1
|
Sánchez-Barba LF, Garcés A, Lara-Sánchez A, Navarro M, González-Lizana D. Main advances in the application of scorpionate-based catalytic systems for the preparation of sustainable polymers. Chem Commun (Camb) 2025; 61:1087-1103. [PMID: 39661072 DOI: 10.1039/d4cc05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2024]
Abstract
Scorpionate ligands have emerged as pivotal components in the field of coordination chemistry and catalysis since the seminal work by Trofimenko in the late 1960s. These species have demonstrated an extraordinarily rich tridentate coordination chemistry, enhancing the stability of metal complexes. In addition, they offer the possibility of modifying the chemical and electronical features as κ3-ligands, providing a wide variety of potential substrates with multiple donor atoms. Furthermore, this type of ligand has shown wide versatility in its coordination mode and can adopt different binding arrangements, expanding its potential as a universal ligand. This review provides a comprehensive overview of the main advances in exploring scorpionate complexes based on the tris(1H-pyrazol-1-yl)borate and bis(1H-pyrazol-1-yl)methane moieties, which have been recently reported as efficient catalysts for the synthesis of sustainable polymers. Specifically, this work focuses on the preparation of biorenewable polylactides (PLAs), other polyesters and polycarbonates (PCs), derived from cyclohexene carbonate, polylactide-co-polycarbonate copolymers and alternative sustainable polymeric materials. Thus, we have faced this challenge by selecting and classifying the most well-performed scorpionate catalyst system, including divalent (magnesium, calcium, zinc and iron) and other metals (rare-earth metals and zirconium), for each of the catalytic processes mentioned above. This review represents the first contribution that summarises and illustrates the current state of the art related to the use of scorpionate-based systems as efficient catalysts for the preparation of sustainable polymer materials. This account finally aims to guide future research towards the development of more eco-friendly catalytic processes in promoting sustainable polymers to achieve relevant commodities.
Collapse
Affiliation(s)
- Luis F Sánchez-Barba
- Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, Móstoles, 28933, Madrid, Spain.
| | - Andrés Garcés
- Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, Móstoles, 28933, Madrid, Spain.
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain.
| | - Marta Navarro
- Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, Móstoles, 28933, Madrid, Spain.
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain.
| | - David González-Lizana
- Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, Móstoles, 28933, Madrid, Spain.
| |
Collapse
|
2
|
Rimoldi I, Coffetti G, Gandolfi R, Facchetti G. Hybrid Metal Catalysts as Valuable Tools in Organic Synthesis: An Overview of the Recent Advances in Asymmetric C─C Bond Formation Reactions. Molecules 2024; 29:5090. [PMID: 39519731 PMCID: PMC11547358 DOI: 10.3390/molecules29215090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Carbon-carbon bond formation represents a key reaction in organic synthesis, resulting in paramount importance for constructing the carbon backbone of organic molecules. However, traditional metal-based catalysis, despite its advantages, often struggles with issues related to efficiency, selectivity, and sustainability. On the other hand, while biocatalysis offers superior selectivity due to an extraordinary recognition process of the substrate, the scope of its applicable reactions remains somewhat limited. In this context, Artificial Metalloenzymes (ArMs) and Metallo Peptides (MPs) offer a promising and not fully explored solution, merging the two fields of transition metal catalysis and biotransformations, by inserting a catalytically active metal cofactor into a customizable protein scaffold or coordinating the metal ion directly to a short and tunable amino acid (Aa) sequence, respectively. As a result, these hybrid catalysts have gained attention as valuable tools for challenging catalytic transformations, providing systems with new-to-nature properties in organic synthesis. This review offers an overview of recent advances in the development of ArMs and MPs, focusing on their application in the asymmetric carbon-carbon bond-forming reactions, such as carbene insertion, Michael additions, Friedel-Crafts and cross-coupling reactions, and cyclopropanation, underscoring the versatility of these systems in synthesizing biologically relevant compounds.
Collapse
Affiliation(s)
| | | | | | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy; (I.R.); (G.C.); (R.G.)
| |
Collapse
|
3
|
Jackson M, Thomas SD, Tizzard GJ, Coles SJ, Owen GR. Synthesis and Structural Characterization of Copper Complexes Containing "R-Substituted" Bis-7-Azaindolyl Borate Ligands. Molecules 2023; 28:4825. [PMID: 37375380 DOI: 10.3390/molecules28124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The coordination chemistry of scorpionate ligands based on borates containing the 7-azaindole heterocycle is relatively unexplored. Thus, there is a requirement to further understand their coordination chemistry. This article outlines the synthesis and characterization of a family of complexes containing anionic flexible scorpionate ligands of the type [(R)(bis-7-azaindolyl)borohydride]- ([RBai]-), where R = Me, Ph or naphthyl. The three ligands were coordinated to a series of copper(I) complexes containing a phosphine co-ligand to form the complexes, [Cu(MeBai)(PPh3)] (1), [Cu(PhBai)(PPh3)] (2), [Cu(NaphthBai)(PPh3)] (3), [Cu(MeBai)(PCy3)] (4), [Cu(PhBai)(PCy3)] (5) and [Cu(NaphthBai)(PCy3)] (6). Additional copper(II) complexes, namely, [Cu(MeBai)2] (7) and [Cu(PhBai)2] (8), were obtained during attempts to obtain single crystals from complexes 4 and 2, respectively. Complexes 7 and 8 were also prepared independently from CuCl2 and two equivalents of the corresponding Li[RBai] salt alongside an additional complex, namely, [Cu(NaphthBai)2] (9). The copper(I) and copper(II) complexes were characterized using spectroscopic and analytical methods. Furthermore, a crystal structure was obtained for eight of the nine complexes. In all cases, the boron-based ligand was found to bind to the metal centers via a κ3-N,N,H coordination mode.
Collapse
Affiliation(s)
- Miriam Jackson
- Chemical and Environmental Sciences, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 4AT, UK
| | - Simon D Thomas
- Chemical and Environmental Sciences, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 4AT, UK
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Gareth R Owen
- Chemical and Environmental Sciences, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 4AT, UK
| |
Collapse
|
4
|
Yang Y, Liu S, Li S, Liu Z, Liao P, Sivaguru P, Lu Y, Gao J, Bi X. Site-Selective C-H Allylation of Alkanes: Facile Access to Allylic Quaternary sp 3 -Carbon Centers. Angew Chem Int Ed Engl 2023; 62:e202214519. [PMID: 36428220 DOI: 10.1002/anie.202214519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The construction of allylic quaternary sp3 -carbon centers has long been a formidable challenge in transition-metal-catalyzed alkyl-allyl coupling reactions due to the severe steric hindrance. Herein, we report an effective carbene strategy that employs well-defined vinyl-N-triftosylhydrazones as a versatile allylating reagent to enable direct assembly of these medicinally desirable structural elements from low-cost alkane feedstocks. The reaction exhibited excellent site selectivity for tertiary C-H bonds, broad scope (>60 examples and >20 : 1:0 r. r.) and good efficiency, even on a gram-scale, making it a convenient alternative to the well-known Trost-Tsuji allylation reaction for the formation of alkyl-allyl bonds. Combined experimental and computational studies were employed to unravel the mechanism and origin of site- and chemoselectivity of the reaction.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | | | | | - Ying Lu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Jiaojiao Gao
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Xihe Bi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
5
|
|
6
|
Structural Characterization of Zinc and Cadmium Complexes Derived from N-(4-carboxybenzyl)pyridinium: Revisiting the Structure of (Cbp)2ZnBr2 and Influence of the Metal on Carboxylate Coordination Mode. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
|
7
|
Boni YT, Cammarota RC, Liao K, Sigman MS, Davies HML. Leveraging Regio- and Stereoselective C(sp 3)-H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias. J Am Chem Soc 2022; 144:15549-15561. [PMID: 35977100 DOI: 10.1021/jacs.2c04383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The C-H functionalization of silyl ethers via carbene-induced C-H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C(sp3)-H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C-H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C-H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C-H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.
Collapse
Affiliation(s)
- Yannick T Boni
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ryan C Cammarota
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Kuangbiao Liao
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Zhao Q, Yao QY, Zhang YJ, Xu T, Zhang J, Chen X. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Jianshe Road 453007 Xinxiang CHINA
| | - Qiu-Yue Yao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Yan-Jiao Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Ting Xu
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Jie Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Xuenian Chen
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| |
Collapse
|
9
|
Rumo C, Stein A, Klehr J, Tachibana R, Prescimone A, Häussinger D, Ward TR. An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp 3 C-H Functionalization via Intramolecular Carbene Insertion. J Am Chem Soc 2022; 144:11676-11684. [PMID: 35749305 PMCID: PMC9348757 DOI: 10.1021/jacs.2c03311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
![]()
The
selective functionalization
of sp3 C–H bonds
is a versatile tool for the diversification of organic compounds.
Combining attractive features of homogeneous and enzymatic catalysts,
artificial metalloenzymes offer an ideal means to selectively modify
these inert motifs. Herein, we report on a copper(I) heteroscorpionate
complex embedded within streptavidin that catalyzes the intramolecular
insertion of a carbene into sp3 C–H bonds. Target
residues for genetic optimization of the artificial metalloenzyme
were identified by quantum mechanics/molecular mechanics simulations.
Double-saturation mutagenesis yielded detailed insight on the contribution
of individual amino acids on the activity and the selectivity of the
artificial metalloenzyme. Mutagenesis at a third position afforded
a set of artificial metalloenzymes that catalyze the enantio- and
regioselective formation of β- and γ-lactams with high
turnovers and promising enantioselectivities.
Collapse
Affiliation(s)
- Corentin Rumo
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Alina Stein
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Juliane Klehr
- Department of Biomedizin, University of Basel, Basel CH-4031, Switzerland
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | | | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| |
Collapse
|
10
|
Rodríguez AM, Pérez-Ruíz J, Molina F, Poveda A, Pérez-Soto R, Maseras F, Díaz-Requejo MM, Pérez PJ. Introducing the Catalytic Amination of Silanes via Nitrene Insertion. J Am Chem Soc 2022; 144:10608-10614. [PMID: 35648453 PMCID: PMC9490852 DOI: 10.1021/jacs.2c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
![]()
The
direct functionalization
of Si–H bonds by the nitrene
insertion methodology is described. A copper(I) complex bearing a
trispyrazolylborate ligand catalyzes the transfer of a nitrene group
from PhI=NTs to the Si–H bond of silanes, disilanes,
and siloxanes, leading to the exclusive formation of Si–NH
moieties in the first example of this transformation. The process
tolerates other functionalities in the substrate such as several C–H
bonds and alkyne and alkene moieties directly bonded to the silicon
center. Density functional theory (DFT) calculations provide a mechanistic
interpretation consisting of a Si–H homolytic cleavage and
subsequent rebound to the Si-centered radical.
Collapse
Affiliation(s)
- Anabel M Rodríguez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Jorge Pérez-Ruíz
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Francisco Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Ana Poveda
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Raúl Pérez-Soto
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - M Mar Díaz-Requejo
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| |
Collapse
|
11
|
Vanga M, Noonikara-Poyil A, Wu J, Dias HVR. Carbonyl and Isocyanide Complexes of Copper and Silver Supported by Fluorinated Poly(pyridyl)borates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiang Wu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
12
|
Zhang X, Li L, Zanoni G, Han X, Bi X. Direct gem-Difluoroalkenylation of X-H Bonds with Trifluoromethyl Ketone N-Triftosylhydrazones for Synthesis of Tetrasubstituted Heteroatomic gem-Difluoroalkenes. Chemistry 2022; 28:e202200280. [PMID: 35191565 DOI: 10.1002/chem.202200280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The direct gem-difluoroalkenylation of X-H bonds represents the most straightforward approach to access heteroatomic gem-difluoroalkenes that, as the isostere of the carbonyl group, have great potency in drug discovery. However, the construction of tetrasubstituted heteroatomic gem-difluoroalkenes by this strategy is still an unsolved problem. Here, we report the first direct X-H bond gem-difluoroalkenylation of amines and alcohols with trifluoromethyl ketone N-triftosylhydrazones under silver (for (hetero)aryl hydrazones) or rhodium (for alkyl hydrazones), thereby providing a most powerful method for the synthesis of tetrasubstituted heteroatomic gem-difluoroalkenes. This method features a broad substrate scope, high product yield, excellent functional group tolerance, and operational simplicity (open air conditions). Moreover, the site-specific replacement of the carbonyl group with a gem-difluorovinyl ether bioisostere in drug Trimebutine and the post-modification of bioactive molecules demonstrates potential use in medicinal research. Finally, the reaction mechanism was investigated by combining experiments and DFT calculations, and disclosed that the key step of HF elimination occurred via five-membered ring transition state, and the difference in the electrophilicity of Ag- and Rh-carbenes as well as the multiple intermolecular interactions rendered the effectiveness of Rh catalyst selectively for alkyl hydrazones.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Linxuan Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xinyue Han
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Mehara J, Watson BT, Noonikara‐Poyil A, Zacharias AO, Roithová J, Rasika Dias HV. Binding Interactions in Copper, Silver and Gold π-Complexes. Chemistry 2022; 28:e202103984. [PMID: 35076112 PMCID: PMC9305286 DOI: 10.1002/chem.202103984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2021] [Indexed: 12/14/2022]
Abstract
The copper(I), silver(I), and gold(I) metals bind π-ligands by σ-bonding and π-back bonding interactions. These interactions were investigated using bidentate ancillary ligands with electron donating and withdrawing substituents. The π-ligands span from ethylene to larger terminal and internal alkenes and alkynes. Results of X-ray crystallography, NMR, and IR spectroscopy and gas phase experiments show that the binding energies increase in the order Ag
Collapse
Affiliation(s)
- Jaya Mehara
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| | - Brandon T. Watson
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| | - Anurag Noonikara‐Poyil
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| | - Adway O. Zacharias
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| | - Jana Roithová
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| | - H. V. Rasika Dias
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| |
Collapse
|
15
|
Vanga M, Muñoz-Castro A, Dias HVR. Fluorinated tris(pyridyl)borate ligand support on coinage metals. Dalton Trans 2022; 51:1308-1312. [PMID: 35015008 DOI: 10.1039/d1dt04136c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
A useful ligand involving three pyridyl donor arms and fluorocarbon substituents surrounding the coordination pocket has been assembled and utilized in coinage metal chemistry. This tris(pyridyl)borate serves as an excellent ligand support for the stabilization of ethylene complexes of copper, silver and gold.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
16
|
Cammarota RC, Liu W, Bacsa J, Davies HML, Sigman MS. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. J Am Chem Soc 2022; 144:1881-1898. [DOI: 10.1021/jacs.1c12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ryan C. Cammarota
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Wenbin Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Liu Z, Yang Y, Jiang X, Song Q, Zanoni G, Liu S, Bi X. Dearomative [4 + 3] cycloaddition of furans with vinyl- N-triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00256f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
A practical dearomative [4 + 3] cycloaddition of furans with vinylcarbenes to access oxa-bridged seven-membered carbocycles, with complete and predictable stereoselectivity, is achieved by merging silver catalysis and vinyl-N-triftosylhydrazones.
Collapse
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xinyu Jiang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Noonikara-Poyil A, Muñoz-Castro A, Dias HVR. Terminal and Internal Alkyne Complexes and Azide-Alkyne Cycloaddition Chemistry of Copper(I) Supported by a Fluorinated Bis(pyrazolyl)borate. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010016. [PMID: 35011246 PMCID: PMC8746352 DOI: 10.3390/molecules27010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/07/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/19/2022]
Abstract
Copper plays an important role in alkyne coordination chemistry and transformations. This report describes the isolation and full characterization of a thermally stable, copper(I) acetylene complex using a highly fluorinated bis(pyrazolyl)borate ligand support. Details of the related copper(I) complex of HC≡CSiMe3 are also reported. They are three-coordinate copper complexes featuring η2-bound alkynes. Raman data show significant red-shifts in C≡C stretch of [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CH) and [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CSiMe3) relative to those of the corresponding alkynes. Computational analysis using DFT indicates that the Cu(I) alkyne interaction in these molecules is primarily of the electrostatic character. The π-backbonding is the larger component of the orbital contribution to the interaction. The dinuclear complexes such as Cu2(μ-[3,5-(CF3)2Pz])2(HC≡CH)2 display similar Cu-alkyne bonding features. The mononuclear [H2B(3,5-(CF3)2Pz)2]Cu(NCMe) complex catalyzes [3 + 2] cycloadditions between tolyl azide and a variety of alkynes including acetylene. It is comparatively less effective than the related trinuclear copper catalyst {μ-[3,5-(CF3)2Pz]Cu}3 involving bridging pyrazolates.
Collapse
Affiliation(s)
- Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago 8910060, Chile
- Correspondence: (A.M.-C.); (H.V.R.D.)
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA;
- Correspondence: (A.M.-C.); (H.V.R.D.)
| |
Collapse
|
19
|
Albalad J, Peralta RA, Huxley MT, Tsoukatos S, Shi Z, Zhang YB, Evans JD, Sumby CJ, Doonan CJ. Coordination modulated on-off switching of flexibility in a metal-organic framework. Chem Sci 2021; 12:14893-14900. [PMID: 34820105 PMCID: PMC8597854 DOI: 10.1039/d1sc04712d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023] Open
Abstract
Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to 'unlock' the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.
Collapse
Affiliation(s)
- Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Steven Tsoukatos
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Jack D Evans
- Department of Inorganic Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| |
Collapse
|
20
|
Mononuclear Copper(I) 3-(2-pyridyl)pyrazole Complexes: The Crucial Role of Phosphine on Photoluminescence. Molecules 2021; 26:molecules26226869. [PMID: 34833961 PMCID: PMC8620892 DOI: 10.3390/molecules26226869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
A series of emissive Cu(I) cationic complexes with 3-(2-pyridyl)-5-phenyl-pyrazole and various phosphines: dppbz (1), Xantphos (2), DPEPhos (3), PPh3 (4), and BINAP (5) were designed and characterized. Complexes obtained exhibit bright yellow-green emission (ca. 520–650 nm) in the solid state with a wide range of QYs (1–78%) and lifetimes (19–119 µs) at 298 K. The photoluminescence efficiency dramatically depends on the phosphine ligand type. The theoretical calculations of buried volumes and excited states explained the emission behavior for 1–5 as well as their lifetimes. The bulky and rigid phosphines promote emission efficiency through the stabilization of singlet and triplet excited states.
Collapse
|
21
|
Elkoush T, Reich ND, Campbell MG. Dinuclear Silver Complexes in Catalysis. Angew Chem Int Ed Engl 2021; 60:22614-22622. [PMID: 34143934 DOI: 10.1002/anie.202106937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2021] [Indexed: 01/08/2023]
Abstract
Over the past two decades, there has been a substantial increase in the number of synthetically useful transformations catalyzed by silver. Across the range of silver-catalyzed reactions that have been reported, dinuclear species often emerge as a common feature, either as the (pre-)catalysts themselves or as intermediates during catalysis. This Minireview explores the role of dinuclear silver complexes in homogeneous catalysis, which we hope will aid in the development of improved design principles for silver catalysts.
Collapse
Affiliation(s)
- Tasneem Elkoush
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| | - Natasha D Reich
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| | - Michael G Campbell
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
22
|
Blanco CO, Llovera L, Herrera A, Dorta R, Agrifoglio G, Venuti D, Landaeta VR, Pastrán J. Ruthenium (II) complexes with C- and C-symmetric bis-(+)-camphopyrazole ligands and their evaluation in catalytic transfer hydrogenation of aldehydes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
23
|
Peralta RA, Huxley MT, Albalad J, Sumby CJ, Doonan CJ. Single-Crystal-to-Single-Crystal Transformations of Metal-Organic-Framework-Supported, Site-Isolated Trigonal-Planar Cu(I) Complexes with Labile Ligands. Inorg Chem 2021; 60:11775-11783. [PMID: 34160208 DOI: 10.1021/acs.inorgchem.1c00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.
Collapse
Affiliation(s)
- Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
24
|
Affiliation(s)
- Tasneem Elkoush
- Department of Chemistry Barnard College 3009 Broadway New York NY 10027 USA
| | - Natasha D. Reich
- Department of Chemistry Barnard College 3009 Broadway New York NY 10027 USA
| | | |
Collapse
|
25
|
Xue LW, Han YJ, Luo XQ. Six-coordinated oxidovanadium(V) complexes derived from hydrazone and pyrone ligands: synthesis, spectroscopy, and catalytic property. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1723629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ling-Wei Xue
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan Henan, P.R. China
| | - Yong-Jun Han
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan Henan, P.R. China
| | - Xiao-Qiang Luo
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan Henan, P.R. China
| |
Collapse
|
26
|
Rodríguez MR, Besora M, Molina F, Maseras F, Díaz-Requejo MM, Pérez PJ. Intermolecular Allene Functionalization by Silver-Nitrene Catalysis. J Am Chem Soc 2020; 142:13062-13071. [DOI: 10.1021/jacs.0c04395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel R. Rodríguez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Quı́mica, Universidad de Huelva, 21007 Huelva, Spain
| | - María Besora
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Francisco Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Quı́mica, Universidad de Huelva, 21007 Huelva, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans, 16, 43007 Tarragona, Spain
| | - M. Mar Díaz-Requejo
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Quı́mica, Universidad de Huelva, 21007 Huelva, Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Quı́mica, Universidad de Huelva, 21007 Huelva, Spain
| |
Collapse
|
27
|
Wang D, Jahan F, Meise KJ, Lindeman SV, Gardinier JR. Silver(I) and Copper(I) Complexes of Semi‐Bulky Nitrogen‐Confused
C
‐Scorpionates. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Affiliation(s)
- Denan Wang
- Department of Chemistry Marquette University 1414 W. Clybourne St 53233 Milwaukee WI USA
| | - Fathiya Jahan
- Department of Chemistry Marquette University 1414 W. Clybourne St 53233 Milwaukee WI USA
| | - Kristen J. Meise
- Department of Chemistry Marquette University 1414 W. Clybourne St 53233 Milwaukee WI USA
| | - Sergey V. Lindeman
- Department of Chemistry Marquette University 1414 W. Clybourne St 53233 Milwaukee WI USA
| | - James R. Gardinier
- Department of Chemistry Marquette University 1414 W. Clybourne St 53233 Milwaukee WI USA
| |
Collapse
|
28
|
Rodríguez AM, Rodríguez MR, Díaz‐Requejo MM, Pérez PJ. Pyrrole Functionalization by Copper‐Catalyzed Nitrene Transfer Reactions. Isr J Chem 2020. [DOI: 10.1002/ijch.201900181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anabel M. Rodríguez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| | - Manuel R. Rodríguez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| | - M. Mar Díaz‐Requejo
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| |
Collapse
|
29
|
Clicking Azides and Alkynes with Poly(pyrazolyl)borate-Copper(I) Catalysts: An Experimental and Computational Study. Catalysts 2019. [DOI: 10.3390/catal9080687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
The synthesis of 1,4-disubstituted-1,2,3-triazoles under a copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) regime was accomplished in high yields and a regioselective manner by using two homoscorpionate poly(pyrazolyl)borate anions: tris(pyrazolyl)hydroborate (HB(pz)3−) and bis(pyrazolyl)hydroborate (H2B(pz)2−), which stabilized in situ the catalytically active copper (I) center. The [3+2] cycloaddition (32CA) reactions took place under strict click conditions, including room temperature and a mixture of environmentally benign solvents such as water/ethanol in a 1:1 (v/v) ratio. These click chemistry conditions were applied to form complex 1,2,3-triazoles-containing sugar moieties, which are potentially relevant from a biological point of view. Computational modeling carried out by DFT methodologies at the B3LYP/6-31G(d) level showed that the coordination of poly(pyrazolyl)borate-copper(I) to alkyne groups produced relevant changes in terms of generating a high polar copper(I)-acetylide intermediates. The analysis of the global and local reactivity indices explains correctly the role of poly(pyrazolyl)borate ligands in the stabilization and activation of the copper(I) catalyst in the studied 32CA reactions.
Collapse
|
30
|
Muñoz-Molina JM, Belderrain TR, Pérez PJ. Group 11 tris(pyrazolyl)methane complexes: structural features and catalytic applications. Dalton Trans 2019; 48:10772-10781. [DOI: 10.1039/c9dt01661a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Tris(pyrazolyl)methane ligands (Tpmx) have been for years a step behind their highly popular boron-anionic analogues, the tris(pyrazolyl)borate ligands (Tpx).
Collapse
Affiliation(s)
- José María Muñoz-Molina
- Laboratorio de Catálisis Homogénea
- Unidad Asociada al CSIC
- CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química
- Universidad de Huelva
- 21007 Huelva
| | - Tomás R. Belderrain
- Laboratorio de Catálisis Homogénea
- Unidad Asociada al CSIC
- CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química
- Universidad de Huelva
- 21007 Huelva
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea
- Unidad Asociada al CSIC
- CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química
- Universidad de Huelva
- 21007 Huelva
| |
Collapse
|
31
|
Weekes RJ, Hawes CS. Synthesis, coordination chemistry and photophysical properties of naphtho-fused pyrazole ligands. CrystEngComm 2019. [DOI: 10.1039/c9ce01074b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
The synthesis of two π-extended pyrazole ligands is reported, and their zinc(ii) and copper(ii) complexes are studied spectroscopically and crystallographically, revealing the influence of the fused naphthyl substituent.
Collapse
Affiliation(s)
- Rohan J. Weekes
- School of Chemical and Physical Sciences
- Keele University
- Keele ST5 5BG
- UK
| | - Chris S. Hawes
- School of Chemical and Physical Sciences
- Keele University
- Keele ST5 5BG
- UK
| |
Collapse
|