1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Zhou F, Pan Y, Hung WY, Chen CF, Chen KM, Li JL, Yiu SM, Liu YM, Chou PT, Chi Y, Lau KC. Tetradentate Pt(II) Complexes Based on Xylenylamino Linked Dual Pyrazolate Chelates for Organic Light Emitting Diodes. Chemistry 2024; 30:e202402636. [PMID: 39109460 DOI: 10.1002/chem.202402636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Indexed: 10/04/2024]
Abstract
In this work, we report the syntheses of three Pt(II) emitters, namely, Pt4N1, Pt4N2, and Pt4N3, to which their tetradentate chelates were assembled by linking two pyrazolate chelates with a single xylenylamino entity. Functionalization of Pt4N1 was achieved upon the addition of electronegative CF3 substituent on pyridinyl groups and switching to more electron-deficient pyrazinyl groups in giving Pt4N2 and Pt4N3, respectively. The vertically arranged xylenylamino entity has effectively suppressed the inter-molecular π-π stacking and Pt⋅⋅⋅Pt interaction, as shown by the single crystal X-ray structural analyses. Upon fabrication of OLED devices, Pt4N2 and Pt4N3 based devices delivered efficient cyan and green emission, with an EQEmax of 15.2 % and 11.2 %, respectively, affirming the successfulness of the tetradentate chelating strategy.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Wen-Yi Hung
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ching-Feng Chen
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Kui-Ming Chen
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Jian-Liang Li
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Yi-Mei Liu
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yun Chi
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| |
Collapse
|
3
|
Sendh J, Baruah JB. Sequential effects of two cations on the fluorescence emission of a coordination polymer with Zn 4O core in node. RSC Adv 2024; 14:31598-31606. [PMID: 39376515 PMCID: PMC11457270 DOI: 10.1039/d4ra06309k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Distinct changes in the fluorescence emissions of free ligand 5-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)isophthalic acid (H2NAPHISO) than a 2D-zinc-coordination polymer of it, caused by sequential interactions with different sets of binary cations were observed. The coordination polymer having unsymmetrical Zn4O core of tetranuclear zinc-node could be dispersed in dimethylformamide without its degradation. The coordination polymer had an emission peak at 435 nm (quantum yield = 0.082) which was selectively quenched by adding Fe2+ ions. Based on this quenching, the Fe2+ ions in aqueous solution could be detected with a detection limit 42.57 nM. The metal ions such as Li+, Na+, Cd2+, Hg2+, Al3+ did not interfere in the detection; but each of these ions together with Fe2+ ions showed characteristic shift of the emission spectra. The H2NAPHISO in dimethyl formamide was non-fluorescent, but showed emission at 452 nm upon addition of Cd2+ or Zn2+ ions. This new emission of H2NAPHISO caused by zinc or cadmium ions was not quenched by Fe2+ ions. Various cations had affected the emission of the H2NAPHISO with Zn2+ which was much different from the corresponding changes caused by the same ion on the emission of the coordination polymer. For example, the Mn2+ and Zn2+ ions together in a solution of the ligand showed a broad emission spectrum spreading over 380-450 nm, but ions Sn2+ and Zn2+ together had showed emission at a shorter wavelength (380 nm). These allowed to modulate the emission of the ligand by binary combination of metal ions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| |
Collapse
|
4
|
Sica AV, Hua AS, Coffey B, Anderson KP, Coffey LA, Nguyen BT, Spokoyny AM, Caram JR. Measuring the total photon economy of molecular species through fluorescent optical cycling. Phys Chem Chem Phys 2024; 26:21850-21860. [PMID: 39102276 DOI: 10.1039/d4cp02040e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The total photon economy of a chromophore molecular species represents a study of how absorbed photons partition among various electronic states and ultimately dissipate their excited energy into the environment. A complete accounting of these rates and pathways would allow one to optimize chromophores and their environments for applications. We describe a technique, fluorescent optical cycling (FOC), which allows for simultaneous observation of prompt and delayed emission during and after multiple pulsed excitation, ultimately granting access to multi-state photophysical rates. We exercise control over the excitation pulse train, which allows us to "optically shelve" long-lived intermediate states without the use of diode or flashlamp excitation. By recording all photon arrival times in the visible and shortwave infrared, we can simultaneously resolve fluorescence, phosphorescence, and singlet oxygen sensitization in a single experiment. We use FOC to examine the photophysics of dual emitting bis(di-R-phosphino)alkanethiophene-pyridine-platinum ([Pt(thpy)(dppm)]+) under different solvation conditions, revealing changes in intersystem crossing and phosphorescent rates induced by the external heavy atom effect. Coupling FOC with decay associated Fourier spectroscopy (DAFS), we demonstrate simultaneous correlated spectral and lifetime data in this dual emitting complex. Finally, FOC combined with superconducting nanowire single photon detectors (SNSPDs) allows us to observe the shortwave infrared region (SWIR) phosphorescence of singlet oxygen sensitized by Rose Bengal. Overall, FOC provides a powerful tool to simultaneously study multiple photophysics across timescales, even in weakly populated electronic states.
Collapse
Affiliation(s)
- Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| | - Belle Coffey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| | - Kierstyn P Anderson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| | - Lia A Coffey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| | - Benjamin T Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, USA.
| |
Collapse
|
5
|
Deng H, Wang T, Chen Y, Dou K, Liu X, Zhao C, Zhan H, Yang C, Qin C, Cheng Y. Enhanced Thermally Activated Delayed Fluorescence by Sole Coordination: From an Organic Molecule to Its Zinc Complex. J Phys Chem Lett 2024; 15:7003-7010. [PMID: 38949564 DOI: 10.1021/acs.jpclett.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A BPAPTPyC organic molecule containing a sandwich structural chromophore is designed and synthesized to produce blue thermally activated delayed fluorescence (TADF). The chromophore is composed of two di(4-tert-butylphenyl)amino donors and one inserted terpyridyl acceptor hitched at positions 1, 8, and 9 of a single carbazole via the p-phenylene group, in which the multiple space π-π interactions between the donor and acceptor enable the molecule to possess the TADF feature with a high energy emission at 470 nm but a low photoluminescence quantum yield (PLQY) and a small proportion of the delayed component. In contrast, the corresponding Zn(BPAPTPyC)Cl2 complex has a high PLQY and a short lifetime with a red-shifted emission due to the enhanced rigidity and electron accepting ability of the terpyridyl group from coordination. A solution-processed organic light-emitting diode (OLED) based on the complex achieves a maximum external quantum efficiency (EQE) of 17.9% with an emission peak at 585 nm, while an OLED of the organic molecule produces blue emission with a maximum EQE of 2.7%.
Collapse
Affiliation(s)
- Hao Deng
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuannan Chen
- College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Kunkun Dou
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuejing Liu
- Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Chenyang Zhao
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Ruan Z, Yang J, Li Y, Zhang KY. Dual-Emissive Iridium(III) Complexes and Their Applications in Biological Sensing and Imaging. Chembiochem 2024; 25:e202400094. [PMID: 38488304 DOI: 10.1002/cbic.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Phosphorescent iridium(III) complexes are widely recognized for their unique properties in the excited triplet state, making them crucial for various applications including biological sensing and imaging. Most of these complexes display single phosphorescence emission from the lowest-lying triplet state after undergoing highly efficient intersystem crossing (ISC) and ultrafast internal conversion (IC) processes. However, in cases where these excited-state processes are restricted, the less common phenomenon of dual emission has been observed. This dual emission phenomenon presents an opportunity for developing biological probes and imaging agents with multiple emission bands of different wavelengths. Compared to intensity-based biosensing, where the existence and concentration of an analyte are indicated by the brightness of the probe, the emission profile response involves modifications in emission color. This enables quantification by utilizing the intensity ratio of different wavelengths, which is self-calibrating and unaffected by the probe concentration and excitation laser power. Moreover, dual-emissive probes have the potential to demonstrate distinct responses to multiple analytes at separate wavelengths, providing orthogonal detection capabilities. In this concept, we focus on iridium(III) complexes displaying fluorescence-phosphorescence or phosphorescence-phosphorescence dual emission, along with their applications as biological probes for sensing and imaging.
Collapse
Affiliation(s)
- Zhipeng Ruan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jun Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Lee KW, Wan Y, Huang Z, Zhao Q, Li S, Lee CS. Organic Optoelectronic Materials: A Rising Star of Bioimaging and Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306492. [PMID: 37595570 DOI: 10.1002/adma.202306492] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Recently, many organic optoelectronic materials (OOMs), especially those used in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs), are explored for biomedical applications including imaging and photoexcited therapies. In this review, recently developed OOMs for fluorescence imaging, photoacoustic imaging, photothermal therapy, and photodynamic therapy, are summarized. Relationships between their molecular structures, nanoaggregation structures, photophysical mechanisms, and properties for various biomedical applications are discussed. Mainly four kinds of OOMs are covered: thermally activated delayed fluorescence materials in OLEDs, conjugated small molecules and polymers in OSCs, and charge-transfer complexes in OFETs. Based on the OOMs unique optical properties, including excitation light wavelength and exciton dynamics, they are respectively exploited for suitable biomedical applications. This review is intended to serve as a bridge between researchers in the area of organic optoelectronic devices and those in the area of biomedical applications. Moreover, it provides guidance for selecting or modifying OOMs for high-performance biomedical uses. Current challenges and future perspectives of OOMs are also discussed with the hope of inspiring further development of OOMs for efficient biomedical applications.
Collapse
Affiliation(s)
- Ka-Wai Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
8
|
Maity A, Mishra VK, Dolai S, Mishra S, Patra SK. Design, Synthesis, and Characterization of Organometallic BODIPY-Ru(II) Dyads: Redox and Photophysical Properties with Singlet Oxygen Generation Capability†. Inorg Chem 2024; 63:4839-4854. [PMID: 38433436 DOI: 10.1021/acs.inorgchem.3c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A series of Ru(II)-acetylide complexes (Ru1, Ru2, and Ru1m) with alkynyl-functionalized borondipyrromethene (BODIPY) conjugates were designed by varying the position of the linker that connects the BODIPY unit to the Ru(II) metal center through acetylide linkage at either the 2-(Ru1) and 2,6-(Ru2) or the meso-phenyl (Ru1m) position of the BODIPY scaffold. The Ru(II) organometallic complexes were characterized by various spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, CHN, and high-resolution mass spectrometry (HRMS) analyses. The Ru(II)-BODIPY conjugates exhibit fascinating electrochemical and photophysical properties. All BODIPY-Ru(II) complexes exhibit strong absorption (εmax = 29,000-72,000 M-1 cm-1) in the visible region (λmax = 502-709 nm). Fluorescence is almost quenched for Ru1 and Ru2, whereas Ru1m shows the residual fluorescence of the corresponding BODIPY core at 517 nm. The application of the BODIPY-Ru(II) dyads as nonporphyrin-based triplet photosensitizers was explored by a method involving the singlet oxygen (1O2)-mediated photo-oxidation of diphenylisobenzofuran. Effective π-conjugation between the BODIPY chromophore and Ru(II) center in the case of Ru1 and Ru2 was found to be necessary to improve intersystem crossing (ISC) and hence the 1O2-sensitizing ability. In addition, electrochemical studies indicate electronic interplay between the metal center and the redox-active BODIPY in the BODIPY-Ru(II) dyads.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Dolai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
9
|
Zhou W, Zhang Z, Li L, Xu J, Gong Y, Guo S, Liu Y. Three new red neutral and ionic iridium(III) complexes based on the same main ligand and auxiliary ligand but with different counterions for solution-processed organic light-emitting diodes. LUMINESCENCE 2024; 39:e4700. [PMID: 38506122 DOI: 10.1002/bio.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024]
Abstract
Three new neutral and ionic phosphorescent iridium(III) complexes were successfully prepared using 1-(6-methoxynaphthalen-2-yl)isoquinoline as the main ligand, while the auxiliary ligand was 2-(2-1H-imidazolyl)pyridine. Three complexes (Ir1, Ir2, Ir3) showed red emission, peaking at 610, 609, and 615 nm, respectively, and they exhibited good solubility and excellent photophysical properties in different solvents, which is suitable to prepare organic light-emitting diodes (OLEDs) by solution method. Among the three OLEDs prepared by iridium(III) complexes using the solution method, the device based on Ir2 possessed better electroluminescent properties, and its maximum brightness, current efficiency (CE), power efficiency (PE), and the maximum external quantum efficiency (EQE) were 507.2 cd m-2 , 0.14 cd A-1 , 0.06 lm W-1 , and 0.14%. respectively, proving that the three complexes have a certain of potential for OLEDs applications and are expected to expand the applications of iridium(III) complexes for OLEDs.
Collapse
Affiliation(s)
- Weiqiao Zhou
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, China
| | - Zihao Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, China
| | - Lixiang Li
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, China
| | - Jing Xu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, China
| | - Yongyang Gong
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, China
| | - Song Guo
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, China
| | - Yuanli Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, China
| |
Collapse
|
10
|
Andelescu AA, Candreva A, Popa E, Visan A, Cretu C, La Deda M, Szerb EI. Role of the Environment Polarity on the Photophysical Properties of Mesogenic Hetero-Polymetallic Complexes. Molecules 2024; 29:750. [PMID: 38398502 PMCID: PMC10893215 DOI: 10.3390/molecules29040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
New hetero-polynuclear coordination complexes based on a pentacoordinated Zn(II) metal center with tridentate terpyridine-based ligands and monoanionic gallates functionalized with long alkyl chains containing ferrocene units were designed, synthesized and characterized using spectroscopic and analytical methods. The complexes are mesomorphic, exhibiting columnar hexagonal mesophases. The photophysical properties in a solution and in an ordered condensed state were accurately investigated and the influence of the polarity of the solvent was evidenced.
Collapse
Affiliation(s)
- Adelina A. Andelescu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), UOS Cosenza, 87036 Rende, Italy
| | - Evelyn Popa
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Alexandru Visan
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), UOS Cosenza, 87036 Rende, Italy
| | - Elisabeta I. Szerb
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (A.A.A.); (E.P.); (A.V.); (C.C.)
| |
Collapse
|
11
|
Yan J, Qu ZH, Zhou DY, Yiu SM, Qin Y, Zhou X, Liao LS, Chi Y. Bis-tridentate Ir(III) Phosphors and Blue Hyperphosphorescence with Suppressed Efficiency Roll-Off at High Brightness. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3809-3818. [PMID: 38211320 DOI: 10.1021/acsami.3c16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Narrowband blue emitters are indispensable in achieving ultrahigh-definition OLED displays that satisfy the stringent BT 2020 standard. Hereby, a series of bis-tridentate Ir(III) complexes bearing electron-deficient imidazo[4,5-b]pyridin-2-ylidene carbene coordination fragments and 2,6-diaryloxy pyridine ancillary groups were designed and synthesized. They exhibited deep blue emission with quantum yields of up to 89% and a radiative lifetime of 0.71 μs in the DPEPO host matrix, indicating both the high efficiency and excellent energy transfer process from the host to dopant. The OLED based on Irtb1 showed an emission at 468 nm with a maximum external quantum efficiency (EQE) of 22.7%. Moreover, the hyper-OLED with Irtb1 as a sensitizer for transferring energy to terminal emitter v-DABNA exhibited a narrowband blue emission at 472 nm and full width at half-maximum (FWHM) of 24 nm, a maximum EQE of 23.5%, and EQEs of 19.7, 16.1, and 12.9% at a practical brightness of 100, 1000, and 5000 cd/m2, respectively.
Collapse
Affiliation(s)
- Jie Yan
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Zhi-Hao Qu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, China
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, China
| | - Shek-Man Yiu
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yanyan Qin
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, China
| | - Yun Chi
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
12
|
Jaros SW, Sokolnicki J, Siczek M, Smoleński P. Strategy for an Effective Eco-Optimized Design of Heteroleptic Cu(I) Coordination Polymers Exhibiting Thermally Activated Delayed Fluorescence. Inorg Chem 2023. [PMID: 38010323 DOI: 10.1021/acs.inorgchem.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The new series of copper(I) coordination polymers [Cu(N-N)(μ-PTA)]n[PF6]n {N-N = dmbpy (1), bpy (2), ncup (3), and phen (4)} were generated by straightforward reaction in solution or through a mechanochemical route, of [Cu(MeCN)4][PF6] with 1,3,5-triaza-7-phosphaadamantane (PTA) and the corresponding polypyridines, namely, 5,5'-dimethyl-2,2'-bipyridine (dmbpy), 2,2'-bipyridine (bpy), 2,9-dimethyl-1,10-phenanthroline (ncup), and 1,10-phenanthroline (phen). The compounds were obtained as air-stable solids and fully characterized by IR, NMR spectroscopy, and elemental analyses. The molecular structures were confirmed by single-crystal X-ray diffraction analysis (for 1, 2, and 4), revealing infinite one-dimensional (1D) linear chains driven by μ-PTA N,P-linkers. All tested Cu(I) polymeric compounds show emission at room temperature, which was attributed to thermally activated delayed fluorescence (TADF). Evidence of the involvement of the excited singlet state in the emission process is presented. Comparing the photophysical properties of 1 and 2 as well as 3 and 4, of which 1 and 3 have a stiffened structure, by introducing a methyl group to one of the ligands, we demonstrate how TADF properties depend on molecular rigidity. It is shown that stiffening of the structure reduces the flattening distortion around the Cu(I) center in the 3MLCT state. As a result, the ΔE(S1-T1) energy gap becomes smaller and the fluorescence quantum yield increases without significantly extending the emission lifetime. In particular, the ΔE(S1-T1) values for complexes 1 and 3 are among the shortest reported in the scientific literature, 253 and 337 cm-1, and the TADF lifetimes are τ(300 K) = 5.7 and 4.2 μs, respectively. The fluorescence quantum yields for these complexes are measured to be ΦPL(300 K) = 70 and 80%.
Collapse
Affiliation(s)
- Sabina W Jaros
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sokolnicki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
13
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Song C, An L, Wang Q, Zhang H, Li G. Unraveling the Marked Differences of the Excited-State Properties of Arylgold(III) Complexes with C ∧N ∧C Tridentate Ligands. Inorg Chem 2023; 62:15382-15391. [PMID: 37700580 DOI: 10.1021/acs.inorgchem.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three structurally similar gold(III) complexes with C∧N∧C tridentate ligands, [1; C∧N∧C = 2,6-diphenylpyridine], [2; C∧N∧C = 2,6-diphenylpyrazine], and [3; C∧N∧C = 2,6-diphenyltriazine], have been investigated theoretically to rationalize the marked difference in emission behaviors. The geometrical and electronic structures, spectra properties, radiative and nonradiative decay processes, as well as reverse intersystem crossing and reverse internal conversion (RIC) processes were thoroughly analyzed using density functional theory (DFT) and time-dependent DFT calculations. The computed results indicate that there is a small energy difference Δ E T 1 - T 1 ' between the lowest-energy triplet state (T1) and the second lowest-energy triplet state (T1') of complexes 2 and 3, suggesting that the excitons in the T1 state can reach the emissive higher-energy T1' through the RIC process. In addition, the non-emissive T1 states of gold(III) complexes in solution can be ascribed to the easily accessible metal-centered (3MC) state or possibly tunneling into high-energy vibrationally excited singlet states for nonradiative decay. The low efficiency of 3 is attributed to the deactivation pathway via the 3MC state. The present study elucidates the relationship between structure and property of gold(III) complexes featuring C∧N∧C ligands and providing a comprehensive understanding of the significant differences in their luminescence behaviors.
Collapse
Affiliation(s)
- Chongping Song
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Lin An
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Qinggao Wang
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guoqiang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
15
|
Li X, Tu L, Gao M, Li A, Chen Y, Chi W, Zhang D, Duan L, Xie Y, Tang BZ, Li Z. Highly Efficient Blue Organic Light Emitting Diodes Based on Cyclohexane-Fused Quinoxaline Acceptor. J Phys Chem Lett 2023; 14:6982-6989. [PMID: 37523259 DOI: 10.1021/acs.jpclett.3c01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Exploring blue organic light emitting diodes (OLED) is an important but challenging issue. Herein, to achieve blue-shifted emission, cyclohexane is fused to quinoxaline to weaken the electron-withdrawing ability and conjugation degree of the acceptor. As a result, blue to cyan fluorescent emitters of Me-DPA-TTPZ, tBu-DPA-TTPZ, and TPA-TTPZ were designed and synthesized with donors of diphenylamine and triphenylamine, which exhibit high photoluminescence quantum yields and good thermal stability. In OLEDs with emitters of TPA-TTPZ, the sensitized and nonsensitized devices demonstrate deep-blue (449 nm) and blue (468 nm) emission with maximum external quantum efficiency and CIE coordinates of 6.1%, (0.15, 0.10) and 5.1%, (0.17, 0.22), respectively, validating their potential as blue emitters in OLEDs.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Aisen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
| | - Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou 570228, China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ben Zhong Tang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Fermi A, Ceroni P, Laskar IR. Aggregation induced luminescence of metal complexes: advances and applications. Dalton Trans 2023. [PMID: 37522161 DOI: 10.1039/d3dt90126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Guest editors Andrea Fermi, Paola Ceroni and Inamur Rahaman Laskar introduce this Spotlight Collection: Aggregation induced luminescence of metal complexes.
Collapse
Affiliation(s)
- Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Inamur Rahaman Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
17
|
Yang JG, Feng X, Li N, Li J, Song XF, Li MD, Cui G, Zhang J, Jiang C, Yang C, Li K. Highly efficient and stable thermally activated delayed fluorescent palladium(II) complexes for organic light-emitting diodes. SCIENCE ADVANCES 2023; 9:eadh0198. [PMID: 37315147 DOI: 10.1126/sciadv.adh0198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Transition metal complexes exhibiting thermally activated delayed fluorescence (TADF) remain underdeveloped for organic light-emitting diodes (OLEDs). Here, we describe a design of TADF Pd(II) complexes featuring metal-perturbed intraligand charge-transfer excited states. Two orange- and red-emitting complexes with efficiencies of 82 and 89% and lifetimes of 2.19 and 0.97 μs have been developed. Combined transient spectroscopic and theoretical studies on one complex reveal a metal-perturbed fast intersystem crossing process. OLEDs using the Pd(II) complexes show maximum external quantum efficiencies of 27.5 to 31.4% and small roll-offs down to 1% at 1000 cd m-2. Moreover, the Pd(II) complexes show exceptional operational stability with LT95 values over 220 hours at 1000 cd m-2, benefiting from the use of strong σ-donating ligands and the presence of multiple intramolecular noncovalent interactions beside their short emission lifetimes. This study demonstrates a promising approach for developing efficient and robust luminescent complexes without using the third-row transition metals.
Collapse
Affiliation(s)
- Jian-Gong Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xingyu Feng
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Jiayu Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515031, P. R. China
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Ming-De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515031, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Jingling Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Chenglin Jiang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
18
|
Adranno B, Paterlini V, Smetana V, Bousrez G, Ovchinnikov A, Mudring AV. Enhanced stability and complex phase behaviour of organic-inorganic green-emitting ionic manganese halides. Dalton Trans 2023; 52:6515-6526. [PMID: 37186240 DOI: 10.1039/d2dt03817j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Light-emitting materials based on earth-abundant metals, such as manganese hold great promise as emitters for organic lighting devices. In order to apply such emitter materials and, in particular, to overcome the problem of self-quenching due to cross-relaxation, we investigated a series of tetrabromidomanganate ([MnBr4]2-) salts with bulky tetraalkylphosphonium counter cations [Pnnn]+, namely [Pnnnn]2[MnBr4] (n = 4 (1), 6 (2) and 8 (3)), which can be obtained by a straightforward reaction of the respective phosphonium bromide and MnBr2. Variation of the cation size allows control of the properties of the resulting ionic materials. 1 and 3 qualify as ionic liquids (ILs), where 1 features a melting point of 68 °C, and 3 is liquid at room temperature and even at very low temperatures. Furthermore, 1 and 2 show the formation of higher-ordered thermotropic mesophases. For 1 a transition to a thermodynamically metastable smectic liquid crystalline phase can be observed at room temperature upon reheating from the metastable glassy state; 2 appears to form a plastic crystalline phase at ∼63 °C, which persists up to the melting point of 235 °C. The photoemission is greatly affected by phase behaviour and ion dynamics. A photoluminescence quantum yield of 61% could be achieved, by balancing the increase in Mn2+-Mn2+ separation and reducing self-quenching through increasingly large organic cations which leads to adverse increased vibrational quenching. Compared to analogous ammonium compounds, which have been promoted as ̈inorganic hybrid perovskites̈, the phosphonium salts show superior performance, with respect to photoluminescent quantum yield and thermal and air/humidity stability. As the presented compounds are not sensitive to the atmosphere, in particular moisture, and show strong visible electroluminescence in the green region of light, they are important emitter materials for use in organic light-emitting devices.
Collapse
Affiliation(s)
- Brando Adranno
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
| | - Veronica Paterlini
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
| | - Volodymyr Smetana
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
- Intelligent Advanced Materials, Department of Biological & Chemical Engineering and iNANO, Aarhus University, 8000 Aarhus C, Denmark
| | - Guillaume Bousrez
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
- Intelligent Advanced Materials, Department of Biological & Chemical Engineering and iNANO, Aarhus University, 8000 Aarhus C, Denmark
| | - Alexander Ovchinnikov
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
| | - Anja-Verena Mudring
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
- Intelligent Advanced Materials, Department of Biological & Chemical Engineering and iNANO, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Photoluminescent nickel(II) carbene complexes with ligand-to-ligand charge-transfer excited states. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
20
|
Wang J, Li N, Zhong C, Miao J, Huang Z, Yu M, Hu YX, Luo S, Zou Y, Li K, Yang C. Metal-Perturbed Multiresonance TADF Emitter Enables High-Efficiency and Ultralow Efficiency Roll-Off Nonsensitized OLEDs with Pure Green Gamut. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208378. [PMID: 36534824 DOI: 10.1002/adma.202208378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) emitters based on B- and N-embedded polycyclic aromatics are desirable for ultrahigh-definition organic light-emitting diodes (OLEDs) due to their high photoluminescence quantum yield (PLQY) and narrow bandwidth. But the reverse intersystem crossing (RISC) rates of MR-TADF emitters are usually small, resulting in severe device efficiency roll-off at high brightness. To solve this issue, a sensitizer for the MR-TADF emitter has been required. Herein, a new MR-TADF emitter is developed through coordination of Au with B/N-embedded polycyclic ligand. Benefitting from the Au perturbation, the RISC rate is dramatically accelerated to 2.3 × 107 s-1 , leading to delayed fluorescence lifetime as short as 4.3 µs. Meanwhile, the PLQY of 95% and full width at half maximum of 39 nm (0.18 eV) are essentially unchanged after metal coordination. Therefore, a high PLQY, short delayed fluorescence lifetime, and high color purity are concurrently realized in a single TADF emitter. Accordingly, vacuum-deposited OLEDs exhibit high-performance electroluminescence with a maximum external quantum efficiency (EQE) of 35.8% without sensitization. The EQE is maintained as high as 32.3% at 10 000 cd m-2 . Furthermore, solution-processed OLED based on the emitter also achieves excellent performance with a maximum EQE of 25.7% and a small efficiency roll-off.
Collapse
Affiliation(s)
- Junjie Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Mingxin Yu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yu Xuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Sai Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
21
|
Sadeghian M, Gómez de Segura D, Golbon Haghighi M, Safari N, Lalinde E, Moreno MT. Luminescent Anionic Cyclometalated Organoplatinum (II) Complexes with Terminal and Bridging Cyanide Ligand: Structural and Photophysical Properties. Inorg Chem 2023; 62:1513-1529. [PMID: 36651903 PMCID: PMC9890487 DOI: 10.1021/acs.inorgchem.2c03668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present the synthesis and characterization of two series of mononuclear heteroleptic anionic cycloplatinated(II) complexes featuring terminal cyanide ligand Q+[Pt(C^N)(p-MeC6H4)(CN)]- [C^N = benzoquinolate (bzq), Q+ = K+ 1 and NBu4+ 4; 2-phenylpyridinate (ppy), Q+ = K+ 2 and NBu4+ 5 and 2-(2,4- difluorophenyl)pyridinate (dfppy), Q+ = K+ 3 and NBu4+ 6] and a series of symmetrical binuclear complexes (NBu4)[Pt2(C^N)2(p-MeC6H4)2(μ-CN)] (C^N = bzq 7, ppy 8, dfppy 9). Compounds 5, 6, and 7-9 were further determined by single-crystal X-ray diffraction. There are no apparent intermolecular Pt···Pt interactions owing to the presence of bulky NBu4+ counterion. Slow crystallization of K[Pt(ppy)(p-MeC6H4)(CN)] 2 in acetone/hexane evolves with formation of yellow crystals, which were identified by single-crystal X-ray diffraction methods as the salt complex {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}[Pt(ppy)(p-MeC6H4)(μ-CN)Pt(ppy)(p-MeC6H4)]·2acetone (10), featuring the binuclear anionic unit 8- neutralized by an hybrid inorganic-organometallic coordination polymer {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}+. The photophysical properties of all compounds were recorded in powder, polystyrene film, and solution states with a quantum yield up to 21% for 9 in the solid state. All complexes displayed bright emission in rigid media, and for the interpretation of their absorption and emission properties, density functional theory (DFT) and time-dependent DFT calculations were applied.
Collapse
Affiliation(s)
- Mina Sadeghian
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran,Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - David Gómez de Segura
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | | | - Nasser Safari
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | - Elena Lalinde
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| | - M. Teresa Moreno
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| |
Collapse
|
22
|
Wang J, Li H, Zhu Y, Yang M, Huang J, Zhu X, Yu ZP, Lu Z, Zhou H. Unveiling upsurge of photogenerated ROS: control of intersystem crossing through tuning aggregation patterns. Chem Sci 2023; 14:323-330. [PMID: 36687347 PMCID: PMC9811492 DOI: 10.1039/d2sc06445f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Photo-induced reactive oxygen species (ROS) generation by organic photosensitizers (PSs), which show potential in significant fields such as photodynamic therapy (PDT), are highly dependent on the formation of the excited triplet state through intersystem crossing (ISC). The current research on ISC of organic PSs generally focuses on molecular structure optimization. In this manuscript, the influence of aggregation patterns on ISC was investigated by constructing homologous monomers (S-TPA-PI and L-TPA-PI) and their homologous dimers (S-2TPA-2PI and L-2TPA-2PI). In contrast to J-aggregated S-TPA-PI, S-2TPA-2PI-aggregate forming "end-to-end" stacking through π-π interaction could generate ROS more efficiently, due to a prolonged exciton lifetime and enhanced ISC rate constant (k ISC), which were revealed by femtosecond transient absorption spectroscopy and theoretical calculations. This finding was further validated by the regulation of aggregation patterns induced by host-guest interaction. Moreover, S-2TPA-2PI could target mitochondria and achieve rapid mitophagy to cause more significant cancer cell suppression. Overall, the delicate supramolecular dimerization tactics not only revealed the structure-property relationship of organic PSs but also shed light on the development of a universal strategy in future PDT and photocatalysis fields.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Mingdi Yang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Jing Huang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| |
Collapse
|
23
|
Salla CAM, Farias G, Sturm L, Dechambenoit P, Durola F, Murat A, de Souza B, Bock H, Monkman AP, Bechtold IH. The effect of substituents and molecular aggregation on the room temperature phosphorescence of a twisted π-system. Phys Chem Chem Phys 2023; 25:684-689. [DOI: 10.1039/d2cp04658j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Room temperature phosphorescence of an intrinsically apolar twisted π-system is modulated by polar substituents. Persistent phosphorescence is visible by eye in poder, induced by molecular aggregation.
Collapse
Affiliation(s)
- Cristian A. M. Salla
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Giliandro Farias
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ludmilla Sturm
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Pierre Dechambenoit
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Fabien Durola
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Aydemir Murat
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
- Erzurum Technical University, Department of Fundamental Sciences, Erzurum, Turkey
| | - Bernardo de Souza
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Andrew P. Monkman
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Ivan H. Bechtold
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
24
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
25
|
Lin C, Wang J, Yang K, Liu J, Ma DL, Leung CH, Wang W. Development of a NIR iridium(III) complex for self-calibrated and luminogenic detection of boron trifluoride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121658. [PMID: 35905613 DOI: 10.1016/j.saa.2022.121658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Boron trifluoride (BF3) is a potential environmental pollutant, and excess exposure to it may cause human diseases. However, the sensitive, rapid and accurate detection of BF3 for on-site purposes is still a challenge. In this work, we developed the first NIR iridium(III)-based probe with dual emission and a Stokes shift of 370 nm for self-calibrated and luminogenic detection of BF3. This probe exhibited a strong luminescence enhancement at around 650 nm to BF3 (0-100 μM) with almost no change in luminescence at 475 nm, displaying a 220-fold I650 nm/I475 nm enhancement at 100 μM of BF3 with a detection limit of 0.35 μM. Moreover, the probe showed a fast response time of less than 5 s to BF3 along with an obvious color change under UV irradiation for visual detection. Importantly, the desirable photophysical properties of the iridium(III)-based probe can be harnessed for time-resolved detection of BF3 in the presence of the fluorescence background. The applicability of the probe was further verified in an organic solvent waste-spiked system and on a glass pane. This work will provide a solid basis for the development of sensitive and on-site BF3 sensing toolkits for environmental monitoring.
Collapse
Affiliation(s)
- Chuankai Lin
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Jinbiao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China.
| |
Collapse
|
26
|
Forde A, Lystrom L, Sun W, Kilin D, Kilina S. Improving Near-Infrared Emission of meso-Aryldipyrrin Indium(III) Complexes via Annulation Bridging: Excited-State Dynamics. J Phys Chem Lett 2022; 13:9210-9220. [PMID: 36170557 DOI: 10.1021/acs.jpclett.2c02115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using non-adiabatic dynamics and Redfield theory, we predicted the optical spectra, radiative and nonradiative decay rates, and photoluminescence quantum yields (PLQYs) for In(III) dipyrrin-based complexes (i) with electron-withdrawing (EW) or electron-donating (ED) substituents on the meso-phenyl group and (ii) upon fusing the pyrrin and phenyl rings via saturated or unsaturated bridging to increase structural rigidity. The ED groups lead to a primary π,π* character with a minor intraligand charge transfer (ILCT) contribution to the emissive state, while EW groups increase the ILCT contribution and red-shift the luminescence to ∼1.5 eV. Saturated annulation enhances the PLQYs for complexes with primary π,π* character compared to those of the non-annulated and unsaturated-annulated complexes, while both unsaturated and saturated annulation decrease the PLQYs for complexes with primary ILCT character. We found that PLQY improvement goes beyond a simple concept of structural rigidity. In contrast, the charge transfer character of excitonic states is a key parameter for engineering the NIR emission of In(III) dipyrrin complexes.
Collapse
Affiliation(s)
- Aaron Forde
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Levi Lystrom
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
27
|
Sokolova E, Kinzhalov MA, Smirnov AS, Cheranyova AM, Ivanov DM, Kukushkin VY, Bokach NA. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-covalent Interactions. ACS OMEGA 2022; 7:34454-34462. [PMID: 36188282 PMCID: PMC9520548 DOI: 10.1021/acsomega.2c04110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(μ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).
Collapse
Affiliation(s)
- Elina
V. Sokolova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Andrey S. Smirnov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Anna M. Cheranyova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Vadim Yu. Kukushkin
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute
of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| | - Nadezhda A. Bokach
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| |
Collapse
|
28
|
Yu H, Yu B, Song Y. Advances in the development of Cu(I) complexes as optical oxygen-sensitive probes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hongcui Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Inner Mongolia Minzu University, Tongliao, Inner Mongolia , China
| | - Bo Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yajiao Song
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Inner Mongolia Minzu University, Tongliao, Inner Mongolia , China
| |
Collapse
|
29
|
Zhou F, Gu M, Chi Y. Azolate‐based osmium(II) complexes with luminescence spanning visible and near infrared region. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fan Zhou
- City University of Hong Kong Materials Science and Engineering HONG KONG
| | - Muhua Gu
- City University of Hong Kong Materials Sciences and Engineering HONG KONG
| | - Yun Chi
- City University of Hong Kong Materials Sciences and Engineering 83 Tat Chee Road, Kowloon Kowloon Tong HONG KONG
| |
Collapse
|
30
|
Xu Z, Jiang Y, Shen Y, Tang L, Hu Z, Lin G, Law WC, Ma M, Dong B, Yong KT, Xu G, Tao Y, Chen R, Yang C. A biocompatible photosensitizer with a high intersystem crossing efficiency for precise two-photon photodynamic therapy. MATERIALS HORIZONS 2022; 9:1283-1292. [PMID: 35170613 DOI: 10.1039/d1mh01869h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic efficiency is strongly dependent on the generation rate of reactive oxygen species (ROS) and the tissue penetration depth. Recent advances in materials science reveal that organic molecules with room-temperature phosphorescence (RTP) can potentially serve as efficient photosensitizers owing to their limited dark cytotoxicity and abundant triplet excitons upon light irradiation. In this study, we combine RTP materials with two-photon excitation to improve the ROS generation, therapeutic precision, and tissue penetration of photodynamic therapy. We successfully prepared a novel RTP-based photosensitizer (BF2DCz) with a high photoluminescence quantum yield of 47.7 ± 3% and a remarkable intersystem crossing efficiency of ∼90.3%. By encapsulation into the bovine serum albumin (BSA) matrix, BF2DCz-BSA exhibits excellent biocompatibility, negligible dark toxicity, and superior photostability. Excitation using a femtosecond laser causes BF2DCz-BSA to efficiently generate ROS and precisely exert cell damage at the desired location.
Collapse
Affiliation(s)
- Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Yuanyuan Shen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Lele Tang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Zulu Hu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, 11th YukChoi Rd, Hong Hum, Kowloon, Hong Kong
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, 3688th Nanhai Rd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| |
Collapse
|
31
|
Paderina A, Melnikov A, Slavova S, Sizov V, Gurzhiy V, Petrovskii S, Luginin M, Levin O, Koshevoy I, Grachova E. The Tail Wags the Dog: The Far Periphery of the Coordination Environment Manipulates the Photophysical Properties of Heteroleptic Cu(I) Complexes. Molecules 2022; 27:2250. [PMID: 35408648 PMCID: PMC9000333 DOI: 10.3390/molecules27072250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this work we show, using the example of a series of [Cu(Xantphos)(N^N)]+ complexes (N^N being substituted 5-phenyl-bipyridine) with different peripheral N^N ligands, that substituents distant from the main action zone can have a significant effect on the physicochemical properties of the system. By using the C≡C bond on the periphery of the coordination environment, three hybrid molecular systems with -Si(CH3)3, -Au(PR3), and -C2HN3(CH2)C10H7 fragments were produced. The Cu(I) complexes thus obtained demonstrate complicated emission behaviour, which was investigated by spectroscopic, electrochemical, and computational methods in order to understand the mechanism of energy transfer. It was found that the -Si(CH3)3 fragment connected to the peripheral C≡C bond changes luminescence to long-lived intra-ligand phosphorescence, in contrast to MLCT phosphorescence or TADF. The obtained results can be used for the design of new materials based on Cu(I) complexes with controlled optoelectronic properties on the molecular level, as well as for the production of hybrid systems.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Alexey Melnikov
- Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Sofia Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vladimir Sizov
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Vladislav Gurzhiy
- Institute of Earth Sciences, St. Petersburg University, 199034 St. Petersburg, Russia;
| | - Stanislav Petrovskii
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Maksim Luginin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Oleg Levin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Igor Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland;
| | - Elena Grachova
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| |
Collapse
|
32
|
Yang JG, Song XF, Cheng G, Wu S, Feng X, Cui G, To WP, Chang X, Chen Y, Che CM, Yang C, Li K. Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13539-13549. [PMID: 35286066 DOI: 10.1021/acsami.2c01776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbene-Au-amide (CMA) type complexes, in which the amide and carbene ligands act as an electron donor (D) and acceptor (A), respectively, can exhibit strong delayed fluorescence (DF) from a ligand to ligand charge transfer (LLCT) excited state. Although the coplanar donor-acceptor (D-A) conformation has been suggested to be a crucial factor favoring radiative decay of the charge-transfer excited state, the geometric structural factor underpinning the excited-state mechanism of CMA complexes remains an open question. We herein develop a new class of carbene-Au-carbazolate complexes by introducing large aromatic substituents onto the carbazolate ligand, the presence of which are conceived to restrict the rotation of the Au-N bond and thus confine a twisted D-A conformation in both ground and excited states. A highly twisted D-A orientation is found for the complexes in their crystal structures. Photophysical studies reveal that the twisted conformation induces a decrease in the gap (ΔEST) between the lowest singlet excited state (S1) and the triplet manifold (T1) and thus a faster reverse intersystem crossing (RISC) from T1 to S1 at the expense of oscillator strength for an S1 radiative transition. In comparison with the coplanar analogue, the twisted complexes exhibit comparable or improved DF with quantum yields of up to 94% and short emission lifetimes down to sub-microseconds. The tuning of excited-state dynamics has been well interpreted by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, which unveil much faster RISC rates for twisted complexes. Solution-processed organic light-emitting diodes (OLEDs) based on the new CMA complexes show promising performances with almost negligible efficiency rolloff at a brightness of 1000 cd m-2. This work implies that neither a coplanar ground-state D-A conformation nor a dynamic rotation of the M-N bond is the key to the realization of efficient DF for CMA complexes.
Collapse
Affiliation(s)
- Jian-Gong Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Siping Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xingyu Feng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
33
|
Zheng Z, Zhu ZL, Ho CL, Yiu SM, Lee CS, Suramitr S, Hannongbua S, Chi Y. Stepwise Access of Emissive Ir(III) Complexes Bearing a Multi-Dentate Heteroaromatic Chelate: Fundamentals and Applications. Inorg Chem 2022; 61:4384-4393. [PMID: 35243862 DOI: 10.1021/acs.inorgchem.1c03794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three multi-dentate coordinated chelates LnH2 (n = 1, 2, and 3), comprising a linked 1-(pyridin-2-yl)ethylbenzene and one pyrazolyl pyridine unit and showing either tridentate or tetradentate coordination modes, are successfully designed and synthesized. Dinuclear Ir(III) complexes [Ir(κ4-Ln)(μ-Cl)]2 bearing tetradentate coordinated κ4-Ln chelate (2a, n = 1; 2b, n = 2; 2c, n = 3) were next obtained en route from the respective intermediate [Ir(κ3-LnH)Cl(μ-Cl)]2 bearing the tridentate coordinated κ3-LnH chelate (1a, n = 1; 1b, n = 2; 1c, n = 3). Next, mononuclear Ir(III) complexes Ir(κ4-Ln)(thd) (3a, n = 1; 3b, n = 2; 3c, n = 3) with the tetradentate chelate were obtained upon treatment of 2 with 2,2,6,6-tetramethyl-3,5-heptanedione (thd)H in the presence of K2CO3. Concurrently, methylation of 2c in the presence of MeI and nBu4NCl afforded tridentate Ir(κ3-L3HMe)Cl3 (4) and, next, can be converted to tetradentate Ir(κ4-L3Me)Cl2 (5) by further cyclometalation and HCl elimination in refluxing diethylene glycol monoethyl ether solution. The Ir(III) complexes 3a, 4, and 5 were unambiguously identified using spectroscopic methods, together with single-crystal X-ray structural analyses on Ir(III) derivatives 3a, 4, and 5. Their photophysical and ,electrochemical properties and device fabrication properties were also investigated and compared with results from theoretical studies.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ze-Lin Zhu
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Cheuk-Lam Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P.R. China.,PolyU Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Shek-Man Yiu
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Sing Lee
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Songwut Suramitr
- Department of Chemistry, and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
34
|
Bortoluzzi M, Castro J, Ferraro V. Dual emission from Mn(II) complexes with carbazolyl-substituted phosphoramides. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Chen Y, Xie Y, Li Z. Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular Hydrogen-Bond Interaction in Molecular Array. J Phys Chem Lett 2022; 13:1652-1659. [PMID: 35147440 DOI: 10.1021/acs.jpclett.2c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pure organic room-temperature phosphorescence (RTP) has attracted wide interest due to its unique advantages and promising applications. However, it is still challenging to develop efficient RTP through precise molecular design. In this work, RTP is observed from two simple aromatic acids, nicotinic acid (NA) and isonicotinic acid (INA), in the crystal state. Single crystal structure analysis indicates that an intense hydrogen bond between the pyridine nitrogen atom and the carboxyl group results in zigzag and linear molecular packing modes in NA and INA crystal. From theoretical calculations, the hydrogen bond can effectively promote the intersystem crossing process and stabilize triplet exciton. The identical molecular orientations in the molecular array contribute to the larger dipole moment of INA as compared to that of NA, which should be responsible for the red-shifted photoluminescence and RTP of INA. When the hydrogen bond is destructed by grinding or deprotonation, the RTP decreases sharply, further confirming the crucial role of the hydrogen bond on RTP.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
36
|
Castro J, Ferraro V, Bortoluzzi M. Visible-emitting Cu( i) complexes with N-functionalized benzotriazole-based ligands. NEW J CHEM 2022. [DOI: 10.1039/d2nj03165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate benzotriazole-based N-ligands are suited for the preparation of luminescent heteroleptic copper(i) complexes with noticeable emissions related to 3MLCT transitions.
Collapse
Affiliation(s)
- Jesús Castro
- Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo, Galicia, Spain
| | - Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
37
|
Emashova SK, Titov AA, Smol'yakov AF, Chernyadyev AY, Godovikov IA, Godovikova MI, Dorovatovskii PV, Korlykov AA, Filippov OA, Shubina ES. Emissive silver( i) cyclic trinuclear complexes with aromatic amine donor pyrazolate derivatives: way to efficiency. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01648f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic silver(i) fluorinated pyrazolates containing triphenylamine and carbazole moieties are emissive in solution and the solid state, giving the first example of silver pyrazolate adducts emissive in solution at room temperature.
Collapse
Affiliation(s)
- Sofiia K. Emashova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Aleksei A. Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Alexander F. Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
- Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Yu. Chernyadyev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prospect 31, 119071 Moscow, Russia
| | - Ivan A. Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Maria I. Godovikova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Alexander A. Korlykov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Oleg A. Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119334 Moscow, Russia
| |
Collapse
|
38
|
Kinzhalov MA, Grachova EV, Luzyanin KV. Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01288f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organometallics featuring acyclic diaminocarbene ligands have recently emerged as powerful emitters for use in electroluminescent technologies.
Collapse
Affiliation(s)
- Mikhail A. Kinzhalov
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | - Elena V. Grachova
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | | |
Collapse
|
39
|
Artem'ev AV, Demyanov YV, Rakhmanova MI, Bagryanskaya IY. Pyridylarsine-based Cu(I) complexes showing TADF mixed with fast phosphorescence: a speeding-up emission rate using arsine ligands. Dalton Trans 2021; 51:1048-1055. [PMID: 34935846 DOI: 10.1039/d1dt03759e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Can arsine ligands be preferred over similar phosphines to design Cu(I)-based TADF materials? The present study reveals that arsines can indeed be superior to reach shorter decay times of Cu(I) emitters. This has been exemplified on a series of bis(2-pyridyl)phenylarsine-based complexes [Cu2(Py2AsPh)2X2] (X = Cl, Br, and I), the emission decay times of which are significantly shorter (2-9 μs at 300 K) than those of their phosphine analogs [Cu2(Py2PPh)2X2] (5-33 μs). This effect is caused by two factors: (i) large ΔE(S1-T1) gaps of the arsine complexes (1100-1345 cm-1), thereby phosphorescence is admixed with TADF at 300 K, thus reducing the total emission decay time compared to the TADF-only process by 5-28%; (ii) higher SOC strength of arsenic (ζl = 1202 cm-1) against phosphorus (ζl = 230 cm-1) makes the kr(T1 → S0) rate of the Cu(I)-arsine complexes by 1.3 to 4.2 times faster than that of their phosphine analogs. It is also noteworthy that the TADF/phosphorescence ratio for [Cu2(Py2AsPh)2X2] at 300 K is halogen-regulated and varies in the order: Cl (1 : 1) < Br (3 : 1) ≈ I (3.5 : 1). These findings provide a new insight into the future design of dual-mode (TADF + phosphorescence) emissive materials with reduced lifetimes.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| | - Yan V Demyanov
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| | - Marianna I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
40
|
You C, Wang XQ, Zhou X, Yuan Y, Liao LS, Liao YC, Chou PT, Chi Y. Homoleptic Ir(III) Phosphors with 2-Phenyl-1,2,4-triazol-3-ylidene Chelates for Efficient Blue Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59023-59034. [PMID: 34865484 DOI: 10.1021/acsami.1c17308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this report, we synthesized two series of deep-blue-emitting homoleptic iridium(III) phosphors bearing 1,2,4-triazol-3-ylidene and 5-(trifluoromethyl)-1,2,4-triazol-3-ylidene cyclometalate. Compared with reported synthetic routes using Ag2O as the promoter, herein, we adopted a different strategy to furnish these complexes in high yields. Also, the meridional to facial isomerization was executed in the presence of trifluoroacetic acid. These phosphors were examined using NMR spectroscopies, single-crystal X-ray diffraction studies, and photophysical methods. The results revealed that electron-withdrawing trifluoromethyl substitution on the N-heterocyclic carbene fragment only gave a minor variation of photoluminescence peak wavelengths and a decrease in radiative lifetime but notable reduction in thermal stabilities. The parent 1,2,4-triazol-3-ylidene complexes have been demonstrated to be suitable for use as deep-blue phosphors, with structured emission with the peak max. located at ∼420 nm and with photoluminescence quantum yields in a range of 34.8-42.5% in degassed THF solution at RT. Fabrication of both the phosphorescent organic light-emitting diodes (OLEDs) and phosphor-sensitized OLEDs (or hyperphosphorescence) was successfully conducted, from which the OLED device based on m-tz1 showed a max. external quantum efficiency (EQE) of 10% with CIEx,y coordinates of 0.15, 0.06, while the corresponding hyperphosphorescent OLED using m-tz2 as a sensitizer and t-DABNA as a terminal emitter afforded a significantly improved max. EQE of 19.7%, EL λmax of 468 nm, and FWHM of 31 nm with CIEx,y coordinates of 0.12, 0.13.
Collapse
Affiliation(s)
- Caifa You
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Xue-Qi Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yi Yuan
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu-Chan Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun Chi
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
41
|
Farias G, Salla CAM, Aydemir M, Sturm L, Dechambenoit P, Durola F, de Souza B, Bock H, Monkman AP, Bechtold IH. Halogenation of a twisted non-polar π-system as a tool to modulate phosphorescence at room temperature. Chem Sci 2021; 12:15116-15127. [PMID: 34909153 PMCID: PMC8612374 DOI: 10.1039/d1sc04936d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
Halogenation of a twisted three-fold symmetric hydrocarbon with F, Cl or Br leads to strong modulation of triplet-triplet annihilation and dual phosphorescence, one thermally activated and the other very persistent and visible by eye, with different relative contributions depending on the halide. The room temperature phosphorescence is highly unusual given the absence of lone-pair-contributing heteroatoms. The interplay between the spin-orbit coupling matrix elements and the spatial configuration of the triplet state induces efficient intersystem crossing and thus room temperature phosphorescence even without relying on heteroatomic electron lone pairs. A ninefold increase of the ISC rate after introduction of three bromine atoms is accompanied by a much higher 34-fold increase of phosphorescence rate.
Collapse
Affiliation(s)
- Giliandro Farias
- Department of Chemistry, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| | - Cristian A M Salla
- Department of Physics, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| | - Murat Aydemir
- Department of Physics, Durham University South Road Durham DH1 3LE UK
- Erzurum Technical University, Department of Fundamental Sciences Erzurum Turkey
| | - Ludmilla Sturm
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Pierre Dechambenoit
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Fabien Durola
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Bernardo de Souza
- Department of Chemistry, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Andrew P Monkman
- Department of Physics, Durham University South Road Durham DH1 3LE UK
| | - Ivan H Bechtold
- Department of Physics, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| |
Collapse
|
42
|
Jiang B, Martí AA. Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Bo Jiang
- Department of Chemistry Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| | - Angel A. Martí
- Department of Chemistry Department of Bioengineering, and Department of Material Science & NanoEngineering Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| |
Collapse
|
43
|
Yang JG, Song XF, Wang J, Li K, Chang X, Tan LY, Liu CX, Yu FH, Cui G, Cheng G, To WP, Yang C, Che CM, Chen Y. Highly Efficient Thermally Activated Delayed Fluorescence from Pyrazine-Fused Carbene Au(I) Emitters. Chemistry 2021; 27:17834-17842. [PMID: 34705307 DOI: 10.1002/chem.202102969] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Indexed: 11/08/2022]
Abstract
Metal-based thermally activated delayed fluorescence (TADF) is conceived to inherit the advantages of both phosphorescent metal complexes and purely organic TADF compounds for high-performance electroluminescence. Herein a panel of new TADF Au(I) emitters has been designed and synthesized by using carbazole and pyrazine-fused nitrogen-heterocyclic carbene (NHC) as the donor and acceptor ligands, respectively. Single-crystal X-ray structures show linear molecular shape and coplanar arrangement of the donor and acceptor with small dihedral angles of <6.5°. The coplanar orientation and appropriate separation of the HOMO and LUMO in this type of molecules favour the formation of charge-transfer excited state with appreciable oscillator strength. Together with a minor but essential heavy atom effect of Au ion, the complexes in doped films exhibit highly efficient (Φ∼0.9) and short-lived (<1 μs) green emissions via TADF. Computational studies on this class of emitters have been performed to decipher the key reverse intersystem crossing (RISC) pathway. In addition to a small energy splitting between the lowest singlet and triplet excited states (ΔEST ), the spin-orbit coupling (SOC) effect is found to be larger at a specific torsion angle between the donor and acceptor planes which favours the RISC process the most. This work provides an alternative molecular design to TADF Au(I) carbene emitters for OLED application.
Collapse
Affiliation(s)
- Jian-Gong Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials &, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jian Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Li-Ying Tan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials &, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chu-Xuan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials &, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fei-Hu Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials &, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P. R. China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.,Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong SAR, P. R. China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.,Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong SAR, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials &, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Schindler K, Zobi F. Photochemistry of Rhenium(i) Diimine Tricarbonyl Complexes in Biological Applications. Chimia (Aarau) 2021; 75:837-844. [PMID: 34728010 DOI: 10.2533/chimia.2021.837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Luminescent rhenium complexes continue to be the focus of growing scientific interest for catalytic, diagnostic and therapeutic applications, with emphasis on the development of their photophysical and photochemical properties. In this short review, we explore such properties with a focus on the biological applications of the molecules. We discuss the importance of the ligand choice to the contribution and their involvement towards the most significant electronic transitions of the metal species and what strategies are used to exploit the potential of the molecules in medicinal applications. We begin by detailing the photophysics of the molecules; we then describe the three most common photoreactions of rhenium complexes as photosensitizers in H₂ production, photocatalysts in CO₂ reduction and photochemical ligand substitution. In the last part, we describe their applications as luminescent cellular probes and how photochemical ligand substitution is utilized in the development of photoactive carbon monoxide-releasing molecules as anticancer and antimicrobial agents.
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland;,
| |
Collapse
|
45
|
Heterometal Grafted Metalla-ynes and Poly(metalla-ynes): A Review on Structure-Property Relationships and Applications. Polymers (Basel) 2021; 13:polym13213654. [PMID: 34771211 PMCID: PMC8588132 DOI: 10.3390/polym13213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Metalla-ynes and poly(metalla-ynes) have emerged as unique molecular scaffolds with fascinating structural features and intriguing photo-luminescence (PL) properties. Their rigid-rod conducting backbone with tunable photo-physical properties has generated immense research interests for the design and development of application-oriented functional materials. Introducing a second d- or f-block metal fragment in the main-chain or side-chain of a metalla-yne and poly(metalla-yne) was found to further modulate the underlying features/properties. This review focuses on the photo-physical properties and opto-electronic (O-E) applications of heterometal grafted metalla-ynes and poly(metalla-ynes).
Collapse
|
46
|
Li X, Xie Y, Li Z. Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chem Asian J 2021; 16:2817-2829. [PMID: 34378344 DOI: 10.1002/asia.202100784] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Organic light-emitting diodes (OLED) have attracted increasing attention due to their excellent properties, such as self-luminosity, high color gamut and flexibility, and potential applications in display, wearable devices and lighting. The emitters are the most important composition in OLEDs, mainly classified into fluorescent compounds (first generation), metal phosphorescent complexes (second generation), and thermally activated delayed fluorescence (TADF) materials (third generation). In this review, we summarize the advances of novel emitters of organic metal complexes in the last decade, focusing on coinage metals (Cu, Ag, and Au) and non-precious metals (Al, Zn, W, and alkali metal). Also, the design strategy of d10 and Au(III) complexes was discussed. We aim to provide guidance for exploring efficient metal complexes beyond traditional phosphorescent complexes.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China.,Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, P. R. China.,Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, P. R. China
| |
Collapse
|