1
|
Li Y, Li J, Zhong Y, Zhang Q, Wu Y, Huang J, Pang K, Zhou Y, Xiao T, Wu Z, Sun W, He C. pH-responsive and nanoenzyme-loaded artificial nanocells relieved osteomyelitis efficiently by synergistic chemodynamic and cuproptosis therapy. Biomaterials 2025; 313:122762. [PMID: 39178559 DOI: 10.1016/j.biomaterials.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Osteomyelitis is an osseous infectious disease that primarily affects children and the elderly with high morbidity and recurrence. The conventional treatments of osteomyelitis contain long-term and high-dose systemic antibiotics with debridements, which are not effective and lead to antibiotic resistance with serious side/adverse effects in many cases. Hence, developing novel antibiotic-free interventions against osteomyelitis (especially antibiotic-resistant bacterial infection) is urgent and anticipated. Here, a bone mesenchymal stem cell membrane-constructed nanocell (CFE@CM) was fabricated against osteomyelitis with the characteristics of acid-responsiveness, hydrogen peroxide self-supplying, enhanced chemodynamic therapeutic efficacy, bone marrow targeting and cuproptosis induction. Notably, mRNA sequencing was applied to unveil the underlying biological mechanisms and found that the biological processes related to copper ion binding, oxidative phosphorylation, peptide biosynthesis and metabolism, etc., were disturbed by CFE@CM in bacteria. This work provided an innovative antibiotic-free strategy against osteomyelitis through copper-enhanced Fenton reaction and distinct cuproptosis, promising to complement the current insufficient therapeutic regimen in clinic.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Jian Li
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuxuan Zhong
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Qingshun Zhang
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuchun Wu
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Jinpeng Huang
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Kaicheng Pang
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanyue Zhou
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Tong Xiao
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Zenghui Wu
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Wei Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Chao He
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
2
|
Guo C, Cui E, Xu X, Yang D. Ionophore-based nanospheres enable selective and sensitive fluorescence detection of copper ions. Talanta 2025; 281:126855. [PMID: 39265420 DOI: 10.1016/j.talanta.2024.126855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
A novel ionophore-based fluorescent nanosensor has been successfully fabricated for the sensitive and selective detection of Cu2+ ions. The nanosensor was constructed through self-assembly of amphiphilic block copolymers, incorporating elesclomol as a Cu2+ ionophore and long-chain dialkylcarbocyanines (DiD) as a fluorescent dye. This design exhibits an "ON/OFF" fluorescence response, where Cu2⁺ ions are selectively sequestered within the nanosensors, resulting in fluorescence quenching of DiD. This strategy enables rapid and highly selective Cu2⁺ sensing with remarkable fluorescence quenching efficiency (up to 93.5 %) and an exceptionally low detection limit of 28.6 nM. The linear detection range extends over two orders of magnitude (0.05-10 μM). Furthermore, the feasibility of this nanosensor for practical applications was confirmed through successful determination of Cu2+ in real water and beer samples, with excellent recovery rates. This nanosensor offers advantages of simplicity, rapidity, and cost-effectiveness, holding significant potential for sensitive and selective Cu2+ detection in various biological and environmental samples.
Collapse
Affiliation(s)
- Chao Guo
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Enna Cui
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiaonan Xu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Noh D, Lee H, Lee S, Sun IC, Yoon HY. Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment. Biomater Res 2024; 28:0094. [PMID: 39430913 PMCID: PMC11486892 DOI: 10.34133/bmr.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
The recent discovery of cuproptosis, a novel copper-ion-induced cell death pathway, has suggested the novel therapeutic potential for treating heterogeneous and drug-resistant cancers. Currently, copper ionophore-based therapeutics have been designed to treat cancers, utilizing copper ions as a strategic tool to impede tumor proliferation and promote cellular demise. However, limitations of copper ionophore-based therapies include nontargeted delivery of copper ions, low tumor accumulation, and short half-life. Strategies to enhance specificity involve targeting intracellular cuproptosis mechanisms using nanotechnology-based drugs. Additionally, the importance of exploring combination therapies cannot be overstated, as they are a key strategy in improving the efficacy of cancer treatments. Recent studies have reported the anticancer effects of nanomedicines that can induce cuproptosis of cancer both in vitro and in vivo. These cuproptosis-targeted nanomedicines could improve delivery efficiency with the pharmacokinetic properties of copper ion, resulting in increasing cuproptosis-based anticancer effects. This review will summarize the intricate nexus between copper ion and carcinogenesis, examining the pivotal roles of copper homeostasis and its dysregulation in cancer progression and fatality. Furthermore, we will introduce the latest advances in cuproptosis-targeted nanomedicines for cancer treatment. Finally, the challenges in cuproptosis-based nanomedicines will be discussed for future development directions.
Collapse
Affiliation(s)
- Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Li Y, Liu J, Weichselbaum RR, Lin W. Mitochondria-Targeted Multifunctional Nanoparticles Combine Cuproptosis and Programmed Cell Death-1 Downregulation for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403520. [PMID: 39013093 PMCID: PMC11425249 DOI: 10.1002/advs.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The combination of cuproptosis and immune checkpoint inhibition has shown promise in treating malignant tumors. However, it remains a challenge to deliver copper ions and immune checkpoint inhibitors efficiently and simultaneously to tumors. Herein, a mitochondria-targeted nanoscale coordination polymer particle, Cu/TI, comprising Cu(II), and a triphenylphosphonium conjugate of 5-carboxy-8-hydroxyquinoline (TI), for effective cuproptosis induction and programmed cell death-1 (PD-L1) downregulation is reported. Upon systemic administration, Cu/TI efficiently accumulates in tumor tissues to induce immunogenic cancer cell death and reduce PD-L1 expression. Consequently, Cu/TI promotes the intratumoral infiltration and activation of cytotoxic T lymphocytes to greatly inhibit tumor progression of colorectal carcinoma and triple-negative breast cancer in mouse models without causing obvious side effects.
Collapse
Affiliation(s)
- Youyou Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jing Liu
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Jiang Y, He S, Xiang N, Duan L, Lin Y, Huang W, Wu Z, Qi X. A copper missile-triggered power coalescence and death vortex within tumor cell mitochondria for synergistic cuproptosis/phototherapy/chemotherapy. NANOSCALE 2024; 16:15967-15983. [PMID: 39101331 DOI: 10.1039/d4nr02382j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The importance of copper homeostasis in mitochondria and copper-triggered modality of mitochondrial cell death have been confirmed. However, the existing copper-based nanoplatforms are focused on synergistic therapies while the intracellular therapeutic targets are relatively scattered. Effective integration of all targets within mitochondria to generate power coalescence remains a challenge. Herein, we developed a novel copper-based delivery system to trigger power coalescence and death vortex within tumor cell mitochondria. Specifically, a mitochondrial targeting "copper missile" loaded with curcumin (termed as Cur@CuS-TPP-HA, CCTH) was designed for cuproptosis/phototherapy/chemotherapy synergistic anti-tumor therapy. Once the CCTH NPs are shuttled to the mitochondria, near-infrared (NIR) irradiation initiates the release of copper ions and curcumin for in situ drug accumulation in cancer cell mitochondria. An excess of copper ions and curcumin can activate cuproptosis and mitochondrial apoptosis pathways, respectively. When combined, they can cause an increase in reactive oxygen species (ROS), damage to mitochondrial DNA (mt-DNA), and a decrease in energy supply, thereby leading to a "vicious circle" of mitochondrial damage that further enhances the tumor-killing efficacy. As a consequence, this "copper missile" exhibits advanced anti-tumor effects as verified through in vitro assessments and in vivo evaluations using the 4T1 breast tumor model, providing a promising approach for cuproptosis-based synergistic anti-tumor therapy.
Collapse
Affiliation(s)
- Yicheng Jiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- Center of Advanced Pharmaceuticals and Biomaterials, Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Shuhan He
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Niu Xiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Linghui Duan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuxiang Lin
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenyu Huang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou 310018, China.
| |
Collapse
|
6
|
Wu X, Wu Q, Hou M, Jiang Y, Li M, Jia G, Yang H, Zhang C. Regenerating Chemotherapeutics through Copper-Based Nanomedicine: Disrupting Protein Homeostasis for Enhanced Tumor Therapy. Adv Healthc Mater 2024:e2401954. [PMID: 39039985 DOI: 10.1002/adhm.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Indexed: 07/24/2024]
Abstract
The bis-(diethyldithiocarbamate)-copper (CuET), the disulfiram (DSF)-Cu complex, has exhibited noteworthy anti-tumor property. However, its efficacy is compromised due to the inadequate oxidative conditions and the limitation of bioavailable copper. Because CuET can inactivate valosin-containing protein (VCP), a bioinformatic pan-cancer analysis of VCP is first conducted in this study to identify CuET as a promising anticancer drug for diverse cancer types. Then, based on the drug action mechanism, a nanocomposite of CuET and copper oxide (CuO) is designed and fabricated utilizing bovine serum albumin (BSA) as the template (denoted as CuET-CuO@BSA, CCB). CCB manifests peroxidase (POD)-mimicking activity to oxidize the tumor endogenous H2O2 to generate reactive oxygen species (ROS), enhancing the chemotherapy effect of CuET. Furthermore, the cupric ions released after enzymatic reaction can regenerate CuET, which markedly perturbs intracellular protein homeostasis and induces apoptosis of tumor cells. Meanwhile, CCB triggers cuproptosis by inducing the aggregation of lipoylated proteins. The multifaceted action of CCB effectively inhibits tumor progression. Therefore, this study presents an innovative CuET therapeutic strategy that creates an oxidative microenvironment in situ and simultaneously self-supply copper source for CuET regeneration through the combination of CuO nanozyme with CuET, which holds promise for application of CuET for effective tumor therapy.
Collapse
Affiliation(s)
- Xubo Wu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinghe Wu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mengfei Hou
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yifei Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meng Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guoping Jia
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Huizhen Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chunfu Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
7
|
Tripathy S, Londhe S, Patel A, Saha S, Chandra Y, Patra CR. Copper nitroprusside analogue nanoparticles against melanoma: detailed in vitro and in vivo investigation. NANOSCALE 2024; 16:13580-13596. [PMID: 38953490 DOI: 10.1039/d4nr01857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Melanoma is the most invasive and lethal form of skin cancer that arises from the malignant transformation of specialized pigment-producing cell melanocytes. Nanomedicine represents an important prospect to mitigate the difficulties and provide significant benefits to cure melanoma. In the present study, we investigated in vitro and in vivo therapeutic efficacies of copper nitroprusside analogue nanoparticles (abbreviated as CuNPANP) towards melanoma. Initially, in vitro anti-cancer activities of CuNPANP towards melanoma cells (B16F10) were evaluated by several experiments such as [methyl-3H]-thymidine incorporation assay, cell cycle and apoptosis assays using FACS analysis, ROS generation using DCFDA, DHE and DAF2A reagents, internalization of nanoparticles through ICP-OES analysis, co-localization of the nanoparticles using confocal microscopy, JC-1 staining to investigate the mitochondrial membrane potential (MMP) and immunofluorescence studies to analyze the expressions of cytochrome-c, Ki-67, E-cadherin as well as phalloidin staining to analyze the cytoskeletal integrity. Further, the in vivo therapeutic effectiveness of the nanoparticles was established towards malignant melanoma by inoculating B16F10 cells in the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of CuNPANP inhibited tumor growth and increased the survivability of melanoma mice. The in vivo immunofluorescence studies (Ki-67, CD-31, and E-cadherin) and TUNEL assay further support the anti-cancer and apoptosis-inducing potential of CuNPANP, respectively. Finally, various signaling pathways and molecular mechanisms involved in anti-cancer activities were further evaluated by Western blot analysis. The results altogether indicated the potential use of copper-based nanomedicines for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
8
|
Lu J, Miao Y, Li Y. Cuproptosis: Advances in Stimulus-Responsive Nanomaterials for Cancer Therapy. Adv Healthc Mater 2024; 13:e2400652. [PMID: 38622782 DOI: 10.1002/adhm.202400652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Cuproptosis, a recently identified non-apoptotic programmed cell death modality, attracts considerable attention in the realm of cancer therapeutics owing to its unique cellular demise mechanisms. Since its initial report in 2022, strategies inducing or amplifying cuproptosis for cancer treatment emerge. The engineering of nano-systems to elicit cuproptosis effectively circumvents constraints associated with conventional small-molecule pharmaceutical interventions, presenting novel prospects for oncological therapy. Stimulus-responsive nanomaterials, leveraging their distinctive spatiotemporal control attributes, are investigated for their role in modulating the induction or augmentation of cuproptosis. In this comprehensive review, the physiological characteristics of cuproptosis, encompassing facets such as copper overload and depletion, coupled with regulatory factors intrinsic to cuproptosis, are expounded upon. Subsequently, design methodologies for stimulus-responsive induction or enhancement of cuproptosis, employing stimuli such as light, ultrasound, X-ray, and the tumor microenvironment, are systematically delineated. This review encompasses intricacies in nanomaterial design, insights into the therapeutic processes, and the associated advantages. Finally, challenges inherent in stimulus-responsive induction/enhancement of cuproptosis are deliberated upon and prospective insights into the future trajectory of copper-mediated cancer therapy are provided.
Collapse
Affiliation(s)
- Jiacheng Lu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
9
|
Haider S, Ullah S, Kazi M, Qamar F, Siddique T, Anwer R, Khan SA, Salman S. Ion-Exchange Resin/Carrageenan-Copper-Based Nanocomposite: Artificial Neural Network, Advanced Thermodynamic Profiling, and Anticoagulant Studies. ACS OMEGA 2024; 9:23873-23891. [PMID: 38854529 PMCID: PMC11154903 DOI: 10.1021/acsomega.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Carrageenan (CG) and ion exchange resins (IERs) are better metal chelators. Kappa (κ) CG and IERs were synthesized and subjected to copper ion (Cu2+) adsorption to obtain DMSCH/κ-Cu, DC20H/κ-Cu, and IRP69H/κ-Cu nanocomposites (NCs). The NCs were studied using statistical physics formalism (SPF) at 315-375 K and a multilayer perceptron with five input nodes. The percentage of Cu2+ uptake efficiency was used as an outcome variable. Via the grand canonical ensemble, SPF gives models for both monolayer and multilayer sorption layers. For in vitro anticoagulant activity (ACA), the activated partial thromboplastin time were calculated using 100 μL of rabbit plasma incubated at 37 °C. After 2 min, 100 L of 0.025 M CaCl2 was added, and the clotting time was recorded for each group (n = 6). The results demonstrated that the key covariables for the adsorption process were pH and concentration. The results of artificial neural network models were comparable with the experimental findings. The error rates varied between 4.3 and 1.0%. The prediction analysis results ranged from 43.6 to 89.2. The ΔG and ΔS values for IRP69H/κ-Cu obtained were -18.91 and -16.32 and 26.21 and 22.74 kJ/mol for the temperatures 315 and 345 K, respectively. Adsorbate species were perpendicular to the adsorbent surfaces, notwithstanding the apparent importance of macro- and micropore volumes. These adsorbents typically fluctuate with temperature changes and contain one or more layers of sorption. Negative and positive sorption energies correspond to endothermic and exothermic processes. The biosorption energy (E1 and E2) values in this experiment have a value of less than 23 kJ mol-1. Complex SPF models' energy distributions validate surface properties and interactions with adsorbates. At a concentration of 100 μg/mL, DC20H/κ-Cu2+ exhibited an ACA of only 8 s. These NCs demonstrated better greater ACA with the order DC20H/κ < DMSCH/κ < IRP69H/κ. More research is needed to rule out the chemical processes behind the ACA of CG/IER-Cu NCs.
Collapse
Affiliation(s)
- Sana Haider
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohsin Kazi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fouzia Qamar
- Department
of Biology, Lahore Garrison University, Main Campus, Lahore 54000, Pakistan
| | - Tariq Siddique
- Faculty
of Pharmacy, Ibadat International University, Islamabad 44000, Pakistan
| | - Rubia Anwer
- Faculty
of Pharmacy, Ibadat International University, Islamabad 44000, Pakistan
| | - Saeed Ahmad Khan
- Sharjah
Institute of Medical Research, Dubai 500001, United Arab Emirates
- Department
of Pharmacy, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Saad Salman
- Department
of Pharmacy, CECOS University of IT and
Emerging Sciences, Hayatabad,
Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| |
Collapse
|
10
|
Tripathy S, Haque S, Londhe S, Das S, Norbert CC, Chandra Y, Sreedhar B, Patra CR. ROS mediated Cu[Fe(CN) 5NO] nanoparticles for triple negative breast cancer: A detailed study in preclinical mouse model. BIOMATERIALS ADVANCES 2024; 160:213832. [PMID: 38547763 DOI: 10.1016/j.bioadv.2024.213832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 05/04/2024]
Abstract
Triple negative breast cancer (TNBC) is an aggressive form of tumor, more prevalent in younger women resulting in poor survival rate (2nd in cancer deaths) because of its asymptomatic existence. The most popular and convenient approach for the treatment of TNBC is chemotherapy which is associated with several limitations. Considering the importance of nanotechnology in health care system, in the present manuscript, we have designed and developed a simple, efficient, cost effective, and ecofriendly method for the synthesis of copper nitroprusside analogue nanoparticles (Cu[Fe(CN)5NO] which is abbreviated as CuNPANP that may be the potential anti-cancer nanomedicine for the treatment of TNBC. Copper (present in CuNPANP) is used because of its affordability, nutritional value and various biomedical applications. The CuNPANP are thoroughly characterized using several analytical techniques. The in vitro cell viability (in normal cells) and the ex vivo hemolysis assay reveal the biocompatible nature of CuNPANP. The anti-cancer activity of the CuNPANP is established in TNBC cells (MDA-MB-231 and 4T1) through several in vitro assays along with plausible mechanisms. The intraperitoneal administration of CuNPANP in orthotopic breast tumor model by transplanting 4T1 cells into the mammary fat pad of BALB/c mouse significantly inhibits the growth of breast carcinoma as well as increases the survival time of tumor-bearing mice. These results altogether potentiate the anti-cancer efficacy of CuNPANP as a smart therapeutic nanomedicine for treating TNBC in near future after bio-safety evaluation in large animals.
Collapse
Affiliation(s)
- Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sourav Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Caroline Celine Norbert
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Bojja Sreedhar
- Department of Analytical & Structural ChemistryCSIR-Indian Institute of Chemical Technology, Uppal Road,Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India.
| |
Collapse
|
11
|
Yi WJ, Yuan Y, Bao Q, Zhao Z, Ding HS, Song J. Analyzing Immune Cell Infiltration and Copper Metabolism in Diabetic Foot Ulcers. J Inflamm Res 2024; 17:3143-3157. [PMID: 38774446 PMCID: PMC11107912 DOI: 10.2147/jir.s452609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Background Diabetes impairs wound healing, notably in diabetic foot ulcers (DFU). Stress, marked by the accumulation of lipoylated mitochondrial enzymes and the depletion of Fe-S cluster proteins, triggers cuproptosis-a distinct form of cell death. The involvement of copper in the pathophysiology of DFU has been recognized, and currently, a copper-based therapeutic strategy is emerging as a viable option for enhancing ulcer healing. This study investigates genes linked to copper metabolism in DFU, aiming to uncover potential targets for therapeutic intervention. Methods Two diabetic wound Gene Expression Omnibus (GEO) datasets were analyzed to study immune cell dysregulation in diabetic wounds. Differentially expressed genes related to copper metabolism were identified and analyzed using machine learning methods. Gene ontology, pathway enrichment, and immune infiltration analyses were performed using DFU samples. The expression of identified genes was validated using qRT-PCR and single-cell RNA sequencing. Results Ten genes associated with copper metabolism were identified. Among these, SLC31A1 and ADNP were found to be significantly differentially expressed in DFU. Notably, SLC31A1 exhibited higher expression in macrophages, whereas ADNP was found to be highly expressed in fibroblasts and chondrocytes. Conclusion The study indicates a close link between copper metabolism, the infiltration of immune cells, and DFU. It proposes that copper metabolism could influence the progression of DFU through the activation of immune responses. These observations offer fresh perspectives on the underlying mechanisms of DFU and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wen-Juan Yi
- Department of Dermatology, Zhongnan hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yifan Yuan
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Qionglin Bao
- Wound Repair Center, Chronic Wound and Diabetic Foot Clinical Medical Research Center, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhuowei Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hua-Sheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Jiquan Song
- Department of Dermatology, Zhongnan hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
12
|
Chen P, Song Z, Yao X, Wang W, Teng L, Matyjaszewski K, Zhu W. Copper Nanodrugs by Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2024; 63:e202402747. [PMID: 38488767 DOI: 10.1002/anie.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/09/2024]
Abstract
In this study, some copper catalysts used for atom transfer radical polymerization (ATRP) were explored as efficient anti-tumor agents. The aqueous solution of copper-containing nanoparticles with uniform spheric morphology was in situ prepared through a copper-catalyzed activator generated by electron transfer (AGET) ATRP in water. Nanoparticles were then directly injected into tumor-bearing mice for antitumor chemotherapy. The copper nanodrugs had prolonged blood circulation time and enhanced accumulation at tumor sites, thus showing potent antitumor activity. This work provides a novel strategy for precise and large-scale preparation of copper nanodrugs with high antitumor activity.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weibin Wang
- The First Affiliated Hospital, Department of Surgical Oncology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lisong Teng
- The First Affiliated Hospital, Department of Surgical Oncology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Xie W, Zhang Y, Xu Q, Zhong G, Lin J, He H, Du Q, Tan H, Chen M, Wu Z, Deng Y, Han Z, Lu J, Ye J, Zou F, Zhuo Y, Zhong W. A Unique Approach: Biomimetic Graphdiyne-Based Nanoplatform to Treat Prostate Cancer by Combining Cuproptosis and Enhanced Chemodynamic Therapy. Int J Nanomedicine 2024; 19:3957-3972. [PMID: 38711614 PMCID: PMC11073530 DOI: 10.2147/ijn.s455355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.
Collapse
Affiliation(s)
- Wenjie Xie
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Qianfeng Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Guowei Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Jundong Lin
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Huichan He
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Qiuling Du
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Huijing Tan
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Muqi Chen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Zhenjie Wu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Yulin Deng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Zhaodong Han
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Jianming Lu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People’s Republic of China
| | - Jianheng Ye
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People’s Republic of China
| | - Fen Zou
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People’s Republic of China
| |
Collapse
|
14
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
15
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
16
|
Zhang S, Mei Y, Liu J, Liu Z, Tian Y. Alkyne-tagged SERS nanoprobe for understanding Cu + and Cu 2+ conversion in cuproptosis processes. Nat Commun 2024; 15:3246. [PMID: 38622137 PMCID: PMC11018805 DOI: 10.1038/s41467-024-47549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Simultaneously quantifying mitochondrial Cu+ and Cu2+ levels is crucial for evaluating the molecular mechanisms of copper accumulation-involved pathological processes. Here, a series of molecules containing various diacetylene derivatives as Raman reporters are designed and synthesized, and the alkyne-tagged SERS probe is created for determination Cu+ and Cu2+ with high selectivity and sensitivity. The developed SERS probe generates well-separated distinguishable Raman fingerprint peaks with built-in corrections in the cellular silent region, resulting in accurate quantification of Cu+ and Cu2+. The present probe demonstrates high tempo-spatial resolution for real-time imaging and simultaneously quantifying mitochondrial Cu+ and Cu2+ with long-term stability benefiting from the probe assembly with designed Au-C≡C groups. Using this powerful tool, it is found that mitochondrial Cu+ and Cu2+ increase during ischemia are associated with breakdown of proteins containing copper as well as conversion of Cu+ and Cu2+. Meanwhile, we observe that parts of Cu+ and Cu2+ are transported out of neurons by ATPase. More importantly, cuproptosis in neurons is found including the oxidative stress process caused by the conversion of Cu+ to Cu2+, which dominates at the early stage (<9 h), and subsequent proteotoxic stress. Both oxidative and proteotoxic stresses contribute to neuronal death.
Collapse
Affiliation(s)
- Sihan Zhang
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Yuxiao Mei
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Jiaqi Liu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Zhichao Liu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China.
| | - Yang Tian
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China.
| |
Collapse
|
17
|
Hu F, Huang J, Bing T, Mou W, Li D, Zhang H, Chen Y, Jin Q, Yu Y, Yang Z. Stimulus-Responsive Copper Complex Nanoparticles Induce Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309388. [PMID: 38269649 PMCID: PMC10987162 DOI: 10.1002/advs.202309388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Cuproptosis, an emerging form of programmed cell death, has received tremendous attention in cancer therapy. However, the efficacy of cuproptosis remains limited by the poor delivery efficiency of copper ion carriers. Herein, copper complex nanoparticles (denoted as Cu(I) NP) are developed that can efficiently deliver copper complex into cancer cells to induce cuproptosis. Cu(I) NP demonstrate stimulus-responsive release of copper complexes, which results in mitochondrial dysfunction and promotes the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), leading to cuproptosis. Notably, Cu(I) NP not only induce cuproptosis, but also elicit robust immune responses to suppress tumor growth. Overall, this study provides a promising strategy for cuproptosis-based cancer therapy.
Collapse
Affiliation(s)
- Fuzhen Hu
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Jia Huang
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| | - Tiejun Bing
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Wenlong Mou
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Duo Li
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and Chemistry Institute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Yang Chen
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryThe First Medical Center of Chinese People's Liberation Army (PLA) General HospitalBeijing100039China
| | - Qionghua Jin
- Department of ChemistryCapital Normal UniversityBeijing100048China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Yingjie Yu
- State Key Laboratory of Organic‐Inorganic Composites, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Zhiying Yang
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| |
Collapse
|
18
|
Dai Y, Zhu L, Li X, Zhang F, Chen K, Jiao G, Liu Y, Yang Z, Guo Z, Zhang B, Shen Q, Zhao Q. A biomimetic cuproptosis amplifier for targeted NIR-II fluorescence/photoacoustic imaging-guided synergistic NIR-II photothermal immunotherapy. Biomaterials 2024; 305:122455. [PMID: 38160626 DOI: 10.1016/j.biomaterials.2023.122455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The therapeutic efficacy of cuproptosis combined with phototheranostics is still hindered by easy copper efflux, nonspecific accumulation and limited light penetration depth. Here, a high-performance NIR-II semiconductor polymer was first synthesized through dual-donor engineering. Then a biomimetic cuproptosis amplifier (PCD@CM) was prepared by Cu(II)-mediated coordinative self-assembly of NIR-II ultrasmall polymer dots and the chemotherapeutic drug DOX, followed by camouflaging of tumor cell membranes. After homologous targeting delivery to tumor cells, overexpressed GSH in the tumor microenvironment (TME) triggers the disassembly of the amplifier and the release of therapeutic components through the reduction of Cu(II) to Cu(I), which enable NIR-II fluorescence/photoacoustic imaging-guided NIR-II photothermal therapy (PTT) and chemotherapy. The released Cu(I) induces the aggregation of lipoylated mitochondrial proteins accompanied by the loss of iron-sulfur proteins, leading to severe proteotoxic stress and eventually cuproptosis. NIR-II PTT and GSH depletion render tumor cells more sensitive to cuproptosis. The amplified cuproptosis sensitization provokes significant immune surveillance, triggering the immunogenic cell death (ICD) to promote cytotoxic T lymphocyte infiltration together with aPD-L1-mediated immune checkpoint blockade. This work proposes a new strategy to develop cuproptosis sensitization systems enhanced by NIR-II phototheranostics with homologous targeting and anti-tumor immune response capabilities.
Collapse
Affiliation(s)
- Yeneng Dai
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Lipeng Zhu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Xue Li
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fengjuan Zhang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Kai Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Guanda Jiao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yu Liu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ziyi Yang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ziang Guo
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
19
|
Richa, Kumar V, Kataria R. Phenanthroline and Schiff Base associated Cu(II)-coordinated compounds containing N, O as donor atoms for potent anticancer activity. J Inorg Biochem 2024; 251:112440. [PMID: 38065049 DOI: 10.1016/j.jinorgbio.2023.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
As an inherent metal ion, copper has been the subject of investigation for developing a novel antitumoral compound that exhibits fewer adverse effects. Copper serves as a cofactor in multiple enzymes, generates reactive oxygen species (ROS), facilitates tumour evolution, metastasis and angiogenesis and has been detected at elevated concentrations in the serum and tissues of various human cancer types. In the given setting, utilising two methodologies in developing novel Copper-based pharmaceuticals for anti-cancer applications is standard practice. These approaches involve either the sequestration of unbound Copper ions or the synthesis of Copper complexes that induce cellular apoptosis. In the past four decades, the latter system has been used, leading to numerous reviews that have examined the anticancer characteristics of a wide range of Copper complexes. These analyses have consistently demonstrated that multiple factors frequently influence the efficacy of these compounds. This review examines the possible anticancer properties of copper and Cu(II) complexes that incorporate Schiff base ligands containing 1,10-phenanthroline. The present study will comprehensively analyse the examined cell lines and mechanistic research associated with each complex.
Collapse
Affiliation(s)
- Richa
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vinod Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
20
|
Feng Q, Huo C, Wang M, Huang H, Zheng X, Xie M. Research progress on cuproptosis in cancer. Front Pharmacol 2024; 15:1290592. [PMID: 38357312 PMCID: PMC10864558 DOI: 10.3389/fphar.2024.1290592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Cuproptosis is a recently discovered form of cell death that is mediated by copper (Cu) and is a non-apoptotic form of cell death related to oligomerization of lipoylated proteins and loss of Fe-S protein clusters. Since its discovery, cuproptosis has been extensively studied by researchers for its mechanism and potential applications in the treatment of cancer. Therefore, this article reviews the specific mechanism of cuproptosis currently studied, as well as its principles and strategies for use in anti-cancer treatment, with the aim of providing a reference for cuproptosis-based cancer therapy.
Collapse
Affiliation(s)
- Qingbo Feng
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chenyu Huo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Maijian Wang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Handong Huang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingbin Zheng
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ming Xie
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
21
|
Dang Z, Ma X, Yang Z, Wen X, Zhao P. Electrospun Nanofiber Scaffolds Loaded with Metal-Based Nanoparticles for Wound Healing. Polymers (Basel) 2023; 16:24. [PMID: 38201687 PMCID: PMC10780332 DOI: 10.3390/polym16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Failures of wound healing have been a focus of research worldwide. With the continuous development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanoparticles provide new ideas and methods for research into new tissue engineering materials due to their excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanoparticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed, and their characteristics and applications are introduced. We discuss in detail the current research on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of these scaffolds for promoting wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Z.D.); (X.M.); (Z.Y.); (X.W.)
| |
Collapse
|
22
|
Conforti RA, Delsouc MB, Zorychta E, Telleria CM, Casais M. Copper in Gynecological Diseases. Int J Mol Sci 2023; 24:17578. [PMID: 38139406 PMCID: PMC10743751 DOI: 10.3390/ijms242417578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Copper (Cu) is an essential micronutrient for the correct development of eukaryotic organisms. This metal plays a key role in many cellular and physiological activities, including enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency and the accumulation of this metal since its dyshomeostasis may favor the development of multiple diseases, such as Menkes' and Wilson's diseases, neurodegenerative diseases, diabetes mellitus, and cancer. As the relationship between Cu and cancer has been the most studied, we analyze how this metal can affect three fundamental processes for tumor progression: cell proliferation, angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity, and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular processes that promote their progression are affected by Cu, and the mechanisms that occur may be similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on therapeutic strategies derived from this metal.
Collapse
Affiliation(s)
- Rocío A. Conforti
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - María B. Delsouc
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marilina Casais
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| |
Collapse
|
23
|
Xu L, Liu K, Wang F, Su Y. Cuproptosis and its application in different cancers: an overview. Mol Cell Biochem 2023; 478:2683-2693. [PMID: 36914880 DOI: 10.1007/s11010-023-04693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Heavy metal ions are essential micronutrients for human health. They are also indispensable to maintaining health and regular operation of organs. Increasing or decreasing these metal ions will lead to cell death, such as ferroptosis. Tsvetkov et al. have recently proposed a novel cell death method called "Cuproptosis". Many researchers have linked this form of death to the diagnosis, prognosis, microenvironment infiltration, and prediction of immunotherapeutic efficacy of various tumors to better understand these tumors. Similarly, with the proposal of this mechanism, the killing effect of copper ionophores on cancer cells has come to our attention again. We introduced the mechanism of cuproptosis in detail and described the establishment of the corresponding prognostic model and risk score for uveal melanoma through cuproptosis. In addition, we describe the current progress in the study of cancer in other organs through cuproptosis and summarize the treatment of tumours by copper ionophore and its future research direction. With further research, the concept of cuproptosis may help us understand cancer and guide its clinical treatment.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X, Chen G. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal 2023; 21:327. [PMID: 37974196 PMCID: PMC10652626 DOI: 10.1186/s12964-023-01267-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023] Open
Abstract
Regulated cell death (RCD) is a regulable cell death that involves well-organized signaling cascades and molecular mechanisms. RCD is implicated in fundamental processes such as organ production and tissue remodeling, removing superfluous structures or cells, and regulating cell numbers. Previous studies have not been able to reveal the complete mechanisms, and novel methods of RCD are constantly being proposed. Two metal ions, iron (Fe) and copper (Cu) are essential factors leading to RCDs that not only induce ferroptosis and cuproptosis, respectively but also lead to cell impairment and eventually diverse cell death. This review summarizes the direct and indirect mechanisms by which Fe and Cu impede cell growth and the various forms of RCD mediated by these two metals. Moreover, we aimed to delineate the interrelationships between these RCDs with the distinct pathways of ferroptosis and cuproptosis, shedding light on the complex and intricate mechanisms that govern cellular survival and death. Finally, the prospects outlined in this review suggest a novel approach for investigating cell death, which may involve integrating current therapeutic strategies and offer a promising solution to overcome drug resistance in certain diseases. Video Abstract.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yujie Zhou
- Basic Science Institute, Sungkyunkwan University, Suwon, South Korea
| | - Qianhui Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhijie Luo
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yufan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xudan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China.
| |
Collapse
|
25
|
Qian R, Yi X, Liu T, Chen H, Wang Y, Hu L, Guo L, Yang K, Deng H. Regulation of Ion Homeostasis for Enhanced Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304092. [PMID: 37740415 PMCID: PMC10646238 DOI: 10.1002/advs.202304092] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Indexed: 09/24/2023]
Abstract
Intra/extracellular ion content affects the growth and metastasis of tumor cells, as well as the efficacy of various antitumor therapies. Herein, a carbonic anhydrase inhibitor (CAI) is loaded onto pH-responsive calcium carbonate (CaCO3 ) nanoparticles and then modify theses nanoparticles with liposomes to obtain biocompatible CaCO3 /CAI@Lipsome (CCL) for enhance tumor radio-immunotherapy. CCL can specially decompose in tumor microenvironment, releasing calcium ion (Ca2+ ) and CAI, as well as increasing the pH value of extracellular fluid. CAI restrains the flow of hydrogen ion (H+ ) inside and outside the tumor cells, resulting in the reversal of tumor acidic microenvironment and the increase of intracellular H+ , both of which can improve the sensitivity of tumor to radiotherapy. Afterward, the increased intracellular H+ together with radiotherapy-causes reactive oxygen species promotes calcium influx, leading to cellular calcium overload. Moreover, the CCL-tailored content of H+ and Ca2+ strengthens radiotherapy-induced immunogenic cell death and dendritic cell maturation, amplifying systemic anti-tumor adaptive immunity. Meanwhile, macrophages in the CCL-treated tumors are polarized from pro-tumor M2 to anti-tumor M1 under X-ray exposure, owing to the neutralization of tumor acidic microenvironment and enhances Ca2+ content. Therefore, multi-directional regulation of the intra/extra tumor cell pH/calcium by simple nano-preparation would provide a powerful way to improve the efficacy of radio-immunotherapy.
Collapse
Affiliation(s)
- Rui Qian
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510000China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug TargetsNantong UniversityNantongJiangsu226001China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Haijun Deng
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510000China
| |
Collapse
|
26
|
Yu Q, Zhou J, Liu Y, Li XQ, Li S, Zhou H, Kang B, Chen HY, Xu JJ. DNAzyme-Mediated Cascade Nanoreactor for Cuproptosis-Promoted Pancreatic Cancer Synergistic Therapy. Adv Healthc Mater 2023; 12:e2301429. [PMID: 37548109 DOI: 10.1002/adhm.202301429] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Cuproptosis, a kind of newly recognized cell death modality, shows enormous prospect in cancer treatment. The inducer of cuproptosis has more advantages in tumor therapy, especially that can trigger cuproptosis and chemodynamic therapy (CDT) simultaneously. However, cuproptosis is restricted to the deficiency of intracellular copper ions and the nonspecific delivery of copper-based ionophores. Therefore, high level delivery, responsive release, and utilizing synergistic-function of inducer become the key on cuproptosis-based oncotherapy. In this work, a cascade nanosystem is constructed for enhanced cuproptosis and CDT. In the weak acidic environment of tumor cells, DNA, zinc ions, and Cu+ can release from the nanosystem. Since Cu+ having superior performance in mediating both Fenton-like reaction and cuproptosis, the released Cu+ induces cuproptosis and CDT efficiently, accompanied by Cu2+ generation. Then Cu2+ can be converted into Cu+ partially by glutathione (GSH) to from a Cu+ supply loop and ensure the synergistic action. Meanwhile, the consumption of GSH also contributes to cuproptosis and CDT in return. Finally, DNA and Zn2+ form DNAzyme to shear catalase-related RNA, resulting in the accumulation of hydrogen peroxide and further enhancing combination therapy. These results provide a promising nanotherapeutic platform and may inspire the design for potential cancer treatment based on cuproptosis.
Collapse
Affiliation(s)
- Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
27
|
Liu X, Luo B, Wu X, Tang Z. Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189013. [PMID: 37918452 DOI: 10.1016/j.bbcan.2023.189013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide, and thus, it is important to enhance its treatment efficacy [1]. Copper has emerged as a critical trace element that affects various intracellular signaling pathways, gene expression, and biological metabolic processes [2], thereby playing a crucial role in the pathogenesis of breast cancer. Recent studies have identified cuproptosis, a newly discovered type of cell death, as an emerging therapeutic target for breast cancer treatment, thereby offering new hope for breast cancer patients. Tsvetkov's research has elucidated the mechanism of cuproptosis and uncovered the critical genes involved in its regulation [3]. Manipulating the expression of these genes could potentially serve as a promising therapeutic strategy for breast cancer treatment. Additionally, using copper ionophores and copper complexes combined with nanomaterials to induce cuproptosis may provide a potential approach to eliminating drug-resistant breast cancer cells, thus improving the therapeutic efficacy of chemotherapy, radiotherapy, and immunotherapy and eventually eradicating breast tumors. This review aims to highlight the practical significance of cuproptosis-related genes and the induction of cuproptosis in the clinical diagnosis and treatment of breast cancer. We examine the potential of cuproptosis as a novel therapeutic target for breast cancer, and we explore the present challenges and limitations of this approach. Our objective is to provide innovative ideas and references for the development of breast cancer treatment strategies based on cuproptosis.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China.
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
28
|
Tarin M, Babaie M, Eshghi H, Matin MM, Saljooghi AS. Elesclomol, a copper-transporting therapeutic agent targeting mitochondria: from discovery to its novel applications. J Transl Med 2023; 21:745. [PMID: 37864163 PMCID: PMC10589935 DOI: 10.1186/s12967-023-04533-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/16/2023] [Indexed: 10/22/2023] Open
Abstract
Copper (Cu) is an essential element that is involved in a variety of biochemical processes. Both deficiency and accumulation of Cu are associated with various diseases; and a high amount of accumulated Cu in cells can be fatal. The production of reactive oxygen species (ROS), oxidative stress, and cuproptosis are among the proposed mechanisms of copper toxicity at high concentrations. Elesclomol (ELC) is a mitochondrion-targeting agent discovered for the treatment of solid tumors. In this review, we summarize the synthesis of this drug, its mechanisms of action, and the current status of its applications in the treatment of various diseases such as cancer, tuberculosis, SARS-CoV-2 infection, and other copper-associated disorders. We also provide some detailed information about future directions to improve its clinical performance.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
29
|
O'Brien H, Davoodian T, Johnson MDL. The promise of copper ionophores as antimicrobials. Curr Opin Microbiol 2023; 75:102355. [PMID: 37406562 PMCID: PMC10529258 DOI: 10.1016/j.mib.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Antibiotic-resistant microbe-mediated deaths are a major worldwide health issue. Unfortunately, due to microbial adaptation to develop resistance, some antibiotics are nullified early in their usage, and worse, resistance is detected before they can even be prescribed. Copper's toxicity since antiquity against microbes at the host-pathogen interface offers a fascinating weapon to fight antimicrobial resistance. Here, we briefly review why copper is so effective, how drugs that work with copper are effective antimicrobials, and how compounds such as these could reinvigorate investment in antimicrobial development.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Talish Davoodian
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| |
Collapse
|
30
|
Fachini LG, Baptistella GB, Postal K, Santana FS, de Souza EM, Ribeiro RR, Nunes GG, Sá EL. A new approach to study semi-coordination using two 2-methyl-5-nitroimidazole copper(ii) complexes of biological interest as a model system. RSC Adv 2023; 13:27997-28007. [PMID: 37736565 PMCID: PMC10510761 DOI: 10.1039/d3ra02130k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Two novel copper(ii) complexes [Cu(2mni)2(H2O)2](NO3)2·2H2O (1) and [Cu(2mni)2(NO3)2] (2), where 2mni is 2-methyl-5-nitroimidazole, were prepared and characterized in the solid state using single-crystal and powder X-ray diffraction analyses, EPR, electronic and vibrational spectroscopies (FTIR and Raman), and thermogravimetric methods. Both products present an elongated distorted octahedral geometry with axial Cu-O bond lengths of 2.606(14) and 2.593(15) Å, indicating semi-coordination. Density functional theory (DFT) calculations at the B3LYP/LANL2DZ theory level were used to study the electronic properties of 1 and 2. The Independent Gradient Model (IGM) was employed to determine the Intrinsic Bond Strength Index (IBSI) of the semi-coordination and to plot δg isosurfaces for the electronic sharing between the metal center and ligands. A moderate to weak antibacterial activity against Escherichia coli cultures was found for 1 with a 50% growth inhibition (GI50) value of 0.25 mmol L-1. To the best of our knowledge, this is the first time that the semi-coordination analysis using IGM was carried out for a copper(ii) complex with axial elongation, finding a good correlation between the bond length and the IBSI, and the study was extended for a series of analogous complexes described in the literature.
Collapse
Affiliation(s)
- Lucas G Fachini
- Departamento de Química, UFPR Curitiba PR Brazil +55 41 3361 3300
| | | | - Kahoana Postal
- Departamento de Química, UFPR Curitiba PR Brazil +55 41 3361 3300
| | | | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba PR Brazil
| | - Ronny R Ribeiro
- Departamento de Química, UFPR Curitiba PR Brazil +55 41 3361 3300
| | - Giovana G Nunes
- Departamento de Química, UFPR Curitiba PR Brazil +55 41 3361 3300
| | - Eduardo L Sá
- Departamento de Química, UFPR Curitiba PR Brazil +55 41 3361 3300
| |
Collapse
|
31
|
Oliveri V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules 2023; 28:6446. [PMID: 37764220 PMCID: PMC10537474 DOI: 10.3390/molecules28186446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
32
|
Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, Chen D, Wang M, Han S, Xiao H, Xing N. Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD-L1 for Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212267. [PMID: 36916030 DOI: 10.1002/adma.202212267] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Indexed: 06/02/2023]
Abstract
Cuproptosis is a new cell death that depends on copper (Cu) ionophores to transport Cu into cancer cells, which induces cell death. However, existing Cu ionophores are small molecules with a short blood half-life making it hard to transport enough Cu into cancer cells. Herein, a reactive oxygen species (ROS)-sensitive polymer (PHPM) is designed, which is used to co-encapsulate elesclomol (ES) and Cu to form nanoparticles (NP@ESCu). After entering cancer cells, ES and Cu, triggered by excessive intracellular ROS, are readily released. ES and Cu work in a concerted way to not only kill cancer cells by cuproptosis, but also induce immune responses. In vitro, the ability of NP@ESCu to efficiently transport Cu and induce cuproptosis is investigated. In addition, the change in the transcriptomes of cancer cells treated with NP@ESCu is explored by RNA-Seq. In vivo, NP@ESCu is found to induce cuproptosis in the mice model with subcutaneous bladder cancer, reprograming the tumor microenvironment. Additionally, NP@ESCu is further combined with anti-programmed cell death protein ligand-1 antibody (αPD-L1). This study provides the first report of combining nanomedicine that can induce cuproptosis with αPD-L1 for enhanced cancer therapy, thereby providing a novel strategy for future cancer therapy.
Collapse
Affiliation(s)
- Boda Guo
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinxin Zhao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenkuan Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lu Yin
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| |
Collapse
|
33
|
Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, Chen HY, Xu JJ. Photothermally Triggered Copper Payload Release for Cuproptosis-Promoted Cancer Synergistic Therapy. Angew Chem Int Ed Engl 2023; 62:e202213922. [PMID: 36585379 DOI: 10.1002/anie.202213922] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Xiang-Ling Li
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Bin K Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
34
|
Aroua LM, Ali R, Albadri AEAE, Messaoudi S, Alminderej FM, Saleh SM. A New, Extremely Sensitive, Turn-Off Optical Sensor Utilizing Schiff Base for Fast Detection of Cu(II). BIOSENSORS 2023; 13:359. [PMID: 36979571 PMCID: PMC10046006 DOI: 10.3390/bios13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Throughout this research, a unique optical sensor for detecting one of the most dangerous heavy metal ions, Cu(II), was designed and developed. The (4-mercaptophenyl) iminomethylphenyl naphthalenyl carbamate (MNC) sensor probe was effectively prepared. The Schiff base of the sensor shows a "turn-off" state with excellent sensitivity to Cu(II) ions. This innovative fluorescent chemosensor possesses distinctive optical features with a substantial Stocks shift (about 114 nm). In addition, MNC has remarkable selectivity for Cu(II) relative to other cations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to examine Cu(II) chelation structures and associated electronic properties in solution, and the results indicate that the luminescence quenching in this complex is due to ICT. Chelation-quenched fluorescence is responsible for the internal charge transfer (ICT)-based selectivity of the MNC sensing molecule for Cu(II) ions. In a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4) solution, Fluorescence and UV-Vis absorption of the MNC probe and Cu(II) ions were investigated. By utilizing a solution containing several metal ions, the interference of other metal ions was studied. This MNC molecule has outstanding selectivity and sensitivity, as well as a low LOD (1.45 nM). Consequently, these distinctive properties enable it to find the copper metal ions across an actual narrow dynamic range (0-1.2 M Cu(II)). The reversibility of the sensor was obtained by employing an EDTA as a powerful chelating agent.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Laboratory of Structural Organic Chemistry-Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
35
|
Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer 2023; 22:46. [PMID: 36882769 PMCID: PMC9990368 DOI: 10.1186/s12943-023-01732-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 204.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Cuproptosis was a copper-dependent and unique kind of cell death that was separate from existing other forms of cell death. The last decade has witnessed a considerable increase in investigations of programmed cell death, and whether copper induced cell death was an independent form of cell death has long been argued until mechanism of cuproptosis has been revealed. After that, increasing number of researchers attempted to identify the relationship between cuproptosis and the process of cancer. Thus, in this review, we systematically detailed the systemic and cellular metabolic processes of copper and the copper-related tumor signaling pathways. Moreover, we not only focus on the discovery process of cuproptosis and its mechanism, but also outline the association between cuproptosis and cancers. Finally, we further highlight the possible therapeutic direction of employing copper ion ionophores with cuproptosis-inducing functions in combination with small molecule drugs for targeted therapy to treat specific cancers.
Collapse
Affiliation(s)
- Jiaming Xie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| |
Collapse
|
36
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
37
|
Bartz FM, Beirow K, Wurm K, Baecker D, Link A, Bednarski PJ. A graphite furnace-atomic absorption spectrometry-based rubidium efflux assay for screening activators of the K v 7.2/3 channel. Arch Pharm (Weinheim) 2023; 356:e2200585. [PMID: 36748851 DOI: 10.1002/ardp.202200585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
For the characterization of Kv 7.2/3 channel activators, several analytical methods are available that vary in effort and cost. In addition to the technically elaborate patch-clamp method, which serves as a reference method, there exist several medium to high-throughput screening methods including a rubidium efflux flame-atomic absorption spectrometry (F-AAS) assay and a commercial thallium uptake fluorescence-based assay. In this study, the general suitability of a graphite furnace atomic absorption spectrometry (GF-AAS)-based rubidium efflux assay as a screening method for Kv 7.2/3 channel activators was demonstrated. With flupirtine serving as a reference compound, 16 newly synthesizedcompounds and the known Kv 7.2/3 activator retigabine were first classified as either active or inactive by using the GF-AAS-based rubidium (Rb) efflux assay. Then, the results were compared with a thallium (Tl) uptake fluorescence-based fluorometric imaging plate reader (FLIPR) potassium assay. Overall, 16 of 17 compounds were classified by the GF-AAS-based assay in agreement with their channel-activating properties determined by the more expensive Tl uptake, fluorescence-based assay. Thus, the performance of the GF-AAS-based Rb assay for primary drug screening of Kv 7.2/3-activating compounds was clearly demonstrated, as documented by the calculated Z'-factor of the GF-AAS-based method. Moreover, method development included optimization of the coating of the microtiter plates and the washing procedure, which extended the range of this assay to poorly adherent cells such as the HEK293 cells used in this study.
Collapse
Affiliation(s)
- Frieda-Marie Bartz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Kristin Beirow
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Konrad Wurm
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Exploring the potential of [F. oxysporum/PSCO11Cu7]BNC as a novel copper-Fusarium oxysporum bio-hybrid nanocomposite for wastewater treatment. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
39
|
Pinheiro AC, Nunes IJ, Ferreira WV, Tomasini PP, Trindade C, Martins CC, Wilhelm EA, Oliboni RDS, Netz PA, Stieler R, Casagrande ODL, Saffi J. Antioxidant and Anticancer Potential of the New Cu(II) Complexes Bearing Imine-Phenolate Ligands with Pendant Amine N-Donor Groups. Pharmaceutics 2023; 15:pharmaceutics15020376. [PMID: 36839698 PMCID: PMC9960331 DOI: 10.3390/pharmaceutics15020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Cu(II) complexes bearing NNO-donor Schiff base ligands (2a, b) have been synthesized and characterized. The single crystal X-ray analysis of the 2a complex revealed that a mononuclear and a dinuclear complex co-crystallize in the solid state. The electronic structures of the complexes are optimized by Density Functional Theory (DFT) calculations. The monomeric nature of 2a and 2b species is maintained in solution. Antioxidant activities of the ligands (1a, b) and Cu(II) complexes (2a, b) were determined by in vitro assays such as 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH.) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS+). Our results demonstrated that 2a showed better antioxidant activity. MTT assays were performed to assess the toxicity of ligands and Cu(II) complexes in V79 cells. The antiproliferative activity of compounds was tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and SW620 (colorectal carcinoma) and on MRC-5 (normal lung fibroblast). All compounds showed high cytotoxicity in the all-cell lines but showed no selectivity for tumor cell lines. Antiproliferative activity by clonogenic assay 2b showed a more significant inhibitory effect on the MCF-7 cell lines than on MRC-5. DNA damage for the 2b compound at 10 µM concentration was about three times higher in MCF-7 cells than in MRC-5 cells.
Collapse
Affiliation(s)
- Adriana Castro Pinheiro
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ianka Jacondino Nunes
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Wesley Vieira Ferreira
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Cristiano Trindade
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Carolina Cristóvão Martins
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Robson da Silva Oliboni
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paulo Augusto Netz
- Grupo de Química Teórica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Rafael Stieler
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Correspondence:
| |
Collapse
|
40
|
Shi X, Li Y, Jia M, Zhang Z, Huang L, Zhang M, Xun Q, Jiang D, Liu Y. A novel copper chelator for the suppression of colorectal cancer. Drug Dev Res 2023; 84:312-325. [PMID: 36658741 DOI: 10.1002/ddr.22034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Copper ions play a crucial role in the progression of cancers. Tumor tissue is rich in copper ions, and copper chelators could potentially scavenge these copper ions and thus exert an antitumor effect. In this study, we report the synthesis of a novel thieno[3,2-c]pyridine compound we have called "JYFY-001" that can act as the copper chelator thanks to the inclusion of an N-(pyridin-2-yl)acetamide moiety that targets copper ions. JYFY-001 potently inhibited cancer proliferation, inducing cell apoptosis and impairing the extracellular acidification rate and oxygen consumption rate of colorectal cancer (CRC) cells. JYFY-001 also inhibited the growth of a CRC-transplanted tumor in a dose-dependent manner, inducing apoptosis of the tumor cells and promoting the infiltration of lymphocytes in the CRC-transplanted tumor tissues. JYFY-001 also enhanced the antitumor effects of the programmed cell death protein 1 (PD-1) inhibitor. The relatively benign nature of JYFY-001 was demonstrated by the effect on normal cell viability and acute toxicity tests in mice. Our findings suggest that JYFY-001 is a prospective copper chelator to be used as a targeted drug and a synergist of immunotherapy for CRC treatments.
Collapse
Affiliation(s)
- Xiaolong Shi
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mengting Jia
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Zhixin Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Lunhua Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Miaomiao Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qingqing Xun
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Di Jiang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yanrong Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
41
|
Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M, Guo J, Peng D, Wang M, Men L, Huang B, Lv J, Lin L. ATF3/SPI1/SLC31A1 Signaling Promotes Cuproptosis Induced by Advanced Glycosylation End Products in Diabetic Myocardial Injury. Int J Mol Sci 2023; 24:ijms24021667. [PMID: 36675183 PMCID: PMC9862315 DOI: 10.3390/ijms24021667] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Cuproptosis resulting from copper (Cu) overload has not yet been investigated in diabetic cardiomyopathy (DCM). Advanced glycosylation end products (AGEs) induced by persistent hyperglycemia play an essential role in cardiotoxicity. To clarify whether cuproptosis was involved in AGEs-induced cardiotoxicity, we analyzed the toxicity of AGEs and copper in AC16 cardiomyocytes and in STZ-induced or db/db-diabetic mouse models. The results showed that copper ionophore elesclomol induced cuproptosis in cardiomyocytes. It was only rescued by copper chelator tetrathiomolybdate rather than by other cell death inhibitors. Intriguingly, AGEs triggered cardiomyocyte death and aggravated it when incubated with CuCl2 or elesclomol-CuCl2. Moreover, AGEs increased intracellular copper accumulation and exhibited features of cuproptosis, including loss of Fe-S cluster proteins (FDX1, LIAS, NDUFS8 and ACO2) and decreased lipoylation of DLAT and DLST. These effects were accompanied by decreased mitochondrial oxidative respiration, including downregulated mitochondrial respiratory chain complex, decreased ATP production and suppressed mitochondrial complex I and III activity. Additionally, AGEs promoted the upregulation of copper importer SLC31A1. We predicted that ATF3 and/or SPI1 might be transcriptional factors of SLC31A1 by online databases and validated that by ATF3/SPI1 overexpression. In diabetic mice, copper and AGEs increases in the blood and heart were observed and accompanied by cardiac dysfunction. The protein and mRNA profile changes in diabetic hearts were consistent with cuproptosis. Our findings showed, for the first time, that excessive AGEs and copper in diabetes upregulated ATF3/SPI1/SLC31A1 signaling, thereby disturbing copper homeostasis and promoting cuproptosis. Collectively, the novel mechanism might be an alternative potential therapeutic target for DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jiagao Lv
- Correspondence: (J.L.); or (L.L.); Tel.: +86-13971600239 (J.L.); +86-18971097627 (L.L.)
| | - Li Lin
- Correspondence: (J.L.); or (L.L.); Tel.: +86-13971600239 (J.L.); +86-18971097627 (L.L.)
| |
Collapse
|
42
|
Robison ATR, Sturrock GR, Zaengle-Barone JM, Wiebelhaus N, Dharani A, Williams IG, Fitzgerald MC, Franz KJ. Analysis of copper-induced protein precipitation across the E. coli proteome. Metallomics 2023; 15:mfac098. [PMID: 36549662 PMCID: PMC9830969 DOI: 10.1093/mtomcs/mfac098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Metal cations have been exploited for their precipitation properties in a wide variety of studies, ranging from differentiating proteins from serum and blood to identifying the protein targets of drugs. Despite widespread recognition of this phenomenon, the mechanisms of metal-induced protein aggregation have not been fully elucidated. Recent studies have suggested that copper's (Cu) ability to induce protein aggregation may be a main contributor to Cu-induced cell death. Here, we provide the first proteome-wide analysis of the relative sensitivities of proteins across the Escherichia coli proteome to Cu-induced aggregation. We utilize a metal-induced protein precipitation (MiPP) methodology that relies on quantitative bottom-up proteomics to define the metal concentration-dependent precipitation properties of proteins on a proteomic scale. Our results establish that Cu far surpasses other metals in promoting protein aggregation and that the protein aggregation is reversible upon metal chelation. The bulk of the Cu bound in the protein aggregates is Cu1+, regardless of the Cu2+ source. Analysis of our MiPP data allows us to investigate underlying biophysical characteristics that determine a protein's sensitivity to Cu-induced aggregation, which is independent of the relative concentration of protein in the lysate. Overall, this analysis provides new insights into the mechanism behind Cu cytotoxicity, as well as metal cation-induced protein aggregation.
Collapse
Affiliation(s)
- Amy T R Robison
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | - Azim Dharani
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
43
|
Yang Y, Liang S, Geng H, Xiong M, Li M, Su Q, Jia F, Zhao Y, Wang K, Jiang J, Qin S, Li X. Proteomics revealed the crosstalk between copper stress and cuproptosis, and explored the feasibility of curcumin as anticancer copper ionophore. Free Radic Biol Med 2022; 193:638-647. [PMID: 36395954 DOI: 10.1016/j.freeradbiomed.2022.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
As an essential micronutrient element in organisms, copper controls a host of fundamental cellular functions. Recently, copper-dependent cell growth and proliferation have been defined as "cuproplasia". Conversely, "cuproptosis" represents copper-dependent cell death, in a nonapoptotic manner. So far, a series of copper ionophores have been developed to kill cancer cells. However, the biological response mechanism of copper uptake has not been systematically analyzed. Based on quantitative proteomics, we revealed the crosstalk between copper stress and cuproptosis in cancer cells, and also explored the feasibility of curcumin as anticancer copper ionophore. Copper stress not only couples with cuproptosis, but also leads to reactive oxygen species (ROS) stress, oxidative damage and cell cycle arrest. In cancer cells, a feedback cytoprotection mechanism involving cuproptosis mediators was discovered. During copper treatment, the activation of glutamine transporters and the loss of Fe-S cluster proteins are the facilitators and results of cuproptosis, respectively. Through copper depletion, glutathione (GSH) blocks the cuproptosis process, rescues the activation of glutamine transporters, and prevents the loss of Fe-S cluster proteins, except for protecting cancer cells from apoptosis, protein degradation and oxidative damage. In addition, the copper ionophore curcumin can control the metabolisms of lipids, RNA, NADH and NADPH in colorectal cancer cells, and also up-regulates positive cuproptosis mediators. This work not only established the crosstalk between copper stress and cuproptosis, but also discolored the suppression and acceleration of cuproptosis by GSH and curcumin, respectively. Our results are significant for understanding cuproptosis process and developing novel anticancer reagents based on cuproptosis.
Collapse
Affiliation(s)
- Ying Yang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, PR China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, Hubei, PR China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, PR China
| | - Hongen Geng
- School of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, PR China
| | - Mengmeng Xiong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, PR China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, Hubei, PR China
| | - Man Li
- School of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, PR China
| | - Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, PR China
| | - Fang Jia
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, PR China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, Hubei, PR China
| | - Yimei Zhao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, PR China.
| | - Kai Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, PR China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, Hubei, PR China
| | - Jun Jiang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, PR China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, Hubei, PR China
| | - Si Qin
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, PR China.
| | - Xiang Li
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, PR China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
44
|
Yuan Y, Fu M, Li N, Ye M. Identification of immune infiltration and cuproptosis-related subgroups in Crohn's disease. Front Immunol 2022; 13:1074271. [PMID: 36466876 PMCID: PMC9713932 DOI: 10.3389/fimmu.2022.1074271] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Crohn's disease (CD) is a type of heterogeneous, dysfunctional immune-mediated intestinal chronic and recurrent inflammation caused by a variety of etiologies. Cuproptosis is a newly discovered form of programmed cell death that seems to contribute to the advancement of a variety of illnesses. Consequently, the major purpose of our research was to examine the role of cuproptosis-related genes in CD. Methods We obtained two CD datasets from the gene expression omnibus (GEO) database, and immune cell infiltration was created to investigate immune cell dysregulation in CD. Based on differentially expressed genes (DEGs) and the cuproptosis gene set, differentially expressed genes of cuproptosis (CuDEGs) were found. Then, candidate hub cuproptosis-associated genes were found using machine learning methods. Subsequently, using 437 CD samples, we explored two distinct subclusters based on hub cuproptosis-related genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Gene set variation analysis (GSVA) and immune infiltration analysis studies were also used to assess the distinct roles of the subclusters. Results Overall, 25 CuDEGs were identified, including ABCB6, BACE1, FDX1, GLS, LIAS, MT1M, PDHA1, etc. And most CuDEGs were expressed at lower levels in CD samples and were negatively related to immune cell infiltration. Through the machine learning algorithms, a seven gene cuproptosis-signature was identified and two cuproptosis-related subclusters were defined. Cluster-specific differentially expressed genes were found only in one cluster, and functional analysis revealed that they were involved in several immune response processes. And the results of GSVA showed positive significant enrichment in immune-related pathways in cluster A, while positive significant enrichment in metabolic pathways in cluster B. In addition, an immune infiltration study indicated substantial variation in immunity across different groups. Immunological scores were higher and immune infiltration was more prevalent in Cluster A. Conclusion According to the current research, the cuproptosis phenomenon occurs in CD and is correlated with immune cell infiltration and metabolic activity. This information indicates that cuproptosis may promote CD progression by inducing immunological response and metabolic dysfunction. This research has opened new avenues for investigating the causes of CD and developing potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Mingyue Fu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Na Li
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Mei Ye,
| |
Collapse
|
45
|
Hu H, Xu Q, Mo Z, Hu X, He Q, Zhang Z, Xu Z. New anti-cancer explorations based on metal ions. J Nanobiotechnology 2022; 20:457. [PMID: 36274142 PMCID: PMC9590139 DOI: 10.1186/s12951-022-01661-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022] Open
Abstract
Due to the urgent demand for more anti-cancer methods, the new applications of metal ions in cancer have attracted increasing attention. Especially the three kinds of the new mode of cell death, including ferroptosis, calcicoptosis, and cuproptosis, are of great concern. Meanwhile, many metal ions have been found to induce cell death through different approaches, such as interfering with osmotic pressure, triggering biocatalysis, activating immune pathways, and generating the prooxidant effect. Therefore, varieties of new strategies based on the above approaches have been studied and applied for anti-cancer applications. Moreover, many contrast agents based on metal ions have gradually become the core components of the bioimaging technologies, such as MRI, CT, and fluorescence imaging, which exhibit guiding significance for cancer diagnosis. Besides, the new nano-theranostic platforms based on metal ions have experimentally shown efficient response to endogenous and exogenous stimuli, which realizes simultaneous cancer therapy and diagnosis through a more controlled nano-system. However, most metal-based agents have still been in the early stages, and controlled clinical trials are necessary to confirm or not the current expectations. This article will focus on these new explorations based on metal ions, hoping to provide some theoretical support for more anti-cancer ideas.
Collapse
Affiliation(s)
- Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Xiaoxi Hu
- College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Qianyuan He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| |
Collapse
|
46
|
Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B 2022; 10:6296-6306. [PMID: 35904024 DOI: 10.1039/d2tb01150f] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based chemotherapy is widely used to treat various cancers. However, exogenous platinum is likely to cause severe side effects and drug resistance induced by upregulated glutathione (GSH) in cancer cells poses a threat to the management of cancer progression and recurrence. Anticancer copper-organic complexes are excellent candidates to substitute platinum-based chemotherapeutics, exhibiting lower systemic toxicity and even overcoming platinum-based chemotherapy resistance. Here, we report the GSH-resistance of copper(II) bis(diethyldithiocarbamate) (CuET) and its reversal of cisplatin resistance in non-small-cell lung cancer via cuproptosis. Electrochemistry and UV-vis spectroscopy studies demonstrate that CuET possesses a lower reduction potential and the reaction inertness with GSH. Importantly, CuET overcomes the drug resistance of A549/DDP cells and the anticancer effect is hardly affected by intracellular GSH levels. To improve the solubility and bioavailability, bovine serum albumin-stabilized CuET nanoparticles (NPs) are prepared and they have a high drug loading content of 27.5% and excellent physiological stability. In vitro studies manifest that CuET NPs augment the distributions in the cytosol and cytoskeleton, inducing cell death via cuproptosis in A549/DDP cells, which is distinctly different from the apoptosis pattern induced by cisplatin. In vivo antitumor evaluation shows that the nanomedicine has superior biosafety and potent antitumor activity in a cisplatin-resistant tumor model. Our study suggests that copper-organic complex-based nanosystems could be a powerful toolbox to tackle the platinum-based drug resistance and systemic toxicity concerns.
Collapse
Affiliation(s)
- Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
47
|
Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules 2022; 27:4708. [PMID: 35897885 PMCID: PMC9329979 DOI: 10.3390/molecules27154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India;
| | - Abdulhameed F. Alkhateeb
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
48
|
Liu QY, Qi YY, Cai DH, Liu YJ, He L, Le XY. Sparfloxacin - Cu(II) - aromatic heterocyclic complexes: synthesis, characterization and in vitro anticancer evaluation. Dalton Trans 2022; 51:9878-9887. [PMID: 35713093 DOI: 10.1039/d2dt00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new copper(II) complexes of sparfloxacin (sf), [Cu(Hsf)(HPB)(H2O)](ClO4)2 (1) and [Cu(Hsf)(PBT)(H2O)](ClO4)2 (2) (where HPB = 2-(2'-pyridyl)benzimidazole and PBT = 2-(4'-pyridyl) benzothiazole), have been synthesized and characterized by physicochemical and spectroscopic techniques. The oil-water partition coefficient (log P) values of complexes 1 and 2 were 1.47 and 1.71, respectively. By studying the interaction between the complexes and DNA, it was found that the complexes could bind to DNA through an intercalation mode. Moreover, both complexes were evaluated for antitumor activity, revealing that the complexes displayed good inhibitory activity toward the tested cancer cell lines (human lung carcinoma A549 cells, human hepatocellular carcinoma Bel-7402 cells and human esophageal carcinoma Eca-109 cells), but showed relatively low toxicity against normal human hepatic LO2 cells. In particular, the antitumor mechanism of the complexes on Eca-109 cells was investigated by morphological analysis, apoptosis analysis and determination of cell cycle arrest, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and release of cytochrome c and Ca2+. The results demonstrated that the complexes could induce loss of intracellular mitochondrial functions and increase of ROS levels, which led to an increase of Ca2+ levels and the release of cytochrome c into the cytoplasm. In addition, the cell cycle was arrested in the G2/M phase, and western blot analysis showed that the caspase family was activated. These results fully proved that the complexes could induce apoptosis through DNA damage and loss of mitochondrial functions, accompanied by the regulation of endogenous proteins.
Collapse
Affiliation(s)
- Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yong-Yu Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
49
|
Yamada K, Deb A, Shoba VM, Lim D, Maji B, Modell AE, Choudhary A. Rational Design of Silicon-Based Zinc Ionophores. Angew Chem Int Ed Engl 2022; 61:e202201698. [PMID: 35385189 DOI: 10.1002/anie.202201698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 01/24/2023]
Abstract
Ionophores transport ions across biological membranes and have wide-ranging applications, but a platform for their rapid development does not exist. We report a platform for developing ionophores from metal-ion chelators, which are readily available with wide-ranging affinities and specificities, and structural data that can aid rational design. Specifically, we fine-tuned the binding affinity and lipophilicity of a ZnII -chelating ligand by introducing silyl groups proximal to the ZnII -binding pocket, which generated ionophores that performed better than most of the currently known ZnII ionophores. Furthermore, these silicon-based ionophores were specific for ZnII over other metals and exhibited better antibacterial activity and less toxicity to mammalian cells than several known ZnII ionophores, including pyrithione. These studies establish rational design principles for the rapid development of potent and specific ionophores and a new class of antibacterial agents.
Collapse
Affiliation(s)
- Kei Yamada
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Veronika M Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ashley E Modell
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
50
|
Yamada K, Deb A, Shoba VM, Lim D, Maji B, Modell AE, Choudhary A. Rational Design of Silicon‐Based Zinc Ionophores. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kei Yamada
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Veronika M. Shoba
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Ashley E. Modell
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|