1
|
Zheng H, Li X, Liu X, Xu X. Controlling the Depth of Hybridization Chain Reaction by Extended Dangling Ends and Its Analytical Applications. Anal Chem 2024; 96:17054-17058. [PMID: 39404142 DOI: 10.1021/acs.analchem.4c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Hybridization chain reaction (HCR) is a powerful enzyme-free nucleic acid amplification strategy. Triggered by an initiator strand, it yields nicked double helices analogous to alternating copolymers. However, there is no effective way to regulate the HCR reaction, and the most apparent phenomenon is the uncontrollable polymerization of product after introducing an initiator. Here we explore controlling the depth of the HCR reaction by extended dangling ends on hairpin monomers and report that sequence length, nucleotide composition, and secondary structure can alter HCR polymerization and can be utilized for the desired regulation. Interaction dynamics between initiator and hairpin monomers simulated by oxDNA are in good accordance with experimental results. Such a controlling effect can be utilized for new analytical applications that HCR cannot previously achieve, such as analyzing strand-extension enzymes and identifying short-sequence structures. The finding provides a concise but effective way for controlling the depth of HCR reaction and opens the application scope of HCR to more fields.
Collapse
Affiliation(s)
- Hongzheng Zheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuesi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiuqian Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Funai T, Tanaka N, Sugimachi R, Wada SI, Urata H. Zn 2+ ions improve the fidelity of metal-mediated primer extension while suppressing intrinsic and Mn 2+-induced mutagenic effects by DNA polymerases. Org Biomol Chem 2024. [PMID: 39446115 DOI: 10.1039/d4ob01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
While Mn2+ ions are well-established for reducing the fidelity of DNA polymerases, leading to the misincorporation of nucleotides, our investigation of the effects of metal ions revealed a contrasting role of Zn2+. Here, we demonstrate that Zn2+ ions enhance the fidelity of DNA polymerases (the 3' → 5' exonuclease-deficient Klenow fragment and Taq DNA polymerase) by suppressing misincorporation during primer extension reactions. Remarkably, Zn2+ ions inhibit both intrinsic misincorporation and Mn2+-induced misincorporation of nucleotides. Furthermore, Zn2+ ions also effectively suppressed misincorporation during metal-mediated primer extension reactions, which involved forming Ag+ and Hg2+ ion-mediated base pairs. These findings suggest that Zn2+ ions inhibit both intrinsic and Mn2+-induced mismatched base pair formation. Consequently, the combined use of Mn2+ and Zn2+ ions may offer a strategy for precisely regulating the fidelity of DNA polymerases. Remarkably, Zn2+ ions even suppress misincorporation in primer extension reactions that rely on metal-mediated base pairs, and conversely, this suggests that DNA polymerases recognize metal-mediated base pairs such as T-Hg2+-T, C-Ag+-A, and C-Ag+-T as relatively stable base pairs. These results imply that Zn2+ ions may also enhance the fidelity of DNA polymerases when incorporating non-canonical nucleobases, potentially paving the way for the expansion of the genetic alphabet.
Collapse
Affiliation(s)
- Tatsuya Funai
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Natsumi Tanaka
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Riyo Sugimachi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hidehito Urata
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
3
|
Liu L, Dong X, Qin W, Chen Y, Wang C. Uridine triphosphate hybrid catalyst for carbon‑carbon bond formation reactions with enhanced enantioselectivity by mercury(II) ions. J Inorg Biochem 2024; 262:112748. [PMID: 39361982 DOI: 10.1016/j.jinorgbio.2024.112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
DNA hybrid catalysts are constructed by embedding active metal species into the chiral scaffolds of DNA, which have been successfully applied to some important aqueous-phase enantioselective transformations. Owing to simple components and inherent chirality, nucleotide hybrid catalysts are emerging in response to soving the unclear locations of catalytic centers and the plausible catalytic mechanisms in DNA-based asymmetric catalysis. However, the tertiary structure of nucleotides lacks tunability, severely impeding further design of nucleotide hybrid catalysts for potential applications. To this end, a design strategy for tunable nucleotide hybrid catalysts is put forward by introducing metal-mediated base pairs. Herein, we found that the formation of uracil‑mercury(II)-uracil (U-Hg2+-U) base pairs could enhance the enantioselectivity in uracil-containing nucleotide-based asymmetric reactions. Compared with uracil triphosphate (UTP) complexing with Cu2+ ions (UTP∙Cu2+), the presence of Hg2+ ions gave rise to an increased enantiomeric excess (ee) of 38 % in Diels-Alder reactions and 22 % ee in Michael reactions. The Hg2+-tuning behaviors of UTP hybrid catalyst have been demonstrated to largely depend on nucleotides, Hg2+ concentrations, metal cofactors, additives and reaction types. Based on ultraviolet-visible, circular dichroism and nuclear magnetic resonance spectroscopic techniques, the chiral enhancement of Hg2+-containing UTP hybrid catalyst is proved to largely depend on the formation of U-Hg2+-U base pairs and the plausible cross-linked structure of UTP-Hg2+-UTP/Cu2+ assembly. This work provides a tunable strategy based on the concept of metal-mediated base pairs, allowing further design of potent oligonucleotide-based catalysts for other enantioselective reactions.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingchen Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Weijun Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Javornik U, Pérez-Romero A, López-Chamorro C, Smith RM, Dobado JA, Palacios O, Bera MK, Nyman M, Plavec J, Galindo MA. Unveiling the solution structure of a DNA duplex with continuous silver-modified Watson-Crick base pairs. Nat Commun 2024; 15:7763. [PMID: 39237564 PMCID: PMC11377744 DOI: 10.1038/s41467-024-51876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
The challenge of transforming organized DNA structures into their metallized counterparts persists in the scientific field. In this context, utilizing DNA molecules modified with 7-deazapurine, provides a transformative solution. In this study, we present the solution structure of a DNA duplex that can be transformed into its metallized equivalent while retaining the natural base pairing arrangement through the creation of silver-modified Watson-Crick base pairs. Unlike previously documented X-ray structures, our research demonstrates the feasibility of preserving the intrinsic DNA self-assembly while incorporating AgI into the double helix, illustrating that the binding of silver does not disrupt the canonical base-pairing organization. Moreover, in our case, the uninterrupted AgI chain deviates from forming conventional straight linear chains; instead, it adheres to a helical arrangement dictated by the underlying DNA structure. This research challenges conventional assumptions and opens the door to precisely design structures based on the organization of highly stable Ag-DNA assemblies.
Collapse
Affiliation(s)
- Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Antonio Pérez-Romero
- Departamento de Química Inorgánica, Universidad de Granada, 18001, Granada, Spain
| | | | - Rachelle M Smith
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - José A Dobado
- Departamento de Química Orgánica, Universidad de Granada, 18001, Granada, Spain
| | - Oscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA.
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| | - Miguel A Galindo
- Departamento de Química Inorgánica, Universidad de Granada, 18001, Granada, Spain.
| |
Collapse
|
5
|
Gonzàlez-Rosell A, Copp SM. An Atom-Precise Understanding of DNA-Stabilized Silver Nanoclusters. Acc Chem Res 2024; 57:2117-2129. [PMID: 38995323 PMCID: PMC11308368 DOI: 10.1021/acs.accounts.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
ConspectusDNA-stabilized silver nanoclusters (AgN-DNAs) are sequence-encoded fluorophores. Like other noble metal nanoclusters, the optical properties of AgN-DNAs are dictated by their atomically precise sizes and shapes. What makes AgN-DNAs unique is that nanocluster size and shape are controlled by nucleobase sequence of the templating DNA oligomer. By choice of DNA sequence, it is possible to synthesize a wide range of AgN-DNAs with diverse emission colors and other intriguing photophysical properties. AgN-DNAs hold significant potential as "programmable" emitters for biological imaging due to their combination of small molecular-like sizes, bright and sequence-tuned fluorescence, low toxicities, and cost-effective synthesis. In particular, the potential to extend AgN-DNAs into the second near-infrared region (NIR-II) is promising for deep tissue imaging, which is a major area of interest for advancing biomedical imaging. Achieving this goal requires a deep understanding of the structure-property relationships that govern AgN-DNAs in order to design AgN-DNA emitters with sizes and geometries that support NIR-II emission.In recent years, major advances have been made in understanding the structure and composition of AgN-DNAs, enabling new insights into the correlation of nanocluster structure and photophysical properties. These advances have hinged on combined innovations in mass characterization and crystallography of compositionally pure AgN-DNAs, together with combinatorial experiments and machine learning-guided design. A combined approach is essential due to the major challenge of growing suitable AgN-DNA crystals for diffraction and to the labor-intensive nature of preparing and solving the molecular formulas of atomically precise AgN-DNAs by mass spectrometry. These approaches alone are not feasibly scaled to explore the large sequence space of DNA oligomer templates for AgN-DNAs.This account describes recent fundamental advances in AgN-DNA science that have been enabled by high throughput synthesis and fluorimetry together with detailed analytical studies of purified AgN-DNAs. First, short introductions to nanocluster chemistry and AgN-DNA basics are presented. Then, we review recent large-scale studies that have screened thousands of DNA templates for AgN-DNAs, leading to discovery of distinct classes of these emitters with unique cluster core compositions and ligand chemistries. In particular, the discovery of a new class of chloride-stabilized AgN-DNAs enabled the first ab initio calculations of AgN-DNA electronic structure and present new approaches to stabilize these emitters in biologically relevant conditions. Near-infrared (NIR) emissive AgN-DNAs are also found to exhibit diverse structures and properties. Finally, we conclude by highlighting recent proof-of-principle demonstrations of NIR AgN-DNAs for targeted fluorescence imaging. Continued efforts may future push AgN-DNAs into the tissue transparency window for fluorescence imaging in the NIR-II tissue transparency window.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Bethur E, Guha R, Zhao Z, Katz BB, Ashby PD, Zeng H, Copp SM. Formation and Nanomechanical Properties of Silver-Mediated Guanine DNA Duplexes in Aqueous Solution. ACS NANO 2024; 18:3002-3010. [PMID: 38227309 PMCID: PMC10832345 DOI: 10.1021/acsnano.3c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Silver cations can mediate base pairing of guanine (G) DNA oligomers, yielding linear parallel G-Ag+-G duplexes with enhanced stabilities compared to those of canonical DNA duplexes. To enable their use in programmable DNA nanotechnologies, it is critical to understand solution-state formation and the nanomechanical stiffness of G-Ag+-G duplexes. Using temperature-controlled circular dichroism (CD) spectroscopy, we find that heating mixtures of G oligomers and silver salt above 50 °C fully destabilizes G-quadruplex structures and converts oligomers to G-Ag+-G duplexes. Electrospray ionization mass spectrometry supports that G-Ag+-G duplexes form at stoichiometries of 1 Ag+ per base pair, and CD spectroscopy suggests that as the Ag+/base stoichiometry increases further, G-Ag+-G duplexes undergo additional morphological changes. Using liquid-phase atomic force microscopy, we find that this excess Ag+ enables assembly of long fiberlike structures with ∼2.5 nm heights equivalent to a single DNA duplex but with lengths that far exceed a single duplex. Finally, using the conditions established to form single G-Ag+-G duplexes, we use a surface forces apparatus (SFA) to compare the solution-phase stiffness of single G-Ag+-G duplexes with dG-dC Watson-Crick-Franklin duplexes. SFA shows that G-Ag+-G duplexes are 1.3 times stiffer than dG-dC duplexes, confirming gas-phase ion mobility spectrometry measurements and computational predictions. These findings may guide the development of structural DNA nanotechnologies that rely on silver-mediated base pairing.
Collapse
Affiliation(s)
- Eshana Bethur
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Rweetuparna Guha
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Ziqian Zhao
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Benjamin B. Katz
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Paul D. Ashby
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hongbo Zeng
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Takezawa Y, Hu L, Nakama T, Shionoya M. Metal-dependent activity control of a compact-sized 8-17 DNAzyme based on metal-mediated unnatural base pairing. Chem Commun (Camb) 2024; 60:288-291. [PMID: 38063055 DOI: 10.1039/d3cc05520e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A compact 8-17 DNAzyme was modified with a CuII-meditated artificial base pair to develop a metal-responsive allosteric DNAzyme. The base sequence was rationally designed based on the reported three-dimensional structure. The activity of the modified DNAzyme was enhanced 5.1-fold by the addition of one equivalent of CuII ions, showing good metal responsiveness. Since it has been challenging to modify compactly folded DNAzymes without losing their activity, this study demonstrates the utility of the metal-mediated artificial base pairing to create stimuli-responsive functional DNAs.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Kowalski K. Synthesis and chemical transformations of glycol nucleic acid (GNA) nucleosides. Bioorg Chem 2023; 141:106921. [PMID: 37871392 DOI: 10.1016/j.bioorg.2023.106921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Xeno nucleic acids (XNA) are an increasingly important class of hypermodified nucleic acids with great potential in bioorganic chemistry and synthetic biology. Glycol nucleic acid (GNA) is constructed from a three-carbon 1,2-propanediol (propylene glycol) backbone attached to a nucleobase entity, representing the simplest known XNA. This review is intended to present GNA nucleosides from a synthetic chemistry perspective-a perspective that serves as a starting point for biological studies. Therefore this account focuses on synthetic methods for GNA nucleoside synthesis, as well as their postsynthetic chemical transformations. The properties and biological activity of GNA constituents are also highlighted. A literature survey shows four major approaches toward GNA nucleoside scaffold synthesis. These approaches pertain to glycidol ring-opening, Mitsunobu, SN2, and dihydroxylation reactions. The general arsenal of reactions used in GNA chemistry is versatile and encompasses the Sonogashira reaction, Michael addition, silyl-Hilbert-Johnson reaction, halogenation, alkylation, cyclization, Rh-catalyzed N-allylation, Sharpless catalytic dihydroxylation, and Yb(OTf)3-catalyzed etherification. Additionally, various phosphorylation reactions have enabled the synthesis of diverse types of GNA nucleotides, dinucleoside phosphates, phosphordiamidites, and oligos. Furthermore, recent advances in GNA chemistry have resulted in the synthesis of previously unknown redox-active (ferrocenyl) and luminescent (pyrenyl and phenanthrenyl) GNA nucleosides, which are also covered in this review.
Collapse
Affiliation(s)
- Konrad Kowalski
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, PL-91403 Lodz, Poland.
| |
Collapse
|
9
|
Rodriguez A, Gandavadi D, Mathivanan J, Song T, Madhanagopal BR, Talbot H, Sheng J, Wang X, Chandrasekaran AR. Self-Assembly of DNA Nanostructures in Different Cations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300040. [PMID: 37264756 PMCID: PMC10538431 DOI: 10.1002/smll.202300040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Indexed: 06/03/2023]
Abstract
The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions that restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions are used so far (typically Mg2+ and Na+ ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (~134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca2+ , Ba2+ , Na+ , K+ and Li+ and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na+ , K+ and Li+ ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg2+ , Ca2+ and Ba2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.
Collapse
Affiliation(s)
- Arlin Rodriguez
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Dhanush Gandavadi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Johnsi Mathivanan
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Tingjie Song
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
10
|
Guha R, Rafik M, Gonzàlez-Rosell A, Copp SM. Heat, pH, and salt: synthesis strategies to favor formation of near-infrared emissive DNA-stabilized silver nanoclusters. Chem Commun (Camb) 2023; 59:10488-10491. [PMID: 37551832 DOI: 10.1039/d3cc02896h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We present chemical synthesis strategies for DNA-stabilized silver nanoclusters (AgN-DNAs) with near-infrared (NIR) emission in the biological tissue transparency windows. Elevated temperatures can significantly increase chemical yield of near-infrared nanoclusters. In most cases, basic pH favors near-infrared nanoclusters while micromolar amounts of NaCl inhibit their formation.
Collapse
Affiliation(s)
- Rweetuparna Guha
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Malak Rafik
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Takezawa Y, Mori K, Huang WE, Nishiyama K, Xing T, Nakama T, Shionoya M. Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases. Nat Commun 2023; 14:4759. [PMID: 37620299 PMCID: PMC10449808 DOI: 10.1038/s41467-023-40353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Rational design of self-assembled DNA nanostructures has become one of the fastest-growing research areas in molecular science. Particular attention is focused on the development of dynamic DNA nanodevices whose configuration and function are regulated by specific chemical inputs. Herein, we demonstrate the concept of metal-mediated base-pair switching to induce inter- and intramolecular DNA strand displacement in a metal-responsive manner. The 5-hydroxyuracil (UOH) nucleobase is employed as a metal-responsive unit, forming both a hydrogen-bonded UOH-A base pair and a metal-mediated UOH-GdIII-UOH base pair. Metal-mediated strand displacement reactions are demonstrated under isothermal conditions based on the base-pair switching between UOH-A and UOH-GdIII-UOH. Furthermore, metal-responsive DNA tweezers and allosteric DNAzymes are developed as typical models for DNA nanodevices simply by incorporating UOH bases into the sequence. The metal-mediated base-pair switching will become a versatile strategy for constructing stimuli-responsive DNA nanostructures, expanding the scope of dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wei-En Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tong Xing
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Zhang J, Wang K, Li K, Zhang L, Dong X, Bian L. An efficient fluorescence reversible regulation strategy with single labelled oligonucleotide HEX-OND successively triggered by Hg(II) and Cysteine: The application and mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122817. [PMID: 37210852 DOI: 10.1016/j.saa.2023.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
An efficient fluorescence reversible regulation system with HEX-OND was developed. Then the application potential was explored in probing Hg(II) & Cysteine (Cys) in real samples and the thermodynamic mechanism was further investigated by precise theory analysis combining multiple spectroscopic methods. The results showed that only mere disturbances were observed among 15 and 11 kinds of other substances for the optimal system in detecting Hg(II) & Cys, respectively; The linear ranges of quantification were identified as 1.0 ∼ 14.0 and 2.0 ∼ 20.0 (×10-8 mol/L) with LODs of 8.75 and 14.09 (×10-9 mol/L) for Hg(II) and Cys, respectively; no significant deviations were found in the quantification results of Hg(II) in three traditional Chinese herbs and Cys in two samples between the well-understood methods with ours respectively, showing excellent selectivity, sensitivity, and tremendous application feasibility. The detailed mechanism was further verified as that the introduced Hg(II) forced HEX-OND to transform into the Hairpin structure with the apparent equilibrium association constant of 6.02 ± 0.62 × 1010 L/mol in the bimolecular ratio, leading to the equimolar quencher, consecutive two guanine bases ((G)2), approaching and spontaneously static-quenching the reporter HEX (hexachlorofluorescein) (equilibrium constant, 8.75 ± 1.97 × 107 L/mol) in the Photo-induced Electron Transfer (PET) way that was driven by the Electrostatic Interaction. The additional Cys destructed the equimolar Hairpin structure with the apparent equilibrium constant of 8.87 ± 2.47 × 105 L/mol through breaking one of the formed T-Hg(II)-T mismatches by association with the involved Hg(II), occasioning (G)2 apart from HEX and consequently the fluorescence recovery.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kewei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ling Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xiaoting Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
13
|
Rodriguez A, Gandavadi D, Mathivanan J, Song T, Madhanagopal BR, Talbot H, Sheng J, Wang X, Chandrasekaran AR. Self-assembly of DNA nanostructures in different cations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539416. [PMID: 37205441 PMCID: PMC10187274 DOI: 10.1101/2023.05.04.539416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions which restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions have been used so far (typically Mg 2+ and Na + ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (∼134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca 2+ , Ba 2+ , Na + , K + and Li + and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na + , K + and Li + ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg 2+ , Ca 2+ and Ba 2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.
Collapse
Affiliation(s)
- Arlin Rodriguez
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Dhanush Gandavadi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Johnsi Mathivanan
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Tingjie Song
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
14
|
De Castro F, Stefàno E, De Luca E, Benedetti M, Fanizzi FP. Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics 2023; 15:941. [PMID: 36986802 PMCID: PMC10058173 DOI: 10.3390/pharmaceutics15030941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Nucleoside analogues (NAs) are a family of compounds which include a variety of purine and pyrimidine derivatives, widely used as anticancer and antiviral agents. For their ability to compete with physiological nucleosides, NAs act as antimetabolites exerting their activity by interfering with the synthesis of nucleic acids. Much progress in the comprehension of their molecular mechanisms has been made, including providing new strategies for potentiating anticancer/antiviral activity. Among these strategies, new platinum-NAs showing a good potential to improve the therapeutic indices of NAs have been synthesized and studied. This short review aims to describe the properties and future perspectives of platinum-NAs, proposing these complexes as a new class of antimetabolites.
Collapse
Affiliation(s)
| | | | | | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | | |
Collapse
|
15
|
Skiba J, Kowalczyk A, Gorski A, Dutkiewicz N, Gapińska M, Stróżek J, Woźniak K, Trzybiński D, Kowalski K. Replacement of the phosphodiester backbone between canonical nucleosides with a dirhenium carbonyl "click" linker-a new class of luminescent organometallic dinucleoside phosphate mimics. Dalton Trans 2023; 52:1551-1567. [PMID: 36655722 DOI: 10.1039/d2dt03995h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first-in-class luminescent dinucleoside phosphate analogs with a [Re2(μ-Cl)2(CO)6(μ-pyridazine)] "click" linker as a replacement for the natural phosphate group are reported together with the synthesis of luminescent adenosine and thymidine derivatives having the [Re2(μ-Cl)2(CO)6(μ-pyridazine)] entity attached to positions 5' and 3', respectively. These compounds were synthesized by applying inverse-electron-demand Diels-Alder and copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition reactions in three or four steps. The obtained compounds exhibited orange emission (λPL ≈ 600 nm, ΦPL ≈ 0.10, and τ = 0.33-0.61 μs) and no toxicity (except for one nucleoside) to human HeLa cervical epithelioid and Ishikawa endometrial adenocarcinoma cancer cells in vitro. Furthermore, the compounds' ability to inhibit the growth of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacterial strains was moderate and only observed at a high concentration of 100 μM. Confocal microscopy imaging revealed that the "dirhenium carbonyl" dinucleosides and nucleosides localized mainly in the membranous structures of HeLa cells and uniformly inside S. aureus and E. coli bacterial cells. An interesting finding was that some of the tested compounds were also found in the nuclei of HeLa cells.
Collapse
Affiliation(s)
- Joanna Skiba
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Aleksander Gorski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Natalia Dutkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Magdalena Gapińska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Józef Stróżek
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Krzysztof Woźniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Damian Trzybiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Konrad Kowalski
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
16
|
Mori K, Takezawa Y, Shionoya M. Metal-dependent base pairing of bifacial iminodiacetic acid-modified uracil bases for switching DNA hybridization partner. Chem Sci 2023; 14:1082-1088. [PMID: 36756334 PMCID: PMC9891364 DOI: 10.1039/d2sc06534g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
Dynamic control of DNA assembly by external stimuli has received increasing attention in recent years. Dynamic ligand exchange in metal complexes can be a central element in the structural and functional transformation of DNA assemblies. In this study, N,N-dicarboxymethyl-5-aminouracil (dcaU) nucleoside with an iminodiacetic acid (IDA) ligand at the 5-position of the uracil base has been developed as a bifacial nucleoside that can form both hydrogen-bonded and metal-mediated base pairs. Metal complexation study of dcaU nucleosides revealed their ability to form a 2:1 complex with a GdIII ion at the monomeric level. The characteristics of base pairing of dcaU nucleosides were then examined inside DNA duplexes. The results revealed that the formation of the metal-mediated dcaU-GdIII-dcaU pair significantly stabilized the DNA duplex containing one dcaU-dcaU mismatch (ΔT m = +16.1 °C). In contrast, a duplex containing a hydrogen-bonded dcaU-A pair was destabilized in the presence of GdIII (ΔT m = -3.5 °C). The GdIII-dependent base pairing of dcaU bases was applied to control the hybridization preference of DNA in response to metal ions. The hybridization partner of a dcaU-containing strand was reversibly exchanged by the addition and removal of GdIII ions. Since the incorporation of a single dcaU base can switch the hybridization behavior of DNA, the bifacial dcaU base would be a versatile building block for imparting metal responsiveness to DNA assemblies, allowing the rational design of dynamic DNA systems.
Collapse
Affiliation(s)
- Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
17
|
David F, Setzler C, Sorescu A, Lieberman RL, Meilleur F, Petty JT. Mapping H + in the Nanoscale (A 2C 4) 2-Ag 8 Fluorophore. J Phys Chem Lett 2022; 13:11317-11322. [PMID: 36453924 DOI: 10.1021/acs.jpclett.2c03161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
When strands of DNA encapsulate silver clusters, supramolecular optical chromophores develop. However, how a particular structure endows a specific spectrum remains poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-emitting fluorophore with a "Big Dipper" arrangement of silvers. The DNA host has two substructures with distinct protonation patterns. Three cytosines from each strand collectively chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8 suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of these nanoscale chromophores.
Collapse
Affiliation(s)
- Fred David
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caleb Setzler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Alexandra Sorescu
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, North Carolina 27695, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
18
|
Hao J, Cao D, Zhao Q, Zhang D, Wang H. Intramolecular Folding of PolyT Oligonucleotides Induced by Cooperative Binding of Silver(I) Ions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227842. [PMID: 36431941 PMCID: PMC9694225 DOI: 10.3390/molecules27227842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Ag+-bridged T-Ag+-T was recently discovered in a Ag+-DNA nanowire crystal, but it was reported that Ag+ had little to no affinity to T nucleobases and T-rich oligonucleotides in solution. Therefore, the binding mode for the formation of this type of novel metallo base pair in solution is elusive. Herein, we demonstrate that Ag+ can interact with polyT oligonucleotides once the concentration of Ag+ in solution exceeds a threshold value. The threshold value is independent of the concentration of the polyT oligonucleotide but is inversely proportional to the length of the polyT oligonucleotide. The polyT oligonucleotides are intramolecularly folded due to their positively cooperative formation and the stack of T-Ag+-T base pairs, resulting in the 5'- and 3'-ends being in close proximity to each other. The intramolecular Ag+-folded polyT oligonucleotide has a higher thermal stability than the duplex and can be reversibly modulated by cysteine.
Collapse
Affiliation(s)
- Jinghua Hao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-62849611; Fax: +86-10-62849600
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Oxidative addition of 8-bromo-9-ethyl-1,N6-ethenoadenine to d10 metals. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Nyenhuis M, Schönrath I, Kamzeeva PN, Zatsepin TS, Müller J, Doltsinis N, Aralov AV. Benzothiazole-substituted 1,3-diaza-2-oxophenoxazine as a luminescent nucleobase surrogate for silver(I)-mediated base pairing. Dalton Trans 2022; 51:13386-13395. [PMID: 35989665 DOI: 10.1039/d2dt01762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A benzothiazole-substituted derivative (X) of 1,3-diaza-2-oxophenoxazine was evaluated with respect to its ability to engage in Ag(I)-mediated homo base pair formation in two different DNA duplexes. The metal binding was determined by a combination of temperature-dependent UV spectroscopy, CD spectroscopy, and fluorescence spectroscopy, indicating the incorporation of two Ag(I) ions to generate a dinuclear X-Ag(I)2-X base pair. Interestingly, a luminescence increase was observed upon metal binding. Theoretical luminescence spectra were calculated using time-dependent density functional theory (TDDFT) for all possible Ag(I)-mediated X : X base pair geometries to identify the species responsible for the increase in luminescence. The study shows that even bulky non-planar artificial nucleobases can be applied to form stabilizing metal-mediated base pairs.
Collapse
Affiliation(s)
- Marvin Nyenhuis
- Westfälische Wilhelms-Universität Münster, Institute for Solid State Theory and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
| | - Isabell Schönrath
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Polina N Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia.
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory Str. 1-3, 119992 Moscow, Russia
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Nikos Doltsinis
- Westfälische Wilhelms-Universität Münster, Institute for Solid State Theory and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia.
| |
Collapse
|
21
|
Atsugi T, Ono A, Tasaka M, Eguchi N, Fujiwara S, Kondo J. A Novel Ag
I
‐DNA Rod Comprising a One‐Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angew Chem Int Ed Engl 2022; 61:e202204798. [DOI: 10.1002/anie.202204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takahiro Atsugi
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Akira Ono
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Miho Tasaka
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Natsumi Eguchi
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| | - Shoji Fujiwara
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
22
|
Mesoscopic model confirms strong base pair metal mediated bonding for T-Hg 2+-T and weaker for C-Ag +-C. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Atsugi T, Ono A, Tasaka M, Eguchi N, Fujiwara S, Kondo J. A Novel Ag
I
‐DNA Rod Comprising a One‐Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takahiro Atsugi
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Akira Ono
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Miho Tasaka
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Natsumi Eguchi
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| | - Shoji Fujiwara
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
24
|
Hu L, Takezawa Y, Shionoya M. Metal-mediated DNA base pairing of easily prepared 2-oxo-imidazole-4-carboxylate nucleotides. Chem Sci 2022; 13:3977-3983. [PMID: 35440985 PMCID: PMC8985573 DOI: 10.1039/d2sc00926a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Metal-mediated DNA base pairs, which consist of two ligand-type artificial nucleobases and a bridging metal ion, have attracted increasing attention in recent years as a different base pairing mode from natural base pairing. Metal-mediated base pairing has been extensively studied, not only for metal-dependent thermal stabilisation of duplexes, but also for metal assembly by DNA templates and construction of functional DNAs that can be controlled by metals. Here, we report the metal-mediated base paring properties of a novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase and a previously reported 2-oxo-imidazole-4-carboxamide (ImOA) nucleobase, both of which can be easily derived from a commercially available uridine analogue. The ImOC nucleobases were found to form stable ImOC–CuII–ImOC and ImOC–HgII–ImOC base pairs in the presence of the corresponding metal ions, leading to an increase in the duplex melting temperature by +20 °C and +11 °C, respectively. The ImOC bases did not react with other divalent metal ions and showed superior metal selectivity compared to similar nucleobase design reported so far. The ImOC–CuII–ImOC base pair was much more stable than mismatch pairs with other natural nucleobases, confirming the base pair specificity in the presence of CuII. Furthermore, we demonstrated the quantitative assembly of three CuII ions inside a DNA duplex with three consecutive ImOC–ImOC pairs, showing great potential of DNA-template based CuII nanoarray construction. The study of easily-prepared ImOC base pairs will provide a new design strategy for metal-responsive DNA materials. A novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase, which can be easily derived from a commercially available uridine analogue, was found to form stable CuII- and HgII-mediated base pairs in DNA duplexes.![]()
Collapse
Affiliation(s)
- Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
25
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Sun Q, Xie X, Song Y, Sun L. A review on silver-mediated DNA base pairs: methodology and application. Biomater Res 2022; 26:9. [PMID: 35256004 PMCID: PMC8900454 DOI: 10.1186/s40824-022-00254-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/13/2022] [Indexed: 12/27/2022] Open
Abstract
The investigation of the interaction between metal ions and DNA has always attracted much attention in the fields of bioinorganic chemistry, supramolecular coordination chemistry, and DNA nanotechnology. Its mode of action can be simply divided into two aspects. On the one hand, it is non-specific electrostatic adsorption, mainly including Na+, K+, Mg2+, Ca2+ and other physiologically regulating ions; on the other hand, it is specific covalent binding, such as Pt2+, Hg2+, Ag+ and other heavy metal ions. This article focuses on the mechanism of action between Ag+ and DNA mismatch pair C-C, and summarizes its main characterization methods and various applications. It aims to provide a certain reference for the field of biological devices. With the development of cryo-electron microscopy and liquidcell TEM, the structure of C-Ag+-C is expected to be further characterized, which will be more widely used.
Collapse
|
27
|
Yao SJ, Li N, Liu J, Dong LZ, Liu JJ, Xin ZF, Li DS, Li SL, Lan YQ. Ferrocene-Functionalized Crystalline Biomimetic Catalysts for Efficient CO 2 Photoreduction. Inorg Chem 2022; 61:2167-2173. [PMID: 35025501 DOI: 10.1021/acs.inorgchem.1c03368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoreducing carbon dioxide (CO2) into highly valued chemicals or energy products has been recognized as one of the most promising proposals to degrade atmospheric CO2 concentration and achieve carbon neutrality. Adenine with a photosensitive amino group and aromatic nitrogen atom can strongly interact with CO2 and has been authenticated for its catalytic activity for the CO2 photoreduction reaction (CO2RR). Herein, two adenine-constructed crystalline biomimetic photocatalysts (Co2-AW and Co2-AF) were designed and synthesized to achieve CO2RR. Between them, Co2-AF displayed higher photocatalytic activity (225.8 μmol g-1 h-1) for CO2-to-HCOOH conversion than that of Co2-AW. It was found that the superior charge transfer capacity of the functional ferrocene group in Co2-AF is the primary reason to facilitate the photocatalytic performance efficiently. Additionally, this work also demonstrated the great potential of the ferrocene group as an electron donor and mediator in improving the photocatalytic activity of crystalline coordination catalysts.
Collapse
Affiliation(s)
- Su-Juan Yao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jing-Jing Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhi-Feng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
28
|
Lippert B. “Metal-modified base pairs” vs. “metal-mediated pairs of bases”: not just a semantic issue! J Biol Inorg Chem 2022; 27:215-219. [PMID: 35091756 PMCID: PMC8907086 DOI: 10.1007/s00775-022-01926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
A “nucleobase pair” is not identical with a “pair of basic ligands”, as only in the first case, the existence of inter-base hydrogen bonds is implied. The cross-linking of two nucleobases or two basic ligands by a metal ion of suitable geometry produces either “metal-modified” or “metal-mediated” species, but in the author’s opinion, this difference is not always properly made. This commentary is an attempt to provide a clearer distinction between the two scenarios.
Collapse
Affiliation(s)
- Bernhard Lippert
- Fakultät Für Chemie Und Chemische Biologie (CCB), Technische Universität Dortmund, 44221, Dortmund, Germany.
| |
Collapse
|
29
|
Levi-Acobas F, McKenzie LK, Hollenstein M. Towards polymerase-mediated synthesis of artificial RNA–DNA metal base pairs. NEW J CHEM 2022. [DOI: 10.1039/d2nj00427e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymerase-mediated synthesis of RNA-DNA metal base pairs.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Luke K. McKenzie
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
30
|
Freund N, Fürst MJLJ, Holliger P. New chemistries and enzymes for synthetic genetics. Curr Opin Biotechnol 2021; 74:129-136. [PMID: 34883451 DOI: 10.1016/j.copbio.2021.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
Beyond the natural nucleic acids DNA and RNA, nucleic acid chemistry has unlocked a whole universe of modifications to their canonical chemical structure, which can in various ways modify and enhance nucleic acid function and utility for applications in biotechnology and medicine. Unlike the natural modifications of tRNA and rRNA or the epigenetic modifications in mRNA and genomic DNA, these altered chemistries are not found in nature and therefore these molecules are referred to as xeno-nucleic acids (XNAs). In this review we aim to focus specifically on recent progress in a subsection of this vast field-synthetic genetics-concerned with encoded synthesis, reverse transcription, and evolution of XNAs.
Collapse
Affiliation(s)
- Niklas Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
31
|
Abstract
Metal-mediated base pairs enable a site-specific incorporation of transition metal ions into nucleic acid structures. The resulting nucleic acid-metal complex conjugates are of interest in the context of functionalized nucleic acids, as they bear metal-based functionality. It is desirable to devise nucleic acids with an externally triggered metal-binding affinity, as this may allow regulating this functionality. Toward this end, a caged deoxyribonucleoside analog HNPP was devised for the site-specific binding of copper(II) ions upon irradiation by light, based on the ligand 3-hydroxy-2-methylpyridin-4(1H)-one (H) and the photocleavable 2-(2-nitrophenyl)propoxy protecting group (NPP). The formation of both H-Cu(II)-H homo base pairs and H-Cu(II)-X hetero base pairs (involving a second artificial deoxyribonucleoside X, based on imidazole-4-carboxylate) was achieved upon irradiation of DNA duplexes bearing the respective HNPP:HNPP or HNPP:X mispairs in the presence of copper(II) ions. The H-Cu(II)-X pair shows an exceptional DNA duplex stabilization of up to 43 °C upon its formation, exceeding that of the H-Cu(II)-H pair. It therefore represents one of the most stabilizing Cu(II)-mediated base pairs reported so far. Our findings expand the scope of light-triggered metal-mediated base pair formation by introducing a copper(II)-binding ligand.
Collapse
Affiliation(s)
- Shuvankar Naskar
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster, Germany
| |
Collapse
|
32
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
33
|
Dairaku T, Kawai R, Nozawa-Kumada K, Yoshida K, Ono T, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Chemical reduction of Ag + to Ag employing organic electron donors: evaluation of the effect of Ag +-mediated cytosine-cytosine base pairing on the aggregation of Ag nanoparticles. Dalton Trans 2021; 50:12208-12214. [PMID: 35226008 DOI: 10.1039/d1dt01927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ag+-mediated base pairing is valuable for synthesising DNA-based silver nanoparticles (AgNPs) and nanoclusters (AgNCs). Recently, we reported the formation of a [Ag(cytidine)2]+ complex in dimethyl sulfoxide (DMSO), which facilitated the evaluation of the effect of cytosine-Ag+-cytosine (C-Ag+-C) base pairing on the degree of AgNP aggregation in solution. As an aprotic solvent, DMSO was expected to dissolve the [Ag(cytidine)2]+ complex, and powerful reducing agents, such as organic electron donors. In this study, the chemical reduction of a cytidine/Ag+ system using a powerful reducing agent tetrakis(dimethylamino)ethylene (TDAE) was investigated. 1H/13C/15N NMR spectroscopic evidence was obtained to identify the iminium dication (TDAE2+), which is an oxidised form of TDAE. The results were compared with those obtained using another organic electron donor, tetrathiafulvalene (TTF), which exhibits a relatively lower reduction activity than TDAE. AgNPs prepared via redox reaction between [Ag(cytidine)2]+ and organic electron donors (TDAE and TTF) were characterised using UV-Vis spectroscopy and nanoparticle tracking analysis. It was found that the formation of C-Ag+-C base pairing inhibited the aggregation of AgNPs in solution. In addition, in the presence of cytidine, the total concentration of the AgNP solution was affected by the reduction activity of the reducing agent.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
34
|
Blaško M, Pašteka LF, Urban M. DFT Functionals for Modeling of Polyethylene Chains Cross-Linked by Metal Atoms. DLPNO-CCSD(T) Benchmark Calculations. J Phys Chem A 2021; 125:7382-7395. [PMID: 34428051 DOI: 10.1021/acs.jpca.1c04793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory (DFT) functionals for calculations of binding energies (BEs) of the polyethylene (PE) chains cross-linked by selected metal atoms (M) are benchmarked against DLPNO-CCSD(T) and DLPNO-CCSD(T1) data. PEX-M-PEX complexes as compared with plain parallel PEX···PEX chains with X = 3-9 carbon atoms are model species characterized by a cooperative effect of covalent C-M-C bonds and interchain dispersion interactions. The accuracy of DLPNO-CC methods was assessed by a comparison of BEs with the canonical CCSD(T) results for small PE3-M-PE3 complexes. Functionals for PEX···PEX and closed-shell PEX-M-PEX complexes (M = Be, Mg, Zn) were benchmarked against DLPNO-CCSD(T) BEs; open-shell complexes (M = Li, Ag, Au) were benchmarked against the DLPNO-CCSD(T1) method with iterative triples. Three dispersion corrections were combined with 25 DFT functionals for calculations of BEs with respect to PEX-M and PEX fragments employing def2-TZVPP and def2-QZVPP basis sets. Accuracy to within 5% for the closed-shell PEX-M-PEX complexes was achieved with five functionals. Less accurate are functionals for the open-shell PEX-M-PEX complexes; only two functionals deviate by less than 15% from DLPNO-CCSD(T1). Particularly problematic were PEX-Li-PEX complexes. A reasonable overall performance across all complexes in terms of the mean absolute percentage error is found for the range-separated hybrid functionals ωB97X-D3 and CAM-B3LYP/D3(BJ)-ABC.
Collapse
Affiliation(s)
- Martin Blaško
- FunGlass, A. Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Miroslav Urban
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
35
|
Wang J, Wicher B, Méndez-Ardoy A, Li X, Pecastaings G, Buffeteau T, Bassani DM, Maurizot V, Huc I. Loading Linear Arrays of Cu II Inside Aromatic Amide Helices. Angew Chem Int Ed Engl 2021; 60:18461-18466. [PMID: 34014599 PMCID: PMC8456862 DOI: 10.1002/anie.202104734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The very stable helices of 8-amino-2-quinolinecarboxylic acid oligoamides are shown to uptake CuII ions in their cavity through deprotonation of their amide functions with minimal alteration of their shape, unlike most metallo-organic structures which generally differ from their organic precursors. The outcome is the formation of intramolecular linear arrays of a defined number of CuII centers (up to sixteen in this study) at a 3 Å distance, forming a molecular mimic of a metal wire completely surrounded by an organic sheath. The helices pack in the solid state so that the arrays of CuII extend intermolecularly. Conductive-AFM and cyclic voltammetry suggest that electrons are transported throughout the metal-loaded helices in contrast with hole transport observed for analogous foldamers devoid of metal ions.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Alejandro Méndez-Ardoy
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Xuesong Li
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Gilles Pecastaings
- LCPO (UMR 5629), Bordeaux INP, CNRS, 16, Av. Pey-Berland, 33600, Pessac, France
- CRPP (UMR 5031), Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600, Pessac, France
| | - Thierry Buffeteau
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Dario M Bassani
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandstraße 5-13, 81377, Munich, Germany
- Cluster of Excellence e-conversion, 85748, Garching, Germany
| |
Collapse
|
36
|
Wang J, Wicher B, Méndez‐Ardoy A, Li X, Pecastaings G, Buffeteau T, Bassani DM, Maurizot V, Huc I. Loading Linear Arrays of Cu
II
Inside Aromatic Amide Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinhua Wang
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Barbara Wicher
- Department of Chemical Technology of Drugs Poznan University of Medical Sciences Grunwaldzka 6 60-780 Poznan Poland
| | | | - Xuesong Li
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Gilles Pecastaings
- LCPO (UMR 5629) Bordeaux INP CNRS 16, Av. Pey-Berland 33600 Pessac France
- CRPP (UMR 5031) Univ. Bordeaux CNRS 115 Avenue du Dr Albert Schweitzer 33600 Pessac France
| | - Thierry Buffeteau
- ISM (UMR 5255) Univ. Bordeaux CNRS 351, Cours de la Libération 33405 Talence France
| | - Dario M. Bassani
- ISM (UMR 5255) Univ. Bordeaux CNRS 351, Cours de la Libération 33405 Talence France
| | - Victor Maurizot
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Ivan Huc
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
- Department of Pharmacy Ludwig-Maximilians-Universität Butenandstraße 5–13 81377 Munich Germany
- Cluster of Excellence e-conversion 85748 Garching Germany
| |
Collapse
|
37
|
Wang LL, Zhang QL, Wang Y, Liu Y, Lin J, Xie F, Xu L. Controllable DNA strand displacement by independent metal-ligand complexation. Chem Sci 2021; 12:8698-8705. [PMID: 34257868 PMCID: PMC8246113 DOI: 10.1039/d1sc01041g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction of artificial metal-ligand base pairs can enrich the structural diversity and functional controllability of nucleic acids. In this work, we revealed a novel approach by placing a ligand-type nucleoside as an independent toehold to control DNA strand-displacement reactions based on metal-ligand complexation. This metal-mediated artificial base pair could initiate strand invasion similar to the natural toehold DNA, but exhibited flexible controllability to manipulate the dynamics of strand displacement that was only governed by its intrinsic coordination properties. External factors that influence the intrinsic properties of metal-ligand complexation, including metal species, metal concentrations and pH conditions, could be utilized to regulate the strand dynamics. Reversible control of DNA strand-displacement reactions was also achieved through combination of the metal-mediated artificial base pair with the conventional toehold-mediated strand exchange by cyclical treatments of the metal ion and the chelating reagent. Unlike previous studies of embedded metal-mediated base pairs within natural base pairs, this metal-ligand complexation is not integrated into the nucleic acid structure, but functions as an independent toehold to regulate strand displacement, which would open a new door for the development of versatile dynamic DNA nanotechnologies.
Collapse
Affiliation(s)
- Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
38
|
Dairaku T, Kawai R, Kanaba T, Ono T, Yoshida K, Sato H, Nozawa-Kumada K, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Effect of cytosine-Ag +-cytosine base pairing on the redox potential of the Ag +/Ag couple and the chemical reduction of Ag + to Ag by tetrathiafulvalene. Dalton Trans 2021; 50:7633-7639. [PMID: 33973617 DOI: 10.1039/d1dt00975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The redox properties of metallo-base pairs remain to be elucidated. Herein, we report the detailed 1H/13C/109Ag NMR spectroscopic and cyclic voltammetric characterisation of the [Ag(cytidine)2]+ complex as isolated cytosine-Ag+-cytosine (C-Ag+-C) base pairs. We also performed comparative studies between cytidine/Ag+ and other nucleoside/Ag+ systems by using cyclic voltammetry measurements. In addition, to evaluate the effect of [Ag(cytidine)2]+ formation on the chemical reduction of Ag+ to Ag, we utilised the redox reaction between Ag+ and tetrathiafulvalene (TTF). We found that Ag+-mediated base pairing lowers the redox potential of the Ag+/Ag couple. In addition, C-Ag+-C base pairing makes it more difficult to reduce captured Ag+ ions than in other nucleoside/Ag+ systems. Remarkably, the cytidine/Ag+ system can be utilised to control the redox potential of the Ag+/Ag couple in DMSO. This feature of the cytidine/Ag+ system may be exploited for Ag nanoparticle synthesis by using the redox reaction between Ag+ and TTF.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Teppei Kanaba
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Hajime Sato
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
39
|
Kohl FR, Zhang Y, Charnay AP, Martínez-Fernández L, Kohler B. Ultrafast excited state dynamics of silver ion-mediated cytosine-cytosine base pairs in metallo-DNA. J Chem Phys 2021; 153:105104. [PMID: 32933288 DOI: 10.1063/5.0020463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To better understand the nexus between structure and photophysics in metallo-DNA assemblies, the parallel-stranded duplex formed by the all-cytosine oligonucleotide, dC20, and silver nitrate was studied by circular dichroism (CD), femtosecond transient absorption spectroscopy, and time-dependent-density functional theory calculations. Silver(I) ions mediate Cytosine-Cytosine (CC) base pairs by coordinating to the N3 atoms of two cytosines. Although these silver(I) mediated CC base pairs resemble the proton-mediated CC base pairs found in i-motif DNA at first glance, a comparison of experimental and calculated CD spectra reveals that silver ion-mediated i-motif structures do not form. Instead, the parallel-stranded duplex formed between dC20 and silver ions is proposed to contain consecutive silver-mediated base pairs with high propeller twist-like ones seen in a recent crystal structure of an emissive, DNA-templated silver cluster. Femtosecond transient absorption measurements with broadband probing from the near UV to the near IR reveal an unusually long-lived (>10 ns) excited state in the dC20 silver ion complex that is not seen in dC20 in single-stranded or i-motif forms. This state is also absent in a concentrated solution of cytosine-silver ion complexes that are thought to assemble into planar ribbons or sheets that lack stacked silver(I) mediated CC base pairs. The large propeller twist angle present in metal-mediated base pairs may promote the formation of long-lived charged separated or triplet states in this metallo-DNA.
Collapse
Affiliation(s)
- Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Aaron P Charnay
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| |
Collapse
|
40
|
Pérez‐Romero A, Domínguez‐Martín A, Galli S, Santamaría‐Díaz N, Palacios O, Dobado JA, Nyman M, Galindo MA. Single‐Stranded DNA as Supramolecular Template for One‐Dimensional Palladium(II) Arrays. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio Pérez‐Romero
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Alicia Domínguez‐Martín
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Simona Galli
- 2 Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Noelia Santamaría‐Díaz
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Oscar Palacios
- Departament de Química Facultat de Ciències Universitat Autònoma de Barcelona Campus Bellaterra s/n 08193 Cerdanyola del Vallès, Barcelona Spain
| | - José A. Dobado
- Grupo de Modelización y Diseño Molecular Departamento de Química Orgánica Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Miguel A. Galindo
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| |
Collapse
|
41
|
|
42
|
Flamme M, Figazzolo C, Gasser G, Hollenstein M. Enzymatic construction of metal-mediated nucleic acid base pairs. Metallomics 2021; 13:6206861. [PMID: 33791776 DOI: 10.1093/mtomcs/mfab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Artificial metal base pairs have become increasingly important in nucleic acids chemistry due to their high thermal stability, water solubility, orthogonality to natural base pairs, and low cost of production. These interesting properties combined with ease of chemical and enzymatic synthesis have prompted their use in several practical applications, including the construction of nanomolecular devices, ions sensors, and metal nanowires. Chemical synthesis of metal base pairs is highly efficient and enables the rapid screening of novel metal base pair candidates. However, chemical synthesis is limited to rather short oligonucleotides and requires rather important synthetic efforts. Herein, we discuss recent progress made for the enzymatic construction of metal base pairs that can alleviate some of these limitations. First, we highlight the possibility of generating metal base pairs using canonical nucleotides and then describe how modified nucleotides can be used in this context. We also provide a description of the main analytical techniques used for the analysis of the nature and the formation of metal base pairs together with relevant examples of their applications.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Chiara Figazzolo
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Centre de Recherches Interdisciplinaires CRI, 8 rue Charles V, 75004 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
43
|
Pérez‐Romero A, Domínguez‐Martín A, Galli S, Santamaría‐Díaz N, Palacios O, Dobado JA, Nyman M, Galindo MA. Single‐Stranded DNA as Supramolecular Template for One‐Dimensional Palladium(II) Arrays. Angew Chem Int Ed Engl 2021; 60:10089-10094. [DOI: 10.1002/anie.202015554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/15/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Antonio Pérez‐Romero
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Alicia Domínguez‐Martín
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Simona Galli
- 2 Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Noelia Santamaría‐Díaz
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Oscar Palacios
- Departament de Química Facultat de Ciències Universitat Autònoma de Barcelona Campus Bellaterra s/n 08193 Cerdanyola del Vallès, Barcelona Spain
| | - José A. Dobado
- Grupo de Modelización y Diseño Molecular Departamento de Química Orgánica Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Miguel A. Galindo
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| |
Collapse
|
44
|
Pramanik S, Khamari L, Mukherjee S. Differentiating a Least-Stable Single Nucleotide Mismatch in DNA Via Metal Ion-Mediated Base Pairing and Using Thioflavin T as an Extrinsic Fluorophore. J Phys Chem Lett 2021; 12:2547-2554. [PMID: 33683888 DOI: 10.1021/acs.jpclett.1c00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monitoring the DNA dynamics in solution has great potential to develop new nucleic acid-based sensors and devices. With spectroscopic approaches, both at the ensemble average and single-molecule resolution, this study is directed to differentiate a single nucleotide mismatch (SNM) via a metal ion-stabilized mismatched base-pairing (C-Ag+-C/C-Cu2+-T) (C = cytosine, T = thymine) and site-selective extrinsic fluorophore, specifically, Thioflavin T (ThT). This is the first approach of its kind where dynamic quantities like molecular diffusion coefficients and diffusion times have been utilized to distinguish the least-stable SNM (CC & CT) formed by the most discriminating nucleobase, specifically, cytosine in a 20-mer duplex DNA. Additionally, this work also quantifies metal ions (Ag+ and Cu2+) at lower concentrations using fluorescence correlation spectroscopy. Our results can provide greater molecular-level insights into the mismatch-dependent metal-DNA interactions and also illuminate ThT as a new fluorophore to monitor the dynamics involved in DNA-metal composites.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
45
|
Escher D, Müller J. Silver(I)‐mediated hetero base pairs of 6‐pyrazolylpurine and its deaza derivatives. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniela Escher
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| |
Collapse
|
46
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
47
|
Nakagawa O, Aoyama H, Fujii A, Kishimoto Y, Obika S. Crystallographic Structure of Novel Types of Ag I -Mediated Base Pairs in Non-canonical DNA Duplex Containing 2'-O,4'-C-Methylene Bridged Nucleic Acids. Chemistry 2021; 27:3842-3848. [PMID: 33274789 DOI: 10.1002/chem.202004819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Indexed: 11/08/2022]
Abstract
Metal-mediated base pairs have widespread applications, such as in DNA-metal nanodevices and sensors. Here, we focused on their sugar conformation in duplexes and observed the crystallographic structure of the non-canonical DNA/DNA duplex containing 2'-O,4'-C-methylene bridged nucleic acid in the presence of AgI ions. The X-ray crystallographic structure was successfully obtained at a resolution of 1.5 Å. A novel type of AgI -mediated base pair between the N1 positions of anti-conformation of adenines in the duplex was observed. In the central non-canonical region, a hexad nucleobase structure containing AgI -mediated base pairs between the N7 positions of guanines was formed. A highly bent non-canonical structure was formed at the origin of AgI -mediated base pairs in the central region. The bent duplex structure induced by the addition of AgI ions might become a powerful tool for dynamic structural changes in DNA nanotechnology applications.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
48
|
Kahlfuss C, Starck E, Tufenkjian E, Kyritsakas N, Jouaiti A, Baudron SA, Hosseini MW, Bulach V. Construction of hydrogen bonding and coordination networks based on ethynylpyridine-appended nucleobases. CrystEngComm 2021. [DOI: 10.1039/d0ce01661f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of ethynylpyridine-appended nucleobases have been designed, synthesized, characterized and employed for the formation of crystalline molecular networks by hydrogen/coordination bonding.
Collapse
Affiliation(s)
| | - Eliot Starck
- CNRS
- CMC UMR 7140
- Université de Strasbourg
- Strasbourg
- France
| | | | | | | | | | | | | |
Collapse
|
49
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
50
|
Takezawa Y, Suzuki A, Nakaya M, Nishiyama K, Shionoya M. Metal-Dependent DNA Base Pairing of 5-Carboxyuracil with Itself and All Four Canonical Nucleobases. J Am Chem Soc 2020; 142:21640-21644. [DOI: 10.1021/jacs.0c11437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Suzuki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Manabu Nakaya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|