1
|
Gara R, Morales‐García Á, Arfaoui Y, Illas F. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) Studies of Porphyrin Adsorption on Graphene: Insights on the Effect of Substituents and Central Metal on Adsorption Energies. J Comput Chem 2025; 46:e27526. [PMID: 39636095 PMCID: PMC11619565 DOI: 10.1002/jcc.27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024]
Abstract
Combining metalloporphyrins (MPr) and graphene constitutes key composites in the development of photovoltaic devices. Here, we focus on the analysis of the properties of metalloporphyrins/graphene systems by means of the density functional theory (DFT) and its time-dependent (TDDFT) version, focusing on the ground and singlet excited states. Our benchmark analysis concludes that ωB97XD density functional combined with 6-31G(d)/Def2-TZVP basis set is a better-suited method for simulating accurate MPr adsorption on graphene. It is shown that a reduced atomic model where the external organic shell of the structure is removed provides the same resulting optoelectronic properties of the original model, constituting an important speed-up of the calculations when studying porphyrins-derived molecules. We observe that ZnPr provides the highest light harvesting efficiency (LHE) value. In addition, we find out that the adsorption energy increases monotonically with the size of the graphene flake and the highest stability involves the use of graphene comprising above 500 atoms. Besides, CdPr and HgPr keep their properties as photosensitizers when they are bonded to graphene and show promising values in terms of LHE emerging as suitable solar energy harvesters.
Collapse
Affiliation(s)
- Rayene Gara
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Ángel Morales‐García
- Departament de Química Física and Institut de Química Teorica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Francesc Illas
- Departament de Química Física and Institut de Química Teorica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Wang Z, Qi Z, Wang S, Du J, Dai W, Lu F, Deng Q. Porphyrin based covalent organic frameworks via self-polycondensation for heterogeneous photocatalysis. J Colloid Interface Sci 2024; 683:736-745. [PMID: 39746244 DOI: 10.1016/j.jcis.2024.12.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
A novel porphyrin based covalent organic frameworks (Por-BABN-COF) has been successfully constructed via self-polycondensation of a newly developed A2B2 porphyrin building block possessing two amino groups and two neopentyl acetal at the meso-position. Por-BABN-COF was employed as a heterogeneous photocatalyst for the selective oxidation of sulfides and CO2 cycloaddition due to its superior light absorption capacity, strong crystallinity and high stability. The high conversion, good selectivity and excellent reusability indicate Por-BABN-COF is a promising photocatalyst for both reactions. Mechanistic investigations confirm that electron transfer pathways contribute to the formation of sulfoxides. This study presents a new strategy for designing and developing high-efficient porphyrin-based COFs as heterogeneous photocatalysts for selective organic transformations.
Collapse
Affiliation(s)
- Ziqing Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300350, PR China.
| | - Zhezhen Qi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300350, PR China.
| | - Shoujia Wang
- China Water Resources Beifang Investigation, Design and Research Co. Ltd., Tianjin 300222, PR China
| | - Jinfeng Du
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300350, PR China.
| | - Weiyi Dai
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300350, PR China.
| | - Futai Lu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300350, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin 300457, PR China.
| | - Qiliang Deng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300350, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Dong XY, Chen H, Wang S, Zou RY, Zang SQ, Cai J. Introducing La into a Customized Dual Cu Covalent Organic Framework to Steer CO 2 Electroreduction Selectivity from C 2H 4 to CH 4. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413710. [PMID: 39690887 DOI: 10.1002/adma.202413710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Customizing multi-metal site catalysts for achieving controllable CO2 reduction reaction (CO2RR) product tuning holds immense promise yet poses formidable challenges. The traditional synthesis method of multi-metal sites is the pyrolysis of metal-containing precursors, which is inherently uncontrollable. Herein, a bottom-up strategy is employed to customize and synthesize multi-metal sites in covalent organic frameworks (COFs), aiming to controllably switch the CO2 reduction selectivity by regulating the electronic structure of active sites. Briefly, La element provides chances for manipulating and finetuning the electronic structure of the customized dual Cu sites, and converts the main catalytic product of CO2RR from ethylene to methane. Density functional theory calculations show that the introduction of La alters the electronic structure around Cu, enhances CO2 and H2O activation, and changes the formation of energy barriers of key intermediates. To the best of the author's knowledge, this study constructed the first example of customized multi-metal site COF catalysts and provided new ideas for controllable modulation of products.
Collapse
Affiliation(s)
- Xiao-Yu Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ru-Yi Zou
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Wu Y, Wang R, Kim Y. Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66874-66899. [PMID: 38329718 DOI: 10.1021/acsami.3c17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions. Here, we summarize the representative COF-based SACs and their wide application in clean energy devices and conversion reactions, such as hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, and oxygen evolution reaction. Based on their catalysis conditions, these reactions are categorized into photocatalyzed and electrocatalyzed reactions. We also summarize their design strategies, including heteroatom inclusion, donor-acceptor pairs, pore engineering, interface engineering, etc. Although COF-based SACs are promising, more efforts, such as linkage engineering, functional groups, ionization, multifunctional sites for cocatalyzed systems, etc., could improve them to be the ideal SAC materials. At the end, we provide our perspectives on where the field will proceed in the next 5 years.
Collapse
Affiliation(s)
- Yurong Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| |
Collapse
|
5
|
He Q, Li TT. Tandem Electroreduction of CO 2 to C2+ Products Based on M-SACs/Cu Catalysts. Chemistry 2024:e202403297. [PMID: 39632273 DOI: 10.1002/chem.202403297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Electrochemical CO2 reduction reaction (ECO2RR) is considered a highly promising method to produce high-value chemicals and fuels, contributing significantly the artificial carbon balance. Plenty catalysts can facilitate the conversion of CO2 into mono-carbon (C1) products. Among these catalysts, Cu species exhibit a distinct role in the formation of multi-carbon (C2+) products characterized by enhanced energy density. However, the limited selectivity of C2+ products, along with the inferior stability, and high overpotential demonstrated by single-component Cu catalysts, hinders their applicability in industrial-scale production. The implementation of a tandem strategy, which involves coupling the CO2-to-CO pathway using Ag, Au, metal single-atom catalysts (M-SACs), etc., with the CO-to-C2+ conversion on Cu, represents a novel approach for the efficient generation of C2+ products. Given the high cost and restricted availability of noble metals, M-SACs have attracted substantial interest in tandem systems due to their cost-effectiveness and efficient atom utilization. The systematic analysis of the design principles and structure-activity relationship is essential for the advancement of M-SACs/Cu-based tandem catalysts. Here we first introduce various prevalent design strategies of M-SACs/Cu-based tandem catalysts for ECO2RR and then systematically summarize the latest advancements of M-SACs/Cu-based tandem system, encompassing metal-organic frameworks/Cu (MOFs/Cu), covalent organic frameworks/Cu (COFs/Cu), and nitrogen-doped carbon support transition metal single atomic materials/Cu (M-N-C/Cu). Lastly, we discuss the challenges and opportunities with the design and construction of M-SACs/Cu-based tandem catalysis for ECO2RR.
Collapse
Affiliation(s)
- Qizhe He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
6
|
Wang R, Wang Y, Han J, Wu S, Dong P, Raghavan V, Wang J. Employing conductive porous hydrogen-bonded organic framework for ultrasensitive detection of peanut allergen Ara h1. Food Chem 2024; 460:140777. [PMID: 39128370 DOI: 10.1016/j.foodchem.2024.140777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/13/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Peanut allergy has garnered worldwide attention due to its high incidence rate and severe symptoms, stimulating the demand for the ultrasensitive detection method of peanut allergen. Herein, we successfully developed a novel electrochemical aptasensor for ultrasensitive detection Ara h1, a major allergenic protein present in peanuts. A conductive nickel atoms Anchored Hydrogen-Bonded Organic Frameworks (PFC-73-Ni) were utilized as excellent electrocatalysts toward hydroquinone (HQ) oxidation to generate a readable current signal. The developed electrochemical aptasensor offers wide linear range (1-120 nM) and low detection limit (0.26 nM) for Ara h1. This method demonstrated a recovery rate ranging from 95.00% to 107.42% in standard addition detection of non-peanut food samples. Additionally, the developed electrochemical method was validated with actual samples and demonstrated good consistency with the results obtained from a commercial ELISA kit. This indicates that the established Ara h1 detection method is a promising tool for peanut allergy prevention.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Youfa Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Han
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shuang Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Pengfei Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
7
|
Xie S, Liu R, Liu N, Xu H, Chen X, Wang X, Jiang D. Vertically Expanded Covalent Organic Frameworks for Photocatalytic Water Oxidation into Oxygen. Angew Chem Int Ed Engl 2024:e202416771. [PMID: 39502043 DOI: 10.1002/anie.202416771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/21/2024]
Abstract
Covalent organic frameworks with unique π architectures and pores could be developed as photocatalysts for transformations. However, they usually form π-stacking layers, so that only surface layers function in photocatalysis. Here we report a strategy for developing vertically expanded frameworks to expose originally inaccessible active sites hidden in layers to catalysis. We designed covalently linked two-dimensional cobalt(II) porphyrin layers and explored coordination bonds to connect the cobalt(II) porphyrin layers with bidentate ligands via a three-component one-pot polymerization. The resultant frameworks expand the interlayer space greatly, where both the up and down faces of each cobalt(II) porphyrin layer are exposed to reactants. Unexpectedly, the vertically expanded frameworks increase skeleton oxidation potentials, decrease exciton dissociation energy, improve pore hydrophilicity and affinity to water, and facilitate water delivery. Remarkably, these positive effects work collectively in the photocatalysis of water oxidation into oxygen, with an oxygen production rate of 1155 μmol g-1 h-1, a quantum efficiency of 1.24 % at 450 nm, and a turnover frequency of 1.39 h-1, which is even 5.1-fold as high as that of the π-stacked frameworks and ranks them the most effective photocatalysts. This strategy offers a new platform for designing layer frameworks to build various catalytic systems for chemical transformations.
Collapse
Affiliation(s)
- Shuailei Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Nengyi Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Hetao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Donglin Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
8
|
Lu S, Zheng X, Zeng Y, Hua Q, Wang X, Liu Y, Liu H. Triphenylamine-Substituted Ni(II) Porphyrins for Urea Electro-oxidation. Inorg Chem 2024; 63:20929-20934. [PMID: 39440872 DOI: 10.1021/acs.inorgchem.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Porphyrin-based molecular catalysts possess a typical aromatic macrocyclic structure regarding their metal centers and coordination frameworks, allowing for the development of promising electrocatalysts through precise selection of the metal and porphyrin ligand. However, reports on metalloporphyrins as catalysts for the electrocatalytic urea oxidation reaction (UOR) remain scarce. With these considerations in mind, the triphenylamine-Ni(II) porphyrin (NiPor-TPA) was synthesized through the solvothermal approach from 5,10,15,20-tetrakis [4-(diphenylamino)phenyl]porphyrin and nickel(II) acetate in this work. Experimental results reveal that the introduction of Ni species can serve as active sites and activate urea oxidation efficiently, and thus the prepared catalysts deliver better electrocatalytic activity than the metal-free TPA. The NiPor-TPA electrode delivers the lowest potential of 1.34 V versus reversible hydrogen electrode (RHE) at 10 mA cm-2 for UOR with a Tafel slope of 44.6 mV dec-1. This work proposes a new porphyrin-based molecular catalyst for effectively boosting electrocatalytic UOR activity. The π-conjugated macroring structure and the excellent electrocatalytic properties both make NiPor-TPA one of the burgeoning electrocatalytic UORs.
Collapse
Affiliation(s)
- Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingqun Zheng
- College of Safety Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Yi Zeng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qingsong Hua
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
9
|
Vinodh M, Alipour FH, Al-Azemi TF. meso-5,15-Bis[3-(iso-propyl-idenegalacto-pyran-oxy)phen-yl]-10,20-bis-(4-methyl-phen-yl)porphyrin. IUCRDATA 2024; 9:x241028. [PMID: 39712658 PMCID: PMC11660175 DOI: 10.1107/s2414314624010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024] Open
Abstract
The crystal structure of a glycosyl-ated porphyrin (P_Gal2) system, C70H70N4O12, where two iso-propyl-idene protected galactose moieties are attached to the meso position of a substituted tetra-aryl porphyrin is reported. This structure reveals that the parent porphyrin is planar, with the galactose moieties positioned above and below the porphyrin macrocycle. This orientation likely prevents porphyrin-porphyrin H-type aggregation, potentially enhancing its efficiency as a photosensitizer in photodynamic therapy. Notable non-bonding C-H⋯O and C-H⋯π inter-actions among adjacent P_Gal2 systems are observed in this crystal network. Additionally, the tolyl groups of each porphyrin can engage in π-π inter-actions with the delocalized π-systems of neighboring porphyrins.
Collapse
Affiliation(s)
- Mickey Vinodh
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Fatemeh H. Alipour
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Talal F. Al-Azemi
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| |
Collapse
|
10
|
Feng JD, Zhang WD, Gu ZG. Covalent Organic Frameworks for Electrocatalysis: Design, Applications, and Perspectives. Chempluschem 2024; 89:e202400069. [PMID: 38955991 DOI: 10.1002/cplu.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Covalent organic frameworks (COFs) are an innovative class of crystalline porous polymers composed of light elements such as C, N, O, etc., linked by covalent bonds. The distinctive properties of COFs, including designable building blocks, large specific surface area, tunable pore size, abundant active sites, and remarkable stability, have led their widespread applications in electrocatalysis. In recent years, COF-based electrocatalysts have made remarkable progress in various electrocatalytic fields, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. This review begins with an introduction to the design and synthesis strategies employed for COF-based electrocatalysts. These strategies include heteroatom doping, metalation of COF and building monomers, encapsulation of active sites within COF pores, and the development of COF-based derived materials. Subsequently, a systematic overview of the recent advancements in the application of COF-based catalysts in electrocatalysis is presented. Finally, the review discusses the main challenges and outlines possible avenues for the future development of COF-based electrocatalysts.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
11
|
He Q, Li H, Hu Z, Lei L, Wang D, Li TT. Highly Selective CO 2 Electroreduction to C 2H 4 Using a Dual-Sites Cu(II) Porphyrin Framework Coupled with Cu 2O Nanoparticles via a Synergetic-Tandem Strategy. Angew Chem Int Ed Engl 2024; 63:e202407090. [PMID: 38840270 DOI: 10.1002/anie.202407090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Low *CO coverage on the active sites is a major hurdle in the tandem electrocatalysis, resulting in unsatisfied C2H4 production efficiencies. In this work, we developed a synergetic-tandem strategy to construct a copper-based composite catalyst for the electroreduction of CO2 to C2H4, which was constructed via the template-directed polymerization of ultrathin Cu(II) porphyrin organic framework incorporating atomically isolated Cu(II) porphyrin and Cu(II) bipyridine sites on a carbon nanotube (CNT) scaffold, and then Cu2O nanoparticles were uniformly dispersed on the CNT scaffold. The presence of dual active sites within the Cu(II) porphyrin organic framework create a synergetic effect, leading to an increase in local *CO availability to enhance the C-C coupling step implemented on the adjacent Cu2O nanoparticles for further C2H4 production. Accordingly, the resultant catalyst affords an exceptional CO2-to-C2H4 Faradaic efficiency (FEC2H4) of 71.0 % at -1.1 V vs reversible hydrogen electrode (RHE), making it one of the most effective copper-based tandem catalysts reported to date. The superior performance of the catalyst is further confirmed through operando infrared spectroscopy and theoretic calculations.
Collapse
Affiliation(s)
- Qizhe He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongwei Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Lei Lei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Degao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
12
|
Yang Y, Yao X, Xuan Z, Chen X, Zhang Y, Huang T, Shi M, Chen Y, Lan YQ. Porous crystalline conjugated macrocyclic materials and their energy storage applications. MATERIALS HORIZONS 2024; 11:3747-3763. [PMID: 38895771 DOI: 10.1039/d4mh00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Porous crystalline conjugated macrocyclic materials (CMMs) possess high porosity, tunable structure/function and efficient charge transport ability owing to their planar macrocyclic conjugated π-electron system, which make them promising candidates for applications in energy storage. In this review, we thoroughly summarize the timely development of porous crystalline CMMs in energy storage related fields. Specifically, we summarize and discuss their structures and properties. In addition, their energy storage applications, such as lithium ion batteries, lithium sulfur batteries, sodium ion batteries, potassium ion batteries, Li-CO2 batteries, Li-O2 batteries, Zn-air batteries, supercapacitors and triboelectric nanogenerators, are also discussed. Finally, we present the existing challenges and future prospects. We hope this review will inspire the development of advanced energy storage materials based on porous crystalline CMMs.
Collapse
Affiliation(s)
- Yiwen Yang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaoman Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Zhe Xuan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xuanxu Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yuluan Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Taoping Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Mingjin Shi
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Mai S, Zhang W, Mu X, Cao J. Structural Decoration of Porphyrin/Phthalocyanine Photovoltaic Materials. CHEMSUSCHEM 2024; 17:e202400217. [PMID: 38494448 DOI: 10.1002/cssc.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Porphyrin/phthalocyanine compounds with fascinating molecular structures have attracted widespread attention in the field of solar cells in recent years. In this review, we focus on the pivotal role of porphyrin and phthalocyanine compounds in enhancing the efficiency of solar cells. The review seamlessly integrates the intricate molecular structures of porphyrins and phthalocyanines with their proficiency in absorbing visible light and facilitating electron transfer, key processes in converting sunlight into electricity. By delving into the nuances of intramolecular regulation, aggregated states, and surface/interface structure manipulation, it elucidates how various levels of molecular modifications enhance solar cell efficiency through improved charge transfer, stability, and overall performance. This comprehensive exploration provides a detailed understanding of the complex relationship between molecular design and solar cell performance, discussing current advancements and potential future applications of these molecules in solar energy technology.
Collapse
Affiliation(s)
- Sibei Mai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Weilun Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
14
|
Chen Z, Fang P, Zou X, Shi Z, Zhang J, Sun Z, Guo S, Yan F. Interlayer Polymerization to Construct a Fully Conjugated Covalent Organic Framework as a Metal-Free Oxygen Reduction Reaction Catalyst for Anion Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401880. [PMID: 38678520 DOI: 10.1002/smll.202401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) have a multilayer skeleton with a periodic π-conjugated molecular array, which can facilitate charge carrier transport within a COF layer. However, the lack of an effective charge carrier transmission pathway between 2D COF layers greatly limits their applications in electrocatalysis. Herein, by employing a side-chain polymerization strategy to form polythiophene along the nanochannels, a conjugated bridge is constructed between the COF layers. The as-synthesized fully conjugated COF (PTh-COF) exhibits high oxygen reduction reaction (ORR) activity with narrowed energy band gaps. Correspondingly, PTh-COF is tested as a metal-free cathode catalyst for anion exchange membrane fuel cells (AEMFCs) which showed a maximum power density of 176 mW cm-2 under a current density of 533 mA cm-2. The density functional theory (DFT) calculation reveals that interlayer conjugated polythiophene optimizes the electron cloud distribution, which therefore enhances the ORR performance. This work not only provides new insight into the construction of a fully conjugated covalent organic framework but also promotes the development of new metal-free ORR catalysts.
Collapse
Affiliation(s)
- Zhiwei Chen
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Pengda Fang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300, China
| | - Zheng Shi
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiamin Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Siyu Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Bazazi S, Hashemi E, Mohammadjavadi M, Saeb MR, Liu Y, Huang Y, Xiao H, Seidi F. Metal-organic framework (MOF)/C-dots and covalent organic framework (COF)/C-dots hybrid nanocomposites: Fabrications and applications in sensing, medical, environmental, and energy sectors. Adv Colloid Interface Sci 2024; 328:103178. [PMID: 38735101 DOI: 10.1016/j.cis.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Mahdi Mohammadjavadi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Li XG, Li J, Chen J, Rao L, Zheng L, Yu F, Tang Y, Zheng J, Ma J. Porphyrin-based covalent organic frameworks from design, synthesis to biological applications. Biomater Sci 2024; 12:2766-2785. [PMID: 38717456 DOI: 10.1039/d4bm00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Covalent organic frameworks (COFs) constitute a class of highly functional porous materials composed of lightweight elements interconnected by covalent bonds, characterized by structural order, high crystallinity, and large specific surface area. The integration of naturally occurring porphyrin molecules, renowned for their inherent rigidity and conjugate planarity, as building blocks in COFs has garnered significant attention. This strategic incorporation addresses the limitations associated with free-standing porphyrins, resulting in the creation of well-organized porous crystal structures with molecular-level directional arrangements. The unique optical, electrical, and biochemical properties inherent to porphyrin molecules endow these COFs with diversified applications, particularly in the realm of biology. This review comprehensively explores the synthesis and modulation strategies employed in the development of porphyrin-based COFs and delves into their multifaceted applications in biological contexts. A chronological depiction of the evolution from design to application is presented, accompanied by an analysis of the existing challenges. Furthermore, this review offers directional guidance for the structural design of porphyrin-based COFs and underscores their promising prospects in the field of biology.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Junjian Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - JinFeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Libin Zheng
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
- School of Civil Engineering, Kashi University, Kashi 844000, China
| |
Collapse
|
17
|
Ding C, Zhao Y, Qiao Z. Modification of carbon nanofibers for boosting oxygen electrocatalysis. Phys Chem Chem Phys 2024; 26:13606-13621. [PMID: 38682278 DOI: 10.1039/d3cp05904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Oxygen electrocatalysis is a key process for many effective energy conversion techniques, which requires the development of high-performance electrocatalysts. Carbon nanofibers featuring good electronic conductivity, large specific surface area, high axial strength and modulus, and good resistance toward harsh environments have thus been recognized as reinforcements in oxygen electrocatalysis. This review summarizes the recent progress on carbon nanofibers as electrocatalysts for oxygen electrocatalysis, with special focus on the modulation of carbon nanofibers for further elevating their electrocatalytic performance, which includes morphological and structural engineering, surface and pore size distribution, defect engineering, and coupling with other electroactive materials. Additionally, the correlation between the geometrical/electronic structure of their active centers and electrocatalytic activity is systematically discussed. Finally, conclusions and perspectives of this interesting research field are presented, which we hope will provide guidance for the future fabrication of more advanced carbon-fiber-based electrocatalysts.
Collapse
Affiliation(s)
- Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China
- Jiangsu Key Laboratory of High-Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Changzhou, Jiangsu Province, 213164, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| |
Collapse
|
18
|
Endo K, Raza A, Yao L, Van Gele S, Rodríguez-Camargo A, Vignolo-González HA, Grunenberg L, Lotsch BV. Downsizing Porphyrin Covalent Organic Framework Particles Using Protected Precursors for Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313197. [PMID: 38300155 DOI: 10.1002/adma.202313197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Indexed: 02/02/2024]
Abstract
Covalent organic frameworks (COFs) are promising electrocatalyst platforms owing to their designability, porosity, and stability. Recently, COFs with various chemical structures are developed as efficient electrochemical CO2 reduction catalysts. However, controlling the morphology of COF catalysts remains a challenge, which can limit their electrocatalytic performance. Especially, while porphyrin COFs show promising catalytic properties, their particle size is mostly large and uncontrolled because of the severe aggregation of crystallites. In this work, a new synthetic methodology for rationally downsized COF catalyst particles is reported, where a tritylated amine is employed as a novel protected precursor for COF synthesis. Trityl protection provides high solubility to a porphyrin precursor, while its deprotection proceeds in situ under typical COF synthesis conditions. Subsequent homogeneous nucleation and colloidal growth yield smaller COF particles than a conventional synthesis, owing to suppressed crystallite aggregation. The downsized COF particles exhibit superior catalytic performance in electrochemical CO2 reduction, with higher CO production rate and faradaic efficiency compared to conventional COF particles. The improved performance is attributed to the higher contact area with a conductive agent. This study reveals particle size as an important factor for the evaluation of COF electrocatalysts and provides a strategy to control it.
Collapse
Affiliation(s)
- Kenichi Endo
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Asif Raza
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Liang Yao
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Samuel Van Gele
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
| | - Andrés Rodríguez-Camargo
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Hugo A Vignolo-González
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
- Cluster of Excellence e-conversion, 85748, Garching, Germany
| | - Lars Grunenberg
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
| | - Bettina V Lotsch
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
- Cluster of Excellence e-conversion, 85748, Garching, Germany
| |
Collapse
|
19
|
Liu G, Liu S, Lai C, Qin L, Zhang M, Li Y, Xu M, Ma D, Xu F, Liu S, Dai M, Chen Q. Strategies for Enhancing the Photocatalytic and Electrocatalytic Efficiency of Covalent Triazine Frameworks for CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307853. [PMID: 38143294 DOI: 10.1002/smll.202307853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Indexed: 12/26/2023]
Abstract
Converting carbon dioxide (CO2) into fuel and high-value-added chemicals is considered a green and effective way to solve global energy and environmental problems. Covalent triazine frameworks (CTFs) are extensively utilized as an emerging catalyst for photo/electrocatalytic CO2 reduction reaction (CO2RR) recently recognized for their distinctive qualities, including excellent thermal and chemical stability, π-conjugated structure, rich nitrogen content, and a strong affinity for CO2, etc. Nevertheless, single-component CTFs have the problems of accelerated recombination of photoexcited electron-hole pairs and restricted conductivity, which limit their application for photo/electrocatalytic CO2RR. Therefore, emphasis will then summarize the strategies for enhancing the photocatalytic and electrocatalytic efficiency of CTFs for CO2RR in this paper, including atom doping, constructing a heterojunction structure, etc. This review first illustrates the synthesis strategies of CTFs and the advantages of CTFs in the field of photo/electrocatalytic CO2RR. Subsequently, the mechanism of CTF-based materials in photo/electrocatalytic CO2RR is described. Lastly, the challenges and future prospects of CTFs in photo/electrocatalytic CO2RR are addressed, which offers a fresh perspective for the future development of CTFs in photo/electrocatalytic CO2RR.
Collapse
Affiliation(s)
- Gang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha, 410083, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingyang Dai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
20
|
Huang M, Chen B, Zhang H, Jin Y, Zhi Q, Yang T, Wang K, Jiang J. Tailored Local Electronic Environment of Co-N 4 Sites in Cobalt Phthalocyanines for Enhanced CO 2 Reduction Reaction. SMALL METHODS 2024:e2301652. [PMID: 38659342 DOI: 10.1002/smtd.202301652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Atomically dispersed Co-N4-based catalysts have been recently emerging as one of the most promising candidates for facilitating CO2 reduction reaction (CO2RR). The local electronic environment of Co-N4 sites in these catalysts is considered to play a critical role in adjusting the catalytic performance, the effort of which however is not yet clearly verified. Herein, a series of cobalt phthalocyanines with different peripheral substituents including unsubstituted phthalocyanine Co(II) (CoPc), 2,9,16,23-tetramethoxyphthalocyaninato Co(II) (CoPc-4OCH3), and 2,9,16,23-tetranitrophthalocyaninato Co(II) (CoPc-4NO2) are supported onto the surface of the multi-walled carbon nanotubes (CNTs), affording CoPc@CNTs, CoPc-4OCH3@CNTs, and CoPc-4NO2@CNTs. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure measurements disclose the influence of the peripheral substituents on the local electronic structure of Co atoms in these three catalysts. Electrochemical tests indicate the higher CO2RR performance of CoPc-4OCH3@CNTs compared to CoPc@CNTs and CoPc-4NO2@CNTs as exemplified by the higher Faraday efficiency of CO, larger part current densities, and better stability displayed by CoPc-4OCH3@CNTs at the applied voltage range from -0.6 to -1.0 V versus RHE in both H-cell and flow cell. These results highlight the effect of the electron-donating -OCH3 substituent on the enhanced catalytic activity of CoPc-4OCH3@CNTs, which will help develop Co-N4-based catalysts with promising catalytic performance toward CO2RR.
Collapse
Affiliation(s)
- Mengying Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tao Yang
- Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
21
|
Lan X, Luo N, Li Z, Peng J, Cheng HM. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries. ACS NANO 2024; 18:9285-9310. [PMID: 38522089 DOI: 10.1021/acsnano.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Replacing liquid electrolytes and separators in conventional lithium-ion batteries with solid-state electrolytes (SSEs) is an important strategy to ensure both high energy density and high safety. Searching for fast ionic conductors with high electrochemical and chemical stability has been the core of SSE research and applications over the past decades. Based on the atomic-level thickness and infinitely expandable planar structure, numerous two-dimensional materials (2DMs) have been exploited and applied to address the most critical issues of low ionic conductivity of SSEs and lithium dendrite growth in all-solid-state lithium batteries. This review introduces the research process of 2DMs in SSEs, then summarizes the mechanisms and strategies of inert and active 2DMs toward Li+ transport to improve the ionic conductivity and enhance the electrode/SSE interfacial compatibility. More importantly, the main challenges and future directions for the application of 2DMs in SSEs are considered, including the importance of exploring the relationship between the anisotropic structure of 2DMs and Li+ diffusion behavior, the exploitation of more 2DMs, and the significance of in situ characterizations in elucidating the mechanisms of Li+ transport and interfacial reactions. This review aims to provide a comprehensive understanding to facilitate the application of 2DMs in SSEs.
Collapse
Affiliation(s)
- Xuexia Lan
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Luo
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Li
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Peng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 1110016, China
| |
Collapse
|
22
|
Zhi Q, Jiang R, Yang X, Jin Y, Qi D, Wang K, Liu Y, Jiang J. Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H 2O 2 electroproduction. Nat Commun 2024; 15:678. [PMID: 38263147 PMCID: PMC10805717 DOI: 10.1038/s41467-024-44899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Realization of stable and industrial-level H2O2 electroproduction still faces great challenge due large partly to the easy decomposition of H2O2. Herein, a two-dimensional dithiine-linked phthalocyaninato cobalt (CoPc)-based covalent organic framework (COF), CoPc-S-COF, was afforded from the reaction of hexadecafluorophthalocyaninato cobalt (II) with 1,2,4,5-benzenetetrathiol. Introduction of the sulfur atoms with large atomic radius and two lone-pairs of electrons in the C-S-C linking unit leads to an undulated layered structure and an increased electron density of the Co center for CoPc-S-COF according to a series of experiments in combination with theoretical calculations. The former structural effect allows the exposition of more Co sites to enhance the COF catalytic performance, while the latter electronic effect activates the 2e- oxygen reduction reaction (2e- ORR) but deactivates the H2O2 decomposition capability of the same Co center, as a total result enabling CoPc-S-COF to display good electrocatalytic H2O2 production performance with a remarkable H2O2 selectivity of >95% and a stable H2O2 production with a concentration of 0.48 wt% under a high current density of 125 mA cm-2 at an applied potential of ca. 0.67 V versus RHE for 20 h in a flow cell, representing the thus far reported best H2O2 synthesis COFs electrocatalysts.
Collapse
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Yao B, Li G, Wu X, Sun H, Liu X, Li F, Guo T. Polyimide covalent organic frameworks bearing star-shaped electron-deficient polycyclic aromatic hydrocarbon building blocks: molecular innovations for energy conversion and storage. Chem Commun (Camb) 2024; 60:793-803. [PMID: 38168788 DOI: 10.1039/d3cc05214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polyimide covalent organic frameworks (PI-COFs) are outstanding functional materials for electrochemical energy conversion and storage owing to their integrated advantages of the high electroactive feature of polyimides and the periodic porous structure of COFs. Nevertheless, only anhydride monomers with C2 symmetry are generally used, and limited selectivity of electron-deficient monomers has become a major obstacle in the development of materials. The introduction of polycyclic aromatic hydrocarbons (PAHs) is a very effective method to regulate the structure-activity relationship of PI-COFs due to their excellent stability and electrical properties. Over the past two years, various star-shaped electron-deficient PAH building blocks possessing different compositions and topologies have been successfully fabricated, greatly improving the monomer selectivity and electrochemical performances of PI-COFs. This paper systematically summarizes the recent highlights in PI-COFs based on these building blocks. Firstly, the preparation of anhydride (or phthalic acid) monomers and PI-COFs related to different star-shaped PAHs is presented. Secondly, the applications of these PI-COFs in energy conversion and storage and the corresponding factors influencing their performance are discussed in detail. Finally, the future development of this meaningful field is briefly proposed.
Collapse
Affiliation(s)
- Bin Yao
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Guowang Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xianying Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Hongfei Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xingyan Liu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Tingwang Guo
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
24
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
25
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
26
|
Xiang G, Xu W, Zhuge W, Huang Q, Zhang C, Peng J. Conductive phthalocyanine-based porous organic polymer as sensing platform for rapid determination of vanillin. Analyst 2023; 148:6274-6281. [PMID: 37969078 DOI: 10.1039/d3an01758c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Vanillin (Van) is widely utilized in processed foods and medicines for its appealing scent and multiple therapeutic benefits. However, its overconsumption poses a risk to public health, making its quantification essential for ensuring food and medicine safety and quality. This study introduces a stable and conductive phthalocyanine-based porous organic polymer (NiPc-CC POP), synthesized through a straightforward electrophilic substitution of nickel tetra-amine phthalocyanine (NiTAPc) with cyanuric chloride (CC). Appropriate characterization techniques were employed to determine the morphologies and structures of the synthesized materials. Furthermore, the NiPc-CC POP was applied to devise a sensitive Van detection method. Leveraging the high electrocatalytic activity of NiPc-CC POP toward Van oxidation, a linear response of 0.15-32 μmol L-1 was achieved, along with an exceptional detection limit of 0.10 μmol L-1. The sensor demonstrated high selectivity and stability. Samples of human serum and tablets spiked with Van were analyzed, yielding satisfactory recoveries. Consequently, this work contributes to the advancement of sensitive detection platforms for Van at minimal concentrations.
Collapse
Affiliation(s)
- Gang Xiang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Wensi Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Wenfeng Zhuge
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Qing Huang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Cuizhong Zhang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Jinyun Peng
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| |
Collapse
|
27
|
Zhang Y, Zhang X, Jiao L, Meng Z, Jiang HL. Conductive Covalent Organic Frameworks of Polymetallophthalocyanines as a Tunable Platform for Electrocatalysis. J Am Chem Soc 2023; 145:24230-24239. [PMID: 37890005 DOI: 10.1021/jacs.3c08594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Developing an electrocatalyst platform that can control the interplay among activity, selectivity, and stability at atomic precision remains a grand challenge. Here, we have synthesized highly crystalline polymetallophthalocyanines (pMPcs, M = Fe, Co, Ni, and Cu) through the annulation of tetracyanobenzene in the presence of transition metals. The conjugated, conductive, and stable backbones with precisely installed metal sites render pMPcs a unique platform in electrochemical catalysis, where tunability emerges from long-range interactions. The construction of pCoNiPc with a Co and Ni dual-site integrates the advantageous features of pCoPc and pNiPc in electrocatalytic CO2 reduction through electronic communication of the dual-site with an unprecedented long atomic separation of ≥14 chemical bonds. This integration provides excellent activity (current density, j = -16.0 and -100 mA cm-2 in H-type and flow cell, respectively), selectivity (CO Faraday efficiency, FECO = 94%), and stability (>10 h), making it one of the best-performing reticular materials.
Collapse
Affiliation(s)
- Yi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| | - Zheng Meng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
28
|
Feng JD, Zhang WD, Liu Y, Han WK, Zhu RM, Gu ZG. A 3D Covalent Organic Framework with In-situ Formed Pd Nanoparticles for Efficient Electrochemical Oxygen Reduction. Chemistry 2023; 29:e202302201. [PMID: 37565784 DOI: 10.1002/chem.202302201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
29
|
Xue R, Jiang W, He X, Xiong H, Xie G, Nie Z. The Adsorption Mechanisms of SF 6-Decomposed Species on Tc- and Ru-Embedded Phthalocyanine Surfaces: A Density Functional Theory Study. Molecules 2023; 28:7137. [PMID: 37894617 PMCID: PMC10608908 DOI: 10.3390/molecules28207137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Designing high-performance materials for the detection or removal of toxic decomposition gases of sulfur hexafluoride is crucial for both environmental monitoring and human health preservation. Based on first-principles calculations, the adsorption performance and gas-sensing properties of unsubstituted phthalocyanine (H2Pc) and H2Pc doped with 4d transition metal atoms (TM = Tc and Ru) towards five characteristic decomposition components (HF, H2S, SO2, SOF2, and SO2F2) were simulated. The findings indicate that both the TcPc and RuPc monolayers are thermodynamically and dynamically stable. The analysis of the adsorption energy indicates that H2S, SO2, SOF2, and SO2F2 underwent chemisorption on the TcPc monolayer. Conversely, the HF molecules were physisorbed through interactions with H atoms. The chemical adsorption of H2S, SO2, and SOF2 occurred on the RuPc monolayer, while the physical adsorption of HF and SO2F2 molecules was observed. Moreover, the microcosmic mechanism of the gas-adsorbent interaction was elucidated by analyzing the charge density differences, electron density distributions, Hirshfeld charges, and density of states. The TcPc and RuPc monolayers exhibited excellent sensitivity towards H2S, SO2, and SOF2, as evidenced by the substantial alterations in the band gaps and work functions of the TcPc and RuPc nanosheets. Our calculations hold significant value for exploring the potential chemical sensing applications of TcPc and RuPc monolayers in gas sensing, with a specific focus on detecting sulfur hexafluoride.
Collapse
Affiliation(s)
- Rou Xue
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Wen Jiang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Xing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Huihui Xiong
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Gang Xie
- Kunming Metallurgical Research Institute Co., Ltd., Kunming 650031, China;
| | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| |
Collapse
|
30
|
Cui J, Zhang Y, Lun K, Wu B, He L, Wang M, Fang S, Zhang Z, Zhou L. Sensitive detection of Escherichia coli in diverse foodstuffs by electrochemical aptasensor based on 2D porphyrin-based COF. Mikrochim Acta 2023; 190:421. [PMID: 37773421 DOI: 10.1007/s00604-023-05978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
The two-dimensional porphyrin-based covalent organic framework (denoted by Tph-TDC-COF) was used as the sensitive layerto build an aptamer-based electrochemical sensor for the detection of Escherichia coli (E.coli). Tph-TDC-COF produced with 5,10,15,20-tetrakis(4-aminophenyl)-21H, 23H-porphine (Tph) and [2,2'-bithiophene]-2,5'-dicarbaldehyde (TDC) as building blocks exhibited a highly conjugated structure, outstanding conductivity, large specific surface area, and strong bioaffinity towards aptamers. The adoption of Tph-TDC-COF-modified electrode resulted in improved sensing performance and increased anchoring affinity toward the E.coli-targeted aptamer. Under optimal conditions, the Tph-TDC-COF-based electrochemical aptasensor demonstrated an extremely low detection limit of 0.17 CFU mL-1 for E.coli detection within a linear range of 10 to 1 × 108 CFU mL-1, accompanied by good stability, excellent reproducibility and regeneration ability, and wide practical applications. The current electrochemical aptasensing technique has the potential to be extended to detect different foodborne bacteria using specific aptamer, therefore widening the application of COFs in biosensing and food safety fields.
Collapse
Affiliation(s)
- Jing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yu Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Kan Lun
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Baiwei Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
31
|
Seob Song K, Fritz PW, Abbott DF, Nga Poon L, Caridade CM, Gándara F, Mougel V, Coskun A. Mixed-metal Ionothermal Synthesis of Metallophthalocyanine Covalent Organic Frameworks for CO 2 Capture and Conversion. Angew Chem Int Ed Engl 2023; 62:e202309775. [PMID: 37533138 DOI: 10.1002/anie.202309775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Phthalocyanines (PCs) are intriguing building blocks owing to their stability, physicochemical and catalytic properties. Although PC-based polymers have been reported before, many suffer from relatively low stability, crystallinity, and low surface areas. Utilizing a mixed-metal salt ionothermal approach, we report the synthesis of a series of metallophthalocyanine-based covalent organic frameworks (COFs) starting from 1,2,4,5-tetracyanobenzene and 2,3,6,7-tetracyanoanthracene to form the corresponding COFs named M-pPPCs and M-anPPCs, respectively. The obtained COFs followed the Irving-Williams series in their metal contents, surface areas, and pore volume and featured excellent CO2 uptake capacities up to 7.6 mmol g-1 at 273 K, 1.1 bar. We also investigated the growth of the Co-pPPC and Co-anPPC on a highly conductive carbon nanofiber and demonstrated their high catalytic activity in the electrochemical CO2 reduction, which showed Faradaic efficiencies towards CO up to 74 % at -0.64 V vs. RHE.
Collapse
Affiliation(s)
- Kyung Seob Song
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Patrick W Fritz
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Daniel F Abbott
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Lok Nga Poon
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Cristiano M Caridade
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Felipe Gándara
- Department of New Architectures in Materials Chemistry, Materials Science Institute of Madrid-CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Ali Coskun
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
32
|
Wu QJ, Si DH, Ye S, Dong YL, Cao R, Huang YB. Photocoupled Electroreduction of CO 2 over Photosensitizer-Decorated Covalent Organic Frameworks. J Am Chem Soc 2023; 145:19856-19865. [PMID: 37653575 DOI: 10.1021/jacs.3c06113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Introducing an external visible-light field would be a promising strategy to improve the activity of the electrocatalytic CO2 reduction reaction (CO2RR), but it still remains a challenge due to the short excited-state lifetime of active sites. Herein, Ru(bpy)3Cl2 struts as powerful photosensitive donors were immobilized into the backbones of Co-porphyrin-based covalent organic frameworks (named Co-Bpy-COF-Rux, x is the molar ratio of Ru and Co species, x = 1/2 and 2/3) via coordination bonds, for the photo-coupled CO2RR to produce CO. The optimal Co-Bpy-COF-Ru1/2 displays a high CO Faradaic efficiency of 96.7% at -0.7 V vs reversible hydrogen electrode (RHE) and a CO partial current density of 16.27 mA cm-2 at -1.1 V vs RHE under the assistance of light, both of which were far surpassing the values observed in the dark. The significantly enhanced activity is mainly attributed to the incorporation of a Ru(bpy)3Cl2 donor with long excited-state lifetime and concomitantly giant built-in electric field in Co-Bpy-COF-Ru1/2, which efficiently accelerate the photo-induced electron transfer from Ru(bpy)3Cl2 to the cobalt-porphyrin under the external light. Thus, the cobalt-porphyrin active sites have a longer excited-state lifetime to lower the rate-determining steps' energy occurring during the actual photo-coupled electrocatalytic CO2RR process. This is the first work of porphyrin-based COFs for photo-coupled CO2RR, opening a new frontier for the construction of efficient photo-coupled electrocatalysts.
Collapse
Affiliation(s)
- Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, People's Republic of China
| | - Shihua Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu-Liang Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, People's Republic of China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
33
|
Kumar A, Ubaidullah M, Pandit B, Yasin G, Gupta RK, Zhang G. Fe-phthalocyanine derived highly conjugated 2D covalent organic framework as superior electrocatalyst for oxygen reduction reaction. DISCOVER NANO 2023; 18:109. [PMID: 37665422 PMCID: PMC10477159 DOI: 10.1186/s11671-023-03890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Although porphyry systems like metallo-phthalocynine are recognized as promising molecular models for electrocatalytic oxygen reduction reaction (ORR), their poor durability and methanol tolerance are still challenges and need improvement before being considered for practical applications. Herein, we successfully designed and constructed a Fe-phthalocyanine-derived highly conjugated 2D covalent organic framework (2D FePc-COF), using octa-amino-Fe-phthalocyanine (OA-FePc) and cyclohexanone as precursors. The prepared 2D FePc-COF was characterized via multiple analytic techniques. The electrochemical studies indicated that prepared 2D FePc-COF was far more superior to OA-FePc and 20% Pt/C, displaying anodic shift of 100 and 50 mV (vs RHE) in formal potential, respectively. Moreover, this catalyst also demonstrated excellent methanol tolerance and durability (over 10,000 CV cycles). Theoretical investigations revealed that due to extended conjugation and elimination of electron donating groups (-NH2), the shifting of dz2-orbital (Fe) energy took nearer to π*-orbital (O2), allowing optimum coupling of both the orbitals, thereby enhancing 4e- ORR. This work demonstrates the art of molecular design, aiming at improving catalytic activity of macrocyclic molecular systems towards ORR.
Collapse
Affiliation(s)
- Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de La Universidad 30, 28911, Leganés, Madrid, Spain
| | - Ghulam Yasin
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| | - Ram K Gupta
- Department of Chemistry, National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA.
| | - Guoxin Zhang
- Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, Shandong, People's Republic of China
| |
Collapse
|
34
|
Xie M, Liu J, Dai L, Peng H, Xie Y. Advances and prospects of porphyrin derivatives in the energy field. RSC Adv 2023; 13:24699-24730. [PMID: 37601600 PMCID: PMC10436694 DOI: 10.1039/d3ra04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
At present, porphyrin is developing rapidly in the fields of medicine, energy, catalysts, etc. More and more reports on its application are being published. This paper mainly takes the ingenious utilization of porphyrin derivatives in perovskite solar cells, dye-sensitized solar cells, and lithium batteries as the background to review the design idea of functional materials based on the porphyrin structural unit in the energy sector. In addition, the modification and improvement strategies of porphyrin are presented by visually showing the molecular structures or the design synthesis routes of its functional materials. Finally, we provide some insights into the development of novel energy storage materials based on porphyrin frameworks.
Collapse
Affiliation(s)
- Mingfa Xie
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jinyuan Liu
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Lianghong Dai
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Hongjian Peng
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Youqing Xie
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|
35
|
Yan B. Lanthanide Functionalized Covalent Organic Frameworks Hybrid Materials for Luminescence Responsive Chemical Sensing. Chemistry 2023; 29:e202301108. [PMID: 37254951 DOI: 10.1002/chem.202301108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023]
Abstract
Covalent organic frameworks (COFs) possess several unique features of structural and functional chemistry, together with other modular photophysical performance, which make them candidates for luminescence responsive chemical sensing. Lanthanide (Ln3+ ) functionalized COFs hybrid materials still keep the parent COFs' virtues and also embody the abundant multiple luminescence response with both COFs and Ln3+ ions or other guest species. In this review, the summary is highlighted on the lanthanide functionalized COFs hybrid materials and their relevant systems for luminescence responsive chemical sensing. It is subdivided into five sections involving the three main topics. Firstly, the basic knowledges of COFs materials related to the luminescence responsive chemical sensing are introduced (including three sections), involving the chemistry, application and post-synthetic modification (PSM) of COFs, the luminescence and luminescence responsive chemical sensing, and the luminescence responsive chemical sensing of non-lanthanide functionalized COFs hybrids materials. Secondly, the systematic progresses are outlined on the lanthanide functionalized COFs hybrid materials in luminescence responsive chemical sensing, which is the emphasis for this review. Finally, the conclusion and prospect are given.
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
36
|
Lawson SE, Leznoff DB, Warren JJ. Contemporary Strategies for Immobilizing Metallophthalocyanines for Electrochemical Transformations of Carbon Dioxide. Molecules 2023; 28:5878. [PMID: 37570849 PMCID: PMC10421282 DOI: 10.3390/molecules28155878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Metallophthalocyanine (PcM) coordination complexes are well-known mediators of the electrochemical reduction of carbon dioxide (CO2). They have many properties that show promise for practical applications in the energy sector. Such properties include synthetic flexibility, a high stability, and good efficiencies for the reduction of CO2 to useful feedstocks, such as carbon monoxide (CO). One of the ongoing challenges that needs to be met is the incorporation of PcM into the heterogeneous materials that are used in a great many CO2-reduction devices. Much progress has been made in the last decade and there are now several promising approaches to incorporate PcM into a range of materials, from simple carbon-adsorbed preparations to extended polymer networks. These approaches all have important advantages and drawbacks. In addition, investigations have led to new proposals regarding CO2 reduction catalytic cycles and other operational features that are crucial to function. Here, we describe developments in the immobilization of PcM CO2 reduction catalysts in the last decade (2013 to 2023) and propose promising avenues and strategies for future research.
Collapse
Affiliation(s)
| | - Daniel B. Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada;
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada;
| |
Collapse
|
37
|
Shan Z, Wu M, Liu T, Wang J, Chen C, Li S, Su J, Zhang G. Adjusting the Stacking Model of Two-Dimensional Covalent Organic Frameworks for Volatile Acid Sensing via Spatial Effects. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433068 DOI: 10.1021/acsami.3c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Covalent organic frameworks (COFs) are polymer networks with a precise structure and permanent porosity, making them an attractive platform for the detection of volatile analytes due to their chemical stability and accessible active sites. In this study, based on electron-rich N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine moiety, two 2D COFs with different topological structures and stacking models were designed by the strategy of spatial effect. The conductivity of the AB-stacked COF-NUST-20 was an order of magnitude higher than that of the AA-stacked COF-NUST-30. With the protonation of the imine bond, both COFs exhibited a strong, rapid, and reversible visible color change in response to corrosive HCl vapor. In addition, the AB-stacked COF-NUST-20, which facilitates both interlayer and intralayer charge transfer, shows better sensing performance. These findings demonstrate the usefulness of all-aromatic 2D COFs as real-time responsive chemosensors and provide insight into the design of sensing materials with high sensitivity.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Tongtong Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Congjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Shufan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
38
|
Hu X, Tao W, Shi W, Zhong D, Lu TB. A cobalt metalized polymer modulates the electronic structure of Pt nanoparticles to accelerate water dissociation kinetics. Chem Commun (Camb) 2023. [PMID: 37326482 DOI: 10.1039/d3cc02082g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we construct a composite material of Pt-NPs@NPCNs-Co by anchoring Pt nanoparticles (Pt NPs) and Co-salen covalent organic polymer (Co-COP) onto N, P co-doped carbon nanotubes (NPCNs), thereby offering an integrated approach to enhance H2O dissociation. The bimetallic catalyst Pt-NPs@NPCNs-Co demonstrates exceptional HER performance, and the overpotential at 40 mA cm-2 is lower than that of 20% Pt/C. When the overpotential is 50 mV, the mass activity of Pt-NPs@NPCNs-Co is 2.8 times that of the commercial Pt/C catalyst. Experimental results reveal that the synergistic interplay between Pt NPs and Co contributes to the excellent electrocatalytic performance observed. Density function theory calculations found that Co effectively modulates the electronic structure of Pt NPs and lowers the activation energy of the Volmer step, thereby accelerating the water dissociation kinetics of Pt NPs. This research contributes to the advancement of knowledge regarding the development of more efficient bimetallic co-catalytic electrocatalysts in alkaline media.
Collapse
Affiliation(s)
- Xiaomei Hu
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Weixue Tao
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wenjie Shi
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangdong, China
| | - Dichang Zhong
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Tong-Bu Lu
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
39
|
Mukhopadhyay S, Kottaichamy AR, Chame PV, Ghosh P, Vinod CP, Makri Nimbegondi Kotresh H, Kanade SC, Thotiyl MO. Unusual Ligand Assistance in Molecular Electrocatalysis via Interfacial Proton Charge Assembly. J Phys Chem Lett 2023; 14:5377-5385. [PMID: 37278536 DOI: 10.1021/acs.jpclett.3c01262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We show that the ability of the ligand to reorganize the electric double layer (EDL) often dominates the electrocatalysis contrary to their inductive effect in the spectrochemical series, leading to counterintuitive electrocatalysis. With water oxidation and chlorine evolution as the probe reactions, the same catalytic entity with carboxy functionalized ligand exhibited surprisingly higher electrochemical activity in comparison to the aggressively electron-withdrawing nitro functionalized ligands, which is contrary to their actual location in the spectrochemical series. Spectroscopic and electrochemical analyses suggest the enrichment of catalytically active species in the carboxy substituted ligand via proton charge assembly in the EDL that in turn enhances the kinetics of the overall electrochemical process. This demonstration of less obvious ligands becoming indispensable in electrocatalysis suggests a blind designing of ligands solely based on their inductive effect should be reconsidered as it will prevent the utilization of the maximum potential of the molecule in electrocatalysis.
Collapse
Affiliation(s)
- Sanchayita Mukhopadhyay
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Alagar Raja Kottaichamy
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Pallavi Vyankuram Chame
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Prasenjit Ghosh
- Department of Physics, Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | | | | | - Sandeep C Kanade
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
40
|
Chen K, Cai A, Li TT. Covalent Organic Framework-Semiconductor-Based Heterostructures for Photocatalytic Applications. CHEMSUSCHEM 2023; 16:e202300021. [PMID: 36799094 DOI: 10.1002/cssc.202300021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/20/2023]
Abstract
Photocatalysis is a promising and sustainable technology in the fields of energy conversion/storage and environment purification; however, the utilization of individual component as photocatalyst is generally restricted due to the low catalytic activity deriving from the rapid recombination of photogenerated electrons/holes. Covalent organic framework (COF)-semiconductor-based composite photocatalysts with synergistic effects provide a feasible route to achieve high-performance photocatalytic reactions with more active sites, strong light utilization ability, and high stability. In recent years, significant progress has been made in the rational design and preparation of the COF-semiconductors-based heterostructures for photocatalytic water splitting, carbon dioxide (CO2 ) reduction, and dye/pollutant degradation. In this Review, the synthetic strategies of COF-semiconductor-based heterostructures are first introduced, which includes the rational design of the morphology, connection modes, and type of heterojunctions. The performance of COF-semiconductor-based heterostructures in different photocatalytic reactions are comprehensively reviewed. The structure-activity relationship and the synergistic effects within the heterostructures are discussed, and the photocatalytic mechanism and the role of COFs during the photocatalytic process are also presented. Finally, an outlook and challenges of realizing COF-semiconductor-based heterostructures with simple synthesis methods, diverse functions, high performance, and well-defined reaction mechanisms are provided.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Anqi Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
41
|
Chen X, Zeng M, Yang J, Hu N, Duan X, Cai W, Su Y, Yang Z. Two-Dimensional Bimetallic Phthalocyanine Covalent-Organic-Framework-Based Chemiresistive Gas Sensor for ppb-Level NO 2 Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101660. [PMID: 37242076 DOI: 10.3390/nano13101660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Two-dimensional (2D) phthalocyanine-based covalent organic frameworks (COFs) provide an ideal platform for efficient and rapid gas sensing-this can be attributed to their regular structure, moderate conductivity, and a large number of scalable metal active centers. However, there remains a need to explore structural modification strategies for optimizing the sluggish desorption process caused by the extensive porosity and strong adsorption effect of metal sites. Herein, we reported a 2D bimetallic phthalocyanine-based COF (COF-CuNiPc) as chemiresistive gas sensors that exhibited a high gas-sensing performance to nitrogen dioxide (NO2). Bimetallic COF-CuNiPc with an asymmetric synergistic effect achieves a fast adsorption/desorption process to NO2. It is demonstrated that the COF-CuNiPc can detect 50 ppb NO2 with a recovery time of 7 s assisted by ultraviolet illumination. Compared with single-metal phthalocyanine-based COFs (COF-CuPc and COF-NiPc), the bimetallic structure of COF-CuNiPc can provide a proper band gap to interact with NO2 gas molecules. The CuNiPc heterometallic active site expands the overlap of d-orbitals, and the optimized electronic arrangement accelerates the adsorption/desorption processes. The concept of a synergistic effect enabled by bimetallic phthalocyanines in this work can provide an innovative direction to design high-performance chemiresistive gas sensors.
Collapse
Affiliation(s)
- Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Duan
- Zhoushan Field Scientific Observation and Research Station for Marine Geo-Hazards, China Geological Survey, Qingdao 266237, China
| | - Wei Cai
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
43
|
Xia T, Wu Z, Liang Y, Wang W, Li Y, Tian X, Feng L, Sui Z, Chen Q. Sulfonic acid functionalized covalent organic frameworks for lithium-sulfur battery separator and oxygen evolution electrocatalyst. J Colloid Interface Sci 2023; 645:146-153. [PMID: 37148680 DOI: 10.1016/j.jcis.2023.04.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Covalent organic frameworks (COFs) are considered as a class of potential candidates for energy storage and catalysis. In this work, a COF containing sulfonic groups was prepared to be a modified separator in lithium-sulfur batteries (LSBs). Benefiting from the charged sulfonic groups, the COF-SO3 cell exhibited higher ionic conductivity (1.83 mS⋅cm-1). Moreover, the modified COF-SO3 separator not only inhibited the shuttle of polysulfide but also promoted Li+ diffusion, thanks to the electrostatic interaction. The COF-SO3 cell also showed excellent electrochemical performance that the initial specific capacity of the battery was 890 mA h g-1 at 0.5 C and demonstrated 631 mA h g-1 after 200 cycles. In addition, COF-SO3 with satisfactory electrical conductivity was also used as an electrocatalyst toward oxygen evolution reaction (OER) via cation-exchange strategy. The electrocatalyst COF-SO3@FeNi possessed a low overpotential (350 mV at 10 mA cm-2) in an alkaline aqueous electrolyte. Furthermore, COF-SO3@FeNi exhibited exceptional stability, and the overpotential increased about 11 mV at a current density of 10 mA cm-2 after 1000 cycles. This work facilitates the application of versatile COFs in the electrochemistry field.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Zhuangzhuang Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Ying Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Wenxin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Yongpeng Li
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Lijuan Feng
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, PR China.
| | - Zhuyin Sui
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
44
|
Li X, Tang C, Zhang L, Song M, Zhang Y, Wang S. Porphyrin-Based Covalent Organic Frameworks: Design, Synthesis, Photoelectric Conversion Mechanism, and Applications. Biomimetics (Basel) 2023; 8:biomimetics8020171. [PMID: 37092423 PMCID: PMC10123739 DOI: 10.3390/biomimetics8020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Photosynthesis occurs in high plants, and certain organisms show brilliant technology in converting solar light to chemical energy and producing carbohydrates from carbon dioxide (CO2). Mimicking the mechanism of natural photosynthesis is receiving wide-ranging attention for the development of novel materials capable of photo-to-electric, photo-to-chemical, and photocatalytic transformations. Porphyrin, possessing a similar highly conjugated core ring structure to chlorophyll and flexible physical and chemical properties, has become one of the most investigated photosensitizers. Chemical modification and self-assembly of molecules as well as constructing porphyrin-based metal (covalent) organic frameworks are often used to improve its solar light utilization and electron transfer rate. Especially porphyrin-based covalent organic frameworks (COFs) in which porphyrin molecules are connected by covalent bonds combine the structural advantages of organic frameworks with light-capturing properties of porphyrins and exhibit great potential in light-responsive materials. Porphyrin-based COFs are expected to have high solar light utilization, fast charge separation/transfer performance, excellent structural stability, and novel steric selectivity by special molecular design. In this paper, we reviewed the research progress of porphyrin-based COFs in the design, synthesis, properties, and applications. We focused on the intrinsic relationship between the structure and properties, especially the photoelectric conversion properties and charge transfer mechanism of porphyrin-based COFs, and tried to provide more valuable information for the design of advanced photosensitizers. The applications of porphyrin-based COFs in photocatalysis and phototherapy were emphasized based on their special structure design and light-to-electric (or light-to-heat) conversion control.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Chuanyin Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Li Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Mingyang Song
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yujie Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
45
|
Han C, Zhang X, Huang S, Hu Y, Yang Z, Li TT, Li Q, Qian J. MOF-on-MOF-Derived Hollow Co 3 O 4 /In 2 O 3 Nanostructure for Efficient Photocatalytic CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300797. [PMID: 37083242 DOI: 10.1002/advs.202300797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
The photocatalytic transformation of carbon dioxide (CO2 ) into carbon-based fuels or chemicals using sustainable solar energy is considered an ideal strategy for simultaneously alleviating the energy shortage and environmental crises. However, owing to the low energy utilization of sunlight and inferior catalytic activity, the conversion efficiency of CO2 photoreduction is far from satisfactory. In this study, a MOF-derived hollow bimetallic oxide nanomaterial is prepared for the efficient photoreduction of CO2 . First, a unique ZIF-67-on-InOF-1 heterostructure is successfully obtained by growing a secondary Co-based ZIF-67 onto the initial InOF-1 nanorods. The corresponding hollow counterpart has a larger specific surface area after acid etching, and the oxidized bimetallic H-Co3 O4 /In2 O3 material exhibits abundant heterogeneous interfaces that expose more active sites. The energy band structure of H-Co3 O4 /In2 O3 corresponds well with the photosensitizer of [Ru(bpy)3 ]Cl2 , which results in a high CO yield of 4828 ± 570 µmol h-1 g-1 and stable activity over a consecutive of six runs, demonstrating adequate photocatalytic performance. This study demonstrates that the rational design of MOF-on-MOF heterostructures can completely exploit the synergistic effects between different components, which may be extended to other MOF-derived nanomaterials as promising catalysts for practical energy conversion and storage.
Collapse
Affiliation(s)
- Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Xiaodeng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Shengsheng Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan, 657000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, P. R. China
| |
Collapse
|
46
|
Guo F, Zhang W, Yang S, Wang L, Yu G. 2D Covalent Organic Frameworks Based on Heteroacene Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207876. [PMID: 36703526 DOI: 10.1002/smll.202207876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor-acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π-π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.
Collapse
Affiliation(s)
- Fu Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
47
|
Zhu H, Zhang D, Feng E, Sheng X. Effects of aggregation on the structures and excited-state absorption for zinc phthalocyanine. Phys Chem Chem Phys 2023; 25:10278-10287. [PMID: 36883359 DOI: 10.1039/d2cp04372f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In the present paper, the aggregated structures of zinc phthalocyanine (ZnPc) have been investigated by considering its dimers and trimers. Based on the density functional theory calculations, two stable conformations are obtained for the ZnPc dimer and trimer, respectively. The IGMH (independent gradient model based on the Hirshfeld partition of molecular density) analysis reveals that the π-π interaction between the ZnPc molecules causes the aggregation. Normally, stacked structures with a slight displacement are favorable for aggregation. In addition, the planar structure of the ZnPc monomer is largely maintained in the aggregated conformations. For the presently obtained structures, the first singlet excited state absorption (ESA) spectra of these aggregated conformations of ZnPc were calculated based on the linear-response time-dependent density functional theory (LR-TDDFT), which has been well applied by our group. The results of the excited state absorption spectra reveal that the aggregation causes the ESA band to blue shift compared to the ZnPc monomer. By using the conventional description of the interaction between monomer transition dipoles, this blue shift is elucidated by the side-by-side transition dipole moments in the constituted monomers. The present results for the ESA combined with the previously reported results for ground state absorption (GSA) will provide guidelines to tune the window of the optical-limiting effect for the ZnPc based materials.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Danyang Zhang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Eryin Feng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xiaowei Sheng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| |
Collapse
|
48
|
Zhang X, Zhu J, Wu Z, Wen W, Zhang X, Wang S. Electrochemical sensor based on confined synthesis of gold nanoparticles @ covalent organic frameworks for the detection of bisphenol A. Anal Chim Acta 2023; 1239:340743. [PMID: 36628736 DOI: 10.1016/j.aca.2022.340743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Covalent-organic frameworks (COFs), a kind of conjugate crystalline polymers, has great potential for high performance electrochemical sensors due to high porosity, controllable pores and structure, and large specific surface area, etc. Herein, we developed an electrochemical sensor based on confined synthesis of gold nanoparticles @ 1,3,5-triformylphloroglucinol (Tp) and benzidine (BD) connected COFs (Au NPs@TpBD-COFs) for electrochemical detection of bisphenol A (BPA). Firstly, Au NPs were grown on the surface and in the pores of COFs by confinement synthesis strategy, which aimed to improve the conductivity and catalytic activity of COFs. Then, this composite was used to constitute electrochemical sensor for the oxidation of BPA, resulting a good electrocatalytic activity in the phosphate buffer solution (pH 7.4). Due to high conductivity of Au NPs and TpBD-COFs recognize BPA via π-π stacking interactions and hydrogen bonds, the proposed sensor for the detection of BPA has the linear range of 5-1000 μM and the detection limit of 1 μM. Finally, the proposed sensor was used to measure the content of BPA in real water samples with a satisfactory recovery from 98.6 to 106.9%. Those good results confirmed that the proposed electrochemical sensors for monitoring of BPA in the application of COFs provided a significant guidance.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Junlun Zhu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China; Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Zhen Wu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Wei Wen
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
49
|
Huang C, Bao W, Huang S, Wang B, Wang C, Han S, Lu C, Qiu F. Asymmetric Push-Pull Type Co(II) Porphyrin for Enhanced Electrocatalytic CO 2 Reduction Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010150. [PMID: 36615343 PMCID: PMC9822202 DOI: 10.3390/molecules28010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Molecular electrocatalysts for electrochemical carbon dioxide (CO2) reduction has received more attention both by scientists and engineers, owing to their well-defined structure and tunable electronic property. Metal complexes via coordination with many π-conjugated ligands exhibit the unique electrocatalytic CO2 reduction performance. The symmetric electronic structure of this metal complex may play an important role in the CO2 reduction. In this work, two novel dimethoxy substituted asymmetric and cross-symmetric Co(II) porphyrin (PorCo) have been prepared as the model electrocatalyst for CO2 reduction. Owing to the electron donor effect of methoxy group, the intramolecular charge transfer of these push-pull type molecules facilitates the electron mobility. As electrocatalysts at -0.7 V vs. reversible hydrogen electrode (RHE), asymmetric methoxy-substituted Co(II) porphyrin shows the higher CO2-to-CO Faradaic efficiency (FECO) of ~95 % and turnover frequency (TOF) of 2880 h-1 than those of control materials, due to its push-pull type electronic structure. The density functional theory (DFT) calculation further confirms that methoxy group could ready to decrease to energy level for formation *COOH, leading to high CO2 reduction performance. This work opens a novel path to the design of molecular catalysts for boosting electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Chenjiao Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Wenwen Bao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Senhe Huang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bin Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chenchen Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Correspondence: (S.H.); (C.L.); (F.Q.)
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Correspondence: (S.H.); (C.L.); (F.Q.)
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Correspondence: (S.H.); (C.L.); (F.Q.)
| |
Collapse
|
50
|
Bian S, Huang G, Xuan Y, He B, Liu J, Xu B, Zhang G. Pore surface engineering of covalent organic framework membrane by alkyl chains for lithium based batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|