1
|
In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2022:S0020-7519(22)00153-9. [DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
|
2
|
Vargas-Villavicencio JA, Cañedo-Solares I, Correa D. Anti-Toxoplasma gondii IgM Long Persistence: What Are the Underlying Mechanisms? Microorganisms 2022; 10:microorganisms10081659. [PMID: 36014077 PMCID: PMC9415799 DOI: 10.3390/microorganisms10081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosis of Toxoplasma gondii acute infection was first attempted by detection of specific IgM antibodies, as for other infectious diseases. However, it was noted that this immunoglobulin declines slowly and may last for months or even years. Apart from the diagnostic problem imposed on clinical management, this phenomenon called our attention due to the underlying phenomena that may be causing it. We performed a systematic comparison of reports studying IgM antibody kinetics, and the data from the papers were used to construct comparative plots and other graph types. It became clear that this phenomenon is quite generalized, and it may also occur in animals. Moreover, this is not a technical issue, although some tests make more evident the prolonged IgM decay than others. We further investigated biological reasons for its occurrence, i.e., infection dynamics (micro-reactivation–encystment, reinfection and reactivation), parasite strain relevance, as well as host innate, natural B cell responses and Ig class-switch problems inflicted by the parasite. The outcomes of these inquiries are presented and discussed herein.
Collapse
Affiliation(s)
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Dolores Correa
- Dirección de Investigación/Centro de Investigación en Ciencias de la Salud, FCS, Universidad Anáhuac México Campus Norte, Av Universidad Anáhuc 46, Lomas Anáhuac, Huixquilucan 52786, Mexico
- Correspondence: ; Tel.: +52-(55)-5627-0210-7637
| |
Collapse
|
3
|
Munera Lopez J, Tengganu IF, Liu J, Murray JM, Arias Padilla LF, Zhang Y, Brown PT, Florens L, Hu K. An apical protein, Pcr2, is required for persistent movement by the human parasite Toxoplasma gondii. PLoS Pathog 2022; 18:e1010776. [PMID: 35994509 PMCID: PMC9436145 DOI: 10.1371/journal.ppat.1010776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
The phylum Apicomplexa includes thousands of species of unicellular parasites that cause a wide range of human and animal diseases such as malaria and toxoplasmosis. To infect, the parasite must first initiate active movement to disseminate through tissue and invade into a host cell, and then cease moving once inside. The parasite moves by gliding on a surface, propelled by an internal cortical actomyosin-based motility apparatus. One of the most effective invaders in Apicomplexa is Toxoplasma gondii, which can infect any nucleated cell and any warm-blooded animal. During invasion, the parasite first makes contact with the host cell "head-on" with the apical complex, which features an elaborate cytoskeletal apparatus and associated structures. Here we report the identification and characterization of a new component of the apical complex, Preconoidal region protein 2 (Pcr2). Pcr2 knockout parasites replicate normally, but they are severely diminished in their capacity for host tissue destruction due to significantly impaired invasion and egress, two vital steps in the lytic cycle. When stimulated for calcium-induced egress, Pcr2 knockout parasites become active, and secrete effectors to lyse the host cell. Calcium-induced secretion of the major adhesin, MIC2, also appears to be normal. However, the movement of the Pcr2 knockout parasite is spasmodic, which drastically compromises egress. In addition to faulty motility, the ability of the Pcr2 knockout parasite to assemble the moving junction is impaired. Both defects likely contribute to the poor efficiency of invasion. Interestingly, actomyosin activity, as indicated by the motion of mEmerald tagged actin chromobody, appears to be largely unperturbed by the loss of Pcr2, raising the possibility that Pcr2 may act downstream of or in parallel with the actomyosin machinery.
Collapse
Affiliation(s)
- Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Isadonna F. Tengganu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Peter T. Brown
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
4
|
Plasmodium falciparum goes bananas for sex. Mol Biochem Parasitol 2021; 244:111385. [PMID: 34062177 DOI: 10.1016/j.molbiopara.2021.111385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
The sexual blood stages of the human malaria parasite Plasmodium falciparum undergo a remarkable transformation from a roughly spherical shape to an elongated crescent or "falciform" morphology from which the species gets its name. In this review, the molecular events that drive this spectacular shape change are discussed and some questions that remain regarding the mechanistic underpinnings are posed. We speculate on the role of the shape changes in promoting sequestration and release of the developing gametocyte, thereby facilitating parasite survival in the host and underpinning transmission to the mosquito vector.
Collapse
|
5
|
Dong J, Zhang N, Zhao P, Li J, Cao L, Wang X, Li X, Yang J, Zhang X, Gong P. Disruption of Dense Granular Protein 2 (GRA2) Decreases the Virulence of Neospora caninum. Front Vet Sci 2021; 8:634612. [PMID: 33681332 PMCID: PMC7933011 DOI: 10.3389/fvets.2021.634612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Neospora caninum causes abortions in cattle and nervous system dysfunction in dogs. Dense granular proteins (GRAs) play important roles in virulence; however, studies on NcGRA functions are limited. In the present study, multiple methods, including site-directed mutagenesis; CRISPR/Cas9 gene editing; Western blotting; quantitative polymerase chain reaction; confocal microscopy; plaque, invasion, egress, and replication assays; animal assays of survival rate and parasite burden; and hematoxylin-eosin staining, were used to characterize the NcGRA2 protein, construct an NcGRA2 gene disruption (ΔNcGRA2) strain, and explore its virulence in vivo and vitro. The results showed that NcGRA2 shared 31.31% homology with TgGRA2 and was colocalized with NcGRA6 at the posterior end of tachyzoites and the intravacuolar network of parasitophorous vacuoles (PVs). Cell fractionation analysis showed that NcGRA2 behaved as a transmembrane and membrane-coupled protein. The ΔNcGRA2 strain was constructed by coelectroporation of the NcGRA2-targeting CRISPR plasmid (pNc-SAG1-Cas9:U6-SgGRA2) and DHFR-TS DNA donor and verified at the protein, genome, and transcriptional levels and by immunofluorescence localization analysis. The in vitro virulence results showed that the ΔNcGRA2 strain displayed smaller plaques, similar invasion and egress abilities, and slower intracellular growth. The in vivo virulence results showed a prolonged survival time, lower parasite burden, and mild histopathological changes. Overall, the present study indicates that NcGRA2, as a dense granular protein, forms the intravacuolar network structure of PVs and weakens N. caninum virulence by slowing proliferation. These data highlight the roles of NcGRA2 and provide a foundation for research on other protein functions in N. caninum.
Collapse
Affiliation(s)
- Jingquan Dong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Nan Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Cruz-Mirón R, Ramírez-Flores CJ, Lagunas-Cortés N, Mondragón-Castelán M, Ríos-Castro E, González-Pozos S, Aguirre-García MM, Mondragón-Flores R. Proteomic characterization of the pellicle of Toxoplasma gondii. J Proteomics 2021; 237:104146. [PMID: 33588107 DOI: 10.1016/j.jprot.2021.104146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | | | | | - M Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
7
|
Actin from the apicomplexan Neospora caninum (NcACT) has different isoforms in 2D electrophoresis. Parasitology 2018; 146:33-41. [PMID: 29871709 DOI: 10.1017/s0031182018000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Apicomplexan parasites have unconventional actins that play a central role in important cellular processes such as apicoplast replication, motility of dense granules, endocytic trafficking and force generation for motility and host cell invasion. In this study, we investigated the actin of the apicomplexan Neospora caninum - a parasite associated with infectious abortion and neonatal mortality in livestock. Neospora caninum actin was detected and identified in two bands by one-dimensional (1D) western blot and in nine spots by the 2D technique. The mass spectrometry data indicated that N. caninum has at least nine different actin isoforms, possibly caused by post-translational modifications. In addition, the C4 pan-actin antibody detected specifically actin in N. caninum cellular extract. Extracellular N. caninum tachyzoites were treated with toxins that act on actin, jasplakinolide and cytochalasin D. Both substances altered the peripheric cytoplasmic localization of actin on tachyzoites. Our findings add complexity to the study of the apicomplexan actin in cellular processes, since the multiple functions of this important protein might be regulated by mechanisms involving post-translational modifications.
Collapse
|
8
|
Hu G, Taylor DW, Liu J, Taylor KA. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts. J Struct Biol 2017; 201:199-209. [PMID: 29146292 DOI: 10.1016/j.jsb.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously.
Collapse
Affiliation(s)
- Guiqing Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States.
| |
Collapse
|
9
|
Guerra AJ, Carruthers VB. Structural Features of Apicomplexan Pore-Forming Proteins and Their Roles in Parasite Cell Traversal and Egress. Toxins (Basel) 2017; 9:toxins9090265. [PMID: 28850082 PMCID: PMC5618198 DOI: 10.3390/toxins9090265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/18/2023] Open
Abstract
Apicomplexan parasites cause diseases, including malaria and toxoplasmosis, in a range of hosts, including humans. These intracellular parasites utilize pore-forming proteins that disrupt host cell membranes to either traverse host cells while migrating through tissues or egress from the parasite-containing vacuole after replication. This review highlights recent insight gained from the newly available three-dimensional structures of several known or putative apicomplexan pore-forming proteins that contribute to cell traversal or egress. These new structural advances suggest that parasite pore-forming proteins use distinct mechanisms to disrupt host cell membranes at multiple steps in parasite life cycles. How proteolytic processing, secretion, environment, and the accessibility of lipid receptors regulate the membranolytic activities of such proteins is also discussed.
Collapse
Affiliation(s)
- Alfredo J Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-5620, USA.
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-5620, USA.
| |
Collapse
|
10
|
Ma L, Liu J, Li M, Fu Y, Zhang X, Liu Q. Rhoptry protein 5 ( ROP5) Is a Key Virulence Factor in Neospora caninum. Front Microbiol 2017; 8:370. [PMID: 28326073 PMCID: PMC5340095 DOI: 10.3389/fmicb.2017.00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/22/2017] [Indexed: 12/29/2022] Open
Abstract
Neospora caninum, of the Apicomplexa phylum, is a common cause of abortions in cattle and nervous system dysfunction in dogs. Rhoptry proteins of Apicomplexa play an important role in virulence. The objectives of this study were to study functions of NcROP5 in N. caninum by deleting the NcROP5 gene from the wild Nc-1 strain. We selected NcROP5 in ToxoDB and successfully constructed an NcROP5 gene-deleted vector, pTCR-NcROP5-CD KO. Then we screened the NcROP5 knockout strains (ΔNcROP5) at the gene, protein and transcription levels. Plaque assay, host cell invasion assay and intracellular proliferation test showed that the ΔNcROP5 strain had less plaque space, weakened invasion capacity and slower intracellular growth. Animal testing showed significantly lower cerebral load of ΔNcROP5 than the load of the Nc-1 strain, as well as a loss of virulence for the ΔNcROP5 strains. Phenotypic analyses using the label-free LC-MS/MS assay-based proteomic method and KEGG pathway enrichment analysis showed a reduction of NcGRA7 transcription and altered expression of multiple proteins including the apicomplexan family of binding proteins. The present study indicated that ROP5 is a key virulence factor in N. caninum in mice. The proteomic profiling of Nc-1 and ΔNcROP5 provided some data on differential proteins. These data provide a foundation for future research of protein functions in N. caninum.
Collapse
Affiliation(s)
- Lei Ma
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Muzi Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Yong Fu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Xiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| |
Collapse
|
11
|
Stadler RV, White LA, Hu K, Helmke BP, Guilford WH. Direct measurement of cortical force generation and polarization in a living parasite. Mol Biol Cell 2017; 28:1912-1923. [PMID: 28209732 PMCID: PMC5541842 DOI: 10.1091/mbc.e16-07-0518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/19/2017] [Accepted: 02/10/2017] [Indexed: 02/04/2023] Open
Abstract
Apicomplexa is a large phylum of intracellular parasites that are notable for the diseases they cause, including toxoplasmosis, malaria, and cryptosporidiosis. A conserved motile system is critical to their life cycles and drives directional gliding motility between cells, as well as invasion of and egress from host cells. However, our understanding of this system is limited by a lack of measurements of the forces driving parasite motion. We used a laser trap to measure the function of the motility apparatus of living Toxoplasma gondii by adhering a microsphere to the surface of an immobilized parasite. Motion of the microsphere reflected underlying forces exerted by the motile apparatus. We found that force generated at the parasite surface begins with no preferential directionality but becomes directed toward the rear of the cell after a period of time. The transition from nondirectional to directional force generation occurs on spatial intervals consistent with the lateral periodicity of structures associated with the membrane pellicle and is influenced by the kinetics of actin filament polymerization and cytoplasmic calcium. A lysine methyltransferase regulates both the magnitude and polarization of the force. Our work provides a novel means to dissect the motile mechanisms of these pathogens.
Collapse
Affiliation(s)
- Rachel V Stadler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Lauren A White
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Brian P Helmke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - William H Guilford
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
12
|
Whitelaw JA, Latorre-Barragan F, Gras S, Pall GS, Leung JM, Heaslip A, Egarter S, Andenmatten N, Nelson SR, Warshaw DM, Ward GE, Meissner M. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion. BMC Biol 2017; 15:1. [PMID: 28100223 PMCID: PMC5242020 DOI: 10.1186/s12915-016-0343-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite’s actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement. Results In this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites. Conclusion We demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0343-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie A Whitelaw
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Fernanda Latorre-Barragan
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Simon Gras
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Gurman S Pall
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Jacqueline M Leung
- Department of Biology, Indiana University, Bloomington, Myers Hall 240, 915 E 3rd St Bloomington, Bloomington, IN, 47405, USA.,University of Vermont, Department of Microbiology and Molecular Genetics, College of Medicine, Burlington, VT, 05405, USA
| | - Aoife Heaslip
- University of Vermont, Department of Molecular Physiology and Biophysics Burlington, Vermont, 05405, USA
| | - Saskia Egarter
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Nicole Andenmatten
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Shane R Nelson
- University of Vermont, Department of Molecular Physiology and Biophysics Burlington, Vermont, 05405, USA
| | - David M Warshaw
- University of Vermont, Department of Molecular Physiology and Biophysics Burlington, Vermont, 05405, USA
| | - Gary E Ward
- University of Vermont, Department of Microbiology and Molecular Genetics, College of Medicine, Burlington, VT, 05405, USA
| | - Markus Meissner
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
13
|
Liu WG, Xu XP, Chen J, Xu QM, Luo SL, Zhu XQ. MIC16 gene represents a potential novel genetic marker for population genetic studies of Toxoplasma gondii. BMC Microbiol 2016; 16:101. [PMID: 27277196 PMCID: PMC4898453 DOI: 10.1186/s12866-016-0726-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/03/2016] [Indexed: 01/29/2023] Open
Abstract
Background The zoonotic agent Toxoplasma gondii is distributed world-wide, and can infect a broad range of hosts including humans. Microneme protein 16 of T. gondii (TgMIC16) is responsible for binding to aldolase, and is associated with rhomboid cleavage and presence of trafficking signals during invasion. However, little is known of the TgMIC16 sequence diversity among T. gondii isolates from different hosts and geographical locations. Results In this study, we examined sequence variation in MIC16 gene among T. gondii isolates from different hosts and geographical regions. The entire genomic region of the MIC16 gene was amplified and sequenced, and phylogenetic relationship was reconstructed using Bayesian inference (BI) and maximum parsimony (MP) based on the MIC16 gene sequences. The results of sequence alignments showed two lengths of the sequence of MIC16 gene among all the examined 12 T. gondii strains: 4391 bp for strains TgCatBr5 and MAS, and 4394 bp for strains RH, TgPLH, GT1, PRU, QHO, PTG, PYS, GJS, CTG and TgToucan. Their A+T content ranged from 50.30 to 50.59 %. A total of 107 variable nucleotide positions (0.1–0.9 %) were identified, including 29 variations in 10 exons and 78 variations in 9 introns. Phylogenetic analysis of MIC16 sequences showed that typical genotypes (Type I, II and III) were able to be grouped into their respective genotypes. Moreover, the three major clonal lineages (Type I, II and III) can be differentiated by PCR-RFLP using restriction enzyme Pst I. Conclusions Phylogenetic analysis and PCR-RFLP of the MIC16 locus among T. gondii isolates from different hosts and geographical regions allowed the differentiation of three major clonal lineages (Type I, II and III) into their respective genotypes, suggesting that MIC16 gene may provide a novel potential genetic marker for population genetic studies of T. gondii isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0726-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Ge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, People's Republic of China
| | - Xiao-Pei Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, People's Republic of China
| | - Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Qian-Ming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, People's Republic of China
| | - Si-Long Luo
- Science and Technology College, Shenyang Agricultural University, Fushun, Liaoning Province, 113122, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
14
|
Wang Y, Yin H. Research advances in microneme protein 3 of Toxoplasma gondii. Parasit Vectors 2015; 8:384. [PMID: 26194005 PMCID: PMC4509771 DOI: 10.1186/s13071-015-1001-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/09/2015] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite. It has extensive host populations and is prevalent globally; T. gondii infection can cause a zoonotic parasitic disease. Microneme protein 3 (MIC3) is a secreted protein that is expressed in all stages of the T. gondii life cycle. It has strong immunoreactivity and plays an important role in the recognition, adhesion and invasion of host cells by T. gondii. This article reviews the molecular structure of MIC3, its role in the invasion of host cells by parasites, its relationship with parasite virulence, and its induction of immune protection to lay a solid foundation for an in-depth study of potential diagnostic agents and vaccines for preventing toxoplasmosis.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
15
|
Li ZY, Song HQ, Chen J, Zhu XQ. Sequence Diversity in MIC6 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:341-4. [PMID: 26174829 PMCID: PMC4510674 DOI: 10.3347/kjp.2015.53.3.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/01/2015] [Accepted: 02/08/2015] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China ; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China ; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| |
Collapse
|
16
|
Hliscs M, Millet C, Dixon MW, Siden-Kiamos I, McMillan P, Tilley L. Organization and function of an actin cytoskeleton inPlasmodium falciparumgametocytes. Cell Microbiol 2014; 17:207-25. [DOI: 10.1111/cmi.12359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Marion Hliscs
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
- School of Botany; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Coralie Millet
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Matthew W. Dixon
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology; Hellas, 700 13 Heraklion Crete Greece
| | - Paul McMillan
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- The Biological Optical Microscopy Platform; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Vic. 3010 Australia
- Australian Research Council Centre of Excellence for Coherent X-ray Science; The University of Melbourne; Melbourne Vic. 3010 Australia
| |
Collapse
|
17
|
Heitlinger E, Spork S, Lucius R, Dieterich C. The genome of Eimeria falciformis--reduction and specialization in a single host apicomplexan parasite. BMC Genomics 2014; 15:696. [PMID: 25142335 PMCID: PMC4287421 DOI: 10.1186/1471-2164-15-696] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/19/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host. RESULTS The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria. CONCLUSIONS Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.
Collapse
Affiliation(s)
- Emanuel Heitlinger
- />Department of Molecular Parasitology, Humboldt University, Philippstraße 13, 10115 Berlin, Germany
| | - Simone Spork
- />Department of Molecular Parasitology, Humboldt University, Philippstraße 13, 10115 Berlin, Germany
| | - Richard Lucius
- />Department of Molecular Parasitology, Humboldt University, Philippstraße 13, 10115 Berlin, Germany
| | - Christoph Dieterich
- />Computational RNA Biology and Ageing, Max Plank Institute for Biology of Ageing, Joseph-Stelzmann Straße 9b, 50913 Cologne, Germany
| |
Collapse
|
18
|
Caldas LA, Seabra SH, Attias M, de Souza W. The effect of kinase, actin, myosin and dynamin inhibitors on host cell egress by Toxoplasma gondii. Parasitol Int 2013; 62:475-82. [DOI: 10.1016/j.parint.2013.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/26/2013] [Accepted: 04/18/2013] [Indexed: 12/21/2022]
|
19
|
Tremp AZ, Carter V, Saeed S, Dessens JT. Morphogenesis of Plasmodium zoites is uncoupled from tensile strength. Mol Microbiol 2013; 89:552-64. [PMID: 23773015 PMCID: PMC3912903 DOI: 10.1111/mmi.12297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 12/17/2022]
Abstract
A shared feature of the motile stages (zoites) of malaria parasites is a cortical cytoskeletal structure termed subpellicular network (SPN), thought to define and maintain cell shape. Plasmodium alveolins comprise structural components of the SPN, and alveolin gene knockout causes morphological abnormalities that coincide with markedly reduced tensile strength of the affected zoites, indicating the alveolins are prime cell shape determinants. Here, we characterize a novel SPN protein of Plasmodium berghei ookinetes and sporozoites named G2 (glycine at position 2), which is structurally unrelated to alveolins. G2 knockout abolishes parasite transmission and causes zoite malformations and motility defects similar to those observed in alveolin null mutants. Unlike alveolins, however, G2 contributes little to tensile strength, arguing against a cause-effect relationship between tensile strength and cell shape. We also show that G2 null mutant sporozoites display an abnormal arrangement of their subpellicular microtubules. These results provide important new understanding of the factors that determine zoite morphogenesis, as well as the potential roles of the cortical cytoskeleton in gliding motility.
Collapse
Affiliation(s)
- Annie Z Tremp
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
20
|
Sebé-Pedrós A, Burkhardt P, Sánchez-Pons N, Fairclough SR, Lang BF, King N, Ruiz-Trillo I. Insights into the origin of metazoan filopodia and microvilli. Mol Biol Evol 2013; 30:2013-23. [PMID: 23770652 PMCID: PMC3748353 DOI: 10.1093/molbev/mst110] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Filopodia are fine actin-based cellular projections used for both environmental sensing and cell motility, and they are essential organelles for metazoan cells. In this study, we reconstruct the origin of metazoan filopodia and microvilli. We first report on the evolutionary assembly of the filopodial molecular toolkit and show that homologs of many metazoan filopodial components, including fascin and myosin X, were already present in the unicellular or colonial progenitors of metazoans. Furthermore, we find that the actin crosslinking protein fascin localizes to filopodia-like structures and microvilli in the choanoflagellate Salpingoeca rosetta. In addition, homologs of filopodial genes in the holozoan Capsaspora owczarzaki are upregulated in filopodia-bearing cells relative to those that lack them. Therefore, our findings suggest that proteins essential for metazoan filopodia and microvilli are functionally conserved in unicellular and colonial holozoans and that the last common ancestor of metazoans bore a complex and specific filopodial machinery.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Partial protective of chickens against Eimeria tenella challenge with recombinant EtMIC-1 antigen. Parasitol Res 2013; 112:2281-7. [PMID: 23559377 DOI: 10.1007/s00436-013-3389-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/08/2013] [Indexed: 01/16/2023]
Abstract
Eimeria tenella microneme protein 1 (EtMIC-1) is highly conserved with TgMIC-2, which is involved in parasite binding specifically to host cells. Little is known about the immune responses and protective efficacy against E. tenella infection with EtMIC-1 antigen. In the present study, the recombinant proteins of E. tenella mature MIC-1 and adhesive domain (von Willebrand factor type A domain, EtMIC-1-VD) were obtained, protective efficacy against E.tenella infection and the mucosal immune response, which is induced in broilers was evaluated. The antibody levels and the transcription profiles of cytokine of chickens, such as interleukin-12 (IL-12) and interferon-γ (IFN-γ), were detected after being immunized three times with the recombinant EtMIC-1 and EtMIC-1-VD by ELISA assay and quantitative real-time PCR, respectively. The results showed that both groups of chickens, after being immunized with 100 μg EtMIC-1 or EtMIC-1-VD antigen, induced about tenfold higher IgG levels compared to the nonimmune groups. The transcription profiles of IL-12 and IFN-γ of the immunized groups were significantly higher than the control groups as well. The anticoccidial index of the group immunized with 100 μg EtMIC-1 and the group immunized with 100 μg EtMIC-1-VD were 167.2 and 165.5, respectively, which are significantly higher than low-dose immunized groups and challenged control groups. Our data suggests that VD domain is the key functional structure of EtMIC-1 that could trigger a significant humoral and cellular response against E. tenella infection, and EtMIC-1 had the potential in imparting partial protection in chickens against homologous challenge.
Collapse
|
22
|
Abstract
Toxoplasma gondii, an Apicomplexan, is a pathogic protozoan that can infect the central nervous system. Infection during pregnancy can result in a congenial infection with severe neurological sequelae. In immunocompromised individuals reactivation of latent neurological foci can result in encephalitis. Immunocompetent individuals infected with T. gondii are typically asymptomatic and maintain this infection for life. However, recent studies suggest that these asymptomatic infections may have effects on behavior and other physiological processes. Toxoplasma gondii infects approximately one-third of the world population, making it one of the most successful parasitic organisms. Cats and other felidae serve as the definite host producing oocysts, an environmentally resistant life cycle stage found in cat feces, which can transmit the infection when ingested orally. A wide variety of warm-blooded animals, including humans, can serve as the intermediate host in which tissue cysts (containing bradyzoites) develop. Transmission also occurs due to ingestion of the tissue cysts. There are three predominant clonal lineages, termed Types I, II and III, and an association with higher pathogenicity with the Type I strains in humans has emerged. This chapter presents a review of the biology of this infection including the life cycle, transmission, epidemiology, parasite strains, and the host immune response. The major clinical outcomes of congenital infection, chorioretinitis and encephalitis, and the possible association of infection of toxoplasmosis with neuropsychiatric disorders such as schizophrenia, are reviewed.
Collapse
Affiliation(s)
- Sandra K Halonen
- Department of Microbiology, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
23
|
Lourido S, Tang K, Sibley LD. Distinct signalling pathways control Toxoplasma egress and host-cell invasion. EMBO J 2012; 31:4524-34. [PMID: 23149386 DOI: 10.1038/emboj.2012.299] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/16/2012] [Indexed: 12/27/2022] Open
Abstract
Calcium signalling coordinates motility, cell invasion, and egress by apicomplexan parasites, yet the key mediators that transduce these signals remain largely unknown. One underlying assumption is that invasion into and egress from the host cell depend on highly similar systems to initiate motility. Using a chemical-genetic approach to specifically inhibit select calcium-dependent kinases (CDPKs), we instead demonstrate that these pathways are controlled by different kinases: both TgCDPK1 and TgCDPK3 were required during ionophore-induced egress, but only TgCDPK1 was required during invasion. Similarly, microneme secretion, which is necessary for motility during both invasion and egress, universally depended on TgCDPK1, but only exhibited TgCDPK3 dependence when triggered by certain stimuli. We also demonstrate that egress likely comes under a further level of control by cyclic GMP-dependent protein kinase and that its activation can induce egress and partially compensate for the inhibition of TgCDPK3. These results demonstrate that separate signalling pathways are integrated to regulate motility in response to the different signals that promote invasion or egress during infection by Toxoplasma gondii.
Collapse
Affiliation(s)
- Sebastian Lourido
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
24
|
Lorestani A, Ivey FD, Thirugnanam S, Busby MA, Marth GT, Cheeseman IM, Gubbels MJ. Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORN1. Cytoskeleton (Hoboken) 2012; 69:1069-85. [PMID: 23027733 DOI: 10.1002/cm.21077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 12/25/2022]
Abstract
The basal complex in Toxoplasma functions as the contractile ring in the cell division process. Basal complex contraction tapers the daughter cytoskeleton toward the basal end and is required for daughter segregation. We have previously shown that the protein MORN1 is essential for basal complex assembly and likely acts as a scaffolding protein. To further our understanding of the basal complex, we combined subcellular fractionation with an affinity purification of the MORN1 complex and identified its protein composition. We identified two new components of the basal complex, one of which uniquely associated with the basal complex in mature parasites, the first of its kind. In addition, we identified several other novel cytoskeleton proteins with different spatiotemporal dynamics throughout cell division. Since many of these proteins are unique to Apicomplexa this study significantly contributes to the annotation of their unique cytoskeleton. Furthermore, we show that G-actin binding protein TgCAP is localized at the apical cap region in intracellular parasites, but quickly redistributes to a cytoplasmic localization pattern upon egress. © 2012 Wiley Periodicals, Inc.
Collapse
|
25
|
Protein palmitoylation and pathogenesis in apicomplexan parasites. J Biomed Biotechnol 2012; 2012:483969. [PMID: 23093847 PMCID: PMC3470895 DOI: 10.1155/2012/483969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 01/02/2023] Open
Abstract
Apicomplexan parasites comprise a broad variety of protozoan parasites, including Toxoplasma gondii, Plasmodium, Eimeria, and Cryptosporidium species. Being intracellular parasites, the success in establishing pathogenesis relies in their ability to infect a host-cell and replicate within it. Protein palmitoylation is known to affect many aspects of cell biology. Furthermore, palmitoylation has recently been shown to affect important processes in T. gondii such as replication, invasion, and gliding. Thus, this paper focuses on the importance of protein palmitoylation in the pathogenesis of apicomplexan parasites.
Collapse
|
26
|
Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped? Trends Parasitol 2012; 28:471-8. [PMID: 22939181 DOI: 10.1016/j.pt.2012.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/15/2023]
Abstract
Plasmodium falciparum is named for the crescent or falciform shape it adopts when preparing to undergo transfer to a mosquito vector. By contrast, gametocytes of the other (less virulent) human malaria parasites retain a more rounded shape. We describe the machinery that elongates falciparum gametocytes and discuss its relation with the machinery that elongates the invasive zoites. We address the question - why do falciparum malaria gametocytes go banana-shaped? The answer may lie in the finding that gametocyte maturation is associated with an increase in cellular deformability. The shape-shifting ability of gametocytes may facilitate the sequestration of early-stage gametocytes, while enabling late-stage gametocytes to circulate in the blood stream without being removed by the mechanical filtering mechanisms in the host spleen.
Collapse
|
27
|
Alonso AM, Coceres VM, De Napoli MG, Nieto Guil AF, Angel SO, Corvi MM. Protein palmitoylation inhibition by 2-bromopalmitate alters gliding, host cell invasion and parasite morphology in Toxoplasma gondii. Mol Biochem Parasitol 2012; 184:39-43. [PMID: 22484029 DOI: 10.1016/j.molbiopara.2012.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 01/07/2023]
Abstract
Protein palmitoylation is the reversible covalent attachment of palmitic acid onto proteins. This post-translational modification has been shown to play a part in diverse processes such as signal transduction, cellular localization and regulation of protein activity. Although many aspects of protein palmitoylation have been identified in mammalian and yeast cells, little is known of this modification in Toxoplasma gondii. In order to determine the functional role of protein palmitoylation in T. gondii, tachyzoites were treated with the palmitoylation inhibitor 2-bromopalmitate (2-BP). Parasites treated with 2-BP displayed a significant increase in non-circular trails which were longer than those trails left by non-treated parasites. Furthermore, 2-BP treatment reduced the invasion process to the host cells. Long-term treatment of intracellular tachyzoites resulted in major changes in parasite morphology and shape in a dose-dependent manner. These results suggest that palmitoylation could be modifying proteins that are key players in gliding, invasion and cytoskeletal proteins in T. gondii.
Collapse
Affiliation(s)
- A M Alonso
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM/CONICET, Chascomus, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Infection with the protozoan parasite Toxoplasma gondii is characterized by asymptomatic latent infection in the central nervous system and skeletal muscle tissue in the majority of immunocompentent individuals. Life-threatening reactivation of the infection in immunocompromized patients originates from rupture of Toxoplasma cysts in the brain. While major progress has been made in our understanding of the immunopathogenesis of infection the mechanism(s) of neuroinvasion of the parasite remains poorly understood. The present review presents the current understanding of blood-brain barrier (patho)physiology and the interaction of Toxoplasma gondii with cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Sabrina M Feustel
- Institute for Microbiology and Hygiene, Charité Medical School, Berlin, Germany
| | | | | |
Collapse
|
29
|
Abstract
Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a non-fusigenic vacuole (e.g. Toxoplasma, Encephalitozoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunologic responses and thereby prevent disease.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63100, USA.
| |
Collapse
|
30
|
Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA. Principles of unconventional myosin function and targeting. Annu Rev Cell Dev Biol 2011; 27:133-55. [PMID: 21639800 DOI: 10.1146/annurev-cellbio-100809-151502] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins' roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels.
Collapse
Affiliation(s)
- M Amanda Hartman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
31
|
Sugita M, Iwataki Y, Nakano K, Numata O. Unique sequences and predicted functions of myosins in Tetrahymena thermophila. Gene 2011; 480:10-20. [PMID: 21338663 DOI: 10.1016/j.gene.2011.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/07/2011] [Accepted: 02/13/2011] [Indexed: 02/02/2023]
Abstract
Myosins are eukaryotic actin-dependent molecular motors that play important roles in many cellular events. The function of each myosin is determined by a variety of functional domains in its tail region. In some major model organisms, the functions and properties of myosins have been investigated based on their amino acid sequences. However, in protists, myosins have been little studied beyond the level of genome sequences. We therefore investigated the mRNA expression levels and amino acid sequences of 13 myosin genes in the ciliate Tetrahymena thermophila. This study is an overview of myosins in T. thermophila, which has no typical myosins, such as class I, II, or V myosins. We showed that all 13 myosins were expressed in vegetative cells. Furthermore, these myosins could be divided into 3 subclasses based on four functional domains in their tail regions. Subclass 1 comprised of 8 myosins has both MyTH4 and FERM domains, and has a potential to function in vesicle transport or anchoring between membrane and actin filaments. Subclass 2 comprised of 4 myosins has RCC1 (regulator of chromosome condensation 1) domains, which are found only in some protists, and may have unconventional features. Subclass 3 is comprised of one myosin, which has a long coiled-coil domain like class II myosin. In addition, phylogenetic analysis on the basis of motor domains showed that T. thermophila myosins are separated into two clusters: one consists of subclasses 1 and 2, and the other consists of subclass 3.
Collapse
Affiliation(s)
- Maki Sugita
- Structural Biosciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
32
|
Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum. EUKARYOTIC CELL 2011; 10:556-64. [PMID: 21239623 DOI: 10.1128/ec.00244-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.
Collapse
|
33
|
Tran JQ, de Leon JC, Li C, Huynh MH, Beatty W, Morrissette NS. RNG1 is a late marker of the apical polar ring in Toxoplasma gondii. Cytoskeleton (Hoboken) 2010; 67:586-98. [PMID: 20658557 DOI: 10.1002/cm.20469] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The asexually proliferating stages of apicomplexan parasites cause acute symptoms of diseases such as malaria, cryptosporidiosis and toxoplasmosis. These stages are characterized by the presence of two independent microtubule organizing centers (MTOCs). Centrioles are found at the poles of the intranuclear spindle. The apical polar ring (APR), a MTOC unique to apicomplexans, organizes subpellicular microtubules which impose cell shape and apical polarity on these protozoa. Here we describe the characteristics of a novel protein that localizes to the APR of Toxoplasma gondii which we have named ring-1 (RNG1). There are related RNG1 proteins in Neospora caninum and Sarcocystis neurona but no obvious homologs in Plasmodium spp., Cryptosporidium spp. or Babesia spp. RNG1 is a small, low-complexity, detergent-insoluble protein that assembles at the APR very late in the process of daughter parasite replication. We were unable to knock-out the RNG1 gene, suggesting that its gene product is essential. Tagged RNG1 lines have also allowed us to visualize the APR during growth of Toxoplasma in the microtubule-disrupting drug oryzalin. Oryzalin inhibits nuclear division and cytokinesis although Toxoplasma growth continues, and similar to earlier observations of unchecked centriole duplication in oryzalin-treated parasites, the APR continues to duplicate during aberrant parasite growth.
Collapse
Affiliation(s)
- Johnson Q Tran
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tremp AZ, Dessens JT. Malaria IMC1 membrane skeleton proteins operate autonomously and participate in motility independently of cell shape. J Biol Chem 2010; 286:5383-91. [PMID: 21098480 PMCID: PMC3037651 DOI: 10.1074/jbc.m110.187195] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Plasmodium IMC1 (inner membrane complex 1) proteins comprise components of the subpellicular network, a lattice of intermediate filaments that form a structural part of the pellicle in the zoite stages of malaria parasites. Family members IMC1a and IMC1b are differentially expressed in sporozoites and ookinetes, respectively, but have functionally equivalent roles affecting cell morphology, strength, motility, and infectivity. Because of the coincident effects of previous imc1 gene disruptions on both zoite shape and locomotion, it has been impossible to ascribe a direct involvement in motility to these proteins. We show here that a third family member, IMC1h, has a distinct differential expression pattern and localizes to the pellicle of both ookinetes and sporozoites. Knock-out of IMC1h mimics the loss-of-function phenotypes of IMC1a and IMC1b in their respective life stages, indicating that IMC1 proteins could be operating co-dependently. By generating double null mutant parasites for IMC1h and IMC1b, we tested this hypothesis: double knock-out exacerbated the phenotypes of the single knock-outs in terms of ookinete strength, motility, and infectivity but did not further affect ookinete morphology. These findings provide the first genetic evidence that IMC1 proteins can function independently of each other and contribute to gliding motility independently of cell shape.
Collapse
Affiliation(s)
- Annie Z Tremp
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
35
|
Che FY, Madrid-Aliste C, Burd B, Zhang H, Nieves E, Kim K, Fiser A, Angeletti RH, Weiss LM. Comprehensive proteomic analysis of membrane proteins in Toxoplasma gondii. Mol Cell Proteomics 2010; 10:M110.000745. [PMID: 20935347 DOI: 10.1074/mcp.m110.000745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that is an important human and animal pathogen. Experimental information on T. gondii membrane proteins is limited, and the majority of gene predictions with predicted transmembrane motifs are of unknown function. A systematic analysis of the membrane proteome of T. gondii is important not only for understanding this parasite's invasion mechanism(s), but also for the discovery of potential drug targets and new preventative and therapeutic strategies. Here we report a comprehensive analysis of the membrane proteome of T. gondii, employing three proteomics strategies: one-dimensional gel liquid chromatography-tandem MS analysis (one-dimensional gel electrophoresis LC-MS/MS), biotin labeling in conjunction with one-dimensional gel LC-MS/MS analysis, and a novel strategy that combines three-layer "sandwich" gel electrophoresis with multidimensional protein identification technology. A total of 2241 T. gondii proteins with at least one predicted transmembrane segment were identified and grouped into 841 sequentially nonredundant protein clusters, which account for 21.8% of the predicted transmembrane protein clusters in the T. gondii genome. A large portion (42%) of the identified T. gondii membrane proteins are hypothetical proteins. Furthermore, many of the membrane proteins validated by mass spectrometry are unique to T. gondii or to the Apicomplexa, providing a set of gene predictions ripe for experimental investigation, and potentially suitable targets for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Fa-Yun Che
- Department of Pathology, Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Agop-Nersesian C, Egarter S, Langsley G, Foth BJ, Ferguson DJP, Meissner M. Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog 2010; 6:e1001029. [PMID: 20686666 PMCID: PMC2912401 DOI: 10.1371/journal.ppat.1001029] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/02/2010] [Indexed: 01/09/2023] Open
Abstract
Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Department of Infectiology, Parasitology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail: (MM); (CAN)
| | - Saskia Egarter
- Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Bernardo J. Foth
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, Oxford University, Oxford, United Kingdom
| | - Markus Meissner
- Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (MM); (CAN)
| |
Collapse
|
37
|
Elsheikha HM, Khan NA. Protozoa traversal of the blood–brain barrier to invade the central nervous system. FEMS Microbiol Rev 2010; 34:532-53. [DOI: 10.1111/j.1574-6976.2010.00215.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
38
|
Bottova I, Sauder U, Olivieri V, Hehl AB, Sonda S. The P-glycoprotein inhibitor GF120918 modulates Ca2+-dependent processes and lipid metabolism in Toxoplasma gondii. PLoS One 2010; 5:e10062. [PMID: 20386707 PMCID: PMC2851653 DOI: 10.1371/journal.pone.0010062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/15/2010] [Indexed: 11/18/2022] Open
Abstract
Up-regulation of the membrane-bound efflux pump P-glycoprotein (P-gp) is associated with the phenomenon of multidrug-resistance in pathogenic organisms, including protozoan parasites. In addition, P-gp plays a role in normal physiological processes, however our understanding of these P-gp functions remains limited. In this study we investigated the effects of the P-gp inhibitor GF120918 in Toxoplasma gondii, a model apicomplexan parasite and an important human pathogen. We found that GF120918 treatment severely inhibited parasite invasion and replication. Further analyses of the molecular mechanisms involved revealed that the P-gp inhibitor modulated parasite motility, microneme secretion and egress from the host cell, all cellular processes known to depend on Ca2+ signaling in the parasite. In support of a potential role of P-gp in Ca2+-mediated processes, immunoelectron and fluorescence microscopy showed that T. gondii P-gp was localized in acidocalcisomes, the major Ca2+ storage in the parasite, at the plasma membrane, and in the intravacuolar tubular network. In addition, metabolic labeling of extracellular parasites revealed that inhibition or down-regulation of T. gondii P-gp resulted in aberrant lipid synthesis. These results suggest a crucial role of T. gondii P-gp in essential processes of the parasite biology and further validate the potential of P-gp activity as a target for drug development.
Collapse
Affiliation(s)
- Iveta Bottova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | | | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Baumeister S, Winterberg M, Przyborski JM, Lingelbach K. The malaria parasite Plasmodium falciparum: cell biological peculiarities and nutritional consequences. PROTOPLASMA 2010; 240:3-12. [PMID: 19949823 DOI: 10.1007/s00709-009-0090-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Apicomplexan parasites obligatorily invade and multiply within eukaryotic cells. Phylogenetically, they are related to a group of algae which, during their evolution, have acquired a secondary endosymbiont. This organelle, which in the parasite is called the apicoplast, is highly reduced compared to the endosymbionts of algae, but still contains many plant-specific biosynthetic pathways. The malaria parasite Plasmodium falciparum infects mammalian erythrocytes which are devoid of intracellular compartments and which largely lack biosynthetic pathways. Despite the limited resources of nutrition, the parasite grows and generates up to 32 merozoites which are the infectious stages of the complex life cycle. A large part of the intra-erythrocytic development takes place in the so-called parasitophorous vacuole, a compartment which forms an interface between the parasite and the cytoplasm of the host cell. In the course of parasite growth, the host cell undergoes dramatic alterations which on one hand contribute directly to the symptoms of severe malaria and which, on the other hand, are also required for parasite survival. Some of these alterations facilitate the acquisition of nutrients from the extracellular environment which are not provided by the host cell. Here, we describe the cell biologically unique interactions between an intracellular eukaryotic pathogen and its metabolically highly reduced host cell. We further discuss current models to explain the appearance of pathogen-induced novel physiological properties in a host cell which has lost its genetic programme.
Collapse
Affiliation(s)
- Stefan Baumeister
- Department of Parasitology, Faculty of Biology, Philipps Universität, Marburg, Germany
| | | | | | | |
Collapse
|
40
|
Thomas JC, Green JL, Howson RI, Simpson P, Moss DK, Martin SR, Holder AA, Cota E, Tate EW. Interaction and dynamics of the Plasmodium falciparum MTIP–MyoA complex, a key component of the invasion motor in the malaria parasite. MOLECULAR BIOSYSTEMS 2010; 6:494-8. [DOI: 10.1039/b922093c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Bowler C, Vardi A, Allen AE. Oceanographic and biogeochemical insights from diatom genomes. ANNUAL REVIEW OF MARINE SCIENCE 2010; 2:333-65. [PMID: 21141668 DOI: 10.1146/annurev-marine-120308-081051] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes.
Collapse
Affiliation(s)
- Chris Bowler
- CNRS UMR8186, Department of Biology, Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
42
|
Garnett JA, Liu Y, Leon E, Allman SA, Friedrich N, Saouros S, Curry S, Soldati-Favre D, Davis BG, Feizi T, Matthews S. Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci 2009; 18:1935-47. [PMID: 19593815 DOI: 10.1002/pro.204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular protozoan Toxoplasma gondii is among the most widespread parasites. The broad host cell range of the parasite can be explained by carbohydrate microarray screening analyses that have demonstrated the ability of the T. gondii adhesive protein, TgMIC1, to bind to a wide spectrum of sialyl oligosaccharide ligands. Here, we investigate by further microarray analyses in a dose-response format the differential binding of TgMIC1 to 2-3- and 2-6-linked sialyl carbohydrates. Interestingly, two novel synthetic fluorinated analogs of 3'SiaLacNAc(1-4) and 3'SiaLacNAc(1-3) were identified as highly potent ligands. To understand the structural basis of the carbohydrate binding specificity of TgMIC1, we have determined the crystal structures of TgMIC1 micronemal adhesive repeat (MAR)-region (TgMIC1-MARR) in complex with five sialyl-N-acetyllactosamine analogs. These crystal structures have revealed a specific, water-mediated hydrogen bond network that accounts for the preferential binding of TgMIC1-MARR to arrayed 2-3-linked sialyl oligosaccharides and the high potency of the fluorinated analogs. Furthermore, we provide strong evidence for the first observation of a C--F...H--O hydrogen bond within a lectin-carbohydrate complex. Finally, detailed comparison with other oligosaccharide-protein complexes in the Protein Data Bank (PDB) reveals a new family of sialic-acid binding sites from lectins in parasites, bacteria, and viruses.
Collapse
Affiliation(s)
- James A Garnett
- Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW72AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bullen HE, Tonkin CJ, O'Donnell RA, Tham WH, Papenfuss AT, Gould S, Cowman AF, Crabb BS, Gilson PR. A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. J Biol Chem 2009; 284:25353-63. [PMID: 19561073 PMCID: PMC2757237 DOI: 10.1074/jbc.m109.036772] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Indexed: 11/06/2022] Open
Abstract
The phylum Apicomplexa are a group of obligate intracellular parasites responsible for a wide range of important diseases. Central to the lifecycle of these unicellular parasites is their ability to migrate through animal tissue and invade target host cells. Apicomplexan movement is generated by a unique system of gliding motility in which substrate adhesins and invasion-related proteins are pulled across the plasma membrane by an underlying actin-myosin motor. The myosins of this motor are inserted into a dual membrane layer called the inner membrane complex (IMC) that is sandwiched between the plasma membrane and an underlying cytoskeletal basket. Central to our understanding of gliding motility is the characterization of proteins residing within the IMC, but to date only a few proteins are known. We report here a novel family of six-pass transmembrane proteins, termed the GAPM family, which are highly conserved and specific to Apicomplexa. In Plasmodium falciparum and Toxoplasma gondii the GAPMs localize to the IMC where they form highly SDS-resistant oligomeric complexes. The GAPMs co-purify with the cytoskeletal alveolin proteins and also to some degree with the actin-myosin motor itself. Hence, these proteins are strong candidates for an IMC-anchoring role, either directly or indirectly tethering the motor to the cytoskeleton.
Collapse
Affiliation(s)
- Hayley E. Bullen
- From the Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, Victoria 3004
- the Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010
- the Infection and Immunity Division, and
| | | | | | | | - Anthony T. Papenfuss
- the Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, and
| | - Sven Gould
- the School of Botany, The University of Melbourne, Parkville, Victoria 3050, Australia
| | | | - Brendan S. Crabb
- From the Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, Victoria 3004
| | - Paul R. Gilson
- From the Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, Victoria 3004
| |
Collapse
|
44
|
Tufet-Bayona M, Janse CJ, Khan SM, Waters AP, Sinden RE, Franke-Fayard B. Localisation and timing of expression of putative Plasmodium berghei rhoptry proteins in merozoites and sporozoites. Mol Biochem Parasitol 2009; 166:22-31. [DOI: 10.1016/j.molbiopara.2009.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/22/2009] [Accepted: 02/17/2009] [Indexed: 02/05/2023]
|
45
|
Agop-Nersesian C, Naissant B, Rached FB, Rauch M, Kretzschmar A, Thiberge S, Menard R, Ferguson DJP, Meissner M, Langsley G. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 2009; 5:e1000270. [PMID: 19165333 PMCID: PMC2622761 DOI: 10.1371/journal.ppat.1000270] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 12/15/2008] [Indexed: 12/22/2022] Open
Abstract
The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites) within the mother cell, using the so-called Inner Membrane Complex (IMC) as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP), also known as Myosin Light Chain 1 (MLC1), a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division. Apicomplexan parasites are unusual in that they replicate by assembling daughter parasites within the mother cell. This involves the ordered assembly of an Inner Membrane Complex (IMC), a scaffold consisting of flattened membrane cisternae and a subpellicular network made up of microtubules and scaffold proteins. The IMC begins to form at the onset of replication, but its maturation occurs at the final stage of cytokinesis (the last step during cell division) upon the addition of motor (glideosome) components such as GAP45 (Glideosome Associated Protein), Myosin A (MyoA), and Myosin-Tail-Interacting-Protein (MTIP, also known as Myosin Light Chain 1) that are necessary to drive the gliding motility required for parasite invasion. We demonstrate that Rab11A regulates not only delivery of new plasmamembrane to daughter cells, but, importantly, also correct IMC formation. We show that Rab11A physically interacts with MTIP/MLC1, implicating unconventional myosin(s) in both cytokinesis and IMC maturation, and, consistently, overexpression of a MyoA tail-only mutant generates a default similar to that which we observe upon Rab11A ablation. We propose a model where Rab11A-mediated vesicular traffic is required for the delivery of new plasma membrane to daughter cells and for the maturation of the IMC in order to complete cell division.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernina Naissant
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Fathia Ben Rached
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Manuel Rauch
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Kretzschmar
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Thiberge
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - Robert Menard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - David J. P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Meissner
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail: (MM); (GL)
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
- * E-mail: (MM); (GL)
| |
Collapse
|
46
|
Kursula I, Kursula P, Ganter M, Panjikar S, Matuschewski K, Schüler H. Structural basis for parasite-specific functions of the divergent profilin of Plasmodium falciparum. Structure 2009; 16:1638-48. [PMID: 19000816 DOI: 10.1016/j.str.2008.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
Abstract
Profilins are key regulators of actin dynamics. They sequester actin monomers, forming a pool for rapid polymer formation stimulated by proteins such as formins. Apicomplexan parasites utilize a highly specialized microfilament system for motility and host cell invasion. Their genomes encode only a small number of divergent actin regulators. We present the first crystal structure of an apicomplexan profilin, that of the malaria parasite Plasmodium falciparum, alone and in complex with a polyproline ligand peptide. The most striking feature of Plasmodium profilin is a unique minidomain consisting of a large beta-hairpin extension common to all apicomplexan parasites, and an acidic loop specific for Plasmodium species. Reverse genetics in the rodent malaria model, Plasmodium berghei, suggests that profilin is essential for the invasive blood stages of the parasite. Together, our data establish the structural basis for understanding the functions of profilin in the malaria parasite.
Collapse
Affiliation(s)
- Inari Kursula
- Department of Biochemistry, University of Oulu, 90570 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
47
|
Saouros S, Sawmynaden K, Marchant J, Simpson P, Matthews S. Complete resonance assignment of the galectin-like domain of MIC1 from Toxoplasma gondii in complex with the second EGF domain from MIC6 and the backbone assignment in complex with the third EGF domain. BIOMOLECULAR NMR ASSIGNMENTS 2008; 2:175-177. [PMID: 19636898 DOI: 10.1007/s12104-008-9114-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 09/08/2008] [Indexed: 05/28/2023]
Abstract
Microneme protein complexes are important for invasion of host cells by Toxoplasma gondii. We report the resonance assignment of the galectin-like domain of microneme protein 1 in complexes with the second and third EGF domains from microneme protein 6.
Collapse
Affiliation(s)
- Savvas Saouros
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
48
|
Costa-Silva TA, Meira CS, Ferreira IM, Hiramoto RM, Pereira-Chioccola VL. Evaluation of immunization with tachyzoite excreted–secreted proteins in a novel susceptible mouse model (A/Sn) for Toxoplasma gondii. Exp Parasitol 2008; 120:227-34. [DOI: 10.1016/j.exppara.2008.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 12/13/2022]
|
49
|
Sawmynaden K, Saouros S, Friedrich N, Marchant J, Simpson P, Bleijlevens B, Blackman MJ, Soldati-Favre D, Matthews S. Structural insights into microneme protein assembly reveal a new mode of EGF domain recognition. EMBO Rep 2008; 9:1149-55. [PMID: 18818666 DOI: 10.1038/embor.2008.179] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/09/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Adhesive complexes composed of microneme proteins (MICs) are secreted onto the parasite surface from intracellular stores and fulfil crucial roles in host-cell recognition, attachment and penetration. Here, we report the high-resolution solution structure of a complex between two crucial MICs, TgMIC6 and TgMIC1. Furthermore, we identify two analogous interaction sites within separate epidermal growth factor-like (EGF) domains of TgMIC6-EGF2 and EGF3-and confirm that both interactions are functional for the recognition of host cell receptor in the parasite, using immunofluorescence and invasion assays. The nature of this new mode of recognition of the EGF domain and its abundance in apicomplexan surface proteins suggest a more generalized means of constructing functional assemblies by using EGF domains with highly specific receptor-binding properties.
Collapse
Affiliation(s)
- Kovilen Sawmynaden
- Division of Molecular Biosciences, Imperial College London, Exhibition Road, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Michelin A, Bittame A, Bordat Y, Travier L, Mercier C, Dubremetz JF, Lebrun M. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network. Int J Parasitol 2008; 39:299-306. [PMID: 18840447 DOI: 10.1016/j.ijpara.2008.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.
Collapse
Affiliation(s)
- Adeline Michelin
- Dynamique des Interactions membranaires Normales et Pathologiques, UMR CNRS, Université de Montpellier, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|