130. [PMID: 37844009 DOI: 10.1021/jacs.3c06775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Upconversion (UC) is a fascinating anti-Stokes-like optical process with promising applications in diverse fields. However, known UC mechanisms are mainly based on direct energy transfer between metal ions, which constrains the designability and tunability of the structures and properties. Here, we synthesize two types of Ln8L12-type (Ln for lanthanide ion; L for organic ligand L1 or L2R/S) lanthanide-organic complexes with assembly induced excited-multimer states. The Yb8(L2R/S)12 assembly exhibits upconverted multimer green fluorescence under 980 nm excitation through a cooperative sensitization process. Furthermore, upconverted red emission from Eu3+ on the heterometallic (Yb/Eu)8L12 assemblies is also realized via excited-multimer mediated energy relay. Our findings demonstrate a new strategy for designing UC materials, which is crucial for exploiting photofunctions of multicomponent lanthanide-organic complexes.
Collapse
Affiliation(s)
- Xiao-Fang Duan
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Hao-Ran Li
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xin Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Fan X, Ouyang X, Zhou Z, Zhang Z, Zhu X, Liao Y, Wei Z, Xi B, Tang L. A highly selective self-powered sensor based on the upconversion nanoparticles/CdS nanospheres for chlorpyrifos detection. Biosens Bioelectron 2023; 237:115475. [PMID: 37390639 DOI: 10.1016/j.bios.2023.115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Light sources are crucial for photoelectrochemical (PEC) self-powered sensing, where visible light is widely used. However, due to its high energy, it has some downsides as an irradiation source for overall system, so it is urgent to achieve effective near-infrared (NIR) light absorption because it makes up a significant portion of the solar spectrum. Herein, up-conversion nanoparticles (UCNPs) that could increase the energy of low-energy radiation were combined with semiconductor CdS as the photoactive material (UCNPs/CdS), which broadens the response range of solar spectrum. The NIR light-excited self-powered sensor could be produced via oxidizing H2O at photoanode and lowering dissolved oxygen at cathode under the NIR light without external voltage. Meanwhile, molecularly imprinted polymer (MIP) was added to photoanode as a recognition element to increase the sensor's selectivity. The open-circuit voltage of the self-powered sensor grew linearly as chlorpyrifos concentration climbed from 0.01 to 100 ng mL-1, showing good selectivity as well as reproducibility. This work provides valuable basis for the preparation of efficient and practical PEC sensor with NIR light response.
Collapse
Affiliation(s)
- Xinya Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zheping Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziling Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Beidou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
10
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
11
|
Ding C, Gu Y, Chen W, Chen L, Guo L, Huang Y. Ratiometric near-infrared upconversion fluorescence sensor for selectively detecting and imaging of Al 3. Anal Chim Acta 2023; 1263:341297. [PMID: 37225340 DOI: 10.1016/j.aca.2023.341297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
Near-infrared (NIR) fluorescent probes provide extremely sensitive Al3+ detection for human health purposes. This research develops novel Al3+ response molecules (HCMPA) and NIR upconversion fluorescent nanocarriers (UCNPs), which respond to Al3+ through ratio NIR fluorescence. UCNPs improve photobleaching and visible light lack in specific HCMPA probes. Additionally, UCNPs are capable of ratio response, which will further enhance signal accuracy. The NIR ratiometric fluorescence sensing system has been successfully used to detect Al3+ within the range 0.1-1000 nM with an accuracy limit of 0.06 nM. Alternatively, a NIR ratiometric fluorescence sensing system integrated with a specific molecule can image Al3+ within cells. This study demonstrates that a NIR fluorescent probe is an effective and highly stable method of measuring Al3+ in cells.
Collapse
Affiliation(s)
- Caiping Ding
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Yuting Gu
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Weiwei Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Long Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China.
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Youju Huang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China.
| |
Collapse
|
12
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
13
|
Ding X, Ahmad W, Wu J, Rong Y, Ouyang Q, Chen Q. Bipyridine-mediated fluorescence charge transfer process based on copper ion grafted upconversion nanoparticle platform for ciprofloxacin sensing in aquatic products. Food Chem 2023; 404:134761. [DOI: 10.1016/j.foodchem.2022.134761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
|
14
|
Molkenova A, Choi HE, Park JM, Lee JH, Kim KS. Plasmon Modulated Upconversion Biosensors. BIOSENSORS 2023; 13:306. [PMID: 36979518 PMCID: PMC10046391 DOI: 10.3390/bios13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Over the past two decades, lanthanide-based upconversion nanoparticles (UCNPs) have been fascinating scientists due to their ability to offer unprecedented prospects to upconvert tissue-penetrating near-infrared light into color-tailorable optical illumination inside biological matter. In particular, luminescent behavior UCNPs have been widely utilized for background-free biorecognition and biosensing. Currently, a paramount challenge exists on how to maximize NIR light harvesting and upconversion efficiencies for achieving faster response and better sensitivity without damaging the biological tissue upon laser assisted photoactivation. In this review, we offer the reader an overview of the recent updates about exciting achievements and challenges in the development of plasmon-modulated upconversion nanoformulations for biosensing application.
Collapse
Affiliation(s)
- Anara Molkenova
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong Min Park
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Republic of Korea
| | - Ki Su Kim
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Chen X, Wan J, Wei M, Xia Z, Zhou J, Lu M, Yuan Z, Huang L, Xie X. Tandem fabrication of upconversion nanocomposites enabled by confined protons. NANOSCALE 2023; 15:2642-2649. [PMID: 36651807 DOI: 10.1039/d2nr06029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticle (UCNP)-based nanocomposites can address the intrinsic limitations associated with UCNPs and bestow new functions on UCNPs, which can facilitate the development and application of UCNPs. However, the fabrication of UCNP-based composites typically suffers from complex operations, long-drawn-out procedures, and even loss or damage of UCNPs. Herein, we report a tandem fabrication strategy for the preparation of UCNP-based nanocomposites, in which protons, confined in the non-aqueous polar solvent, can produce ligand-free UCNPs for the direct fabrication of a composite without further treatment. Our studies show that the confined protons can be generated by diverse materials and can yield different types of ligand-free nanomaterials for desired composites. This versatile strategy enables a simple but scalable fabrication of UCNP-based nanocomposites, and can be extended to other nanomaterial-based composites. These findings should provide a platform for constructing multifunctional UCNP-based materials, and benefit potential applications of UCNPs in varied fields.
Collapse
Affiliation(s)
- Xiumei Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinyu Wan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Minmin Wei
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhengyu Xia
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jie Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Min Lu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Ze Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Ling Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
16
|
Zhang X, Shi Y, Wang X, Liu Y, Zhang Y. Flexible and Transparent Ceramic Nanocomposite for Laboratory X-ray Imaging of Micrometer Resolution. ACS NANO 2022; 16:21576-21582. [PMID: 36441950 DOI: 10.1021/acsnano.2c10531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transparent nanocomposites have attracted considerable attention in many areas including X-ray imaging, wearable electronics, and volumetric display. However, both the transparency and the flexibility were largely jeopardized by the loading content of functional nanoparticles (NPs), posing a major challenge to material engineering. Herein, an ultra-high-loading-ceramic nanocomposite film was fabricated by a blade-coating technique. The film exhibited a high transparency over ∼89% in the whole visible region even with a fluoride-ceramic content up to ∼83 wt %. Based on a real-time investigation on the formation process of the film, the refractive-index difference between the nanoparticles and matrix was identified as the dominating factor to transparency. The transmittance spectra based on Rayleigh scattering theory were simulated to screen both nanoparticle radius and loading content, leading to the discovery of a transparency zone for film making. As a proof-of-concept experiment, the transparent film was used as an X-ray scintillation screen, which exhibited a comparable light yield to that of LYSO owing to the mitigated self-absorption effect. The homemade imager demonstrated a spatial resolution of 122 lp/mm, representing a record resolution of 4.1 μm for laboratory X-ray photography. Our work not only provided an experimental procedure to make high-loading functional films but also demonstrated a theoretical model to guide the search for gradients of transparent composites.
Collapse
Affiliation(s)
- Xiangzhou Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yihan Shi
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Xiaojia Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yeqi Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yuhai Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| |
Collapse
|
17
|
A NIR light gated targeting nanoprobe based on DNA-modified upconversion nanoparticles with antifouling properties for ratiometric detection and imaging of microRNA-21. Anal Chim Acta 2022; 1235:340554. [DOI: 10.1016/j.aca.2022.340554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/17/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
|
18
|
Marchesi S, Miletto I, Bisio C, Gianotti E, Marchese L, Carniato F. Eu 3+ and Tb 3+ @ PSQ: Dual Luminescent Polyhedral Oligomeric Polysilsesquioxanes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7996. [PMID: 36431482 PMCID: PMC9694933 DOI: 10.3390/ma15227996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The synthesis and characterization of novel luminescent amorphous POSS-based polysilsesquioxanes (PSQs) with Tb3+ and Eu3+ ions directly integrated in the polysilsesquioxane matrix is presented. Two different Tb3+/Eu3+ molar ratios were applied, with the aim of disclosing the relationships between the nature and loading of the ions and the luminescence properties. Particular attention was given to the investigation of site geometry and hydration state of the metal centers in the inorganic framework, and of the effect of the Tb3+ → Eu3+ energy transfer on the overall optical properties of the co-doped materials. The obtained materials were characterized by high photostability and colors of the emitted light ranging from orange to deep red, as a function of both the Tb3+/Eu3+ molar ratio and the chosen excitation wavelength. A good energy transfer was observed, with higher efficiency displayed when donor/sensitizer concentration was lower than the acceptor/activator concentration. The easiness of preparation and the possibility to finely tune the photoluminescence properties make these materials valid candidates for several applications, including bioimaging, sensors, ratiometric luminescence-based thermometers, and optical components in inorganic or hybrid light-emitting devices.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Ivana Miletto
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani, 2/3, 28100 Novara, Italy
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via G. Venezian, 21, 20133 Milano, Italy
| | - Enrica Gianotti
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Piazza Sant’Eusebio, 5, 13100 Vercelli, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| |
Collapse
|
19
|
Zhong L, Li J, Zu B, Zhu X, Lei D, Wang G, Hu X, Zhang T, Dou X. Highly Retentive, Anti-Interference, and Covert Individual Marking Taggant with Exceptional Skin Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201497. [PMID: 35748174 PMCID: PMC9443463 DOI: 10.1002/advs.202201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.
Collapse
Affiliation(s)
- Lianggen Zhong
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaodan Zhu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaoyun Hu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianshi Zhang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
20
|
Kumar J, Roy I. Highly Selective and Sensitive Ratiometric Detection of Sn 2+ Ions Using NIR-Excited Rhodamine-B-Linked Upconversion Nanophosphors. ACS OMEGA 2022; 7:29840-29849. [PMID: 36061706 PMCID: PMC9434793 DOI: 10.1021/acsomega.2c02671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Detection of Sn2+ ions in environmental and biological samples is essential owing to the toxicological risk posed by excess use tin worldwide. Herein, we have designed a nanoprobe involving upconversion nanophosphors linked with a rhodamine-based fluorophore, which is selectively sensitive to the presence of Sn2+ ions. Upon excitation with near-infrared (NIR) light, the green emission of the nanophosphor is reabsorbed by the fluorophore with an efficiency that varies directly with the concentration of the Sn2+ ions. We have explored this NIR-excited fluorescence resonance energy transfer (FRET) process for the quantitative and ratiometric detection of Sn2+ ions in an aqueous phase. We have observed an excellent linear correlation between the ratiometric emission signal variation and the Sn2+ ion concentration in the lower micromolar range. The detection limit of Sn2+ ions observed using our FRET-based nanoprobe is about 10 times lower than that observed using other colorimetric or fluorescence-based techniques. Due to the minimal autofluorescence and great penetration depth of NIR light, this method is ideally suited for the selective and ultrasensitive detection of Sn2+ ions in complex biological or environmental samples.
Collapse
|
21
|
Cajzl J, Nekvindová P, Macková A, Varga M, Kromka A. Erbium ion implantation into LiNbO 3, Al 2O 3, ZnO and diamond - measurement and modelling - an overview. Phys Chem Chem Phys 2022; 24:19052-19072. [PMID: 35943086 DOI: 10.1039/d2cp01803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presented overview deals with the study of the luminescence properties of lanthanide ions incorporated into different dielectric crystalline materials for use in photonics and optoelectronics. From the crystalline materials, non-centrosymmetric hexagonal crystals of LiNbO3, Al2O3 and ZnO, together with the centrosymmetric cubic crystal of diamond, were chosen. The above-mentioned materials represent a certain cross-section through various crystal structure geometries with different internal bonding of atoms which represent different crystal vicinity for the incorporated Er ions. During more than ten years of our research, each of the crystals was doped with erbium ions and the resulting structural and luminescence properties were studied in detail and compared between the mentioned crystalline materials to find similar behaviour for erbium ions in the different crystalline materials. To better understand the incorporation of erbium in the studied crystalline materials, theoretical simulations of different erbium-doped crystal models were carried out. In the calculations, cohesive energies of the structures and erbium defect-formation energies were compared in order to find the most favourable erbium positions in the crystals. Also, from the geometry optimization calculations, the optimal geometry arrangements in the vicinity of erbium ions in different crystals were studied and visualized. The results of the theoretical simulations confirmed the experimental results - i.e., from all the theoretical erbium-doped crystal models, the most stable structures contained erbium in the substitutional positions with octahedral oxygen coordination.
Collapse
Affiliation(s)
- Jakub Cajzl
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavla Nekvindová
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Anna Macková
- Nuclear Physics Institute, Czech Academy of Sciences, v. v. i., 250 68 Řež, Czech Republic.,Department of Physics, Faculty of Science, J. E. Purkinje University, Pasteurova 3544/1, 400 96 Ústí nad Labem, Czech Republic
| | - Marian Varga
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic.,Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| | - Alexander Kromka
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| |
Collapse
|
22
|
Li C, Xian J, Hong J, Cao X, Zhang C, Deng Q, Qin Z, Chen M, Zheng X, Li M, Hou J, Zhou Y, Yin X. Dual photothermal nanocomposites for drug-resistant infectious wound management. NANOSCALE 2022; 14:11284-11297. [PMID: 35880632 DOI: 10.1039/d2nr01998a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Management of antibiotic-resistant bacteria-induced skin infections for rapid healing remains a critical clinical challenge. Photothermal therapy, which uses mediated hyperthermia to combat such problems, has recently been recognised as a promising approach to take. In this study, bacterial cellulose-based photothermal membranes were designed and developed to combat bacterial infections and promote rapid wound healing. Polydopamine was incorporated into gold nanoparticles to produce superior dual-photothermal behaviour. The in vitro antibacterial efficacy of the prepared composite membranes against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA) could reach 99% under near-infrared (NIR) irradiation. In addition, the synthesised nanocomposite exhibited good biocompatibility in vitro as demonstrated by a cell survival ratio of >85%. The effectiveness of the composite membranes on wound healing was further investigated in a murine model of MRSA-infected wounds, focusing on the effect of photothermal temperature. According to the detailed therapeutic mechanism study undertaken, the composite membranes cause bacterial killing initially and promote the transition from the inflammatory phase to proliferation by suppressing pro-inflammatory cytokine production, promoting collagen deposition, and stimulating angiogenesis. Considering their remarkable effectiveness and facile fabrication process, it is expected that these novel materials could serve as competitive multifunctional dressings in the management of infectious wounds and accelerate the regeneration of damaged tissues related to abnormal immune responses.
Collapse
Affiliation(s)
- Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jiaru Xian
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jixuan Hong
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Xiaxin Cao
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Changze Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Qiaoyuan Deng
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Maohua Chen
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Xiaofei Zheng
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
- ZhongAo (Hainan) Biotechnology Research Institute, Haikou, Hainan 570000, P.R. China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD 4006, Australia.
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| |
Collapse
|
23
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
24
|
Ho TH, Yang CH, Jiang ZE, Lin HY, Chen YF, Wang TL. NIR-Triggered Generation of Reactive Oxygen Species and Photodynamic Therapy Based on Mesoporous Silica-Coated LiYF 4 Upconverting Nanoparticles. Int J Mol Sci 2022; 23:ijms23158757. [PMID: 35955888 PMCID: PMC9368848 DOI: 10.3390/ijms23158757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
To date, the increase in reactive oxygen species (ROS) production for effectual photodynamic therapy (PDT) treatment still remains challenging. In this study, a facile and effective approach is utilized to coat mesoporous silica (mSiO2) shell on the ligand-free upconversion nanoparticles (UCNPs) based on the LiYF4 host material. Two kinds of mesoporous silica-coated UCNPs (UCNP@mSiO2) that display green emission (doped with Ho3+) and red emission (doped with Er3+), respectively, were successfully synthesized and well characterized. Three photosensitizers (PSs), merocyanine 540 (MC 540), rose bengal (RB), and chlorin e6 (Ce6), with the function of absorption of green or red emission, were selected and loaded into the mSiO2 shell of both UCNP@mSiO2 nanomaterials. A comprehensive study for the three UCNP@mSiO2/PS donor/acceptor pairs was performed to investigate the efficacy of fluorescence resonance energy transfer (FRET), ROS generation, and in vitro PDT using a MCF-7 cell line. ROS generation detection showed that as compared to the oleate-capped and ligand-free UCNP/PS pairs, the UCNP@mSiO2/PS nanocarrier system demonstrated more pronounced ROS generation due to the UCNP@mSiO2 nanoparticles in close vicinity to PS molecules and a higher loading capacity of the photosensitizer. As a result, the three LiYF4 UCNP@mSiO2/PS nanoplatforms displayed more prominent therapeutic efficacies in PDT by using in vitro cytotoxicity tests.
Collapse
Affiliation(s)
- Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Zheng-En Jiang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzong-Liu Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: ; Tel.: +886-7-5919278
| |
Collapse
|
25
|
Ding C, Cheng S, Yuan F, Zhang C, Xian Y. Ratiometrically pH-Insensitive Upconversion Nanoprobe: Toward Simultaneously Quantifying Organellar Calcium and Chloride and Understanding the Interaction of the Two Ions in Lysosome Function. Anal Chem 2022; 94:10813-10823. [PMID: 35876218 DOI: 10.1021/acs.analchem.2c01714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium and chloride levels are closely related to lysosome dysfunction. However, the simultaneous measurement of calcium (Ca2+) and chloride (Cl-) in acidic subcellular organelles, which is conducive to a deep understanding of lysosome-related biological events, remains a challenge. In this study, we developed a pH-insensitive, ratiometric NIR nanoprobe for the simultaneous detection of Ca2+ and Cl- in acidic lysosomes and determined the roles of the two ions in lysosome function. The upconversion nanoprobe with blue, green, and red emissions was modified with a Ca2+-sensitive dye (Rhod-5N) and Cl--responsive fluorophore (10,10'-bis[3-carboxypropyl]-9,9'-biacridinium dinitrate, BAC). As a result of a dual-luminescence resonance energy transfer between upconversion nanoparticles (UCNPs) and Rhod-5N/BAC, the blue and green upconversion luminescence (UCL) of UCNPs were quenched and the red UCL was used as the reference signal. The ratiometric upconversion nanoprobe possesses a specific ability for the concurrent recognition of Ca2+ and Cl- ions independent of the influence of the environmental pH. To locate the probe in the lysosome, dextran was further modified with upconversion nanoparticles. Then, the nanoprobe with a high spatial resolution was constructed for the simultaneous monitoring of Ca2+ and Cl- in acidic lysosomes. Moreover, it was found that the reduction of lysosomal Cl- affects the release of lysosomal Ca2+, which further blocks the activities of specific lysosomal enzymes. The ratiometric NIR nanoprobe has great potential for decoding and evaluating lysosomal diseases.
Collapse
Affiliation(s)
- Caiping Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fang Yuan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Synthesis of stable core-shell perovskite based nano-heterostructures. J Colloid Interface Sci 2022; 628:121-130. [PMID: 35914424 DOI: 10.1016/j.jcis.2022.07.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Despite having exceptional optical and photoelectric properties, the application of organometal halide perovskites (OHP) is restricted due to the limited penetration depth of the UV excitation light and poor stability. Attempts have been made to make composite materials by mixing other materials such as upconversion nanoparticles (UCNP) with OHP. In contrast to linear absorption and emission of OHP, the nonlinear upconversion of UCNP offers numerous advantages such as deep penetration depth of the near-infrared (NIR) excitation light, minimal photodamage to biological tissues, and negligible background interference, which offer great potential in various applications such as multiplexed optical encoding, three-dimensional displays, super-resolution bioimaging, and effective solar spectrum conversion. However, it is challenging to synthesize hybrid OHP-UCNP nanocrystals due to the inherent difference in crystal structures of hexagonal phase UCNP and cubic phase OHP. In this work, we report OHP-UCNP heterostructured nanocrystals synthesized via growing cubic phase NaGdF4 UCNP over cubic phase CsPbBr3 OHP in a seed-mediated process based on a very small lattice mismatch and then converting cubic phase UCNP to hexagonal phase through heating. The juxtaposition of UCNP over OHP in a single nanocrystal facilitates efficient energy transfer from UCNP to OHP under NIR excitation and acts as a protective layer improving the stability. The stability is further enhanced by coating an inert UCNP shell on the OHP-UCNP nano-heterostructures with the same UCNP material earlier used in the heterostructures. The coating demonstrated greater stability under continuous UV exposure and in harsh environments such as high temperatures and polar solvents. These NIR excitable perovskite-UCNP nano-heterostructures with improved stability have great potential for use in new optoelectronic and biological applications.
Collapse
|
27
|
Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. Int J Mol Sci 2022; 23:ijms23148041. [PMID: 35887385 PMCID: PMC9323209 DOI: 10.3390/ijms23148041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Triplet–triplet annihilation upconversion (TTA-UC) is a very promising technology that could be used to convert low-energy photons to high-energy ones and has been proven to be of great value in various areas. Porphyrins have the characteristics of high molar absorbance, can form a complex with different metal ions and a high proportion of triplet states as well as tunable structures, and thus they are important sensitizers for TTA-UC. Porphyrin-based TTA-UC plays a pivotal role in the TTA-UC systems and has been widely used in many fields such as solar cells, sensing and circularly polarized luminescence. In recent years, applications of porphyrin-based TTA-UC systems for photoinduced reactions have emerged, but have been paid little attention. As a consequence, this review paid close attention to the recent advances in the photoreactions triggered by porphyrin-based TTA-UC systems. First of all, the photochemistry of porphyrin-based TTA-UC for chemical transformations, such as photoisomerization, photocatalytic synthesis, photopolymerization, photodegradation and photochemical/photoelectrochemical water splitting, was discussed in detail, which revealed the different mechanisms of TTA-UC and methods with which to carry out reasonable molecular innovations and nanoarchitectonics to solve the existing problems in practical application. Subsequently, photoreactions driven by porphyrin-based TTA-UC for biomedical applications were demonstrated. Finally, the future developments of porphyrin-based TTA-UC systems for photoreactions were briefly discussed.
Collapse
|
28
|
Wei Y, Gong C, Zhao M, Zhang L, Yang S, Li P, Ding Z, Yuan Q, Yang Y. Recent progress in the synthesis of lanthanide-based persistent luminescence nanoparticles. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Recent Progresses in NIR-II Luminescent Bio/Chemo Sensors Based on Lanthanide Nanocrystals. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescent bio/chemosensors are widely used in the field of biological research and medical diagnosis, with the advantages of non-invasiveness, high sensitivity, and good selectivity. In particular, luminescent bio/chemosensors, based on lanthanide nanocrystals (LnNCs) with a second near-infrared (NIR-II) emission, have attracted much attention, owing to greater penetration depth, aside from the merits of narrow emission band, abundant emission lines, and long lifetimes. In this review, NIR-II LnNCs-based bio/chemo sensors are summarized from the perspectives of the mechanisms of NIR-II luminescence, synthesis method of LnNCs, strategy of luminescence enhancement, sensing mechanism, and targeted bio/chemo category. Finally, the problems that exist in present LnNCs-based bio/chemosensors are discussed, and the future development trend is prospected.
Collapse
|
30
|
Nannuri SH, Singh S, Misra SK, Chidangil S, George SD. Microwave-assisted synthesis and upconversion luminescence of NaYF 4:Yb, Gd, Er and NaYF 4:Yb, Gd, Tm nanorods. Methods Appl Fluoresc 2022; 10. [PMID: 35213848 DOI: 10.1088/2050-6120/ac58e6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/12/2022]
Abstract
Anisotropic rare-earth ion (RE3+) doped fluoride upconversion particles are emerging as a potential candidate in diverse areas, ranging from biomedical imaging to photonics. Here, we develop a facile strategy to synthesize NaYF4:Yb, Er, Gd and NaYF4:Yb, Tm, Gd upconversion nanorods via microwave synthesis route by controlling the synthesis time and compared the optical properties of similar nanorods prepared via solvothermal technique. With the increase in synthesis time, the phase of the particle was found to change from mixed-phase to purely hexagonal and the morphology of the particles change the mixed phase of spherical and rod-shaped particles to completely nanorods for a synthesis time of 60 minutes. Further, the intrinsically hydrophobic particles changed to hydrophilic by removal of oleic capping via acid treatment and the amine-functionalized silica coating. The upconversion luminescence, as well as laser power-dependent emission properties of the surface-modified particles, elucidate that the surface modification route influence the upconversion luminescence as well as solvent-dependent emission properties. Moreover, the laser power-dependent studies elucidate that the upconversion process in a multi-photon process.
Collapse
Affiliation(s)
- Shivanand H Nannuri
- Department of Atomic and MOlecular Physics, Manipal Academy of Higher Education, AB-5, LG-1, MIT Campus, MAHE. Manipal, Manipal, Karnataka, 576104, INDIA
| | - Simranjit Singh
- Materials Engineering, Indian Institute of Technology, IIT Gandhinagar, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, INDIA
| | - Superb Kumar Misra
- Materials Science and Engineering, IIT Gandhinagar, Materials Science and Engineering Indian Institute of Technology Gandhinagar, Ahmedabad, 382424, INDIA
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, AB-5, LG-1, MIT campus, Manipal, Karnataka, 576104, INDIA
| | - Sajan D George
- Center for Atomic and Molecular Physics, Manipal Academy of Higher Education, Academic Block -5, LG-01, MIT Campus, Manipal University, Manipal, Karnataka, 576104, INDIA
| |
Collapse
|
31
|
Liu S, Yan L, Huang J, Zhang Q, Zhou B. Controlling upconversion in emerging multilayer core-shell nanostructures: from fundamentals to frontier applications. Chem Soc Rev 2022; 51:1729-1765. [PMID: 35188156 DOI: 10.1039/d1cs00753j] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lanthanide-based upconversion nanomaterials have recently attracted considerable attention in both fundamental research and various frontier applications owing to their excellent photon upconversion performance and favourable physicochemical properties. In particular, the emergence of multi-layer core-shell (MLCS) nanostructures offers a versatile and powerful tool to realize well-defined matrix compositions and spatial distributions of the dopant on the nanometer length scale. In contrast to the conventional nanomaterials and commonly investigated core-shell nanoparticles, the rational design of MLCS nanostructures allows us to deliberately introduce more functional properties into an upconversion system, thus providing unprecedented opportunities for the precise manipulation of energy transfer channels, the dynamic control of upconversion processes, the fine tuning of switchable emission colours and new functional integration at a single-particle level. In this review, we present a summary and discussion on the key aspects of the recent progress in lanthanide-based MLCS nanoparticles, including the manipulation of emission and lifetime, the switchable multicolour output and the lanthanide ionic interactions on the nanoscale. Benefitting from the multifunctional and versatile luminescence properties, the MLCS nanostructures exhibit great potential in diversities of frontier applications such as three-dimensional display, upconversion laser, optical memory, anti-counterfeiting, thermometry, bioimaging, and therapy. The outlook and challenges as well as perspectives for the research in MLCS nanostructure materials are also provided. This review would be greatly helpful in exploring new structural designs of lanthanide-based materials to further manipulate the upconversion phenomenon and expand their application boundaries.
Collapse
Affiliation(s)
- Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
32
|
Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochim Acta 2022; 189:109. [PMID: 35175435 DOI: 10.1007/s00604-022-05180-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 01/26/2023]
Abstract
Various fluctuations of intracellular ions, biomolecules, and other conditions in the physiological environment play crucial roles in fundamental biological processes. These factors are of great importance for analysis in biomedical detection. Nevertheless, developments of the simple, rapid, and accurate proof for specific detection still encounter major challenges. Upconversion nanoparticles (UCNPs), which could absorb multiple low-energy near-infrared light (NIR) photon excitation and emits high-energy photons caused by anti-Stokes shift, show unique upconversion luminescence (UCL) properties, for example, sharp emission band, high physicochemical stability like near-zero photobleaching, photo blinking in biological tissues, and long luminescence lifetime. Furthermore, the NIR used for the light source to excite UCNPs enable lower photo-damage effect and deeper penetration of tissue, and in the meantime, it can avoid the auto-fluorescence and light scattering from biological tissue interference. Thus, the lanthanide-doped UCNP-based functional platform with controlled structure, crystalline phase, size, and multicolor emission has become an appropriate nanomaterial for bioapplications such as biosensing, bioimaging, drug release, and therapies. In this review, the recent progress about synthesis and biomedical applications of UCNPs related to sensing and bioimaging is summarized. Firstly, the different luminescence mechanisms of the upconversion process are presented. Secondly, four of the most common methods for synthesizing UCNPs are compared as well as the advantages and disadvantages of these synthetic routes. Meanwhile, the surface modification of lanthanide-doped UCNPs was introduced to pave the way for their biochemistry applications. Next, this review detailed the biological applications of lanthanide-doped UCNPs, particularly in bioimaging, including UCL and multi-modal imaging and biosensing (monitoring intracellular ions and biomolecules). Finally, the challenges and future perspectives in materials science and biomedical fields of UCNPs are concluded: the low quantum yield of the upconversion process should be considered when they are executed as imaging contrast agents. And the biosafety of lanthanide-doped UCNPs needs to be evaluated.
Collapse
|
33
|
Wu Y, Shi C, Wang G, Sun H, Yin S. Recent Advances in the Development and Applications of Conjugated Polymer dots. J Mater Chem B 2022; 10:2995-3015. [DOI: 10.1039/d1tb02816b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymer dots or semiconducting polymer nanoparticles (Pdots) are nanoparticles prepared based on organic polymers. Pdots have the advantages of lower cost, simple preparation process, good biocompatibility, excellent stability, easy...
Collapse
|
34
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Lei L, Liu E, Wang Y, Hua Y, Zhang J, Chen J, Mao R, Jia G, Xu S. Amplifying Upconversion by Engineering Interfacial Density of State in Sub-10 nm Colloidal Core/Shell Fluoride Nanoparticles. NANO LETTERS 2021; 21:10222-10229. [PMID: 34847665 DOI: 10.1021/acs.nanolett.1c03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving bright photon upconversion under low irradiance is of great significance and finds many stimulating applications from photovoltaics to biophotonics. However, it remains a daunting challenge to significantly intensify upconversion luminescence in small nanoparticles with a simple structure. Herein, we report the amplification of photon upconversion through engineering interfacial density of states between the core and the shell layer in sub-10 nm colloidal rare-earth ions doped fluoride nanocrystals. Through tuning of the metal cations in the shell layer of alkaline-earth-based core/shell nanoparticles, both the interfacial phonon frequency and the density of state are evidently decreased, resulting in the luminescence intensification of up to 8224 times. The generality of this upconversion enhancement strategy has been verified through expansion of this approach to alkali-based core/shell nanoparticles. The engineering of photon density of state in such core/shell nanoparticles enables dynamic display and high-level security information storage.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Enyang Liu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Yubin Wang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Youjie Hua
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Junjie Zhang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jiayi Chen
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rundong Mao
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shiqing Xu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| |
Collapse
|
36
|
Yu S, Jang D, Yuan H, Huang WT, Kim M, Marques Mota F, Liu RS, Lee H, Kim S, Kim DH. Plasmon-Triggered Upconversion Emissions and Hot Carrier Injection for Combinatorial Photothermal and Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58422-58433. [PMID: 34855366 DOI: 10.1021/acsami.1c21949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the unique ability of lanthanide-doped upconversion nanoparticles (UCNPs) to convert near-infrared (NIR) light to high-energy UV-vis radiation, low quantum efficiency has rendered their application unpractical in biomedical fields. Here, we report anatase titania-coated plasmonic gold nanorods decorated with UCNPs (Au NR@aTiO2@UCNPs) for combinational photothermal and photodynamic therapy to treat cancer. Our novel architecture employs the incorporation of an anatase titanium dioxide (aTiO2) photosensitizer as a spacer and exploits the localized surface plasmon resonance (LSPR) properties of the Au core. The LSPR-derived near-field enhancement induces a threefold boost of upconversion emissions, which are re-absorbed by neighboring aTiO2 and Au nanocomponents. Photocatalytic experiments strongly infer that LSPR-induced hot electrons are injected into the conduction band of aTiO2, generating reactive oxygen species. As phototherapeutic agents, our hybrid nanostructures show remarkable in vitro anticancer effect under NIR light [28.0% cancer cell viability against Au NR@aTiO2 (77.3%) and UCNP@aTiO2 (98.8%)] ascribed to the efficient radical formation and LSPR-induced heat generation, with cancer cell death primarily following an apoptotic pathway. In vivo animal studies further confirm the tumor suppression ability of Au NR@aTiO2@UCNPs through combinatorial photothermal and photodynamic effect. Our hybrid nanomaterials emerge as excellent multifunctional phototherapy agents, providing a valuable addition to light-triggered cancer treatments in deep tissue.
Collapse
Affiliation(s)
- Subin Yu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dohyub Jang
- Center for Theragnosis, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 136-701, Republic of Korea
| | - Hong Yuan
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Minju Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Filipe Marques Mota
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
- Basic Sciences Research Institute (Priority Research Institute), Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
- Nanobio Energy Materials Center (National Research Facilities and Equipment Center), Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
37
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
38
|
Liang X, Zhao Y, Cheng M, Zhang F. Rational design and synthesis of upconversion luminescence-based optomagnetic multifunctional nanorattles for drug delivery. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Duan Y, Liu Y, Zhang G, Yao L, Shao Q. Broadband Cr3+-sensitized upconversion luminescence of LiScSi2O6:Cr3+/Er3+. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Sun G, Xie Y, Sun L, Zhang H. Lanthanide upconversion and downshifting luminescence for biomolecules detection. NANOSCALE HORIZONS 2021; 6:766-780. [PMID: 34569585 DOI: 10.1039/d1nh00299f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecules play critical roles in biological activities and are closely related to various disease conditions. The reliable, selective and sensitive detection of biomolecules holds much promise for specific and rapid biosensing. In recent years, luminescent lanthanide probes have been widely used for monitoring the activity of biomolecules owing to their long luminescence lifetimes and line-like emission which allow time-resolved and ratiometric analyses. In this review article, we concentrate on recent advances in the detection of biomolecule activities based on lanthanide luminescent systems, including upconversion luminescent nanoparticles, lanthanide-metal organic frameworks, and lanthanide organic complexes. We also introduce the latest remarkable accomplishments of lanthanide probes in the design principles and sensing mechanisms, as well as the forthcoming challenges and perspectives for practical achievements.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
41
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
42
|
Ju X, Song J, Han J, Shi Y, Gao Y, Duan P. Photofluorochromic water-dispersible nanoparticles for single-photon-absorption upconversion cell imaging. NANOTECHNOLOGY 2021; 32:475606. [PMID: 34252893 DOI: 10.1088/1361-6528/ac137f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Photofluorochromic diarylethene (DAE) molecules have been widely investigated due to their excellent fatigue resistance and thermal stability. However, the poor water solubility of DAEs limits their biological applications to some extent. Herein, we reported two kinds of water-dispersible DAE nanoparticles (DAEI-NPs and DAEB-NPs), in which DAE molecules were stabilized by the amphiphilic polymer DSPE-mPEG2000 using the nanoprecipitation approach. The fabricated nanoparticles retain well-controlled luminescence and fluorescence photoswitching properties in aqueous solution, which could be reversibly switched on and off under the alternating irradiation of ultraviolet (UV) and visible light. In addition, the closed-ring isomers of DAEB-NPs performed hot-band-absorption-based photon upconversion when excited by a 593.5 nm laser. Bearing excellent photophysical properties and low cytotoxicity, DAEB-NPs were applicable for upconversion cell imaging without high-excitation power density and free from oxygen removal. Additionally, the imaging process could be switched on by regulating the photofluorochromic nanoparticles.
Collapse
Affiliation(s)
- Xiuhao Ju
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jialei Song
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Yonghong Shi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
43
|
Ding C, Huang Y, Shen Z, Chen X. Synthesis and Bioapplications of Ag 2 S Quantum Dots with Near-Infrared Fluorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007768. [PMID: 34117805 DOI: 10.1002/adma.202007768] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Quantum dots (QDs) with near-infrared fluorescence (NIR) are an emerging class of QDs with unique capabilities owing to the deeper tissue penetrability of NIR light compared with visible light. NIR light also effectively overcomes organism autofluorescence, making NIR QDs particularly attractive in biological imaging applications for disease diagnosis. Considering latest developments, Ag2 S QDs are a rising star among NIR QDs due to their excellent NIR fluorescence properties and biocompatibility. This review presents the various methods to synthesize NIR Ag2 S QDs, and systematically discusses their applications in biosensing, bioimaging, and theranostics. Major challenges and future perspectives concerning the synthesis and bioapplications of NIR Ag2 S QDs are discussed.
Collapse
Affiliation(s)
- Caiping Ding
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheyu Shen
- Department of Medical Imaging Center, Nanfang Hospital, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
44
|
Ansari AA, Parchur AK, Thorat ND, Chen G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213971] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Wu Y, Song X, Xu W, Sun KY, Wang Z, Lv Z, Wang Y, Wang Y, Zhong W, Wei J, Cai HL, Wu X. NIR-Activated Multimodal Photothermal/Chemodynamic/Magnetic Resonance Imaging Nanoplatform for Anticancer Therapy by Fe(II) Ions Doped MXenes (Fe-Ti 3 C 2 ). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101705. [PMID: 34227235 DOI: 10.1002/smll.202101705] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Indexed: 06/13/2023]
Abstract
2D MXene, Ti3 C2 (TC), has displayed enormous potential in applications in photothermal therapy (PTT), attributing to its biocompatibility and outstanding photothermal conversion capability. However, some tumor ablations are difficult to be realized completely by monotherapy due to the essential defects of monotherapy and intricate tumor microenvironment (TME). In this work, the appropriate doped Fe2+ ions are anchored into the layers of 2D ultrathin TC nanosheets (TC NSs) to synthesize a novel multifunctional nanoshell of Fe(II)-Ti3 C2 (FTC) through interlayer electrostatic adsorption. FTC possesses superior photothermal conversion efficiency (PTCE) than TC NSs, attributing to the enhanced conductivity promoted by interlaminar ferrous ion-channels. Moreover, Fenton reaction based on ferrous ions endows FTC the abilities of reactive oxide species (ROS) releasing and glutathione (GSH) suppression triggered by near-infrared (NIR) laser, featuring splendid biocompatibility and curative effect in hypoxic TME. Meanwhile, magnetic resonance imaging (MRI) responding in FTC reveals the potential as an integrated diagnosis and treatment nanoplatform. FTC could provide new insights into the development of multimoded synergistic nanoplatform for biological applications, especially breaking the shackles of MXenes merely used as a photo-thermal agent (PTA), adopting it to bioimaging sensor and drug loading.
Collapse
Affiliation(s)
- Yizhang Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Wei Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Kuo-Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhaokun Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Yong Wang
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710126, China
| | - Wei Zhong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Hong-Ling Cai
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xiaoshan Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
46
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
47
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
48
|
Abdul Hakeem D, Su S, Mo Z, Wen H. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Crit Rev Food Sci Nutr 2021; 62:8866-8907. [PMID: 34159870 DOI: 10.1080/10408398.2021.1937039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foodborne diseases have become a significant threat to public health worldwide. Development of analytical techniques that enable fast and accurate detection of foodborne pathogens is significant for food science and safety research. Assays based on lanthanide (Ln) ion-doped upconversion nanoparticles (UCNPs) show up as a cutting edge platform in biomedical fields because of the superior physicochemical features of UCNPs, including negligible autofluorescence, large signal-to-noise ratio, minimum photodamage to biological samples, high penetration depth, and attractive optical and chemical features. In recent decades, this novel and promising technology has been gradually introduced to food safety research. Herein, we have reviewed the recent progress of Ln3+-doped UCNPs in food safety research with emphasis on the following aspects: 1) the upconversion mechanism and detection principles; 2) the history of UCNPs development in analytical chemistry; 3) the in-depth state-of-the-art synthesis strategies, including synthesis protocols for UCNPs, luminescence, structure, morphology, and surface engineering; 4) applications of UCNPs in foodborne pathogens detection, including mycotoxins, heavy metal ions, pesticide residue, antibiotics, estrogen residue, and pathogenic bacteria; and 5) the challenging and future perspectives of using UCNPs in food safety research. Considering the diversity and complexity of the foodborne harmful substances, developing novel detections and quantification techniques and the rigorous investigations about the effect of the harmful substances on human health should be accelerated.
Collapse
Affiliation(s)
- Deshmukh Abdul Hakeem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Shaoshan Su
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhurong Mo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
49
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
50
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|