1
|
Wutsdorff L, Mougnekabol J, Tang P, Reutzel-Selke A, Sauer IM, Haep N. Unveiling the Multifaceted Role of CIDEB: From Apoptosis to Lipid Metabolism and Liver Health. LIVERS 2024; 4:406-419. [DOI: 10.3390/livers4030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cell-death-inducing DNA fragmentation factor-alpha (DFFA)-like effector b (CIDEB) was first identified as an apoptosis-inducing protein. Further research revealed a pivotal role in lipid metabolism, regulating very-low-density lipoprotein (VLDL), lipid droplets (LD), sterol response element-binding protein (SREBP), and chylomicrons. Recent studies have uncovered that rare germline variants in CIDEB protect against liver diseases, including MAFLD, cirrhosis, and viral hepatitis. Furthermore, CIDEB influences steps of the hepatitis C virus (HCV) replication cycle. This review summarizes the current knowledge about CIDEB’s roles in apoptosis, lipid metabolism, and viral hepatitis, and highlights its critical role in liver diseases.
Collapse
Affiliation(s)
- Louise Wutsdorff
- Department of Surgery, CCM|CVK, Experimental Surgery, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Julienne Mougnekabol
- Department of Surgery, CCM|CVK, Experimental Surgery, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Peter Tang
- Department of Surgery, CCM|CVK, Experimental Surgery, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, CCM|CVK, Experimental Surgery, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Igor M. Sauer
- Department of Surgery, CCM|CVK, Experimental Surgery, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Nils Haep
- Department of Surgery, CCM|CVK, Experimental Surgery, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Academy, 10178 Berlin, Germany
| |
Collapse
|
2
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Robinson CM, Duggan A, Forrester A. ER exit in physiology and disease. Front Mol Biosci 2024; 11:1352970. [PMID: 38314136 PMCID: PMC10835805 DOI: 10.3389/fmolb.2024.1352970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The biosynthetic secretory pathway is comprised of multiple steps, modifications and interactions that form a highly precise pathway of protein trafficking and secretion, that is essential for eukaryotic life. The general outline of this pathway is understood, however the specific mechanisms are still unclear. In the last 15 years there have been vast advancements in technology that enable us to advance our understanding of this complex and subtle pathway. Therefore, based on the strong foundation of work performed over the last 40 years, we can now build another level of understanding, using the new technologies available. The biosynthetic secretory pathway is a high precision process, that involves a number of tightly regulated steps: Protein folding and quality control, cargo selection for Endoplasmic Reticulum (ER) exit, Golgi trafficking, sorting and secretion. When deregulated it causes severe diseases that here we categorise into three main groups of aberrant secretion: decreased, excess and altered secretion. Each of these categories disrupts organ homeostasis differently, effecting extracellular matrix composition, changing signalling events, or damaging the secretory cells due to aberrant intracellular accumulation of secretory proteins. Diseases of aberrant secretion are very common, but despite this, there are few effective therapies. Here we describe ER exit sites (ERES) as key hubs for regulation of the secretory pathway, protein quality control and an integratory hub for signalling within the cell. This review also describes the challenges that will be faced in developing effective therapies, due to the specificity required of potential drug candidates and the crucial need to respect the fine equilibrium of the pathway. The development of novel tools is moving forward, and we can also use these tools to build our understanding of the acute regulation of ERES and protein trafficking. Here we review ERES regulation in context as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aislinn Duggan
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alison Forrester
- Research Unit of Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
5
|
Chen J, Fang Z, Luo Q, Wang X, Warda M, Das A, Oldoni F, Luo F. Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. Lipids Health Dis 2024; 23:14. [PMID: 38216994 PMCID: PMC10785355 DOI: 10.1186/s12944-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.
Collapse
Affiliation(s)
- Jingfei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfei Fang
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5400, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fei Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Tang VT, Ginsburg D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J Clin Invest 2023; 133:163838. [PMID: 36594468 PMCID: PMC9797344 DOI: 10.1172/jci163838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology,,Life Sciences Institute
| | - David Ginsburg
- Life Sciences Institute,,Department of Internal Medicine,,Department of Human Genetics,,Department of Pediatrics and Communicable Diseases, and,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Hirata Y, Matsui Y, Wada I, Hosokawa N. ER-to-Golgi trafficking of procollagen III via conventional vesicular and tubular carriers. Mol Biol Cell 2022; 33:ar21. [PMID: 35044867 PMCID: PMC9250382 DOI: 10.1091/mbc.e21-07-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Collagen is the major protein component of the extracellular matrix. Synthesis of procollagens starts in the endoplasmic reticulum (ER), and three ⍺ chains form a rigid triple helix 300-400 nm in length. It remains unclear how such a large cargo is transported from the ER to the Golgi apparatus. In this study, to elucidate the intracellular transport of fibril-forming collagens, we fused cysteine-free GFP to the N-telopeptide region of procollagen III (GFP-COL3A1) and analyzed transport by live-cell imaging. We found that the maturation dynamics of procollagen III were largely different from those of network-forming procollagen IV (Matsui et al. 2020). Proline hydroxylation of procollagen III uniquely triggered the formation of intralumenal droplet-like structures similar to events caused by liquid-liquid phase separation, and ER exit sites surrounded large droplets containing chaperones. Procollagen III was transported to the Golgi apparatus via vesicular and tubular carriers containing ERGIC53 and RAB1B; this process required TANGO1 and CUL3, which we previously reported were dispensable for procollagen IV. GFP-COL3A1 and mCherry-⍺1AT were co-transported in the same vesicle. Based on these findings, we propose that shortly after ER exit, enlarged carriers containing procollagen III fuse to ERGIC for transport to the Golgi apparatus by conventional cargo carriers. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Yukihiro Hirata
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuto Matsui
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Nobuko Hosokawa
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
9
|
ER exit sites in Drosophila display abundant ER-Golgi vesicles and pearled tubes but no megacarriers. Cell Rep 2021; 36:109707. [PMID: 34525362 DOI: 10.1016/j.celrep.2021.109707] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Secretory cargos are collected at endoplasmic reticulum (ER) exit sites (ERES) before transport to the Golgi apparatus. Decades of research have provided many details of the molecular events underlying ER-Golgi exchanges. Essential questions, however, remain about the organization of the ER-Golgi interface in cells and the type of membrane structures mediating traffic from ERES. To investigate these, we use transgenic tagging in Drosophila flies, 3D-structured illumination microscopy (SIM), and focused ion beam scanning electron microscopy (FIB-SEM) to characterize ERES-Golgi units in collagen-producing fat body, imaginal discs, and imaginal discs overexpressing ERES determinant Tango1. Facing ERES, we find a pre-cis-Golgi region, equivalent to the vertebrate ER-Golgi intermediate compartment (ERGIC), involved in both anterograde and retrograde transport. This pre-cis-Golgi is continuous with the rest of the Golgi, not a separate compartment or collection of large carriers, for which we find no evidence. We observe, however, many vesicles, as well as pearled tubules connecting ERES and Golgi.
Collapse
|
10
|
Shomron O, Nevo-Yassaf I, Aviad T, Yaffe Y, Zahavi EE, Dukhovny A, Perlson E, Brodsky I, Yeheskel A, Pasmanik-Chor M, Mironov A, Beznoussenko GV, Mironov AA, Sklan EH, Patterson GH, Yonemura Y, Sannai M, Kaether C, Hirschberg K. COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J Cell Biol 2021; 220:211990. [PMID: 33852719 PMCID: PMC8054201 DOI: 10.1083/jcb.201907224] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
COPII and COPI mediate the formation of membrane vesicles translocating in opposite directions within the secretory pathway. Live-cell and electron microscopy revealed a novel mode of function for COPII during cargo export from the ER. COPII is recruited to membranes defining the boundary between the ER and ER exit sites, facilitating selective cargo concentration. Using direct observation of living cells, we monitored cargo selection processes, accumulation, and fission of COPII-free ERES membranes. CRISPR/Cas12a tagging, the RUSH system, and pharmaceutical and genetic perturbations of ER-Golgi transport demonstrated that the COPII coat remains bound to the ER–ERES boundary during protein export. Manipulation of the cargo-binding domain in COPII Sec24B prohibits cargo accumulation in ERES. These findings suggest a role for COPII in selecting and concentrating exported cargo rather than coating Golgi-bound carriers. These findings transform our understanding of coat proteins’ role in ER-to-Golgi transport.
Collapse
Affiliation(s)
- Olga Shomron
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Inbar Nevo-Yassaf
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tamar Aviad
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yakey Yaffe
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Dukhovny
- Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilya Brodsky
- Lomonosov Moscow State University, Andrey N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russia
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Mironov
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Galina V Beznoussenko
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Alexander A Mironov
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Ella H Sklan
- Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - George H Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Rockville, MD
| | - Yoji Yonemura
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Mara Sannai
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Feng Z, Yang K, Pastor-Pareja JC. Tales of the ER-Golgi Frontier: Drosophila-Centric Considerations on Tango1 Function. Front Cell Dev Biol 2021; 8:619022. [PMID: 33505971 PMCID: PMC7829582 DOI: 10.3389/fcell.2020.619022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
12
|
Saito K, Maeda M. Not just a cargo receptor for large cargoes; an emerging role of TANGO1 as an organizer of ER exit sites. J Biochem 2019; 166:115-119. [PMID: 31098622 DOI: 10.1093/jb/mvz036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Proteins synthesized within the endoplasmic reticulum (ER) are exported from ER exit sites via coat protein complex II (COPII)-coated vesicles. Although the mechanisms of COPII-vesicle formation at the ER exit sites are highly conserved among species, vertebrate cells secrete a wide range of materials, including collagens and chylomicrons, which form bulky structures within the ER that are too large to fit into conventional carriers. Transport ANd Golgi Organization 1 (TANGO1) was initially identified as a cargo receptor for collagens but has been recently rediscovered as an organizer of ER exit sites. We would like to review recent advances in the mechanism of large cargo secretion and organization of ER exit sites through the function of TANGO1.
Collapse
Affiliation(s)
- Kota Saito
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Japan
| | - Miharu Maeda
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Japan
| |
Collapse
|
13
|
Mironov AA, Beznoussenko GV. Models of Intracellular Transport: Pros and Cons. Front Cell Dev Biol 2019; 7:146. [PMID: 31440506 PMCID: PMC6693330 DOI: 10.3389/fcell.2019.00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Intracellular transport is one of the most confusing issues in the field of cell biology. Many different models and their combinations have been proposed to explain the experimental data on intracellular transport. Here, we analyse the data related to the mechanisms of endoplasmic reticulum-to-Golgi and intra-Golgi transport from the point of view of the main models of intracellular transport; namely: the vesicular model, the diffusion model, the compartment maturation–progression model, and the kiss-and-run model. This review initially describes our current understanding of Golgi function, while highlighting the recent progress that has been made. It then continues to discuss the outstanding questions and potential avenues for future research with regard to the models of these transport steps. To compare the power of these models, we have applied the method proposed by K. Popper; namely, the formulation of prohibitive observations according to, and the consecutive evaluation of, previous data, on the basis on the new models. The levels to which the different models can explain the experimental observations are different, and to date, the most powerful has been the kiss-and-run model, whereas the least powerful has been the diffusion model.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
14
|
Dickinson MS, Anderson LN, Webb-Robertson BJM, Hansen JR, Smith RD, Wright AT, Hybiske K. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. PLoS Pathog 2019; 15:e1007698. [PMID: 30943267 PMCID: PMC6464245 DOI: 10.1371/journal.ppat.1007698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/15/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection, responsible for millions of infections each year. Despite this high prevalence, the elucidation of the molecular mechanisms of Chlamydia pathogenesis has been difficult due to limitations in genetic tools and its intracellular developmental cycle. Within a host epithelial cell, chlamydiae replicate within a vacuole called the inclusion. Many Chlamydia-host interactions are thought to be mediated by the Inc family of type III secreted proteins that are anchored in the inclusion membrane, but their array of host targets are largely unknown. To investigate how the inclusion membrane proteome changes over the course of an infected cell, we have adapted the APEX2 system of proximity-dependent biotinylation. APEX2 is capable of specifically labeling proteins within a 20 nm radius in living cells. We transformed C. trachomatis to express the enzyme APEX2 fused to known inclusion membrane proteins, allowing biotinylation and purification of inclusion-associated proteins. Using quantitative mass spectrometry against APEX2 labeled samples, we identified over 400 proteins associated with the inclusion membrane at early, middle, and late stages of epithelial cell infection. This system was sensitive enough to detect inclusion interacting proteins early in the developmental cycle, at 8 hours post infection, a previously intractable time point. Mass spectrometry analysis revealed a novel, early association between C. trachomatis inclusions and endoplasmic reticulum exit sites (ERES), functional regions of the ER where COPII-coated vesicles originate. Pharmacological and genetic disruption of ERES function severely restricted early chlamydial growth and the development of infectious progeny. APEX2 is therefore a powerful in situ approach for identifying critical protein interactions on the membranes of pathogen-containing vacuoles. Furthermore, the data derived from proteomic mapping of Chlamydia inclusions has illuminated an important functional role for ERES in promoting chlamydial developmental growth.
Collapse
Affiliation(s)
- Mary S. Dickinson
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| | - Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Joshua R. Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
- The Gene and Linda Voiland College of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States of America
| | - Kevin Hybiske
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| |
Collapse
|
15
|
Mironov AA, Dimov ID, Beznoussenko GV. Role of Intracellular Transport in the Centriole-Dependent Formation of Golgi Ribbon. Results Probl Cell Differ 2019; 67:49-79. [PMID: 31435792 DOI: 10.1007/978-3-030-23173-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intracellular transport is the most confusing issue in the field of cell biology. The Golgi complex (GC) is the central station along the secretory pathway. It contains Golgi glycosylation enzymes, which are responsible for protein and lipid glycosylation, and in many cells, it is organized into a ribbon. Position and structure of the GC depend on the position and function of the centriole. Here, we analyze published data related to the role of centriole and intracellular transport (ICT) for the formation of Golgi ribbon and specifically stress the importance of the delivery of membranes containing cargo and membrane proteins to the cell centre where centriole/centrosome is localized. Additionally, we re-examined the formation of Golgi ribbon from the point of view of different models of ICT.
Collapse
Affiliation(s)
| | - Ivan D Dimov
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, Saint Petersburg, Russia
| | | |
Collapse
|
16
|
Ke H, Feng Z, Liu M, Sun T, Dai J, Ma M, Liu LP, Ni JQ, Pastor-Pareja JC. Collagen secretion screening in Drosophila supports a common secretory machinery and multiple Rab requirements. J Genet Genomics 2018; 45:S1673-8527(18)30097-3. [PMID: 29935791 DOI: 10.1016/j.jgg.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/15/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022]
Abstract
Collagens are large secreted trimeric proteins making up most of the animal extracellular matrix. Secretion of collagen has been a focus of interest for cell biologists in recent years because collagen trimers are too large and rigid to fit into the COPII vesicles mediating transport from the endoplasmic reticulum (ER) to the Golgi. Collagen-specific mechanisms to create enlarged ER-to-Golgi transport carriers have been postulated, including cargo loading by conserved ER exit site (ERES) protein Tango1. Here, we report an RNAi screening for genes involved in collagen secretion in Drosophila. In this screening, we examined distribution of GFP-tagged Collagen IV in live animals and found 88 gene hits for which the knockdown produced intracellular accumulation of Collagen IV in the fat body, the main source of matrix proteins in the larva. Among these hits, only two affected collagen secretion specifically: PH4αEFB and Plod, encoding enzymes known to mediate posttranslational modification of collagen in the ER. Every other intracellular accumulation hit affected general secretion, consistent with the notion that secretion of collagen does not use a specific mode of vesicular transport, but the general secretory pathway. Included in our hits are many known players in the eukaryotic secretory machinery, like COPII and COPI components, SNAREs and Rab-GTPase regulators. Our further analysis of the involvement of Rab-GTPases in secretion shows that Rab1, Rab2 and RabX3, are all required at ERES, each of them differentially affecting ERES morphology. Abolishing activity of all three by Rep knockdown, in contrast, led to uncoupling of ERES and Golgi. We additionally present a characterization of a screening hit we named trabuco (tbc), encoding an ERES-localized TBC domain-containing Rab-GAP. Finally, we discuss the success of our screening in identifying secretory pathway genes in comparison to two previous secretion screenings in Drosophila S2 cells.
Collapse
Affiliation(s)
- Hongmei Ke
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Min Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhui Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianli Dai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengqi Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu-Ping Liu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jian-Quan Ni
- School of Medicine, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
17
|
Kawaguchi K, Endo A, Fukushima T, Madoka Y, Tanaka T, Komada M. Ubiquitin-specific protease 8 deubiquitinates Sec31A and decreases large COPII carriers and collagen IV secretion. Biochem Biophys Res Commun 2018; 499:635-641. [PMID: 29604273 DOI: 10.1016/j.bbrc.2018.03.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Nascent cargo proteins in the endoplasmic reticulum are transported to the Golgi by COPII carriers. Typical COPII vesicles are 60-70 nm in diameter, and much larger macromolecules, such as procollagen, are transported by atypical large COPII carriers in mammalian cells. The formation of large COPII carriers is enhanced by Cul3 ubiquitin ligase, which mono-ubiquitinates Sec31A, a COPII coat protein. However, the deubiquitinating enzyme for Sec31A was unclear. Here, we show that the deubiquitinating enzyme USP8 interacts with and deubiquitinates Sec31A. The interaction was mediated by the adaptor protein STAM1. USP8 overexpression inhibited the formation of large COPII carriers. By contrast, USP8 knockdown caused the accumulation of COPII coat proteins around the cis-Golgi, promoted the intracellular trafficking of procollagen IV from the endoplasmic reticulum to the Golgi, and increased collagen IV secretion. We concluded that USP8 deubiquitinates Sec31A and inhibits the formation of large COPII carriers, thereby suppressing collagen IV secretion.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Akinori Endo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Toshiaki Fukushima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Yuka Madoka
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Toshiaki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masayuki Komada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
18
|
Abstract
In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| | - Felix T Wieland
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| |
Collapse
|
19
|
Saito K, Maeda M, Katada T. Regulation of the Sar1 GTPase Cycle Is Necessary for Large Cargo Secretion from the Endoplasmic Reticulum. Front Cell Dev Biol 2017; 5:75. [PMID: 28879181 PMCID: PMC5572378 DOI: 10.3389/fcell.2017.00075] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins synthesized within the endoplasmic reticulum (ER) are transported to the Golgi via coat protein complex II (COPII)-coated vesicles. The formation of COPII-coated vesicles is regulated by the GTPase cycle of Sar1. Activated Sar1 is recruited to ER membranes and forms a pre-budding complex with cargoes and the inner-coat complex. The outer-coat complex then stimulates Sar1 inactivation and completes vesicle formation. The mechanisms of forming transport carriers are well-conserved among species; however, in mammalian cells, several cargo molecules such as collagen, and chylomicrons are too large to be accommodated in conventional COPII-coated vesicles. Thus, special cargo-receptor complexes are required for their export from the ER. cTAGE5/TANGO1 complexes and their isoforms have been identified as cargo receptors for these macromolecules. Recent reports suggest that the cTAGE5/TANGO1 complex interacts with the GEF and the GAP of Sar1 and tightly regulates its GTPase cycle to accomplish large cargo secretion.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| |
Collapse
|
20
|
Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svärd SG, Touz MC. Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoanGiardia lamblia. Traffic 2017; 18:604-621. [DOI: 10.1111/tra.12501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Emiliano Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Gonzalo F. Mayol
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | | | - Staffan G. Svärd
- Department of Cell and Molecular Biology; Uppsala University; Uppsala Sweden
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
21
|
Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R. COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol 2017; 216:1745-1759. [PMID: 28428367 PMCID: PMC5461032 DOI: 10.1083/jcb.201702135] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023] Open
Abstract
The coat protein complex II (COPII) is essential for the transport of large cargo, such as 300-nm procollagen I (PC1) molecules, from the endoplasmic reticulum (ER) to the Golgi. Previous work has shown that the CUL3-KLHL12 complex increases the size of COPII vesicles at ER exit sites to more than 300 nm in diameter and accelerates the secretion of PC1. However, the role of large COPII vesicles as PC1 transport carriers was not unambiguously demonstrated. In this study, using stochastic optical reconstruction microscopy, correlated light electron microscopy, and live-cell imaging, we demonstrate the existence of mobile COPII-coated vesicles that completely encapsulate the cargo PC1 and are physically separated from ER. We also developed a cell-free COPII vesicle budding reaction that reconstitutes the capture of PC1 into large COPII vesicles. This process requires COPII proteins and the GTPase activity of the COPII subunit SAR1. We conclude that large COPII vesicles are bona fide carriers of PC1.
Collapse
Affiliation(s)
- Amita Gorur
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Lin Yuan
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Satoshi Baba
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
22
|
Liu M, Feng Z, Ke H, Liu Y, Sun T, Dai J, Cui W, Pastor-Pareja JC. Tango1 spatially organizes ER exit sites to control ER export. J Cell Biol 2017; 216:1035-1049. [PMID: 28280122 PMCID: PMC5379956 DOI: 10.1083/jcb.201611088] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/03/2023] Open
Abstract
Exit of secretory cargo from the endoplasmic reticulum (ER) takes place at specialized domains called ER exit sites (ERESs). In mammals, loss of TANGO1 and other MIA/cTAGE (melanoma inhibitory activity/cutaneous T cell lymphoma-associated antigen) family proteins prevents ER exit of large cargoes such as collagen. Here, we show that Drosophila melanogaster Tango1, the only MIA/cTAGE family member in fruit flies, is a critical organizer of the ERES-Golgi interface. Tango1 rings hold COPII (coat protein II) carriers and Golgi in close proximity at their center. Loss of Tango1, present at ERESs in all tissues, reduces ERES size and causes ERES-Golgi uncoupling, which impairs secretion of not only collagen, but also all other cargoes we examined. Further supporting an organizing role of Tango1, its overexpression creates more and larger ERESs. Our results suggest that spatial coordination of ERES, carrier, and Golgi elements through Tango1's multiple interactions increases secretory capacity in Drosophila and allows secretion of large cargo.
Collapse
Affiliation(s)
- Min Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongmei Ke
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhui Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianli Dai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhong Cui
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
23
|
Yuan L, Baba S, Bajaj K, Schekman R. Cell-free Generation of COPII-coated Procollagen I Carriers. Bio Protoc 2017; 7:e2450. [PMID: 29276723 DOI: 10.21769/bioprotoc.2450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The aim of this protocol is to generate COPII-coated procollagen I (PC1) carriers in a cell-free reaction. The COPII-coated PC1 carriers were reconstituted from donor membrane, cytosol, purified recombinant COPII proteins, and nucleotides. This protocol describes the preparation of donor membrane and cytosol, the assembly of the reaction, and the isolation and detection of reconstituted COPII-coated carriers. This cell-free reaction can be used to test conditions that stimulate or suppress the packaging of PC1 into COPII-coated carriers.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Satoshi Baba
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Kanika Bajaj
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
24
|
Santos AJM, Nogueira C, Ortega-Bellido M, Malhotra V. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 2016; 213:343-54. [PMID: 27138255 PMCID: PMC4862334 DOI: 10.1083/jcb.201603072] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Santos et al. show that TANGO1 and a TANGO1-like protein, TALI, bind each other and function together as receptors to export bulky ApoB-containing lipid particles from the endoplasmic reticulum. However, TANGO1-mediated export of bulky collagens by the same cells is TALI independent. Procollagens, pre-chylomicrons, and pre–very low-density lipoproteins (pre-VLDLs) are too big to fit into conventional COPII-coated vesicles, so how are these bulky cargoes exported from the endoplasmic reticulum (ER)? We have shown that TANGO1 located at the ER exit site is necessary for procollagen export. We report a role for TANGO1 and TANGO1-like (TALI), a chimeric protein resulting from fusion of MIA2 and cTAGE5 gene products, in the export of pre-chylomicrons and pre-VLDLs from the ER. TANGO1 binds TALI, and both interact with apolipoprotein B (ApoB) and are necessary for the recruitment of ApoB-containing lipid particles to ER exit sites for their subsequent export. Although export of ApoB requires the function of both TANGO1 and TALI, the export of procollagen XII by the same cells requires only TANGO1. These findings reveal a general role for TANGO1 in the export of bulky cargoes from the ER and identify a specific requirement for TALI in assisting TANGO1 to export bulky lipid particles.
Collapse
Affiliation(s)
- António J M Santos
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Cristina Nogueira
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Maria Ortega-Bellido
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
25
|
Saito K, Katada T. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci 2015; 72:3709-20. [PMID: 26082182 PMCID: PMC4565863 DOI: 10.1007/s00018-015-1952-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60–90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
26
|
Abstract
Eukaryotic cells contain a multitude of membrane structures that are connected through a highly dynamic and complex exchange of their constituents. The vibrant instability of these structures challenges the classical view of defined, static compartments that are connected by different types of vesicles. Despite this astonishing complexity, proteins and lipids are accurately transported into the different intracellular membrane systems. Over the past few decades many factors have been identified that either mediate or regulate intracellular membrane trafficking. Like in a modern parcel sorting system of a logistics center, the cargo typically passes through several sequential sorting stations until it finally reaches the location that is specified by its individual address label. While each membrane system employs specific sets of factors, the transport processes typically operate on common principles. With the advent of genome- and proteome-wide screens, the availability of mutant collections, exciting new developments in microscope technology and sophisticated methods to study their dynamics, the future promises a broad and comprehensive picture of the processes by which eukaryotic cells sort their proteins.
Collapse
|
27
|
Saito K, Yamashiro K, Shimazu N, Tanabe T, Kontani K, Katada T. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. ACTA ACUST UNITED AC 2014; 206:751-62. [PMID: 25202031 PMCID: PMC4164946 DOI: 10.1083/jcb.201312062] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
By interacting with the collagen cargo receptor component cTAGE5, Sec12 concentrates at ER exit sites and generates the high levels of GTP-bound Sar1 necessary for export of collagen to the Golgi. Mechanisms for exporting variably sized cargo from the endoplasmic reticulum (ER) using the same machinery remain poorly understood. COPII-coated vesicles, which transport secretory proteins from the ER to the Golgi apparatus, are typically 60–90 nm in diameter. However, collagen, which forms a trimeric structure that is too large to be accommodated by conventional transport vesicles, is also known to be secreted via a COPII-dependent process. In this paper, we show that Sec12, a guanine-nucleotide exchange factor for Sar1 guanosine triphosphatase, is concentrated at ER exit sites and that this concentration of Sec12 is specifically required for the secretion of collagen VII but not other proteins. Furthermore, Sec12 recruitment to ER exit sites is organized by its direct interaction with cTAGE5, a previously characterized collagen cargo receptor component, which functions together with TANGO1 at ER exit sites. These findings suggest that the export of large cargo requires high levels of guanosine triphosphate–bound Sar1 generated by Sec12 localized at ER exit sites.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koh Yamashiro
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Shimazu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoya Tanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kontani
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Lavieu G, Dunlop MH, Lerich A, Zheng H, Bottanelli F, Rothman JE. The Golgi ribbon structure facilitates anterograde transport of large cargoes. Mol Biol Cell 2014; 25:3028-36. [PMID: 25103235 PMCID: PMC4230591 DOI: 10.1091/mbc.e14-04-0931] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Breaking down the ribbon of mammalian cells strongly inhibits intra-Golgi transport of large cargoes without altering the rate of transport of smaller cargoes. These results imply that the ribbon structure is an essential requirement for transport of large cargoes in mammalian cells. In mammalian cells, individual Golgi stacks fuse laterally to form the characteristic perinuclear ribbon structure. Yet the purpose of this remarkable structure has been an enigma. We report that breaking down the ribbon of mammalian cells strongly inhibits intra-Golgi transport of large cargoes without altering the rate of transport of smaller cargoes. In addition, insect cells that naturally harbor dispersed Golgi stacks have limited capacity to transport artificial oversized cargoes. These results imply that the ribbon structure is an essential requirement for transport of large cargoes in mammalian cells, and we suggest that this is because it enables the dilated rims of cisternae (containing the aggregates) to move across the stack as they transfer among adjacent stacks within the ribbon structure.
Collapse
Affiliation(s)
- Gregory Lavieu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Myun Hwa Dunlop
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Alexander Lerich
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Hong Zheng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Francesca Bottanelli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
29
|
Brunet S, Sacher M. In Sickness and in Health: The Role of TRAPP and Associated Proteins in Disease. Traffic 2014; 15:803-18. [PMID: 24917561 DOI: 10.1111/tra.12183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stephanie Brunet
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
| | - Michael Sacher
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
- Department of Anatomy and Cell Biology; McGill University; 845 Sherbrooke Street West Montreal QC H3A 0G4 Canada
| |
Collapse
|
30
|
Butkinaree C, Guo L, Ramkhelawon B, Wanschel A, Brodsky JL, Moore KJ, Fisher EA. A regulator of secretory vesicle size, Kelch-like protein 12, facilitates the secretion of apolipoprotein B100 and very-low-density lipoproteins--brief report. Arterioscler Thromb Vasc Biol 2013; 34:251-4. [PMID: 24334870 DOI: 10.1161/atvbaha.113.302728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE One of the major risk factors for atherosclerosis is the plasma level of low-density lipoprotein (LDL), which is a product of very-low-density lipoprotein (VLDL). Hepatic apolipoprotein B100 (apoB100) is the essential component that provides structural stability to VLDL particles. Newly translated apoB100 is partially lipidated in the endoplasmic reticulum (ER), forming nascent apoB100-VLDL particles. These particles are further modified to form fully mature VLDLs in the Golgi apparatus. Therefore, the transport of nascent VLDL from the ER to the Golgi represents a critical step during VLDL maturation and secretion and in regulating serum LDL cholesterol levels. Our previous studies showed that apoB100 exits the ER in coat complex II vesicles (COPII), but the cohort of related factors that control trafficking is poorly defined. APPROACH AND RESULTS Expression levels of Kelch-like protein 12 (KLHL12), an adaptor protein known to assist COPII-dependent transport of procollagen, were manipulated by using a KLHL12-specific small interfering RNA and a KLHL12 expression plasmid in the rat hepatoma cell line, McArdle RH7777. KLHL12 knockdown decreased the secreted and intracellular pools of apoB100, an effect that was attenuated in the presence of an autophagy inhibitor. KLHL12 knockdown also significantly reduced secretion of the most lipidated apoB100-VLDL species and led to the accumulation of apoB100 in the ER. Consistent with these data, KLHL12 overexpression increased apoB100 recovery and apoB100-VLDL secretion. Images obtained from confocal microscopy revealed colocalization of apoB100 and KLHL12, further supporting a direct link between KLHL12 function and VLDL trafficking from the ER. CONCLUSIONS KLHL12 plays a critical role in facilitating the ER exit and secretion of apoB100-VLDL particles, suggesting that KLHL12 modulation would influence plasma lipid levels.
Collapse
Affiliation(s)
- Chutikarn Butkinaree
- From the Department of Medicine, Leon H. Charney Division of Cardiology, Department of Cell Biology, and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine (C.B., L.G., B.R., A.W., K.J.M., E.A.F.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.). C.B. is currently affiliated with Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Han HM, Bouchet-Marquis C, Huebinger J, Grabenbauer M. Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol 2013; 140:369-81. [PMID: 23954988 PMCID: PMC3787787 DOI: 10.1007/s00418-013-1136-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
Abstract
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.
Collapse
Affiliation(s)
- Hong-Mei Han
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cedric Bouchet-Marquis
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO USA
- FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 USA
| | - Jan Huebinger
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Markus Grabenbauer
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
la Cour JM, Schindler AJ, Berchtold MW, Schekman R. ALG-2 attenuates COPII budding in vitro and stabilizes the Sec23/Sec31A complex. PLoS One 2013; 8:e75309. [PMID: 24069399 PMCID: PMC3777911 DOI: 10.1371/journal.pone.0075309] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Coated vesicles mediate the traffic of secretory and membrane cargo proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The coat protein complex (COPII) involved in vesicle budding is constituted by a GTPase, Sar1, the inner coat components of Sec23/Sec24 and the components of the outer coat Sec13/Sec31A. The Ca(2+)-binding protein ALG-2 was recently identified as a Sec31A binding partner and a possible link to Ca(2+) regulation of COPII vesicle budding. Here we show that ALG-2/Ca(2+) is capable of attenuating vesicle budding in vitro through interaction with an ALG-2 binding domain in the proline rich region of Sec31A. Binding of ALG-2 to Sec31A and inhibition of COPII vesicle budding is furthermore dependent on an intact Ca(2+)-binding site at EF-hand 1 of ALG-2. ALG-2 increased recruitment of COPII proteins Sec23/24 and Sec13/31A to artificial liposomes and was capable of mediating binding of Sec13/31A to Sec23. These results introduce a regulatory role for ALG-2/Ca(2+) in COPII tethering and vesicle budding.
Collapse
Affiliation(s)
- Jonas M. la Cour
- From the Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Adam J. Schindler
- From the Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Martin W. Berchtold
- From the Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Randy Schekman
- From the Department of Cellular Biochemistry, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
33
|
Lerner DW, McCoy D, Isabella AJ, Mahowald AP, Gerlach GF, Chaudhry TA, Horne-Badovinac S. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev Cell 2013; 24:159-68. [PMID: 23369713 DOI: 10.1016/j.devcel.2012.12.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/16/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022]
Abstract
Basement membranes (BMs) are specialized extracellular matrices that are essential for epithelial structure and morphogenesis. However, little is known about how BM proteins are delivered to the basal cell surface or how this process is regulated during development. Here, we identify a mechanism for polarized BM secretion in the Drosophila follicle cells. BM proteins are synthesized in a basal endoplasmic reticulum (ER) compartment from localized mRNAs and are then exported through Tango1-positive ER exit sites to basal Golgi clusters. Next, Crag targets Rab10 to structures in the basal cytoplasm, where it restricts protein delivery to the basal surface. These events occur during egg chamber elongation, a morphogenetic process that depends on follicle cell planar polarity and BM remodeling. Significantly, Tango1 and Rab10 are also planar polarized at the basal epithelial surface. We propose that the spatial control of BM production along two tissue axes promotes exocytic efficiency, BM remodeling, and organ morphogenesis.
Collapse
Affiliation(s)
- David W Lerner
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Petrosyan A, Ali MF, Cheng PW. Glycosyltransferase-specific Golgi-targeting mechanisms. J Biol Chem 2012; 287:37621-7. [PMID: 22988244 PMCID: PMC3488040 DOI: 10.1074/jbc.c112.403006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/07/2012] [Indexed: 01/20/2023] Open
Abstract
Glycosylation of secreted and membrane-bound mucins is carried out by glycosyltransferases localized to specific Golgi compartments according to the step in which each enzyme participates. However, the Golgi-targeting mechanisms of these enzymes are not clear. Herein, we investigate the Golgi-targeting mechanisms of core 1 β3 galactosyltransferase (C1GalT1) and core 2 β1,6-N-acetylglucosaminyltransferase-2 or mucus type (C2GnT-M), which participate in the early O-glycosylation steps. siRNAs, co-immunoprecipitation, and confocal fluorescence microscopy were employed to identify the golgins involved in the Golgi docking of vesicular complexes (VCs) that carry these two enzymes. We have found that these VCs use different golgins for docking: C2GnT-M-carrying VC (C2GnT-M-VC) utilizes Giantin, whereas C1GalT1-VC employs GM130-GRASP65 complex. However, in the absence of GRASP65, C1GalT1-VC utilizes GM130-Giantin complex. Also, we have found that these VCs are 1.1-1.2 μm in diameter, specific for each enzyme, and independent of coat protein complex II and I (COPII and COPI). These two fluorescently tagged enzymes exhibit different fluorescence recovery times in the Golgi after photobleaching. Thus, novel enzyme-specific Golgi-targeting mechanisms are employed by glycosyltransferases, and multiple Golgi docking strategies are utilized by C1GalT1.
Collapse
Affiliation(s)
- Armen Petrosyan
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Mohamed F. Ali
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Pi-Wan Cheng
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
35
|
Langhans M, Meckel T, Kress A, Lerich A, Robinson DG. ERES (ER exit sites) and the "secretory unit concept". J Microsc 2012; 247:48-59. [PMID: 22360601 DOI: 10.1111/j.1365-2818.2011.03597.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The higher plant Golgi apparatus consists of hundreds of individual Golgi stacks which move along the cortical ER, propelled by the actomysin system. Anterograde and retrograde transport between the endoplasmic reticulum (ER) and the plant Golgi occurs over a narrow interface (around 500 nm) and is generally considered to be mediated by COP-coated vesicles. Previously, ER exit sites (ERES) have been identified on the basis of to localization of transiently expressed COPII-coat proteins. As a consequence it has been held that ERES in higher plants are intimately associated with Golgi stacks, and that both move together as an integrated structure: the "secretory unit". Using a new COPII marker, as well as YFP-SEC24 (a bona fide COPII coat protein), we have made observations on tobacco leaf epidermis at high resolution in the CLSM. Our data clearly shows that COPII fluorescence is associated with the Golgi stacks rather than the surface of the ER and probably represents the temporary accumulation of COPII vesicles in the Golgi matrix prior to fusion with the cis-Golgi cisternae. We have calculated the numbers of COPII vesicles which would be required to provide a typical Golgi-associated COPII-fluorescent signal as being much less than 20. We have discussed the consequences of this and question the continued usage of the term "secretory unit".
Collapse
Affiliation(s)
- M Langhans
- Department of Plant Cell Biology, Centre for Organismal Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Ubiquitin-dependent regulation of COPII coat size and function. Nature 2012; 482:495-500. [PMID: 22358839 PMCID: PMC3292188 DOI: 10.1038/nature10822] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/03/2012] [Indexed: 12/18/2022]
Abstract
Packaging of proteins from the ER into COPII-vesicles is essential for secretion. In cells, most COPII-vesicles are ~60-80nm in diameter, yet some must increase their size to accommodate 300-400nm procollagen fibers or chylomicrons. Impaired COPII function results in collagen deposition defects, cranio-lenticulo-sutural dysplasia, or chylomicron retention disease, but mechanisms to enlarge COPII-coats have remained elusive. Here, we have identified the ubiquitin ligase Cul3Klhl12 as a regulator of COPII coat formation. Cul3Klhl12 catalyzes the monoubiquitination of the COPII-component Sec31 and drives the assembly of large COPII coats. As a result, ubiquitination by Cul3Klhl12 is essential for collagen export, yet less important for the transport of small cargo. We conclude that monoubiquitination controls the size and function of a vesicle coat.
Collapse
|
37
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
38
|
Townley AK, Schmidt K, Hodgson L, Stephens DJ. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion. J Cell Sci 2012; 125:673-84. [PMID: 22331354 DOI: 10.1242/jcs.091355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.
Collapse
Affiliation(s)
- Anna K Townley
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
39
|
Pastor-Pareja JC, Xu T. Shaping cells and organs in Drosophila by opposing roles of fat body-secreted Collagen IV and perlecan. Dev Cell 2011; 21:245-56. [PMID: 21839919 DOI: 10.1016/j.devcel.2011.06.026] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 03/03/2011] [Accepted: 06/24/2011] [Indexed: 12/30/2022]
Abstract
Basement membranes (BMs) are resilient polymer structures that surround organs in all animals. Tissues, however, undergo extensive morphological changes during development. It is not known whether the assembly of BM components plays an active morphogenetic role. To study in vivo the biogenesis and assembly of Collagen IV, the main constituent of BMs, we used a GFP-based RNAi method (iGFPi) designed to knock down any GFP-trapped protein in Drosophila. We found with this method that Collagen IV is synthesized by the fat body, secreted to the hemolymph (insect blood), and continuously incorporated into the BMs of the larva. We also show that incorporation of Collagen IV determines organ shape, first by mechanically constricting cells and second through recruitment of Perlecan, which counters constriction by Collagen IV. Our results uncover incorporation of Collagen IV and Perlecan into BMs as a major determinant of organ shape and animal form.
Collapse
Affiliation(s)
- José Carlos Pastor-Pareja
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | | |
Collapse
|
40
|
Valenzuela JI, Jaureguiberry-Bravo M, Couve A. Neuronal protein trafficking: emerging consequences of endoplasmic reticulum dynamics. Mol Cell Neurosci 2011; 48:269-77. [PMID: 21782949 DOI: 10.1016/j.mcn.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 01/16/2023] Open
Abstract
The highly polarized morphology and complex geometry of neurons is determined to a great extent by the structural and functional organization of the secretory pathway. It is intuitive to propose that the spatial arrangement of secretory organelles and their dynamic behavior impinge on protein trafficking and neuronal function, but these phenomena and their consequences are not well delineated. Here we analyze the architecture and motility of the archetypal endoplasmic reticulum (ER), and their relationship to the microtubule cytoskeleton and post-translational modifications of tubulin. We also review the dynamics of the ER in axons, dendrites and spines, and discuss the role of ER dynamics on protein mobility and trafficking in neurons.
Collapse
Affiliation(s)
- José Ignacio Valenzuela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
41
|
Leslie M. One collagen shipment, ready for delivery. J Biophys Biochem Cytol 2011. [PMCID: PMC3105537 DOI: 10.1083/jcb.1935if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
An ER membrane protein helps load collagen into vesicles.
Collapse
|
42
|
Wilson DG, Phamluong K, Li L, Sun M, Cao TC, Liu PS, Modrusan Z, Sandoval WN, Rangell L, Carano RAD, Peterson AS, Solloway MJ. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. ACTA ACUST UNITED AC 2011; 193:935-51. [PMID: 21606205 PMCID: PMC3105544 DOI: 10.1083/jcb.201007162] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mia3’s contribution to protein secretion is broader than previously realized—its absence impairs collagen deposition and normal development of cartilage and bone. Melanoma inhibitory activity member 3 (MIA3/TANGO1) is an evolutionarily conserved endoplasmic reticulum resident transmembrane protein. Recent in vitro studies have shown that it is required for the loading of collagen VII, but not collagen I, into COPII-coated transport vesicles. In this paper, we show that mice lacking Mia3 are defective for the secretion of numerous collagens, including collagens I, II, III, IV, VII, and IX, from chondrocytes, fibroblasts, endothelial cells, and mural cells. Collagen deposition by these cell types is abnormal, and extracellular matrix composition is compromised. These changes are associated with intracellular accumulation of collagen and the induction of a strong unfolded protein response, primarily within the developing skeleton. Chondrocyte maturation and bone mineralization are severely compromised in Mia3-null embryos, leading to dwarfism and neonatal lethality. Thus, Mia3’s role in protein secretion is much broader than previously realized, and it may, in fact, be required for the efficient secretion of all collagen molecules in higher organisms.
Collapse
Affiliation(s)
- Deanna G Wilson
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Devon Jensen
- Department of Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
44
|
Saito K, Yamashiro K, Ichikawa Y, Erlmann P, Kontani K, Malhotra V, Katada T. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol Biol Cell 2011; 22:2301-8. [PMID: 21525241 PMCID: PMC3128532 DOI: 10.1091/mbc.e11-02-0143] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mechanism of collagen secretion is not completely understood. It is found that cTAGE5 binds to TANGO1, and it is suggested that collagen VII export from the ER is driven by a cTAGE5/TANGO1 complex. Cutaneous T-cell lymphoma-–associated antigen 5 (cTAGE5), an originally identified tumor antigen, is overexpressed in various cancer cell lines. The cDNA encodes an integral membrane protein containing two coiled-coil motifs and a proline-rich domain. We show that cTAGE5 specifically localizes to the endoplasmic reticulum (ER) exit sites. In addition, cTAGE5 forms a complex with TANGO1 (MIA3), a previously characterized cargo receptor for collagen VII, by the interaction of their coiled-coil motifs. Of interest, cTAGE5, as well as TANGO1, is capable of interacting with the inner-layer coatomer of COPII Sec23/24 complex through their C-terminal proline-rich domains and required for collagen VII secretion. We propose that cTAGE5 acts as a coreceptor of TANGO1 for collagen VII export from the ER.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Trafficking of newly synthesized cargo through the early secretory pathway defines and maintains the intracellular organization of eukaryotic cells as well as the organization of tissues and organs. The importance of this pathway is underlined by the increasing number of mutations in key components of the ER export machinery that are causative of a diversity of human diseases. Here we discuss the molecular mechanisms that dictate cargo selection during vesicle budding. While, in vitro reconstitution assays, unicellular organisms such as budding yeast, and mammalian cell culture still have much to offer in terms of gaining a full understanding of the molecular basis for secretory cargo export, such assays have to date been limited to analysis of smaller, freely diffusible cargoes. The export of large macromolecular complexes from the ER such as collagens (up to 300 nm) or lipoproteins (~500 nm) presents a clear problem in terms of maintaining both selectivity and efficiency of export. It has also become clear that in order to translate our knowledge of the molecular basis for ER export to a full understanding of the implications for normal development and disease progression, the use of metazoan models is essential. Combined, these approaches are now starting to shed light not only on the mechanisms of macromolecular cargo export from the ER but also reveal the implications of failure of this process to human development and disease.
Collapse
Affiliation(s)
- Katy Schmidt
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, UK.
| | | |
Collapse
|
46
|
Georges A, Bonneau J, Bonnefont-Rousselot D, Champigneulle J, Rabès JP, Abifadel M, Aparicio T, Guenedet JC, Bruckert E, Boileau C, Morali A, Varret M, Aggerbeck LP, Samson-Bouma ME. Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson's disease (Chylomicron retention disease). Orphanet J Rare Dis 2011; 6:1. [PMID: 21235735 PMCID: PMC3029219 DOI: 10.1186/1750-1172-6-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Anderson's disease (AD) or chylomicron retention disease (CMRD) is a very rare hereditary lipid malabsorption syndrome. In order to discover novel mutations in the SAR1B gene and to evaluate the expression, as compared to healthy subjects, of the Sar1 gene and protein paralogues in the intestine, we investigated three previously undescribed individuals with the disease. METHODS The SAR1B, SAR1A and PCSK9 genes were sequenced. The expression of the SAR1B and SAR1A genes in intestinal biopsies of both normal individuals and patients was measured by RTqPCR. Immunohistochemistry using antibodies to recombinant Sar1 protein was used to evaluate the expression and localization of the Sar1 paralogues in the duodenal biopsies. RESULTS Two patients had a novel SAR1B mutation (p.Asp48ThrfsX17). The third patient, who had a previously described SAR1B mutation (p.Leu28ArgfsX7), also had a p.Leu21dup variant of the PCSK9 gene. The expression of the SAR1B gene in duodenal biopsies from an AD/CMRD patient was significantly decreased whereas the expression of the SAR1A gene was significantly increased, as compared to healthy individuals. The Sar1 proteins were present in decreased amounts in enterocytes in duodenal biopsies from the patients as compared to those from healthy subjects. CONCLUSIONS Although the proteins encoded by the SAR1A and SAR1B genes are 90% identical, the increased expression of the SAR1A gene in AD/CMRD does not appear to compensate for the lack of the SAR1B protein. The PCSK9 variant, although reported to be associated with low levels of cholesterol, does not appear to exert any additional effect in this patient. The results provide further insight into the tissue-specific nature of AD/CMRD.
Collapse
Affiliation(s)
- Amandine Georges
- Service de Médecine Infantile 3 et Génétique Clinique, INSERM U954, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, 54511, France
| | - Jessica Bonneau
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| | - Dominique Bonnefont-Rousselot
- UF de Biochimie des Maladies Métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière (AP-HP), and Département de Biologie Expérimentale, Métabolique et Clinique, EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, 75013, France
| | - Jacqueline Champigneulle
- Laboratoire d'Anatomie et de Cytologie Pathologiques, Hôpital de Brabois, Université Paris 13, Bobigny, 93000, France
| | - Jean P Rabès
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
- Service de Biochimie et Génétique Moléculaire, CHU A Paré, AP-HP et Faculté de Médecine (PIFO-UVSQ), Boulogne, 92104, France
| | - Marianne Abifadel
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| | - Thomas Aparicio
- Service de Gastroentérologie, Hôpital Avicenne, 125 rue de Stalingrad, Université Paris 13, Bobigny, 93000, France
| | - Jean C Guenedet
- Laboratoire d'Anatomie et de Cytologie Pathologiques, Hôpital de Brabois, Université Paris 13, Bobigny, 93000, France
- Service de Microscopie Electronique, Hôpital de Brabois, CHU Nancy, Vandoeuvre les Nancy, 54511, France
| | - Eric Bruckert
- Service d'Endocrinologie-Métabolisme, Hôpital Pitié Salpêtrière, (AP-HP), Paris, 75013, France
| | - Catherine Boileau
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
- Service de Biochimie et Génétique Moléculaire, CHU A Paré, AP-HP et Faculté de Médecine (PIFO-UVSQ), Boulogne, 92104, France
| | - Alain Morali
- Service de Médecine Infantile 3 et Génétique Clinique, INSERM U954, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, 54511, France
| | - Mathilde Varret
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| | | | - Marie E Samson-Bouma
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| |
Collapse
|
47
|
Sharpe LJ, Luu W, Brown AJ. Akt phosphorylates Sec24: new clues into the regulation of ER-to-Golgi trafficking. Traffic 2010; 12:19-27. [PMID: 20950345 DOI: 10.1111/j.1600-0854.2010.01133.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulation of protein transport within the early secretory pathway is a relatively unexplored area. Here, we propose a new player in the control of protein transport from the endoplasmic reticulum (ER) to the Golgi. Akt is an important signaling kinase whose functioning is perturbed in diseases such as cancer and diabetes. We discovered that Akt phosphorylates Sec24, an essential coat protein II (COPII) component involved in mediating cargo selection for ER-to-Golgi trafficking. We discuss how this finding may provide new insights into the regulation of protein transport.
Collapse
Affiliation(s)
- Laura J Sharpe
- BABS, School of Biotechnology and Biomolecular Sciences, Biosciences Building D26, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
48
|
Routledge KE, Gupta V, Balch WE. Emergent properties of proteostasis-COPII coupled systems in human health and disease. Mol Membr Biol 2010; 27:385-97. [DOI: 10.3109/09687688.2010.524894] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Ueno T, Tanaka K, Kaneko K, Taga Y, Sata T, Irie S, Hattori S, Ogawa-Goto K. Enhancement of procollagen biosynthesis by p180 through augmented ribosome association on the endoplasmic reticulum in response to stimulated secretion. J Biol Chem 2010; 285:29941-50. [PMID: 20647306 PMCID: PMC2943289 DOI: 10.1074/jbc.m109.094607] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 07/12/2010] [Indexed: 12/16/2022] Open
Abstract
A coiled-coil microtubule-bundling protein, p180, was originally reported as a ribosome-binding protein on the rough endoplasmic reticulum (ER) and is highly expressed in secretory tissues. Recently, we reported a novel role for p180 in the trans-Golgi network (TGN) expansion following stimulated collagen secretion. Here, we show that p180 plays a key role in procollagen biosynthesis and secretion in diploid fibroblasts. Depletion of p180 caused marked reductions of secreted collagens without significant loss of the ER membrane or mRNA. Metabolic labeling experiments revealed that the procollagen biosynthetic activity was markedly affected following p180 depletion. Moreover, loss of p180 perturbs ascorbate-stimulated de novo biosynthesis mainly in the membrane fraction with a preferential secretion defect of large proteins. At the EM level, one of the most prominent morphological features of p180-depleted cells was insufficient ribosome association on the ER membranes. In contrast, the ER of control cells was studded with numerous ribosomes, which were further enhanced by ascorbate. Similarly biochemical analysis confirmed that levels of membrane-bound ribosomes were altered in a p180-dependent manner. Taken together, our data suggest that p180 plays crucial roles in enhancing collagen biosynthesis at the entry site of the secretory compartments by a novel mechanism that mainly involves facilitating ribosome association on the ER.
Collapse
Affiliation(s)
- Tomonori Ueno
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017
| | - Keisuke Tanaka
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017
| | - Keiko Kaneko
- the Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, and
| | - Yuki Taga
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017
| | - Tetsutaro Sata
- the Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, and
| | - Shinkichi Irie
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017
- the Japan Institute of Leather Research, Adachi, Tokyo 120-8601, Japan
| | - Shunji Hattori
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017
- the Japan Institute of Leather Research, Adachi, Tokyo 120-8601, Japan
| | - Kiyoko Ogawa-Goto
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017
- the Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, and
- the Japan Institute of Leather Research, Adachi, Tokyo 120-8601, Japan
| |
Collapse
|
50
|
Whittle JR, Schwartz TU. Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J Cell Biol 2010; 190:347-61. [PMID: 20696705 PMCID: PMC2922654 DOI: 10.1083/jcb.201003092] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ancestral coatomer element 1 (ACE1) proteins assemble latticework coats for COPII vesicles and the nuclear pore complex. The ACE1 protein Sec31 and Sec13 make a 2:2 tetramer that forms the edge element of the COPII outer coat. In this study, we report that the COPII accessory protein Sec16 also contains an ACE1. The 165-kD crystal structure of the central domain of Sec16 in complex with Sec13 was solved at 2.7-A resolution. Sec16 and Sec13 also make a 2:2 tetramer, another edge element for the COPII system. Domain swapping at the ACE1-ACE1 interface is observed both in the prior structure of Sec13-Sec31 and in Sec13-Sec16. A Sec31 mutant in which domain swapping is prevented adopts an unprecedented laminated structure, solved at 2.8-A resolution. Our in vivo data suggest that the ACE1 element of Sec31 can functionally replace the ACE1 element of Sec16. Our data support Sec16 as a scaffold for the COPII system and a template for the Sec13-Sec31 coat.
Collapse
|