1
|
Caprini D, Battista F, Zajdel P, Di Muccio G, Guardiani C, Trump B, Carter M, Yakovenko AA, Amayuelas E, Bartolomé L, Meloni S, Grosu Y, Casciola CM, Giacomello A. Bubbles enable volumetric negative compressibility in metastable elastocapillary systems. Nat Commun 2024; 15:5076. [PMID: 38871721 DOI: 10.1038/s41467-024-49136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon - the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.
Collapse
Affiliation(s)
- Davide Caprini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, Italy
| | - Francesco Battista
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy
| | - Paweł Zajdel
- A. Chełkowski Institute of Physics, University of Silesia, ul 75 Pułku Piechoty 1, Chorzów, Poland
| | - Giovanni Di Muccio
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy
| | - Carlo Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy
| | - Benjamin Trump
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Marcus Carter
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Andrey A Yakovenko
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Spain
| | - Luis Bartolomé
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Spain
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Luigi Borsari 46, Ferrara, Italy.
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Spain.
- Institute of Chemistry, University of Silesia, Katowice, Poland.
| | - Carlo Massimo Casciola
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy.
| |
Collapse
|
2
|
Hardiagon A, Coudert FX. Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior. Acc Chem Res 2024; 57:1620-1632. [PMID: 38752454 DOI: 10.1021/acs.accounts.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ConspectusNanoporous frameworks are a large and diverse family of supramolecular materials, whose chemical building units (organic, inorganic, or both) are assembled into a 3D architecture with well-defined connectivity and topology, featuring intrinsic porosity. These materials play a key role in various industrial processes and applications, such as energy production and conversion, fluid separation, gas storage, water harvesting, and many more. The performance and suitability of nanoporous materials for each specific application are directly related to both their physical and chemical properties, and their determination is crucial for process engineering and optimization of performances. In this Account, we focus on some recent developments in the multiscale modeling of physical properties of nanoporous frameworks, highlighting the latest advances in three specific areas: mechanical properties, thermal properties, and adsorption.In the study of the mechanical behavior of nanoporous materials, the past few years have seen a rapid acceleration of research. For example, computational resources have been pooled to create a public large-scale database of elastic constants as part of the Materials Project initiative to accelerate innovation in materials research: those can serve as a basis for data-based discovery of materials with targeted properties, as well as the training of machine learning predictor models.The large-scale prediction of thermal behavior, in comparison, is not yet routinely performed at such a large scale. Tentative databases have been assembled at the DFT level on specific families of materials, such as zeolites, but prediction at larger scale currently requires the use of transferable classical force fields, whose accuracy can be limited.Finally, adsorption is naturally one of the most studied physical properties of nanoporous frameworks, as fluid separation or storage is often the primary target for these materials. We highlight the recent achievements and open challenges for adsorption prediction at a large scale, focusing in particular on the accuracy of computational models and the reliability of comparisons with experimental data available. We detail some recent methodological improvements in the prediction of adsorption-related properties: in particular, we describe the recent research efforts to go beyond the study of thermodynamic quantities (uptake, adsorption enthalpy, and thermodynamic selectivity) and predict transport properties using data-based methods and high-throughput computational schemes. Finally, we stress the importance of data-based methods of addressing all sources of uncertainty.The Account concludes with some perspectives about the latest developments and open questions in data-based approaches and the integration of computational and experimental data together in the materials discovery loop.
Collapse
Affiliation(s)
- Arthur Hardiagon
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| |
Collapse
|
3
|
Fan D, Ozcan A, Lyu P, Maurin G. Unravelling abnormal in-plane stretchability of two-dimensional metal-organic frameworks by machine learning potential molecular dynamics. NANOSCALE 2024; 16:3438-3447. [PMID: 38265127 DOI: 10.1039/d3nr05966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) hold immense potential for various applications due to their distinctive intrinsic properties compared to their 3D analogues. Herein, we designed a highly stable NiF2(pyrazine)2 2D MOF in silico with a two-dimensional periodic wine-rack architecture. Extensive first-principles calculations and molecular dynamics (MD) simulations based on a newly developed machine learning potential (MLP) revealed that this 2D MOF exhibits huge in-plane Poisson's ratio anisotropy. This results in anomalous negative in-plane stretchability, as evidenced by an uncommon decrease in its in-plane area upon the application of uniaxial tensile strain, which makes this 2D MOF particularly attractive for flexible wearable electronics and ultra-thin sensor applications. We further demonstrated the unique capability of MLP to accurately predict the finite-temperature properties of MOFs on a large scale, exemplified by MLP-MD simulations with a dimension of 28.2 × 28.2 nm2, relevant to the length scale experimentally attainable for the fabrication of MOF films.
Collapse
Affiliation(s)
- Dong Fan
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France.
| | - Aydin Ozcan
- TUBİTAK Marmara Research Center, Materials Technologies, Gebze, Kocaeli, 41470, Turkey
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France.
| |
Collapse
|
4
|
Jin E, Lee IS, Yang DC, Moon D, Nam J, Cho H, Kang E, Lee J, Noh HJ, Min SK, Choe W. Origamic metal-organic framework toward mechanical metamaterial. Nat Commun 2023; 14:7938. [PMID: 38040755 PMCID: PMC10692132 DOI: 10.1038/s41467-023-43647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Origami, known as paper folding has become a fascinating research topic recently. Origami-inspired materials often establish mechanical properties that are difficult to achieve in conventional materials. However, the materials based on origami tessellation at the molecular level have been significantly underexplored. Herein, we report a two-dimensional (2D) porphyrinic metal-organic framework (MOF), self-assembled from Zn nodes and flexible porphyrin linkers, displaying folding motions based on origami tessellation. A combined experimental and theoretical investigation demonstrated the origami mechanism of the 2D porphyrinic MOF, whereby the flexible linker acts as a pivoting point. The discovery of the 2D tessellation hidden in the 2D MOF unveils origami mechanics at the molecular level.
Collapse
Affiliation(s)
- Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - D ChangMo Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hyeonsoo Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Eunyoung Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Junghye Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hyuk-Jun Noh
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
5
|
Vargas-Bustamante J, Salcedo R, Balmaseda J. A Route to Understanding the Ethane Adsorption Selectivity of the Zeolitic Imidazolate Framework-8 in Ethane-Ethylene Mixtures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6587. [PMID: 37834724 PMCID: PMC10574225 DOI: 10.3390/ma16196587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Ethylene production has a negative environmental impact, with its separation step being one of the major contributors of pollution. This has encouraged the search for energy-efficient alternatives, among which the adsorptive separation of ethane and ethylene stands out. ZIF-8 is a molecular sieve that is potentially useful for this purpose. It is selective to ethane, an exceptional property that remains unexplained. Furthermore, the adsorption of ethane and ethylene above room temperature, such as at steam cracking process outlet temperatures, has not been addressed either. This work aims to fill this knowledge gap by combining experiments at very low volumetric fillings with density-functional theory modelling methods. Adsorption isotherms of ethane and ethylene on ZIF-8 at pressures below 0.3 bar and 311 K, 333 K, and 363 K were measured using zero-length column chromatography. The low-pressure domain of the isotherms contains information on the interactions between the adsorbate molecules and the adsorbent. This favors the understanding of their macroscopic behavior from simulations at the atomic level. The isosteric enthalpy of adsorption of ethane remained constant at approximately -10 kJ/mol. In contrast, the isosteric enthalpy of adsorption of ethylene decreased from -4 kJ/mol to values akin to those of ethane as temperature increased. ZIF-8 selectivity to ethane, estimated from ideal adsorbed solution theory, decreased from 2.8 to 2.0 with increasing pressure up to 0.19 bar. Quantum mechanical modelling suggested that ethylene had minimal interactions with ZIF-8, while ethane formed hydrogen bonds with nitrogen atoms within its structure. The findings of this research are a platform for designing new systems for the adsorptive separation of ethane and ethylene and thus, reducing the environmental impact of ethylene production.
Collapse
Affiliation(s)
| | - Roberto Salcedo
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.V.-B.); (J.B.)
| | | |
Collapse
|
6
|
Giacomello A. What keeps nanopores boiling. J Chem Phys 2023; 159:110902. [PMID: 37724724 DOI: 10.1063/5.0167530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liquid-to-vapor transition can occur under unexpected conditions in nanopores, opening the door to fundamental questions and new technologies. The physics of boiling in confinement is progressively introduced, starting from classical nucleation theory, passing through nanoscale effects, and terminating with the material and external parameters that affect the boiling conditions. The relevance of boiling in specific nanoconfined systems is discussed, focusing on heterogeneous lyophobic systems, chromatographic columns, and ion channels. The current level of control of boiling in nanopores enabled by microporous materials such as metal organic frameworks and biological nanopores paves the way to thrilling theoretical challenges and to new technological opportunities in the fields of energy, neuromorphic computing, and sensing.
Collapse
Affiliation(s)
- Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
7
|
Li K, Qin Y, Li ZG, Guo TM, An LC, Li W, Li N, Bu XH. Elastic properties related energy conversions of coordination polymers and metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
McMonagle CJ, Turner GF, Jones I, Allan DR, Warren MR, Kamenev KV, Parsons S, Wright PA, Moggach SA. Pressure and guest-mediated pore shape modification in a small pore MOF to 1200 bar. Chem Commun (Camb) 2022; 58:11507-11510. [PMID: 36134460 DOI: 10.1039/d2cc04649k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guest-mediated pore-shape modification of the metal-organic framework, Sc2BDC3 upon adsorption of n-pentane and isopentane is examined from 50-1200 bar. Rotation of the BDC linker responsible for the change in pore shape occurs at much lower pressures than previously reported, with distinct adsorption behaviour observed between pentane isomers.
Collapse
Affiliation(s)
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Western Australia, Australia.
| | - Isabelle Jones
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Western Australia, Australia.
| | - David R Allan
- Diamond Light Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE, UK
| | - Mark R Warren
- Diamond Light Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE, UK
| | - Konstantin V Kamenev
- Centre for Science at Extreme Conditions and School of Engineering, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Simon Parsons
- EastChem School of Chemistry, Joseph Black Building, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Paul A Wright
- EastChem School of Chemistry, The University of St Andrews, Purdie Building, St Andrews, KY16 9ST, UK
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Western Australia, Australia.
| |
Collapse
|
9
|
Schwotzer F, Horak J, Senkovska I, Schade E, Gorelik TE, Wollmann P, Anh ML, Ruck M, Kaiser U, Weidinger IM, Kaskel S. Cooperative Assembly of 2D-MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angew Chem Int Ed Engl 2022; 61:e202117730. [PMID: 35285126 PMCID: PMC9315001 DOI: 10.1002/anie.202117730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Clean air is an indispensable prerequisite for human health. The capture of small toxic molecules requires the development of advanced materials for air filtration. Two-dimensional nanomaterials offer highly accessible surface areas but for real-world applications their assembly into well-defined hierarchical mesostructures is essential. DUT-134(Cu) ([Cu2 (dttc)2 ]n , dttc=dithieno[3,2-b : 2',3'-d]thiophene-2,6-dicarboxylate]) is a metal-organic framework forming platelet-shaped particles, that can be organized into complex structures, such as millimeter large free-standing layers (carpets) and tubes. The structured material demonstrates enhanced accessibility of open metal sites and significantly enhanced H2 S adsorption capacity in gas filtering tests compared with traditional bulk analogues.
Collapse
Affiliation(s)
- Friedrich Schwotzer
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Jacob Horak
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Irena Senkovska
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Elke Schade
- IWS DresdenWinterbergstr. 2801277DresdenGermany
| | - Tatiana E. Gorelik
- Electron Microscopy Group of Materials Science (EMMS)Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Philipp Wollmann
- ElectrochemistryTechnische Universität DresdenZellescher Weg 1901069DresdenGermany
| | - Mai Lê Anh
- Inorganic Chemistry IITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Michael Ruck
- Inorganic Chemistry IITechnische Universität DresdenBergstr. 6601069DresdenGermany
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS)Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Inez M. Weidinger
- ElectrochemistryTechnische Universität DresdenZellescher Weg 1901069DresdenGermany
| | - Stefan Kaskel
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
- IWS DresdenWinterbergstr. 2801277DresdenGermany
| |
Collapse
|
10
|
Schwotzer F, Horak J, Senkovska I, Schade E, Gorelik TE, Wollmann P, Anh ML, Ruck M, Kaiser U, Weidinger IM, Kaskel S. Cooperative Assembly of 2D‐MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Friedrich Schwotzer
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Jacob Horak
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Irena Senkovska
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Elke Schade
- IWS Dresden Winterbergstr. 28 01277 Dresden Germany
| | - Tatiana E. Gorelik
- Electron Microscopy Group of Materials Science (EMMS) Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Philipp Wollmann
- Electrochemistry Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Mai Lê Anh
- Inorganic Chemistry II Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Michael Ruck
- Inorganic Chemistry II Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS) Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Inez M. Weidinger
- Electrochemistry Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Stefan Kaskel
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
- IWS Dresden Winterbergstr. 28 01277 Dresden Germany
| |
Collapse
|
11
|
Xing Y, Luo L, Li Y, Wang D, Hu D, Li T, Zhang H. Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials. J Am Chem Soc 2022; 144:4393-4402. [PMID: 35230831 DOI: 10.1021/jacs.1c11136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the extraordinarily high surface to volume ratio and enormous structural and chemical diversities, metal-organic frameworks (MOFs) have drawn much attention in applications such as heterogeneous catalysis, gas storage separation, and drug delivery, and so on. However, the potential of MOF materials as mechanical metamaterials has not been investigated. In this work, we demonstrated that through the concerted effort of molecular construct and mesoscopic structural design, hierarchical MOFs can exhibit superb mechanical properties. With the cutting-edge in situ transmission and scanning electron microscope (TEM and SEM) techniques, the mechanical properties of hollow UiO-66 octahedron particles were quantitatively studied by compression on individual specimens. Results showed that the yield strength and Young's modulus of the hierarchical porous framework material presented a distinct "smaller is stronger and stiffer" size dependency, and the maximum yield strength and Young's modulus reached 580 ± 55 MPa and 4.3 ± 0.5 GPa, respectively. The specific strengths were measured as 0.15 ± 0.03 to 0.68 ± 0.11 GPa g-1 cm3, which is comparable to the previously reported state-of-the-art mechanical metamaterials like glassy carbon nanolattices and pyrolytic carbon nanolattices. This work revealed that MOF materials can be made into a new class of low-density, high-strength mechanical metamaterials and provided insight into the mechanical stability of nanoscale MOFs for practical applications.
Collapse
Affiliation(s)
- Yurui Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Lianshun Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Yansong Li
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Dongxu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Dayong Hu
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| | - Hongti Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| |
Collapse
|
12
|
Liu Z, Wang Z, Sun D, Xing X. Intrinsic volumetric negative thermal expansion in the "rigid" calcium squarate. Chem Commun (Camb) 2021; 57:9382-9385. [PMID: 34528960 DOI: 10.1039/d1cc03105h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The calcium squarate with a rigid framework is found to exhibit volumetric negative thermal expansion (NTE) with the coefficient -9.51(5) × 10-6 K-1 and uniaxial zero thermal expansion (ZTE, -0.14(4) × 10-6 K-1) over a wide temperature. Detailed comparison of the long-range and local structure sheds light on the fact that the anomalous thermal expansion originates from the transverse vibration of the bridging squarate ligand, although it has been tightly bonded by five calcium ions. We believe that this study can provide a deep insight into the origin of NTE and the structural flexibility of metal organic frameworks (MOFs).
Collapse
Affiliation(s)
- Zhanning Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Zhe Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
Vandenhaute S, Rogge SMJ, Van Speybroeck V. Large-Scale Molecular Dynamics Simulations Reveal New Insights Into the Phase Transition Mechanisms in MIL-53(Al). Front Chem 2021; 9:718920. [PMID: 34513797 PMCID: PMC8429608 DOI: 10.3389/fchem.2021.718920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023] Open
Abstract
Soft porous crystals have the ability to undergo large structural transformations upon exposure to external stimuli while maintaining their long-range structural order, and the size of the crystal plays an important role in this flexible behavior. Computational modeling has the potential to unravel mechanistic details of these phase transitions, provided that the models are representative for experimental crystal sizes and allow for spatially disordered phenomena to occur. Here, we take a major step forward and enable simulations of metal-organic frameworks containing more than a million atoms. This is achieved by exploiting the massive parallelism of state-of-the-art GPUs using the OpenMM software package, for which we developed a new pressure control algorithm that allows for fully anisotropic unit cell fluctuations. As a proof of concept, we study the transition mechanism in MIL-53(Al) under various external pressures. In the lower pressure regime, a layer-by-layer mechanism is observed, while at higher pressures, the transition is initiated at discrete nucleation points and temporarily induces various domains in both the open and closed pore phases. The presented workflow opens the possibility to deduce transition mechanism diagrams for soft porous crystals in terms of the crystal size and the strength of the external stimulus.
Collapse
Affiliation(s)
| | - Sven M J Rogge
- Center for Molecular Modeling (CMM), Ghent University, Ghent, Belgium
| | | |
Collapse
|
14
|
Miyake R. Constructing multicomponent cooperative functional systems using metal complexes of short flexible peptides. Chem Commun (Camb) 2021; 57:7987-7996. [PMID: 34312645 DOI: 10.1039/d1cc03101e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of cooperative systems comprising several units is an essential challenge for artificial systems toward the development of sophisticated functions comparable to those found in biological systems. Flexible frameworks possessing various functional groups that can form weak intra/intermolecular interactions similar to those observed in biological systems have promising design features for artificial systems used to control cooperative systems. However, it is difficult to construct multiple component systems >1 nm using these flexible units by controlling the arrangement of functional units, beginning with the precise control of the cooperative switching of multiple units. In general, it is difficult for oligopeptides to form stable conformations by themselves, although they have designability and structural features suitable for the development of cooperative systems. Increasing the number of coordination bonds in peptides, which are stronger than hydrogen bonds, can be used to control the assembled peptide structures and stabilize their structures owing to the variety of coordination bonds and selective binding affinity. Thus, metal complexes of artificial short peptides have great potential for the development of multicomponent cooperative systems. Based on this concept, we have developed a series of novel metal complexes of flexible peptides and have achieved, to date, cooperative systems, the formation of giant structures, and precise control over the functional units that are the essential bases for designable multifunctional systems that can be regarded as artificial enzymes. In this feature article, we summarize these results and discuss the principal/essential design of artificial systems.
Collapse
Affiliation(s)
- Ryosuke Miyake
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
15
|
Zajdel P, Chorążewski M, Leão JB, Jensen GV, Bleuel M, Zhang HF, Feng T, Luo D, Li M, Lowe AR, Geppert-Rybczynska M, Li D, Grosu Y. Inflation Negative Compressibility during Intrusion-Extrusion of a Non-Wetting Liquid into a Flexible Nanoporous Framework. J Phys Chem Lett 2021; 12:4951-4957. [PMID: 34009998 DOI: 10.1021/acs.jpclett.1c01305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Negative compressibility (NC) is a phenomenon when an object expands/shrinks in at least one of its dimensions upon compression/decompression. NC is very rare and is of great interest for a number of applications. In this work a gigantic (more than one order of magnitude higher compared to the reported values) NC effect was recorded during intrusion-extrusion of a non-wetting liquid into a flexible porous structure. For this purpose, in situ high-pressure neutron scattering, intrusion-extrusion experiments, and DFT calculations were applied to a system consisting of water and a highly hydrophobic Cu2(tebpz) metal-organic framework (MOF), which upon water penetration expands in a and c directions to demonstrate NC coefficients more than order of magnitude higher compared to the highest values ever reported. The proposed approach is not limited to the materials used in this work and can be applied to achieve coefficients of negative linear compressibility of more than 103 TPa-1.
Collapse
Affiliation(s)
- Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Juscelino B Leão
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Grethe V Jensen
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, United States
| | - Hai-Feng Zhang
- Department of Chemistry, Shantou University, Guangdong 515063, China
| | - Tong Feng
- Department of Chemistry, Shantou University, Guangdong 515063, China
| | - Dong Luo
- Department of Chemistry, Shantou University, Guangdong 515063, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Mian Li
- Department of Chemistry, Shantou University, Guangdong 515063, China
| | | | | | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yaroslav Grosu
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|
16
|
van der Lee A, Dumitrescu DG. Thermal expansion properties of organic crystals: a CSD study. Chem Sci 2021; 12:8537-8547. [PMID: 34221335 PMCID: PMC8221191 DOI: 10.1039/d1sc01076j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). The mean volumetric thermal expansion coefficient is 168.8 × 10-6 K-1 and the mean uniaxial thermal expansion coefficient is 71.4 × 10-6 K-1, based on 745 and 1129 different observations, respectively. Normal and anomalous coefficients can be identified using these values and the associated standard deviations. The anisotropy of the thermal expansion is also evaluated and found to have a very broad distribution. 4719 different structures, comprising 4093 different molecular compounds and 626 additional polymorphs have been analyzed on their thermal expansion properties. Approximately 34% of these structures may have at least one orthogonal axis with negative thermal expansion, much more than generally believed. Moreover 127 structures have been identified which could have negative volumetric thermal expansion. Experimental validation using a robust protocol with data collected at more than 2 different temperatures is required to validate these cases.
Collapse
Affiliation(s)
- Arie van der Lee
- Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, Université de Montpellier Montpellier France
| | | |
Collapse
|
17
|
Tortora M, Zajdel P, Lowe AR, Chorążewski M, Leão JB, Jensen GV, Bleuel M, Giacomello A, Casciola CM, Meloni S, Grosu Y. Giant Negative Compressibility by Liquid Intrusion into Superhydrophobic Flexible Nanoporous Frameworks. NANO LETTERS 2021; 21:2848-2853. [PMID: 33759533 PMCID: PMC10424282 DOI: 10.1021/acs.nanolett.0c04941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Materials or systems demonstrating negative linear compressibility (NLC), whose size increases (decreases) in at least one of their dimensions upon compression (decompression) are very rare. Materials demonstrating this effect in all their dimensions, negative volumetric compressibility (NVC), are exceptional. Here, by liquid porosimetry and in situ neutron diffraction, we show that one can achieve exceptional NLC and NVC values by nonwetting liquid intrusion in flexible porous media, namely in the ZIF-8 metal-organic framework (MOF). Atomistic simulations show that the volumetric expansion is due to the presence of liquid in the windows connecting the cavities of ZIF-8. This discovery paves the way for designing novel materials with exceptional NLC and NVC at reasonable pressures suitable for a wide range of applications.
Collapse
Affiliation(s)
- Marco Tortora
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Paweł Zajdel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzow, Poland
| | | | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Juscelino B Leão
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Grethe V Jensen
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Carlo Massimo Casciola
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Università degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121, Ferrara, Italy
| | - Yaroslav Grosu
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|
18
|
Vervoorts P, Keupp J, Schneemann A, Hobday CL, Daisenberger D, Fischer RA, Schmid R, Kieslich G. Configurational Entropy Driven High-Pressure Behaviour of a Flexible Metal-Organic Framework (MOF). Angew Chem Int Ed Engl 2021; 60:787-793. [PMID: 32926541 PMCID: PMC7839482 DOI: 10.1002/anie.202011004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 12/27/2022]
Abstract
Flexible metal-organic frameworks (MOFs) show large structural flexibility as a function of temperature or (gas)pressure variation, a fascinating property of high technological and scientific relevance. The targeted design of flexible MOFs demands control over the macroscopic thermodynamics as determined by microscopic chemical interactions and remains an open challenge. Herein we apply high-pressure powder X-ray diffraction and molecular dynamics simulations to gain insight into the microscopic chemical factors that determine the high-pressure macroscopic thermodynamics of two flexible pillared-layer MOFs. For the first time we identify configurational entropy that originates from side-chain modifications of the linker as the key factor determining the thermodynamics in a flexible MOF. The study shows that configurational entropy is an important yet largely overlooked parameter, providing an intriguing perspective of how to chemically access the underlying free energy landscape in MOFs.
Collapse
Affiliation(s)
- Pia Vervoorts
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Julian Keupp
- Computational Materials ChemistryRuhr University BochumUniversitätsstrasse 15044801BochumGermany
| | - Andreas Schneemann
- Inorganic Chemistry ITechnical University DresdenBergstr. 6601069DresdenGermany
| | - Claire L. Hobday
- Centre for Science at Extreme Conditions and EaStCHEM School of ChemistryThe University of EdinburghKings' Buildings West Mains RoadEdinburghEH9 3FDUK
| | - Dominik Daisenberger
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 ODEOxfordshireUK
| | - Roland A. Fischer
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Rochus Schmid
- Computational Materials ChemistryRuhr University BochumUniversitätsstrasse 15044801BochumGermany
| | - Gregor Kieslich
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| |
Collapse
|
19
|
Tiba AA, Conway MT, Hill CS, Swenson DC, MacGillivray LR, Tivanski AV. Mechanical rigidity of a shape-memory metal-organic framework increases by crystal downsizing. Chem Commun (Camb) 2021; 57:89-92. [PMID: 33305781 DOI: 10.1039/d0cc05684g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Soft porous nanocrystals with a pronounced shape-memory effect exhibit two- to three-fold increase in elastic modulus compared to the microcrystalline counterpart as determined by atomic force microscopy nanoindentation. The increase in rigidity is consistent with the known shape-memory effect displayed by the framework solid at the nanoscale. Crystal downsizing can offer new avenues for tailoring the mechanical properties of metal-organic frameworks.
Collapse
Affiliation(s)
- Al A Tiba
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | - Matthew T Conway
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | - Collin S Hill
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | - Dale C Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | | | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| |
Collapse
|
20
|
Vervoorts P, Keupp J, Schneemann A, Hobday CL, Daisenberger D, Fischer RA, Schmid R, Kieslich G. Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pia Vervoorts
- Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Julian Keupp
- Computational Materials Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Andreas Schneemann
- Inorganic Chemistry I Technical University Dresden Bergstr. 66 01069 Dresden Germany
| | - Claire L. Hobday
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry The University of Edinburgh Kings' Buildings West Mains Road Edinburgh EH9 3FD UK
| | - Dominik Daisenberger
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 ODE Oxfordshire UK
| | - Roland A. Fischer
- Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Rochus Schmid
- Computational Materials Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Gregor Kieslich
- Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
21
|
Carney J, Roundy D, Simon CM. Statistical Mechanical Model of Gas Adsorption in a Metal-Organic Framework Harboring a Rotaxane Molecular Shuttle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13112-13123. [PMID: 33095580 DOI: 10.1021/acs.langmuir.0c02839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are modular and tunable nanoporous materials with applications in gas storage, separations, and sensing. Integrating flexible/dynamic, gas-responsive components into MOFs can give them unique or enhanced adsorption properties. Here, we explore the adsorption properties that could be imparted to a MOF by a rotaxane molecular shuttle (RMS) in its pores. In the unit cell of an RMS-MOF, a macrocyclic wheel is mechanically interlocked with a strut of the MOF scaffold. The wheel shuttles between stations on the strut that are also gas adsorption sites. At a level of abstraction similar to the seminal Langmuir adsorption model, we pose and analyze a simple statistical mechanical model of gas adsorption in an RMS-MOF that accounts for (i) wheel/gas competition for sites on the strut and (ii) gas-induced changes in the configurational entropy of the shuttling wheel. We determine how the amount of gas adsorbed, the position of the wheel, and the differential energy of adsorption depend on temperature, pressure, and the interactions of the gas and wheel with the stations on the strut. Our model reveals that, compared to a rigid, Langmuir material, the chemistry of the RMS-MOF can be tuned to render gas adsorption more or less temperature sensitive and to release more or less heat upon adsorption. The model also uncovers that, if gas-wheel competition for a station is fierce, temperature influences the position of the wheel differently depending on the amount of gas adsorbed.
Collapse
Affiliation(s)
- Jonathan Carney
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States
| | - David Roundy
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cory M Simon
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
22
|
Angeli GK, Batzavali D, Mavronasou K, Tsangarakis C, Stuerzer T, Ott H, Trikalitis PN. Remarkable Structural Diversity between Zr/Hf and Rare-Earth MOFs via Ligand Functionalization and the Discovery of Unique (4, 8)-c and (4, 12)-connected Frameworks. J Am Chem Soc 2020; 142:15986-15994. [PMID: 32845629 DOI: 10.1021/jacs.0c07081] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ligand modification in MOFs provides great opportunities not only for the development of functional materials with new or enhanced properties but also for the discovery of novel structures. We report here that a sulfone-functionalized tetrahedral carboxylate-based ligand is capable of directing the formation of new and fascinating MOFs when combined with Zr4+/Hf4+ and rare-earth metal cations (RE) with improved gas-sorption properties. In particular, the resulting M-flu-SO2 (M: Zr, Hf) materials display a new type of the augmented flu-a net, which is different as compared to the flu-a framework formed by the nonfunctionalized tetrahedral ligand. In terms of properties, a remarkable increase in the CO2 uptake is observed that reaches 76.6% and 61.6% at 273 and 298 K and 1 bar, respectively. When combined with REs, the sulfone-modified linker affords novel MOFs, RE-hpt-MOF-1 (RE: Y3+, Ho3+, Er3+), which displays a fascinating (4, 12)-coordinated hpt net, based on nonanuclear [RE9(μ3-Ο)2(μ3-ΟΗ)12(-COO)12] clusters that serve as hexagonal prismatic building blocks. In the absence of the sulfone groups, we discovered that the tetrahedral linker directs the formation of new RE-MOFs, RE-ken-MOF-1 (RE: Y3+, Ho3+, Er3+, Yb3+), that display an unprecedented (4, 8)-coordinated ken net based on nonanuclear RE9-clusters, to serve as bicapped trigonal prismatic building units. Successful activation of the representative member Y-ken-MOF-1 reveals a high BET surface area and total pore volume reaching 2621 m2 g-1 and 0.95 cm3 g-1, respectively. These values are the highest among all RE MOFs based on nonanuclear clusters and some of the highest in the entire RE family of MOFs. The present work uncovers a unique structural diversity existing between Zr/Hf and RE-based MOFs that demonstrates the crucial role of linker design. In addition, the discovery of the new RE-hpt-MOF-1 and RE-ken-MOF-1 families of MOFs highlights the great opportunities existing in RE-MOFs in terms of structural diversity that could lead to novel materials with new properties.
Collapse
Affiliation(s)
- Giasemi K Angeli
- Department of Chemistry, University of Crete, Voutes, Heraklion 71003, Greece
| | - Danai Batzavali
- Department of Chemistry, University of Crete, Voutes, Heraklion 71003, Greece
| | - Katerina Mavronasou
- Department of Chemistry, University of Crete, Voutes, Heraklion 71003, Greece
| | | | - Tobias Stuerzer
- Bruker AXS GmbH, Ostliche Rheinbruckenstrasse 49, Karlsruhe D-76187, Germany
| | - Holger Ott
- Bruker AXS GmbH, Ostliche Rheinbruckenstrasse 49, Karlsruhe D-76187, Germany
| | | |
Collapse
|
23
|
Krause S, Evans JD, Bon V, Senkovska I, Ehrling S, Iacomi P, Többens DM, Wallacher D, Weiss MS, Zheng B, Yot PG, Maurin G, Llewellyn PL, Coudert FX, Kaskel S. Engineering micromechanics of soft porous crystals for negative gas adsorption. Chem Sci 2020; 11:9468-9479. [PMID: 34094213 PMCID: PMC8162094 DOI: 10.1039/d0sc03727c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022] Open
Abstract
Framework materials at the molecular level, such as metal-organic frameworks (MOF), were recently found to exhibit exotic and counterintuitive micromechanical properties. Stimulated by host-guest interactions, these so-called soft porous crystals can display counterintuitive adsorption phenomena such as negative gas adsorption (NGA). NGA materials are bistable frameworks where the occurrence of a metastable overloaded state leads to pressure amplification upon a sudden framework contraction. How can we control activation barriers and energetics via functionalization of the molecular building blocks that dictate the frameworks' mechanical response? In this work we tune the elastic and inelastic properties of building blocks at the molecular level and analyze the mechanical response of the resulting frameworks. From a set of 11 frameworks, we demonstrate that widening of the backbone increases stiffness, while elongation of the building blocks results in a decrease in critical yield stress of buckling. We further functionalize the backbone by incorporation of sp3 hybridized carbon atoms to soften the molecular building blocks, or stiffen them with sp2 and sp carbons. Computational modeling shows how these modifications of the building blocks tune the activation barriers within the energy landscape of the guest-free bistable frameworks. Only frameworks with free energy barriers in the range of 800 to 1100 kJ mol-1 per unit cell, and moderate yield stress of 0.6 to 1.2 nN for single ligand buckling, exhibit adsorption-induced contraction and negative gas adsorption. Advanced experimental in situ methodologies give detailed insights into the structural transitions and the adsorption behavior. The new framework DUT-160 shows the highest magnitude of NGA ever observed for nitrogen adsorption at 77 K. Our computational and experimental analysis of the energetics and mechanical response functions of porous frameworks is an important step towards tuning activation barriers in dynamic framework materials and provides critical design principles for molecular building blocks leading to pressure amplifying materials.
Collapse
Affiliation(s)
- Simon Krause
- Faculty of Chemistry and Food Chemistry, TU Dresden Bergstrasse 66 01069 Dresden Germany
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jack D Evans
- Faculty of Chemistry and Food Chemistry, TU Dresden Bergstrasse 66 01069 Dresden Germany
| | - Volodymyr Bon
- Faculty of Chemistry and Food Chemistry, TU Dresden Bergstrasse 66 01069 Dresden Germany
| | - Irena Senkovska
- Faculty of Chemistry and Food Chemistry, TU Dresden Bergstrasse 66 01069 Dresden Germany
| | - Sebastian Ehrling
- Faculty of Chemistry and Food Chemistry, TU Dresden Bergstrasse 66 01069 Dresden Germany
| | - Paul Iacomi
- Aix-Marseille Univ., CNRS, MADIREL (UMR 7246) 13013 Marseille France
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Daniel M Többens
- Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Manfred S Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Bin Zheng
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
- School of Materials Science and Engineering, Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Pascal G Yot
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| | - Stefan Kaskel
- Faculty of Chemistry and Food Chemistry, TU Dresden Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|
24
|
Krause S, Feringa BL. Towards artificial molecular factories from framework-embedded molecular machines. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0209-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Abstract
ConspectusLiquids under confinement differ in behavior from their bulk counterparts and can acquire properties that are specific to the confined phase and linked to the nature and structure of the host matrix. While confined liquid water is not a new topic of research, the past few years have seen a series of intriguing novel features for water inside nanoscale pores. These unusual properties arise from the very specific nature of nanoporous materials, termed "soft porous crystals"; they combine large-scale flexibility with a heterogeneous internal surface. This creates a rich diversity of behavior for the adsorbed water, and the combination of different experimental characterization techniques along with computational chemistry at various scales is necessary to understand the phenomena observed and their microscopic origins. The range of systems of interest span the whole chemical range, from the inorganic (zeolites, imogolites) to the organic (microporous carbons, graphene, and its derivatives), and even encompass the hybrid organic-inorganic systems (such as metal-organic frameworks).The combination of large scale flexibility with the strong physisorption (or even chemisorption) of water can lead to unusual properties (belonging to the "metamaterials" category) and to novel phenomena. One striking example is the recent elucidation of the mechanism of negative hydration expansion in ZrW2O8, by which adsorption of ∼10 wt % water in the inorganic nonporous framework leads to large shrinkage of its volume. Another eye-catching case is the occurrence of multiple water adsorption-driven structural transitions in the MIL-53 family of materials: the specific interactions between water guest molecules and the host framework create behavior that has not been observed with any other adsorbate. Both are counterintuitive phenomena that have been elucidated by a combination of experimental in situ techniques and molecular simulation.Another important direction of research is the shift in the systems and phenomena studied, from physical adsorption toward studies of reactivity, hydrothermal stability, and the effect of confinement on aqueous phases more complex than pure water. There have been examples of water adsorption in highly flexible metal-organic frameworks being able to compete with the materials' coordination bonds, thereby limiting its hydrothermal stability, while tweaking the functional groups of the same framework can lead to increased stability while retaining the flexibility of the material. However, this additional complexity and tunability in the macroscopic behavior can occur from changes in the confined fluid rather than the material. Very recent studies have shown that aqueous solutions of high concentration (such as LiCl up to 20 mol L-1) confined in flexible nanoporous materials can have specific properties different from pure water and not entirely explained by osmotic effects. There, the strong ordering of the confined electrolyte competes with the structural flexibility of the framework to create an entirely new behavior for the {host, guest} system.
Collapse
Affiliation(s)
- François-Xavier Coudert
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| |
Collapse
|
26
|
Li D, Han Y, Li D, Kang Q, Shen D. Computational characterization of halogen vapor attachment, diffusion and desorption processes in zeolitic imidazolate framework-8. Sci Rep 2020; 10:3010. [PMID: 32080244 PMCID: PMC7033102 DOI: 10.1038/s41598-020-59871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 11/29/2022] Open
Abstract
Computational simulation methods are used for characterizing the detailed attachment, diffusion and desorption of halogen vapor molecules in zeolitic imidazolate framework-8 (ZIF-8). The attachment energies of Cl2, Br2 and I2 are -55.2, -48.5 and -43.0 kJ mol-1, respectively. The framework of ZIF-8 is disrupted by Cl2, which bonds with Zn either on the surface or by freely diffusing into the cage. A framework deformation on the surface of ZIF-8 can be caused by the attachment of Br2, but only reorientation of the 2-methylimidazolate linkers (mIms) for I2. In diffusion, the halogen molecules have a tendency to vertically permeate the apertures of cages followed with swing effect implemented by the mIms. Larger rotation angles of mIms are caused by Br2 because of its stronger interaction with mIms than I2. A maximum of 7 Br2 or 5 I2 molecules can be accommodated in one cage. Br2 are clinging to the mIms and I2 are arranged as crystal layout in the cages, therefore in desorption processes molecules attached to the surface and free inside are desorbed while some remained. These results are beneficial for better understanding the adsorption and desorption processes of halogen vapors in the porous materials.
Collapse
Affiliation(s)
- Dejie Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Ying Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Deqiang Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
27
|
van Dijk D. Comment on “Pressure enhancement in carbon nanopores: a major confinement effect” by Y. Long, J. C. Palmer, B. Coasne, M. Śliwinska-Bartkowiak and K. E. Gubbins, Phys. Chem. Chem. Phys., 2011, 13, 17163. Phys Chem Chem Phys 2020; 22:9824-9825. [DOI: 10.1039/c9cp02890k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A standard thermodynamic interpretation unambiguously explains the observed properties of fluids confined in pores, while a “pressure enhancement” effect emerges only from calculations in which particular choices are selected from an arbitrary set.
Collapse
|
28
|
Chibani S, Coudert FX. Systematic exploration of the mechanical properties of 13 621 inorganic compounds. Chem Sci 2019; 10:8589-8599. [PMID: 31803434 PMCID: PMC6844276 DOI: 10.1039/c9sc01682a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 02/02/2023] Open
Abstract
In order to better understand the mechanical properties of crystalline materials, we performed a large-scale exploration of the elastic properties of 13 621 crystals from the Materials Project database, including both experimentally synthesized and hypothetical structures. We studied both their average (isotropic) behavior, as well as the anisotropy of the elastic properties: bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and linear compressibility. We show that general mechanical trends, which hold for isotropic (noncrystalline) materials at the macroscopic scale, also apply "on average" for crystals. Further, we highlight the importance of elastic anisotropy and the role of mechanical stability as playing key roles in the experimental feasibility of hypothetical compounds. We also quantify the frequency of occurrence of rare anomalous mechanical properties: 3% of the crystals feature negative linear compressibility, and only 0.3% have complete auxeticity.
Collapse
Affiliation(s)
- Siwar Chibani
- Chimie ParisTech , PSL University , CNRS , Institut de Recherche de Chimie Paris , 75005 Paris , France . ;
| | - François-Xavier Coudert
- Chimie ParisTech , PSL University , CNRS , Institut de Recherche de Chimie Paris , 75005 Paris , France . ;
| |
Collapse
|
29
|
Mechanical Properties of Shaped Metal–Organic Frameworks. Top Curr Chem (Cham) 2019; 377:25. [DOI: 10.1007/s41061-019-0250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
|
30
|
Mezenov YA, Krasilin AA, Dzyuba VP, Nominé A, Milichko VA. Metal-Organic Frameworks in Modern Physics: Highlights and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900506. [PMID: 31508274 PMCID: PMC6724351 DOI: 10.1002/advs.201900506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/14/2019] [Indexed: 05/17/2023]
Abstract
Owing to the synergistic combination of a hybrid organic-inorganic nature and a chemically active porous structure, metal-organic frameworks have emerged as a new class of crystalline materials. The current trend in the chemical industry is to utilize such crystals as flexible hosting elements for applications as diverse as gas and energy storage, filtration, catalysis, and sensing. From the physical point of view, metal-organic frameworks are considered molecular crystals with hierarchical structures providing the structure-related physical properties crucial for future applications of energy transfer, data processing and storage, high-energy physics, and light manipulation. Here, the perspectives of metal-organic frameworks as a new family of functional materials in modern physics are discussed: from porous metals and superconductors, topological insulators, and classical and quantum memory elements, to optical superstructures, materials for particle physics, and even molecular scale mechanical metamaterials. Based on complementary properties of crystallinity, softness, organic-inorganic nature, and complex hierarchy, a description of how such artificial materials have extended their impact on applied physics to become the mainstream in material science is offered.
Collapse
Affiliation(s)
- Yuri A. Mezenov
- Faculty of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | - Andrei A. Krasilin
- Faculty of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
- Ioffe InstituteSt. Petersburg194021Russia
| | - Vladimir P. Dzyuba
- Institute of Automation and Control Processes FEB RASVladivostok690041Russia
| | - Alexandre Nominé
- Faculty of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | - Valentin A. Milichko
- Faculty of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
- Université de LorraineInstitut Jean LamourUMR CNRS 7198NancyF‐54011France
| |
Collapse
|