1
|
Huang Z, Li Q, Zhang X, Xue H, Liao W, Yin C, Yuan J, Tao L, Wei Y. A series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structure for drugs delivery systems of paclitaxel: Synthesis, structure-activity relationship and anti-tumors effect. Colloids Surf B Biointerfaces 2024; 244:114136. [PMID: 39116602 DOI: 10.1016/j.colsurfb.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Aggregation-induced emission (AIE) materials are attracting great attention in biomedical fields such as sensors, bioimaging, and cancer treatment, et al. due to their strong fluorescence emission in the aggregated state. In this contribution, a series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structures were synthesized by Suzuki coupling reaction and Knoevenagel condensation, and their relationship of chemical structure and fluorescence properties was investigated in detail, among which TPPA compound was selected as the monomer owing to the longest emission wavelength at about 530 nm with low energy band gap ΔE 3.09 eV of neutral TPPA and 1.43 eV of protonated TPPA. Novel amphiphilic AIE PEG-TA copolymers were prepared by RAFT polymerization of TPPA and PEGMA with about 1.44×104 Mw and narrow PDI, and the molar ratio of TPPA in the PEG-TA1 and PEG-TA2 copolymers was about 23.4 % and 29.6 %. The as-prepared PEG-TA copolymers would self-assembled in aqueous solution to form core-shell structures with a diameter of 150-200 nm, and their emission wavelength could reversibly convert from 545 nm to 650 nm with excellent pH sensitivity. The CLSM images showed that the PEG-TA FONs and PTX drugs-loaded PTX-TA FONs could be endocytosed by cells and mainly enriched in the cytoplasm, and CCK-8 results showed that the PEG-TA FONs had excellent biocompatibility but PTX-TA FONs had high inhibition ratio for A549 cells, moreover, the flow cytometry also showed that PTX-TA FONs could result in the apoptosis of A549 cells with some extent anti-tumor effect.
Collapse
Affiliation(s)
- Zengfang Huang
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China.
| | - Qiusha Li
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Xiaotong Zhang
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Haoyu Xue
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Wenxi Liao
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Chunmei Yin
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Jinying Yuan
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China
| | - Lei Tao
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China
| | - Yen Wei
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Yuan S, Zhao E. Recent advances of lipid droplet-targeted AIE-active materials for imaging, diagnosis and therapy. Biosens Bioelectron 2024; 267:116802. [PMID: 39332250 DOI: 10.1016/j.bios.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Lipid droplets (LDs) are cellular organelles specialized in the storage and regulating the release of lipids critical for energy metabolism. As investigation on LDs deepens, the complex biological functions of LDs are revealed and their relationships with various diseases such as atherosclerosis, fatty liver, obesity, and cancer are uncovered. Fluorescence-based techniques with simple operations, visible results and high non-invasiveness are ideal tools for investigating LD-related biological processes and diseases. Materials with aggregation-induced emission (AIE) characteristics have emerged as promising candidates for investigating LDs due to their high signal-to-noise ratio (S/N), strong photostability, and large Stokes shift. This review discusses the principles and advantages of LD-targeting AIE probes for imaging LDs, diagnosis of LD-associated diseases including atherosclerotic plaques, liver diseases, acute kidney diseases and cancer, therapies with LD-targeting AIE-active photosensitizers and other relevant fields in the past five years. Through typical examples, we illustrate the status of investigating LD-related imaging, diagnosis of diseases and therapy with AIE materials. This review is expected to attract attentions from scientists with different research backgrounds and contribute to the further development of LD-targeting AIE materials.
Collapse
Affiliation(s)
- Sisi Yuan
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Ding Y, Ou G, Wang D. Aggregation-induced emission luminescence for angiography and atherosclerotic diagnosis. iScience 2024; 27:110719. [PMID: 39297169 PMCID: PMC11407974 DOI: 10.1016/j.isci.2024.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Optical imaging technology has become increasingly recognized for its utility in diagnosing atherosclerosis thanks to advantages such as high spatial resolution, rapid data acquisition, lack of radiation exposure, cost-effectiveness, minimal invasiveness, and limited side effects. However, traditional luminogens employed in optical diagnostics are often troubled by aggregation-caused quenching (ACQ) effect, causing diagnostic errors in vivo. Since Professor Tang discovered the aggregation-induced emission (AIE) phenomenon, AIE luminogens (AIEgens) have been rapidly developing and are considered as the next-generation fluorescent contrast agents for angiography and atherosclerotic diagnosis. This mini review will outline the use of AIEgens in angiography and the diagnosis of atherosclerosis, exploring different imaging models, including second near-infrared, two/multi-photon, and photoacoustic imaging, and will provide a forward-looking perspective on their potential in atherosclerotic diagnosis.
Collapse
Affiliation(s)
- Yuxun Ding
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guanchu Ou
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Paul S, Chakraborty BB, Rao NVS, Choudhury S. New Calamitic Mesogens Exhibiting Aggregation-Induced Emission (AIE). MATERIALS (BASEL, SWITZERLAND) 2024; 17:3587. [PMID: 39063879 PMCID: PMC11278991 DOI: 10.3390/ma17143587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 07/28/2024]
Abstract
Aggregation-induced emitters or AIEgens are generally signified by their stronger photoluminescence in aggregation than in the solution state. Due to high emission efficiency in aggregate and solid states and good processability, organic AIEgens drew attention to the development of advanced luminescent materials. However, as mesogenic materials self-assemble to a different molecular arrangement in different phases, achieving liquid crystallinity and AIE properties in the same molecule would provide a valuable tool to develop solvent-independent AIEgenic materials. With this goal, the present work reports the synthesis of new organic thermotropic liquid crystalline compounds exhibiting aggregation-induced emission (AIE). The synthesized compounds exhibit strong green luminescence in a solid state which sharply quenches upon entering smectic mesophase by heating. This is in addition to the exhibition of dispersion medium (solvent)-dependent emission, thus providing a dual mode of AIE. The mesogenic property of the synthesized compounds was studied by XRD, POM, and DSC. The AIE was studied by fluorescence spectroscopy and variable temperature fluorescence microscopy. A DFT study was carried out to gain an insight into the AIEgenic behavior of the material.
Collapse
Affiliation(s)
- Saurav Paul
- Department of Chemistry, Assam University, Silchar 788011, India; (S.P.); (B.B.C.); (N.V.S.R.)
| | | | - Nandiraju V. S. Rao
- Department of Chemistry, Assam University, Silchar 788011, India; (S.P.); (B.B.C.); (N.V.S.R.)
| | - Sudip Choudhury
- Department of Chemistry, Assam University, Silchar 788011, India; (S.P.); (B.B.C.); (N.V.S.R.)
- Centre for Soft Matter, Department of Chemistry, Assam University, Silchar 788011, India
| |
Collapse
|
5
|
Kuster L, Bélanger-Bouliga M, Shaw TE, Jurca T, Nazemi A, Frenette M. Insight into the nature of carbon-metal bonding for N-heterocyclic carbenes in gold/silver complexes and nanoparticles using DFT-correlated Raman spectroscopy: strong evidence for π-backbonding. NANOSCALE 2024; 16:11052-11068. [PMID: 38619424 DOI: 10.1039/d4nr00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as promising ligands for stabilizing metallic complexes, nanoclusters, nanoparticles (NPs) and surfaces. The carbon-metal bond between NHCs and metal atoms plays a crucial role in determining the resulting material's stability, reactivity, function, and electronic properties. Using Raman spectroscopy coupled with density functional theory calculations, we investigate the nature of carbon-metal bonding in NHC-silver and NHC-gold complexes as well as their corresponding NPs. While low wavenumbers are inaccessible to standard infrared spectroscopy, Raman detection reveals previously unreported NHC-Au/Ag bond-stretching vibrations between 154-196 cm-1. The computationally efficient r2SCAN-3c method allows an excellent correlation between experimental and predicted Raman spectra which helps calibrate an accurate description of NHC-metal bonding. While π-backbonding should stabilize the NHC-metal bond, conflicting reports for the presence and absence of π-backbonding are seen in the literature. This debate led us to further investigate experimental and theoretical results to ultimately confirm and quantify the presence of π-backbonding in these systems. Experimentally, an observed decrease in the NHC's CN stretching due to the population of the π* orbital is a good indication for the presence of π-backbonding. Using energy decomposition analysis - natural orbitals for chemical valence (EDA-NOCV), our calculations concur and quantify π-backbonding in these NHC-bound complexes and NPs. Surprisingly, we observe that NPs are less stabilized by π-backbonding compared to their respective complexes-a result that partially explains the weaker NHC-NP bond. The protocol described herein will help optimize metal-carbon bonding in NHC-stabilized metal complexes, nanoparticles and surfaces.
Collapse
Affiliation(s)
- Lucille Kuster
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Marilyne Bélanger-Bouliga
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Thomas E Shaw
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Ali Nazemi
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | - Mathieu Frenette
- Department of Chemistry, NanoQAM and Centre Québécois de Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
6
|
Chen JJ, Pan MQ, Cao WW, Wang Z, Yuan R, Wang HJ. Solvent Regulation Induced Cathode Aggregation-Induced Electrochemiluminescence of Tetraphenylethylene Nanoaggregates for Ultrasensitive Zearalenone Analysis. Anal Chem 2024; 96:9043-9050. [PMID: 38774984 DOI: 10.1021/acs.analchem.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Zearalenone (ZEN) is an extremely hazardous chemical widely existing in cereals, and its high-sensitivity detection possesses significant significance to human health. Here, the cathodic aggregation-induced electrochemiluminescence (AIECL) performance of tetraphenylethylene nanoaggregates (TPE NAs) was modulated by solvent regulation, based on which an electrochemiluminescence (ECL) aptasensor was constructed for sensitive detection of ZEN. The aggregation state and AIECL of TPE NAs were directly and simply controlled by adjusting the type of organic solvent and the fraction of water, which solved the current shortcomings of low strength and weak stability of the cathode ECL signal for TPE. Impressively, in a tetrahydrofuran-water mixed solution (volume ratio, 6:4), the relative ECL efficiency of TPE NAs reached 16.03%, which was 9.2 times that in pure water conditions, and the maximum ECL spectral wavelength was obviously red-shifted to 617 nm. In addition, "H"-shape DNA structure-mediated dual-catalyzed hairpin self-assembly (H-D-CHA) with higher efficiency by the synergistic effect between the two CHA reactions was utilized to construct a sensitive ECL aptasensor for ZEN analysis with a low detection limit of 0.362 fg/mL. In conclusion, solvent regulation was a simple and efficient method for improving the performance of AIECL materials, and the proposed ECL aptasensor had great potential for ZEN monitoring in food safety.
Collapse
Affiliation(s)
- Jiao-Jie Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Meng-Qi Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wei-Wei Cao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hai-Jun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Wang J, Zhao X, Tao Y, Wang X, Yan L, Yu K, Hsu Y, Chen Y, Zhao J, Huang Y, Wei W. Biocompatible aggregation-induced emission active polyphosphate-manganese nanosheets with glutamine synthetase-like activity in excitotoxic nerve cells. Nat Commun 2024; 15:3534. [PMID: 38670989 PMCID: PMC11053040 DOI: 10.1038/s41467-024-47947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yucheng Tao
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Li Yan
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, PR China
| | - Yi Hsu
- Taipei Wego Private Senior High School, Taipei, TWN, PR China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| |
Collapse
|
8
|
Cyniak JS, Kasprzak A. Grind, shine and detect: mechanochemical synthesis of AIE-active polyaromatic amide and its application as molecular receptor of monovalent anions or nucleotides. RSC Adv 2024; 14:13227-13236. [PMID: 38655472 PMCID: PMC11037028 DOI: 10.1039/d4ra02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
A mechanochemical synthesis of novel polyaromatic amide consisting of 1,3,5-triphenylbenzene and 1,1',2,2'-tetraphenylethylene skeletons has been established. The designed mechanochemical approach using readily available and low-cost equipment allowed a twofold increase in reaction yield, a 350-fold reduction in reaction time and a significant reduction in the use of harmful reactants in comparison to the solution synthesis method. The parameters of Green Chemistry were used to highlight the advantages of the developed synthesis method over the solution-based approach. The title compound was found to exhibit attractive optical properties related to the Aggregation-induced emission (AIE) behaviour. Taking the advantage of AIE-active properties of the synthesized polyaromatic amide, its application as effective and versatile molecular receptor towards detection of monovalent anions, as well as bio-relevant anions - nucleotides, has been demonstrated. The values of the binding constants were at the satisfactory level of 104, the detection limit values were low and ranged from 0.2 μM to 19.9 μM.
Collapse
Affiliation(s)
- Jakub S Cyniak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| |
Collapse
|
9
|
Guo W, Gu P, Li Y, Zhang C, Wang D, Zhang Y, Hao X, Liu G, Zhou S. Synthesis of tetraphenylethylene-based small molecular sensor for the selective "turn-on" detection of pyrophosphoric acid in the aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123990. [PMID: 38340450 DOI: 10.1016/j.saa.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Pyrophosphoric acid (PPi) is a crucial indicator for monitoring adenosine triphosphate hydrolysis processes, and abnormal PPi levels in the human body seriously threaten human health. Thus the efficient detection of the concentration of PPi in the aqueous solution is important and urgent. This paper described the successful synthesis of a tetraphenylethylene (TPE) derivative, named as TPE-4B, which contained four chelate pyridinium groups exhibiting aggregation-induced emission characteristics. TPE-4B was explicitly developed for the selective and sensitive fluorescence detection of PPi in aqueous solutions, showing a fluorescence "turn-on" response, and the detection limit was 65 nM. The four chelate pyridinium moieties of TPE-4B exhibited robust electrostatic interactions and binding capacity towards PPi, leading to the formation of aggregations, which was confirmed by zeta potential, dynamic light scattering, and scanning electron microscopy. Compared with free TPE-4B in the aqueous solution, the zeta potential of aggregations decreased from 20.7 to 4.2 mV, the average diameter increased from 155 to 403 nm, and the morphology transformed from porous nanostructures into a block-like format. Leveraging these properties, TPE-4B is a promising candidate for a "turn-on" fluorescence sensor designed to detect PPi in the aqueous solution.
Collapse
Affiliation(s)
- Wenxiu Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
10
|
Verma SK, Rangappa S, Verma R, Xue F, Verma S, Sharath Kumar KS, Rangappa KS. Sulfur (S Ⅵ)-containing heterocyclic hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and its SAR. Bioorg Chem 2024; 145:107241. [PMID: 38437761 DOI: 10.1016/j.bioorg.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The discovery of new small molecule-based inhibitors is an attractive field in medicinal chemistry. Structurally diversified heterocyclic derivatives have been investigated to combat multi-drug resistant bacterial infections and they offers several mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming more and more deadly to humans because of its simple method of transmission, quick development of antibiotic resistance, and ability to cause hard-to-treat skin and filmy diseases. The sulfur (SVI) particularly sulfonyl and sulfonamide based heterocyclic moieties, have found to be good anti-MRSA agents. The development of new nontoxic, economical and highly active sulfur (SVI) containing derivatives has become hot research topics in drug discovery research. Presently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with different therapeutic potential. The present collective data provides the latest advancements in Sulfur (SVI)-hybrid compounds as antibacterial agents against MRSA. It also examines the outcomes of in-vitro and in-vivo investigations, exploring potential mechanisms of action and offering alternative perspectives on the structure-activity relationship (SAR). Sulfur (SVI)-hybrids exhibits synergistic effects with existing drugs to provide antibacterial action against MRSA.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar 571448, India
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, PR China.
| | - Fan Xue
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin 719000, PR China
| | - Shekhar Verma
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur 495009, Chhattisgarh, India
| | | | | |
Collapse
|
11
|
Pan Z, Zeng Y, Ye Z, Li Y, Wang Y, Feng Z, Bao Y, Yuan J, Cao G, Dong J, Long W, Lu YJ, Zhang K, He Y, Liu X. Rotor-based image-guided therapy of glioblastoma. J Control Release 2024; 368:650-662. [PMID: 38490374 DOI: 10.1016/j.jconrel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Glioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM. IRLy was synthesized successfully through a rational molecular rotor modification with stronger penetration, higher signal-to-noise ratio, and a high photothermal conversion efficiency (PCE) up to ∼60%, which can achieve efficient NIR-II photo-response. The multifunctional nanoparticles (Tf-IRLy NPs) were further fabricated to cross the blood-brain barrier (BBB) introducing transferrin (Tf) as a targeting ligand. Tf-IRLy NPs showed high biosafety and good tumor enrichment for GBM in vitro and in vivo, and thus enabled accurate, efficient, and less invasive NIR-II multimodal imaging and photothermal therapy. This versatile Tf-IRLy nanosystem can provide a reference for the efficient, precise and low-invasive multi-synergistic brain targeted photo-theranostics. In addition, the "extended conjugation & molecular rotor" strategy can be used to guide the design of other photothermal agents.
Collapse
Affiliation(s)
- Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yakun Wang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiapeng Dong
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Long
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu-Jing Lu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Zhang Z, Chasteen JL, Smith BD. Cy5 Dye Cassettes Exhibit Through-Bond Energy Transfer and Enable Ratiometric Fluorescence Sensing. J Org Chem 2024; 89:3309-3318. [PMID: 38362875 PMCID: PMC10985492 DOI: 10.1021/acs.joc.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The chemosensor literature contains many reports of fluorescence sensing using polyaromatic hydrocarbon fluorophores such as pyrene, tetraphenylethylene, or polyaryl(ethynylene), where the fluorophore is excited with ultraviolet light (<400 nm) and emits in the visible region of 400-500 nm. There is a need for general methods that convert these "turn-on" hydrocarbon fluorescent sensors into ratiometric sensing paradigms. One simple strategy is to mix the responsive hydrocarbon sensor with a second non-responsive dye that is excited by ultraviolet light but emits at a distinctly longer wavelength and thus acts as a reference signal. Five new cyanine dye cassettes were created by covalently attaching a pyrene, tetraphenylethylene, or biphenyl(ethynylene) component as the ultraviolet-absorbing energy donor directly to the pentamethine chain of a deep-red cyanine (Cy5) energy acceptor. Fluorescence emission studies showed that these Cy5-cassettes exhibited large pseudo-Stokes shifts and high through-bond energy transfer efficiencies upon excitation with ultraviolet light. Practical potential was demonstrated with two examples of ratiometric fluorescence sensing using a single ultraviolet excitation wavelength. One example mixed a Cy5-cassette with a pyrene-based fluorescent indicator that responded to changes in Cu2+ concentration, and the other example mixed a Cy5-cassette with the fluorescent pH sensing dye, pyranine.
Collapse
Affiliation(s)
- Zhumin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan L. Chasteen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Zhao X, Verma R, Sridhara MB, Sharath Kumar KS. Fluorinated azoles as effective weapons in fight against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2024; 143:106975. [PMID: 37992426 DOI: 10.1016/j.bioorg.2023.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The rapid spread of Methicillin-resistant Staphylococcus aureus (MRSA) and its difficult-to-treat skin and filmsy diseases are making MRSA a threat to human life. The most dangerous feature is the fast emergence of MRSA resistance to all recognized antibiotics, including vancomycin. The creation of novel, effective, and non-toxic drug candidates to combat MRSA isolates is urgently required. Fluorine containing small molecules have taken a centre stage in the field of drug development. Over the last 50 years, there have been a growing number of fluorinated compounds that have been approved since the clinical usage of fluorinated corticosteroids in the 1950 s and fluoroquinolones in the 1980 s. Due to its advantages in terms of potency and ADME (absorption, distribution, metabolism, and excretion), fluoro-pharmaceuticals have been regarded as a potent and useful tool in the rational drug design method. The flexible bioactive fluorinated azoles are ideal candidates for the development of new antibiotics. This review summarizes the decade developments of fluorinated azole derivatives with a wide antibacterial activity against diverged MRSA strains. In specific, we correlated the efficacy of structurally varied fluorinated azole analogues including thiazole, benzimidazole, oxadiazole and pyrazole against MRSA and discussed different angles of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City-719000, P. R. China
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, P. R. China
| | - M B Sridhara
- Department of Chemistry, Rani Channamma University, Vidyasangama, Belagavi 591156, India
| | | |
Collapse
|
14
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
15
|
Wang X, Yu H, Li Q, Tian Y, Gao X, Zhang W, Sun Z, Mou Y, Sun X, Guo Y, Li F. Development of a fluorescent sensor based on TPE-Fc and GSH-AuNCs for the detection of organophosphorus pesticide residues in vegetables. Food Chem 2024; 431:137067. [PMID: 37579609 DOI: 10.1016/j.foodchem.2023.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
A novel dual-signal fluorescent sensor was developed for detecting organophosphorus pesticides (OPs). It relies on the catalytic activities of acetylcholinesterase (AChE) and choline oxidase (ChOx) to generate hydrogen peroxide (H2O2) through the conversion of acetylcholine (ACh) to choline·H2O2 then oxidizes ferrocene-modified tetraphenylethylene (TPE-Fc) to its oxidized state (TPE-Fc+), resulting in enhanced cyan fluorescence due to aggregation. Simultaneously, ferrocene oxidation generates hydroxyl radicals (•OH), causing a decrease in orange fluorescence of glutathione-synthesized gold nanoclusters (GSH-AuNCs). The presence of OPs restricts AChE activity, reducing H2O2 production. Increasing OPs concentration leads to decreased cyan fluorescence and increased orange fluorescence, enabling visual OPs detection. The sensor has a linear dynamic range of 10-2000 ng/mL with a detection limit of 2.05 ng/mL. Smartphone-based color identification and a WeChat mini program were utilized for rapid OPs analysis with successful outcomes.
Collapse
Affiliation(s)
- Xiaoyang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Huajie Yu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuhang Tian
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Wanqi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Zhicong Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yaoting Mou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China.
| |
Collapse
|
16
|
Lang W, Qin JM, Cao QY. A novel polymer-based probe for fluorescently ratiometric sensing of hydrogen sulfide with multiple applications. Anal Chim Acta 2024; 1286:342051. [PMID: 38049239 DOI: 10.1016/j.aca.2023.342051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Hydrogen sulfide (H2S) as an endogenous signaling molecule, plays an irreplaceable role in many important physiological activities. It is also closely related to sewage treatment, wine quality evaluation, and food spoilage. Herein, we have successfully synthesized a novel polymer-based probe P1 for fluorescently ratiometric sensing of H2S with a high selectivity and sensitivity. By virtue of ring-opening metathesis polymerization (ROMP), P1 was prepared with the disulfide bond linked coumarin-norbornene dyad NB-SS-COU as energy donor, the aggregation-induced emission (AIE) fluorophore anchored norbornene NB-TPE as energy receptor, and the polyethylene glycol (PEG) attached norbornene NB-PEG as a hydrophilic chain. At the 400 nm excitation, P1 displays a bright red emission at 615 nm due to the efficient fluorescence resonance energy transfer (FRET) from energy donor COU to energy acceptor TPE. Upon addition of H2S, it shows strong COU-based blue emission at 473 nm for cleavage of the disulfide bond. We also constructed a smartphone sensing platform to conduct visual quantitative detection of H2S by calculating the B/R (blue/red) emission ratio values. Moreover, P1 can be successfully employed in evaluating the level fluctuations of endogenous and exogenous H2S in living cells, testing water samples/wine samples, and monitoring food freshness.
Collapse
Affiliation(s)
- Wei Lang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Jia-Mei Qin
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Qian-Yong Cao
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
17
|
Zhang W, Yin H, Guo J, Zhao X, Shi Y. High-efficient luminescence induced by the restriction of benzothiazole group torsion for the HBT-H-H molecule in the aggregate state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123319. [PMID: 37688882 DOI: 10.1016/j.saa.2023.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The aggregation-induced emission (AIE) effect has been demonstrated to have great potential application in different areas, from organic electronics to biomedical research and physical process monitoring. In general, molecules with AIE characteristic exhibit fluorescence enhancement in the aggregated state by restricting intramolecular motion consumption. The combination of AIE and excited-state intramolecular proton transfer (ESIPT) is meaningful for promoting luminescence. Recently, HBT-H-H molecule, as a derivative of 2-(2-Hydroxyphenyl)benzothiazole (HBT), has drawn extensive attention from researchers. The molecule possesses the intramolecular hydrogen bonding structure which has the potential for ESIPT. Moreover, the fluorescence quantum yield of HBT-H-H in the aggregation state is 35 times higher than that in Toluene. However, the interplay between excited state dynamics and the AIE effect for this molecule is not clear. Especially, how does AIE effect beat non-radiative transition channel by affecting motions of molecular structure. Herein, we investigated the excited state dynamics of HBT-H-H molecule by the spin-flip time-dependent density functional theory and QM/MM method. We found that the molecule relaxes to the conical intersection region through the twisting motion of the benzothiazole group in Toluene solvent. While the AIE effect effectively inhibits this process by preventing the torsion of benzothiazole group, which induces the emission enhancement. The interplay between the excited-state dynamics and AIE effect for the HBT-H-H molecule delineated in this work not only benefits the deep understanding of molecular behavior to the aggregate level, but also provides a guide for the synthesis of AIE materials with favorable performance.
Collapse
Affiliation(s)
- Wentian Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Jie Guo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xin Zhao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
18
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
Zheng M, Yang Q, Lu C, Wu X, Yan W, Liu D. Nanostructured organic photosensitizer aggregates in disease phototheranostics. Drug Discov Today 2023; 28:103598. [PMID: 37116827 DOI: 10.1016/j.drudis.2023.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Aggregate science provides promising opportunities for the discovery of novel disease phototheranostics. Under the guidance of aggregology and the Jablonski energy level diagram, photosensitizer aggregates with tunable photophysical properties can consequently result in tailorable diagnosis and treatment modalities. This review summarizes recent advances in the formation of nanostructured organic photosensitizer aggregates, their photophysical processes (e.g., radiative emission, vibrational relaxation, and intersystem crossing), and particularly, their applications in disease phototheranostics such as fluorescence imaging and sensing, photothermal therapy, photoacoustic imaging, and photodynamic therapy. It is expected that this comprehensive summary will provide guidance for the construction of nanostructured organic photosensitizer aggregates, for establishment of aggregation-photophysical property relationships and the development of novel disease phototheranostic nanomedicines. Teaser: This article reviews the electron-delocalized π system-caused formation of nanostructured organic photosensitizer aggregates, which undergo radiative emission, vibrational relaxation, or intersystem crossing pathways to achieve fluorescence imaging and sensing, photothermal therapy, photoacoustic imaging, and photodynamic therapy.
Collapse
Affiliation(s)
- Maochao Zheng
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310022, China.
| | - Qianqian Yang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310022, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Wu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei Yan
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China; Plastic Surgery Institute of Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
20
|
Liu X, Zhao F, Chen B, Huang Y, Xu L, Li E, Tan L, Zhang H. Resonance-Enhanced Emission Effects toward Dual-State Emissive Bright Red and Near-Infrared Emitters. Chemistry 2023:e202300381. [PMID: 37005708 DOI: 10.1002/chem.202300381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Resonance-enhanced emission (REE) effect was discovered and lead to a novel dye family of hydrostyryl pyridinium derivatives in our recent work. Herein, the REE effect was employed to design a red and near-infrared dual-state emissive fluorophore family of SW-OH-NO2 derivatives which were easily synthesized by coupling an electron-withdrawing group (W) onto nitro(hydroxyl)styryl (S-OH-NO2 ) through a C=C double bond as π-bridge. The deprotonation of a phenolic hydroxyl group promoted by a nitro group and the electron-withdrawing group (W) on the other side of the π-bridge triggered resonance, resulting in significantly red-shifted emission. All the resultant SW-OH-NO2 compounds showed excellent dual-state emission behavior. Remarkably, hydrostyryl quinolinium (SQ-OH-NO2 ) is one of the smallest NIR emitter molecular skeleton (λem =725 nm, MW<400) and showed dual-state emission characteristics and obvious viscosity-depended fluorescent behaviors. In addition to constructing electron donor-acceptor structures and prolonging π-bridges, the REE effect promises a reliable strategy toward novel fluorophores with small size, long emissive wavelength, and dual-emission characteristics, and importantly, feasible industrial manufactures and applications due to their easy and low-cost synthesis strategy.
Collapse
Affiliation(s)
- Xue Liu
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engeering, Shantou University, Shantou, 515063 (China)
| | - Fei Zhao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engeering, Shantou University, Shantou, 515063 (China)
| | - Bang Chen
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engeering, Shantou University, Shantou, 515063 (China)
| | - Yifu Huang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engeering, Shantou University, Shantou, 515063 (China)
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Shantou, 515063, China
| | - Liyan Xu
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
- Guangdong Provincial Key Laboratory of, Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for, High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Enmin Li
- Guangdong Provincial Key Laboratory of, Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Lilin Tan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Shantou, 515063, China
| | - Hefeng Zhang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engeering, Shantou University, Shantou, 515063 (China)
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Shantou, 515063, China
| |
Collapse
|
21
|
Zhang P, Zhu Y, Xiao C, Chen X. Activatable dual-functional molecular agents for imaging-guided cancer therapy. Adv Drug Deliv Rev 2023; 195:114725. [PMID: 36754284 DOI: 10.1016/j.addr.2023.114725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Theranostics has attracted great attention due to its ability to combine the real-time diagnosis of cancers with efficient treatment modalities. Activatable dual-functional molecular agents could be synthesized by covalently conjugating imaging agents, therapeutic agents, stimuli-responsive linkers and/or targeting molecules together. They could be selectively activated by overexpressed physiological stimuli or external triggers at the tumor sites to release imaging agents and cytotoxic drugs, thus offering many advantages for tumor imaging and therapy, such as a high signal-to-noise ratio, low systemic toxicity, and improved therapeutic effects. This review summarizes the recent advances of dual-functional molecular agents that respond to various physiological or external stimuli for cancer theranostics. The molecular designs, synthetic strategies, activatable mechanisms, and biomedical applications of these molecular agents are elaborated, followed by a brief discussion of the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200433, PR China
| | - Yaowei Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| |
Collapse
|
22
|
Gu J, Li Z, Li Q. From single molecule to molecular aggregation science. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐Maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioeng Transl Med 2023; 8:e10325. [PMID: 36684100 PMCID: PMC9842052 DOI: 10.1002/btm2.10325] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Üniversite CaddesiTuzla, IstanbulTurkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials ‐ National Research Council (IPCB‐CNR)NaplesItaly
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials InterfacesPontedera, PisaItaly
| | - Navid Rabiee
- School of Engineering, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vijay Kumar Thakur
- School of EngineeringUniversity of Petroleum & Energy Studies (UPES)DehradunUttarakhandIndia
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC)EdinburghUK
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR)Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacky UniversityOlomoucCzech Republic
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Xsphera Biosciences Inc.BostonMassachusettsUSA
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and Environment, University of Electronic Science and Technology of ChinaChengduPR China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
| | - Nicolas H. Voelcker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoriaAustralia
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Gorka Orive
- NanoBioCel Research Group, School of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI(UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- Singapore Eye Research InstituteSingapore
| |
Collapse
|
24
|
Yang N, Zhu YY, Lin WX, Lu YL, Xu WR. pH-Responsive fluorescent supramolecular nanoparticles based on tetraphenylethylene-labelled chitosan and a six-fold carboxylated tribenzotriquinacene. Beilstein J Org Chem 2023; 19:635-645. [PMID: 37205131 PMCID: PMC10186267 DOI: 10.3762/bjoc.19.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
We synthesized a new tetraphenylethylene-modified chitosan bioconjugate, CS-TPE, that shows the aggregation-induced emission effect. It can self-assemble into fluorescent polymeric nanoparticles in an aqueous solution at pH 5.3 either alone or with the water-soluble bowl-shaped six-fold carboxylated tribenzotriquinacene derivative TBTQ-C6 via host-guest binding. The spherical nanoparticles formed by CS-TPE amphiphiles or TBTQ-C6/CS-TPE supra-amphiphiles disintegrated under alkaline stimulation at pH 10.4 and the dispersion of the aggregates after the collapse in the presence of TBTQ-C6 was greatly improved. In addition, the fluorescence of CS-TPE was significantly enhanced by introducing TBTQ-C6, and remained relatively stable with variations in pH for both CS-TPE and TBTQ-C6/CS-TPE. Such pH-responsive supramolecular spherical nanoparticles with stable fluorescence emission based on CS-TPE or TBTQ-C6/CS-TPE may find applications in various fields, including the development of visual oral drug delivery systems.
Collapse
Affiliation(s)
- Nan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou 570228, PR China
| | - Yi-Yan Zhu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou 570228, PR China
| | - Wei-Xiu Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou 570228, PR China
| | - Yi-Long Lu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou 570228, PR China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou 570228, PR China
| |
Collapse
|
25
|
Sun Y, Zhao Y, Jia J, Zhou Y. A ruthenium-based aggregation-induced enhanced emission luminophore as efficient protein staining agent. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Physical, Mechanical, and Thermal Properties and Characterization of Natural Fiber Composites Reinforced Poly(Lactic Acid): Miswak (Salvadora Persica L.) Fibers. INT J POLYM SCI 2022. [DOI: 10.1155/2022/7253136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
7000 years ago, miswak fiber (MF) was used as a toothbrush for oral care. However, since the emergence of plastic materials, it monopolized the oral care industry. The increment of plastic products also promotes accumulation of plastic wastes after its disposal. Thus, many researchers have turn to biodegradable products to reduce this problem. The aim of this study is to investigate the chemical, physical, and mechanical properties of MF as reinforcement in composites that are suitable to replace the toothbrush materials. The MF was reinforced in PLA composite with different weight percentage (0%, 10%, 20%, and 30%) and undergoes several types of testing. The chemical results show that there were high presence of cellulose in the fiber which could act as medium to transfer stress load equally from fiber to matrix. However, the results show low cellulosic contents in MF that affects the poor interfacial bonding between fiber and matrix. Physical properties shows a positive indication to be used as a toothbrush handle. As the fiber content increases, the density also increased. SEM micrographic illustrated the presence of voids as the cause for reduction in mechanical properties of composites. The mechanical results show the proposed material is comparable to the materials used in commercial applications. As for the thermal result, the TGA test melting point of the proposed composite material was comparable to the pure PLA, which means the proposed material can use similar processing temperature as PLA. DSC shows that Tg of PLA/MF composite is found to be similar to Tg in loss modulus of composites. DMA finding found that PLA/MF30 have the highest storage modulus 2062 MPa and the lowest tan δ 0.6 among PLA/MF composites. This concludes that there is a possibility of using these materials as an alternative in composites and increase the fiber strength by using pretreatments and/or compatibilizer.
Collapse
|
27
|
Zhou J, Qi F, Chen Y, Zhang S, Zheng X, He W, Guo Z. Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. BIOSENSORS 2022; 12:1027. [PMID: 36421144 PMCID: PMC9688568 DOI: 10.3390/bios12111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) has attracted much attention in the field of anticancer treatment. However, PDT has to face challenges, such as aggregation caused by quenching of reactive oxygen species (ROS), and short 1O2 lifetime, which lead to unsatisfactory therapeutic effect. Aggregation-induced emission luminogen (AIEgens)-based photosensitizers (PSs) showed enhanced ROS generation upon aggregation, which showed great potential for hypoxic tumor treatment with enhanced PDT effect. In this review, we summarized the design strategies and applications of AIEgen-based PSs with improved PDT efficacy since 2019. Firstly, we introduce the research background and some basic knowledge in the related field. Secondly, the recent approaches of AIEgen-based PSs for enhanced PDT are summarized in two categories: (1) organelle-targeting PSs that could cause direct damage to organelles to enhance PDT effects, and (2) PSs with tumor-targeting abilities to selectively suppress tumor growth and reduce side effects. Finally, current challenges and future opportunities are discussed. We hope this review can offer new insights and inspirations for the development of AIEgen-based PSs for better PDT effect.
Collapse
Affiliation(s)
- Jiahe Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoxue Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| |
Collapse
|
28
|
Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Chowdary B N, Preetham HD, Verma SK, Hamse VK, Umashankara M, Raj. S N, Pramoda K, Kumar KSS, Selvi G. A short hydrophobic peptide conjugated 3,5- disubstituted pyrazoles as antibacterial agents with DNA gyrase inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Shellaiah M, Sun KW. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. BIOSENSORS 2022; 12:bios12070550. [PMID: 35884351 PMCID: PMC9313392 DOI: 10.3390/bios12070550] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/06/2023]
Abstract
Aggregation-induced emission (AIE) is a unique research topic and property that can lead to a wide range of applications, including cellular imaging, theranostics, analyte quantitation and the specific detection of biologically important species. Towards the development of the AIE-active materials, many aromatic moieties composed of tetraphenylethylene, anthracene, pyrene, etc., have been developed. Among these aromatic moieties, pyrene is an aromatic hydrocarbon with a polycyclic flat structure containing four fused benzene rings to provide an unusual electron delocalization feature that is important in the AIE property. Numerous pyrene-based AIE-active materials have been reported with the AIE property towards sensing, imaging and theranostics applications. Most importantly, these AIE-active pyrene moieties exist as small molecules, Schiff bases, polymers, supramolecules, metal-organic frameworks, etc. This comprehensive review outlines utilizations of AIE-active pyrene-based materials on the imaging and theranostics studies. Moreover, the design and synthesis of these pyrene-based molecules are delivered with discussions on their future scopes.
Collapse
|
31
|
Naik VG, Hiremath SD, Thakuri A, Hemmadi V, Biswas M, Banerjee M, Chatterjee A. A coumarin coupled tetraphenylethylene based multi-targeted AIEgen for cyanide ion and nitro explosive detection, and cellular imaging. Analyst 2022; 147:2997-3006. [PMID: 35635289 DOI: 10.1039/d2an00040g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A coumarin coupled tetraphenylethylene based AIEgen (TPE-Lac) with an intense greenish-yellow emission has been synthesized and utilized for multipurpose sensing and imaging applications. TPE-Lac acts as a sensitive sensor for the detection of cyanide ions (CN-) with an immediate turn-off response in the presence of many other interfering cations and anions. The limit of detection (LOD) was as low as 33 nM, which is well below the permissible limit set by the World Health Organization (WHO). Cyanide detection in the solid phase was successfully demonstrated by drop-casting the solution of the TPE-Lac probe on TLC plates and measuring and analysing the fluorescence response by ImageJ analysis. TPE-Lac was further employed in the detection of explosive nitroaromatics in solution and solid phases. Also, TPE-Lac was found suitable as an imaging agent and could easily percolate into live H520 cells giving bright fluorescence from the intra-cellular region. Easy and cost-effective synthesis, fast response and low LODs are some of the advantages of this AIEgen over available molecular probes for the same purpose.
Collapse
Affiliation(s)
- Viraj G Naik
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Sharanabasava D Hiremath
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Ankit Thakuri
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Vijay Hemmadi
- Department of Biological Sciences, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Amrita Chatterjee
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| |
Collapse
|
32
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
33
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Ahumada G, Borkowska M. Fluorescent Polymers Conspectus. Polymers (Basel) 2022; 14:1118. [PMID: 35335449 PMCID: PMC8955759 DOI: 10.3390/polym14061118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The development of luminescent materials is critical to humankind. The Nobel Prizes awarded in 2008 and 2010 for research on the development of green fluorescent proteins and super-resolved fluorescence imaging are proof of this (2014). Fluorescent probes, smart polymer machines, fluorescent chemosensors, fluorescence molecular thermometers, fluorescent imaging, drug delivery carriers, and other applications make fluorescent polymers (FPs) exciting materials. Two major branches can be distinguished in the field: (1) macromolecules with fluorophores in their structure and (2) aggregation-induced emission (AIE) FPs. In the first, the polymer (which may be conjugated) contains a fluorophore, conferring photoluminescent properties to the final material, offering tunable structures, robust mechanical properties, and low detection limits in sensing applications when compared to small-molecule or inorganic luminescent materials. In the latter, AIE FPs use a novel mode of fluorescence dependent on the aggregation state. AIE FP intra- and intermolecular interactions confer synergistic effects, improving their properties and performance over small molecules aggregation-induced, emission-based fluorescent materials (AIEgens). Despite their outstanding advantages (over classic polymers) of high emission efficiency, signal amplification, good processability, and multiple functionalization, AIE polymers have received less attention. This review examines some of the most significant advances in the broad field of FPs over the last six years, concluding with a general outlook and discussion of future challenges to promote advancements in these promising materials that can serve as a springboard for future innovation in the field.
Collapse
Affiliation(s)
- Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea;
| | | |
Collapse
|
35
|
Moammeri A, Abbaspour K, Zafarian A, Jamshidifar E, Motasadizadeh H, Dabbagh Moghaddam F, Salehi Z, Makvandi P, Dinarvand R. pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:675-690. [PMID: 35129960 PMCID: PMC8864616 DOI: 10.1021/acsabm.1c01107] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/23/2022] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has become a treatment modality for breast cancer. However, serious side effects and high cytotoxicity associated with this combination therapy make it a high-risk method for breast cancer treatment. This study evaluated the anticancer effect of decorated niosomal nanocarriers loaded with cisplatin (CIS) and epirubicin (EPI) in vitro (on SKBR3 and 4T1 breast cancer cells) and in vivo on BALB/c mice. For this purpose, polyethylene glycol (PEG) and folic acid (FA) were employed to prepare a functionalized niosomal system to improve endocytosis. FA-PEGylated niosomes exhibited desired encapsulation efficiencies of ∼91.2 and 71.9% for CIS and EPI, respectively. Moreover, cellular assays disclosed that a CIS and EPI-loaded niosome (NCE) and FA-PEGylated niosomal CIS and EPI (FPNCE) enhanced the apoptosis rate and cell migration in SKBR3 and 4T1 cells compared to CIS, EPI, and their combination (CIS+EPI). For FPNCE and NCE groups, the expression levels of Bax, Caspase3, Caspase9, and Mfn1 genes increased, whereas the expression of Bcl2, Drp1, MMP-2, and MMP-9 genes was downregulated. Histopathology results showed a reduction in the mitosis index, invasion, and pleomorphism in BALB/c inbred mice with NCE and FPNCE treatment. In this paper, for the first time, we report a niosomal nanocarrier functionalized with PEG and FA for codelivery of CIS and EPI to treat breast cancer. The results demonstrated that the codelivery of CIS and EPI through FA-PEGylated niosomes holds great potential for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Moammeri
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Koorosh Abbaspour
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Alireza Zafarian
- Faculty
of Medicine, Isfahan University of Medical
Sciences, Isfahan 8174673461, Iran
| | - Elham Jamshidifar
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
| | - Hamidreza Motasadizadeh
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| | - Farnaz Dabbagh Moghaddam
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zeinab Salehi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Center for Materials Interfaces, Pontedera, Pisa 56025, Italy
| | - Rassoul Dinarvand
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| |
Collapse
|
36
|
Preetham HD, Umashankara M, Kumar KSS, Rangappa S, Rangappa KS. Pyrrolidine-based cationic γ-peptide: a DNA-binding molecule works as a potent anti-gene agent. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Villa M, Ceroni P, Fermi A. Tetrachromophoric Systems Based on Rigid Tetraphenylmethane (TPM) and Tetraphenylethylene (TPE) Scaffolds. Chempluschem 2022; 87:e202100558. [DOI: 10.1002/cplu.202100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Villa
- Universita di Bologna Department of Chemistry "Giacomo Ciamician" ITALY
| | - Paola Ceroni
- Universita di Bologna Depatment of Chemistry "G. Ciamician" ITALY
| | - Andrea Fermi
- Universita degli Studi di Bologna Dipartimento di Chimica Giacomo Ciamician Dipartimento di Chimica "Giacomo Ciamician" via Selmi 2 40126 Bologna ITALY
| |
Collapse
|
38
|
Zhao J, Zheng X. Progress on Exploring the Luminescent Properties of Organic Molecular Aggregates by Multiscale Modeling. Front Chem 2022; 9:808957. [PMID: 35096770 PMCID: PMC8790572 DOI: 10.3389/fchem.2021.808957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
Luminescent molecular aggregates have attracted worldwide attention because of their potential applications in many fields. The luminescent properties of organic aggregates are complicated and highly morphology-dependent, unraveling the intrinsic mechanism behind is urgent. This review summarizes recent works on investigating the structure-property relationships of organic molecular aggregates at different environments, including crystal, cocrystal, amorphous aggregate, and doped systems by multiscale modeling protocol. We aim to explore the influence of intermolecular non-covalent interactions on molecular packing and their photophysical properties and then pave the effective way to design, synthesize, and develop advanced organic luminescent materials.
Collapse
Affiliation(s)
- Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
39
|
Preetham HD, Muddegowda U, Sharath Kumar KS, Rangappa S, Rangappa KS. Identification of β-aminopyrrolidine containing peptides as β-amyloid aggregation inhibitors for Alzheimer's disease. J Pept Sci 2022; 28:e3386. [PMID: 34981876 DOI: 10.1002/psc.3386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is caused by a series of events initiated by the production and aggregation of the amyloid β-protein (Aβ). In the early stages of the disease, Aβ is released in a soluble form then progressively forms oligomeric, multimeric, and fibrillar aggregates, triggering neurodegeneration. Thus, development of inhibitors that initiate reverse Aβ aggregation is thought to be a logical approach in treating AD. In this context, we developed β-aminopyrrolidine containing 12 mer peptide 3 which is very potent in inhibiting the Aβ aggregation and also reducing Aβ(42)-induced cytotoxicity.
Collapse
Affiliation(s)
- Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Umashankara Muddegowda
- Department of Studies in Chemistry, Karnataka State Open University, Mysuru, Karnataka, India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya, Karnataka, India
| | | |
Collapse
|
40
|
Wang Z, Zhou Y, Xu R, Xu Y, Dang D, Shen Q, Meng L, Tang BZ. Seeing the unseen: AIE luminogens for super-resolution imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Jia S, Yuan H, Hu R. Design and Structural Regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Biomater Sci 2022; 10:4443-4457. [DOI: 10.1039/d2bm00864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, photodynamic therapy (PDT) has become one of the important therapeutic methods for treating cancer. Aggregation-induced emission (AIE) photosensitizers (PSs) overcome the aggregation-caused quenching (ACQ) effects of conventional...
Collapse
|
42
|
Zalmi GA, Jadhav RW, Mirgane HA, Bhosale SV. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2021; 27:150. [PMID: 35011382 PMCID: PMC8746362 DOI: 10.3390/molecules27010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights and explored recent advances that are being made in AIE active materials and their application in sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we outline their applications. Finally, we summarize our view of the construction and application of AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and develop the field of supramolecular chemistry in years to come.
Collapse
Affiliation(s)
| | | | | | - Sheshanath V. Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, India; (G.A.Z.); (R.W.J.); (H.A.M.)
| |
Collapse
|
43
|
Bélanger-Bouliga M, Andrade-Gagnon B, Thi Hong Nguyen D, Nazemi A. Size-tunable fluorescent dendrimersomes via aggregation-induced emission. Chem Commun (Camb) 2021; 58:803-806. [PMID: 34927642 DOI: 10.1039/d1cc05674c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetraphenylethylene-functionalized amphiphilic Janus dendrimers of up to third generation are synthesized. Their self-assembly has been studied under kinetic and thermodynamic control. By varying the dendrimer generation number and the self-assembly condition, fluorescent dendrimersomes of tunable size (∼60-200 nm) and quantum yield (5.7-17.4%) are obtained in aqueous medium.
Collapse
Affiliation(s)
- Marilyne Bélanger-Bouliga
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - Brandon Andrade-Gagnon
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - Diep Thi Hong Nguyen
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - Ali Nazemi
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|