1
|
Pricoupenko N, Marsigliesi F, Marcq P, Blanch-Mercader C, Bonnet I. Src kinase slows collective rotation of confined epithelial cell monolayers. SOFT MATTER 2024. [PMID: 39545852 DOI: 10.1039/d4sm00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Collective cell migration is key during development, wound healing, and metastasis and relies on coordinated cell behaviors at the group level. Src kinase is a key signalling protein for the physiological functions of epithelia, as it regulates many cellular processes, including adhesion, motility, and mechanotransduction. Its overactivation is associated with cancer aggressiveness. Here, we take advantage of optogenetics to precisely control Src activation in time and show that its pathological-like activation slows the collective rotation of epithelial cells confined into circular adhesive patches. We interpret velocity, force, and stress data during period of non-activation and period of activation of Src thanks to a hydrodynamic description of the cell assembly as a polar active fluid. Src activation leads to a 2-fold decrease in the ratio of polar angle to friction, which could result from increased adhesiveness at the cell-substrate interface. Measuring internal stress allows us to show that active stresses are subdominant compared to traction forces. Our work reveals the importance of fine-tuning the level of Src activity for coordinated collective behaviors.
Collapse
Affiliation(s)
- Nastassia Pricoupenko
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Flavia Marsigliesi
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, F-75005, France
| | - Carles Blanch-Mercader
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Isabelle Bonnet
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| |
Collapse
|
2
|
Tchakal-Mesbahi A, He J, Zhu S, Huang M, Fukushima K, Bouley R, Brown D, Lu HAJ. Focal Adhesion Kinase (FAK) inhibition induces membrane accumulation of aquaporin2 (AQP2) through endocytosis inhibition and actin depolymerization in renal epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617300. [PMID: 39416213 PMCID: PMC11482834 DOI: 10.1101/2024.10.08.617300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cellular trafficking of the water channel aquaporin 2 (AQP2) is regulated by the actin cytoskeleton in collecting duct principal cells (PC) to maintain proper water balance in animals. Critical actin depolymerization/polymerization events are involved in both constitutive AQP2 recycling, and the pathway stimulated by vasopressin receptor signaling. Focal adhesion kinase (FAK) plays an important role in modulating the actin cytoskeleton through inhibiting small GTPases, and multiple studies have shown the involvement of FAK in insulin and cholesterol trafficking through actin regulation. To understand whether FAK contributes to water reabsorption by the kidney, we performed a series of in vitro experiments to examine the involvement of FAK and its signaling in mediating AQP2 trafficking in cultured renal epithelial cells. Our data showed that FAK inhibition by specific inhibitors caused membrane accumulation of AQP2 in AQP2expressing LLCPK1 cells by immunofluorescence staining. AQP2 membrane accumulation induced by FAK inhibition is associated with significantly reduced endocytosis of AQP2 via the clathrin-mediated endocytosis pathway. Moreover, AQP2 membrane accumulation induced by FAK inhibition also occurred in cells expressing the constitutive dephosphorylation mutant of AQP2, S256A. This was confirmed by immunoblotting using a specific antibody against phospho-serine 256 AQP2, supporting a phosphorylation independent mechanism. Finally, we demonstrated that inhibition of FAK caused reduced RhoA signaling and promoted F-actin depolymerization. In conclusion, our study identifies FAK signaling as a pathway that could provide a novel therapeutical avenue for AQP2 trafficking regulation in water balance disorders.
Collapse
|
3
|
Kim RT, Whited JL. Putative epithelial-mesenchymal transitions during salamander limb regeneration: Current perspectives and future investigations. Ann N Y Acad Sci 2024; 1540:89-103. [PMID: 39269330 PMCID: PMC11471381 DOI: 10.1111/nyas.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Previous studies have implicated epithelial-mesenchymal transition (EMT) in salamander limb regeneration. In this review, we describe putative roles for EMT during each stage of limb regeneration in axolotls and other salamanders. We hypothesize that EMT and EMT-like gene expression programs may regulate three main cellular processes during limb regeneration: (1) keratinocyte migration during wound closure; (2) transient invasion of the stump by epithelial cells undergoing EMT; and (3) use of EMT-like programs by non-epithelial blastemal progenitor cells to escape the confines of their niches. Finally, we propose nontraditional roles for EMT during limb regeneration that warrant further investigation, including alternative EMT regulators, stem cell activation, and fibrosis induced by aberrant EMT.
Collapse
Affiliation(s)
- Ryan T Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Koh YW, Han JH, Haam S, Lee HW. Machine learning-driven prediction of brain metastasis in lung adenocarcinoma using miRNA profile and target gene pathway analysis of an mRNA dataset. Clin Transl Oncol 2024; 26:2296-2308. [PMID: 38568412 DOI: 10.1007/s12094-024-03474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Brain metastasis (BM) is common in lung adenocarcinoma (LUAD) and has a poor prognosis, necessitating predictive biomarkers. MicroRNAs (MiRNAs) promote cancer cell growth, infiltration, and metastasis. However, the relationship between the miRNA expression profiles and BM occurrence in patients with LUAD remains unclear. METHODS We conducted an analysis to identify miRNAs in tissue samples that exhibited different expression levels between patients with and without BM. Using a machine learning approach, we confirmed whether the miRNA profile could be a predictive tool for BM. We performed pathway analysis of miRNA target genes using a matched mRNA dataset. RESULTS We selected 25 miRNAs that consistently exhibited differential expression between the two groups of 32 samples. The 25-miRNA profile demonstrated a strong predictive potential for BM in both Group 1 and Group 2 and the entire dataset (area under the curve [AUC] = 0.918, accuracy = 0.875 in Group 1; AUC = 0.867, accuracy = 0.781 in Group 2; and AUC = 0.908, accuracy = 0.875 in the entire group). Patients predicted to have BM, based on the 25-miRNA profile, had lower survival rates. Target gene analysis of miRNAs suggested that BM could be induced through the ErbB signaling pathway, proteoglycans in cancer, and the focal adhesion pathway. Furthermore, patients predicted to have BM based on the 25-miRNA profile exhibited higher expression of the epithelial-mesenchymal transition signature, TWIST, and vimentin than those not predicted to have BM. Specifically, there was a correlation between EGFR mRNA levels and BM. CONCLUSIONS This 25-miRNA profile may serve as a biomarker for predicting BM in patients with LUAD.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon-si, Republic of Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| |
Collapse
|
5
|
Matsushige T, Sakabe T, Mochida H, Umekita Y. Opposing Functions of Maspin Are Regulated by Its Subcellular Localization in Lung Squamous Cell Carcinoma Cells. Cancers (Basel) 2024; 16:3009. [PMID: 39272867 PMCID: PMC11394258 DOI: 10.3390/cancers16173009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Mammary serine protease inhibitor (maspin) is a tumor suppressor protein downregulated during carcinogenesis and cancer progression; cytoplasmic-only maspin expression is an independent, unfavorable prognostic indicator in patients with lung squamous cell carcinoma (LUSC). We hypothesized that the cytoplasmic-only localization of maspin has tumor-promoting functions in LUSC. The subcellular localization of maspin and the invasive capability of LUSC cell lines were investigated using RNA sequencing (RNA-seq), Western blotting, and siRNA transfection. Maspin mRNA and protein expression were suppressed in LK-2 and RERF-LC-AI cells. Cell invasion significantly increased in response to siRNA-mediated maspin knockdown in KNS-62 cells expressing both nuclear and cytoplasmic maspin. In LK-2 cells, both nuclear and cytoplasmic maspin were re-expressed, and cell invasion and migration were significantly decreased. In contrast, re-expressed maspin in RERF-LC-AI cells was detected only in the cytoplasm (cytMaspin), and cell invasion and migration were significantly promoted. RNA-seq and downstream analyses revealed that increased cytMaspin expression downregulated the genes associated with cell adhesion and activated PYK2 and SRC, which play important roles in cancer progression. Our study demonstrates a novel biological function of cytMaspin in enhancing the invasive capabilities of LUSC cells. Understanding cytoplasm-to-nuclear maspin translocation dysregulation may develop novel therapeutic approaches to improve the prognosis of patients with LUSC.
Collapse
Affiliation(s)
- Takahiro Matsushige
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago 683-8505, Japan
| | - Tomohiko Sakabe
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago 683-8505, Japan
| | - Hirotoshi Mochida
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago 683-8505, Japan
| | - Yoshihisa Umekita
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago 683-8505, Japan
| |
Collapse
|
6
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
7
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Castillo-Sanchez R, Garcia-Hernandez A, Torres-Alamilla P, Cortes-Reynosa P, Candanedo-Gonzales F, Salazar EP. Benzo[a]pyrene promotes an epithelial-to-mesenchymal transition process in MCF10A cells and mammary tumor growth and brain metastasis in female mice. Mol Carcinog 2024; 63:1319-1333. [PMID: 38629425 DOI: 10.1002/mc.23726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 06/12/2024]
Abstract
Breast cancer is the most frequent neoplasia in developed countries and the leading cause of death in women worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process through which epithelial cells decrease or lose their epithelial characteristics and gain mesenchymal properties. EMT mediates tumor progression, because tumor cells acquire the capacity to execute the multiple steps of invasion and metastasis. Benzo[a]pyrene (B[a]P) is an environmental organic pollutant generated during the burning of fossil fuels, wood, and other organic materials. B[a]P exposition increases the incidence of breast cancer, and induces migration and/or invasion in MDA-MB-231 and MCF-7 breast cancer cells. However, the role of B[a]P in the induction of an EMT process and metastasis of mammary carcinoma cells has not been studied in detail. In this study, we demonstrate that B[a]P induces an EMT process in MCF10A mammary non-tumorigenic epithelial cells. In addition, B[a]P promotes the formation of larger tumors in Balb/cJ mice inoculated with 4T1 cells than in untreated mice and treated with dimethyl sulfoxide (DMSO). B[a]P also increases the number of mice with metastasis to brain and the total number of brain metastatic nodules in Balb/cJ mice inoculated with 4T1 cells compared with untreated mice and treated with DMSO. In conclusion, B[a]P induces an EMT process in MCF10A cells and the growth of mammary tumors and metastasis to brain in Balb/cJ mice inoculated with 4T1 cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Alejandra Garcia-Hernandez
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Pablo Torres-Alamilla
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Fernando Candanedo-Gonzales
- Departamento de Patologia, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Ciudad de Mexico, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
9
|
Miskin RP, DiPersio CM. Roles for epithelial integrin α3β1 in regulation of the microenvironment during normal and pathological tissue remodeling. Am J Physiol Cell Physiol 2024; 326:C1308-C1319. [PMID: 38497112 PMCID: PMC11371326 DOI: 10.1152/ajpcell.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Integrin receptors for the extracellular matrix activate intracellular signaling pathways that are critical for tissue development, homeostasis, and regeneration/repair, and their loss or dysregulation contributes to many developmental defects and tissue pathologies. This review will focus on tissue remodeling roles for integrin α3β1, a receptor for laminins found in the basement membranes (BMs) that underlie epithelial cell layers. As a paradigm, we will discuss literature that supports a role for α3β1 in promoting ability of epidermal keratinocytes to modify their tissue microenvironment during skin development, wound healing, or tumorigenesis. Preclinical and clinical studies have shown that this role depends largely on ability of α3β1 to govern the keratinocyte's repertoire of secreted proteins, or the "secretome," including 1) matrix proteins and proteases involved in matrix remodeling and 2) paracrine-acting growth factors/cytokines that stimulate other cells with important tissue remodeling functions (e.g., endothelial cells, fibroblasts, inflammatory cells). Moreover, α3β1 signaling controls gene expression that helps epithelial cells carry out these functions, including genes that encode secreted matrix proteins, proteases, growth factors, or cytokines. We will review what is known about α3β1-dependent gene regulation through both transcription and posttranscriptional mRNA stability. Regarding the latter, we will discuss examples of α3β1-dependent alternative splicing (AS) or alternative polyadenylation (APA) that prevents inclusion of cis-acting mRNA sequences that would otherwise target the transcript for degradation via nonsense-mediated decay or destabilizing AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). Finally, we will discuss prospects and anticipated challenges of exploiting α3β1 as a clinical target for the treatment of cancer or wound healing.
Collapse
Affiliation(s)
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States
| |
Collapse
|
10
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
11
|
Noshita S, Kubo Y, Kajiwara K, Okuzaki D, Nada S, Okada M. A TGF-β-responsive enhancer regulates SRC expression and epithelial-mesenchymal transition-associated cell migration. J Cell Sci 2023; 136:jcs261001. [PMID: 37439249 PMCID: PMC10445741 DOI: 10.1242/jcs.261001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
The non-receptor tyrosine kinase SRC is overexpressed and/or hyperactivated in various human cancers, and facilitates cancer progression by promoting invasion and metastasis. However, the mechanisms underlying SRC upregulation are poorly understood. In this study, we demonstrate that transforming growth factor-β (TGF-β) induces SRC expression at the transcriptional level by activating an intragenic the SRC enhancer. In the human breast epithelial cell line MCF10A, TGF-β1 stimulation upregulated one of the SRC promotors, the 1A promoter, resulting in increased SRC mRNA and protein levels. Chromatin immunoprecipitation (ChIP)-sequencing analysis revealed that the SMAD complex is recruited to three enhancer regions ∼15 kb upstream and downstream of the SRC promoter, and one of them is capable of activating the SRC promoter in response to TGF-β. JUN, a member of the activator protein (AP)-1 family, localises to the enhancer and regulates TGF-β-induced SRC expression. Furthermore, TGF-β-induced SRC upregulation plays a crucial role in epithelial-mesenchymal transition (EMT)-associated cell migration by activating the SRC-focal adhesion kinase (FAK) circuit. Overall, these results suggest that TGF-β-induced SRC upregulation promotes cancer cell invasion and metastasis in a subset of human malignancies.
Collapse
Affiliation(s)
- Soshi Noshita
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Kubo
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Human Immunology lab, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Oncogene research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
13
|
Chvalova V, Venkadasubramanian V, Klimova Z, Vojtova J, Benada O, Vanatko O, Vomastek T, Grousl T. Characterization of RACK1-depleted mammalian cells by a palette of microscopy approaches reveals defects in cell cycle progression and polarity establishment. Exp Cell Res 2023:113695. [PMID: 37393981 DOI: 10.1016/j.yexcr.2023.113695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is an evolutionarily conserved scaffold protein involved in the regulation of numerous cellular processes. Here, we used CRISPR/Cas9 and siRNA to reduce the expression of RACK1 in Madin-Darby Canine Kidney (MDCK) epithelial cells and Rat2 fibroblasts, respectively. RACK1-depleted cells were examined using coherence-controlled holographic microscopy, immunofluorescence, and electron microscopy. RACK1 depletion resulted in decreased cell proliferation, increased cell area and perimeter, and in the appearance of large binucleated cells suggesting a defect in the cell cycle progression. Our results show that the depletion of RACK1 has a pleiotropic effect on both epithelial and mesenchymal cell lines and support its essential role in mammalian cells.
Collapse
Affiliation(s)
- Vera Chvalova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Vignesh Venkadasubramanian
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jana Vojtova
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 00, Prague, Czech Republic; Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
14
|
IGFBP2 derived from PO-MSCs promote epithelial barrier destruction by activating FAK signaling in nasal polyps. iScience 2023; 26:106151. [PMID: 36866245 PMCID: PMC9972572 DOI: 10.1016/j.isci.2023.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/19/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The nasal polyps (NPs) microenvironment comprises multiple cell types, including mesenchymal stromal cells (MSCs). Insulin-like growth factor binding protein 2 (IGFBP2) plays crucial roles in cell proliferation, differentiation and more. However, the role of NPs-derived MSCs (PO-MSCs) and IGFBP2 in NPs pathogenesis remains poorly defined. Herein, primary human nasal epithelial cells (pHNECs) and MSCs were extracted and cultured. Extracellular vesicles (EVs) and soluble proteins were isolated to investigate the role of PO-MSCs on epithelial-mesenchymal transition (EMT) and epithelial barrier function in NPs. Our data showed that IGFBP2, but not EVs from PO-MSCs (PO-MSCs-EVs), exhibited a crucial role in EMT and barrier destruction. Moreover, focal adhesion kinase (FAK) signaling pathway is necessary for IGFBP2 to exert its functions in human and mice nasal epithelial mucosa. Altogether, these findings may improve the current understanding of the role of PO-MSCs in NPs microenvironment and ultimately contribute to the prevention and treatment of NPs.
Collapse
|
15
|
Rodriguez-Ochoa N, Cortes-Reynosa P, Rodriguez-Rojas K, de la Garza M, Salazar EP. Bovine holo-lactoferrin inhibits migration and invasion in MDA-MB-231 breast cancer cells. Mol Biol Rep 2023; 50:193-201. [PMID: 36319786 DOI: 10.1007/s11033-022-07943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two symmetrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied. METHODS AND RESULTS Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhesions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells. CONCLUSION Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.
Collapse
Affiliation(s)
- Ninive Rodriguez-Ochoa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Karem Rodriguez-Rojas
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mireya de la Garza
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
16
|
Lausecker F, Lennon R, Randles MJ. The kidney matrisome in health, aging, and disease. Kidney Int 2022; 102:1000-1012. [PMID: 35870643 DOI: 10.1016/j.kint.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Dysregulated extracellular matrix is the hallmark of fibrosis, and it has a profound impact on kidney function in disease. Furthermore, perturbation of matrix homeostasis is a feature of aging and is associated with declining kidney function. Understanding these dynamic processes, in the hope of developing therapies to combat matrix dysregulation, requires the integration of data acquired by both well-established and novel technologies. Owing to its complexity, the extracellular proteome, or matrisome, still holds many secrets and has great potential for the identification of clinical biomarkers and drug targets. The molecular resolution of matrix composition during aging and disease has been illuminated by cutting-edge mass spectrometry-based proteomics in recent years, but there remain key questions about the mechanisms that drive altered matrix composition. Basement membrane components are particularly important in the context of kidney function; and data from proteomic studies suggest that switches between basement membrane and interstitial matrix proteins are likely to contribute to organ dysfunction during aging and disease. Understanding the impact of such changes on physical properties of the matrix, and the subsequent cellular response to altered stiffness and viscoelasticity, is of critical importance. Likewise, the comparison of proteomic data sets from multiple organs is required to identify common matrix biomarkers and shared pathways for therapeutic intervention. Coupled with single-cell transcriptomics, there is the potential to identify the cellular origin of matrix changes, which could enable cell-targeted therapy. This review provides a contemporary perspective of the complex kidney matrisome and draws comparison to altered matrix in heart and liver disease.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Randles
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| |
Collapse
|
17
|
Wang X, Liu C, Chen J, Chen L, Ren X, Hou M, Cui X, Jiang Y, Liu E, Zong Y, Duan A, Fu X, Yu W, Zhao X, Yang Z, Zhang Y, Fu J, Wang H. Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma. Cell Discov 2022; 8:101. [PMID: 36198671 PMCID: PMC9534837 DOI: 10.1038/s41421-022-00445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/09/2022] [Indexed: 11/09/2022] Open
Abstract
Gallbladder carcinoma (GBC) is the most common biliary tract malignancy with the lowest survival rate, primarily arising from chronic inflammation. To better characterize the progression from inflammation to cancer to metastasis, we performed single-cell RNA sequencing across samples of 6 chronic cholecystitis, 12 treatment-naive GBCs, and 6 matched metastases. Benign epithelial cells from inflamed gallbladders displayed resting, immune-regulating, and gastrointestinal metaplastic phenotypes. A small amount of PLA2G2A+ epithelial cells with copy number variation were identified from a histologically benign sample. We validated significant overexpression of PLA2G2A across in situ GBCs, together with increased proliferation and cancer stemness in PLA2G2A-overexpressing GBC cells, indicating an important role for PLA2G2A during early carcinogenesis. Malignant epithelial cells displayed pervasive cancer hallmarks and cellular plasticity, differentiating into metaplastic, inflammatory, and mesenchymal subtypes with distinct transcriptomic, genomic, and prognostic patterns. Chronic cholecystitis led to an adapted microenvironment characterized by MDSC-like macrophages, CD8+ TRM cells, and CCL2+ immunity-regulating fibroblasts. By contrast, GBC instigated an aggressive and immunosuppressive microenvironment, featured by tumor-associated macrophages, Treg cells, CD8+ TEX cells, and STMN1+ tumor-promoting fibroblasts. Single-cell and bulk RNA-seq profiles consistently showed a more suppressive immune milieu for GBCs with inflammatory epithelial signatures, coupled with strengthened epithelial-immune crosstalk. We further pinpointed a subset of senescence-like fibroblasts (FN1+TGM2+) preferentially enriched in metastatic lesions, which promoted GBC migration and invasion via their secretory phenotype. Collectively, this study provides comprehensive insights into epithelial and microenvironmental reprogramming throughout cholecystitis-propelled carcinogenesis and metastasis, laying a new foundation for the precision therapy of GBC.
Collapse
Affiliation(s)
- Xiang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianwen Ren
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Minghui Hou
- Research Center for Organoids, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuliang Cui
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Erdong Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yali Zong
- School of Life Sciences, Fudan University, Shanghai, China
| | - Anqi Duan
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohui Fu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenlong Yu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofang Zhao
- Research Center for Organoids, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhao Yang
- Second Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yongjie Zhang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
18
|
Pancreatic ductal adenocarcinoma: tumor microenvironment and problems in the development of novel therapeutic strategies. Clin Exp Med 2022:10.1007/s10238-022-00886-1. [DOI: 10.1007/s10238-022-00886-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 12/19/2022]
|
19
|
Ye Y, Zhang B, Liang Q, Wang D, Bai F, Li Y, Wei L, Li L, Huang H, Tang Y. Exploring the pharmacological mechanism of compound kushen injection in the treatment of breast cancer using in vitro experiments: Coupling network pharmacology with GEO database. Front Oncol 2022; 12:946758. [PMID: 36016606 PMCID: PMC9396298 DOI: 10.3389/fonc.2022.946758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBreast cancer (BC) is one of the most common malignant tumors in women and poses a serious threat to their health. Compound Kushen injection (CKI) has shown therapeutic effects on a variety of cancers, including BC, and it can significantly improve the lives of patients. However, the underlying mechanism remains unclear and needs to be fully elucidated.MethodsThe active constituents of CKI were identified through a literature review, and the anti-BC targets of CKI were determined using multiple databases and a ChIP data analysis. Subsequently, the target was analyzed on the DAVID database through GO and KEGG to identify the key pathway that CKI affects to exhibit anti-BC activity. In addition, MCF-7 and MDA-MB-231 cells were treated with CKI for 24 and 48 hours at five concentrations, and the effects of CKI on cell proliferation and apoptosis were measured using MTT and annexin V/propidium iodide staining assays, respectively. The genes and protein identified to be involved in this pathway were verified using real-time quantitative PCR (qPCR) and western blot(WB) in BC cells.ResultsTwelve CKI anti-BC targets were obtained by a comprehensive analysis of the targets collected in the databases and results from the ChIP analysis. Bioinformatics analysis was performed for 12 targets. KEGG analysis showed that the 12 targets were mainly related to the VEGF, ErbB, and TNF signaling pathways. We focused our study on the VEGF signaling pathway as the p-value for the VEGF signaling pathway was the lowest among the three pathways. In vitro experiments showed that CKI significantly inhibited the proliferation of BC cells and induced apoptosis. Furthermore, qPCR and WB experiments showed that the expression of VEGF signaling pathway genes PIK3CA and NOS3 were significantly increased meanwhile SRC was significantly decreased after CKI intervention.ConclusionCKI significantly inhibited the proliferation of BC cells and induced apoptosis. The main mechanism for the anti-BC effect of CKI may be that it regulates the VEGF signaling pathway by increasing the expression of PIK3CA, SRC, and NOS3. Macrozamin and lamprolobine may be the main active components of CKI against BC.
Collapse
Affiliation(s)
- Yong Ye
- Pharmacy College, Guangxi Medical University, Nanning, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Qiuyun Liang
- Pharmacy College, Guilin Medical University, Guilin, China
| | - Dandan Wang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Facheng Bai
- Pharmacy Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanhong Li
- Pharmacy Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lizhi Wei
- Pharmacy Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lilan Li
- Pharmacy College, Guilin Medical University, Guilin, China
| | - Huixue Huang
- Pharmacy College, Guilin Medical University, Guilin, China
- *Correspondence: Yunxia Tang, ; Huixue Huang,
| | - Yunxia Tang
- Pharmacy Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Yunxia Tang, ; Huixue Huang,
| |
Collapse
|
20
|
Jang WY, Lee HP, Kim SA, Huang L, Yoon JH, Shin CY, Mitra A, Kim HG, Cho JY. Angiopteris cochinchinensis de Vriese Ameliorates LPS-Induced Acute Lung Injury via Src Inhibition. PLANTS 2022; 11:plants11101306. [PMID: 35631731 PMCID: PMC9143704 DOI: 10.3390/plants11101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract of Angiopteris cochinchinensis de Vriese (Ac-EE) were assessed using RAW264.6 murine macrophages and a lipopolysaccharide (LPS)-induced ALI model. Ac-EE reduced the nitric oxide production in murine macrophages increased by LPS induction. Moreover, protective effects of Ac-EE on lung tissue were demonstrated by shrinkage of edema and lung injury. Reduced neutrophil infiltration and formation of hyaline membranes were also detected in lung tissues after H&E staining. Semiquantitative RT-PCR, quantitative real-time PCR, and ELISA showed that Ac-EE inhibits the production of proinflammatory mediators, including iNOS and COX-2, and cytokines, such as TNF-α, IL-1β, and IL-6. An Ac-EE-mediated anti-inflammatory response was derived from inhibiting the NF-κB signaling pathway, which was evaluated by luciferase reporter assay and Western blotting analysis. A cellular thermal shift assay revealed that the prime target of Ac-EE in alleviating inflammation was Src. With its direct binding with Src, Angiopteris cochinchinensis de Vriese significantly mitigates lung injury, showing possibilities of its potential as an effective botanical drug.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ankita Mitra
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
21
|
Lin A, Zhou N, Zhu W, Zhang J, Wei T, Guo L, Luo P, Zhang J. Genomic and immunological profiles of small-cell lung cancer between East Asians and Caucasian. Cancer Cell Int 2022; 22:173. [PMID: 35488336 PMCID: PMC9052616 DOI: 10.1186/s12935-022-02588-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022] Open
Abstract
The characterization of immunological and genomic differences in small-cell lung cancer (SCLC) between East Asian (EA) and Caucasian patients can reveal important clinical therapies for EA patients with SCLC. By sequencing and analyzing a molecular and immunological dataset of 98-SCLC patients of EA ancestry, immunogenicity, including DNA damage repair alterations and tumor mutation burden (TMB), was found to be significantly higher in the EA cohort than in the Caucasian cohort. The epithelial-mesenchymal transition (EMT) was the signaling signature with the predominant frequency of mutations across all patients in the EA cohort. Analysis of tumor-infiltrated immune cells revealed that resting lymphocytes were significantly enriched in the EA cohort. Compound-targeting analysis showed that topoisomerase inhibitors might be capable of targeting TP53 and RB1 comutations in EA SCLC patients. EA SCLC patients who harbored COL6A6 mutations had poor survival, while Caucasian SCLC patients with OTOF, ANKRD30B, and TECPR2 mutations were identified to have a shorter survival.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Ningning Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jiexia Zhang
- Department of Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
22
|
Fu L, Deng R, Huang Y, Yang X, Jiang N, Zhou J, Lin C, Chen S, Wu L, Cui Q, Yun J. DGKA interacts with SRC/FAK to promote the metastasis of non-small cell lung cancer. Cancer Lett 2022; 532:215585. [PMID: 35131384 DOI: 10.1016/j.canlet.2022.215585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/25/2022]
Abstract
Metastasis is responsible for the high mortality rate of lung cancer, but its underlying molecular mechanisms are poorly understood. Here, we demonstrated that the expression of diacylglycerol kinase alpha (DGKA) was elevated in the metastatic lesions of non-small cell lung cancer (NSCLC) and correlated with poor survival. Mechanistic studies revealed a direct physical interaction as well as a mutual regulation among DGKA, proto-oncogene tyrosine-protein kinase Src (SRC), and focal adhesion kinase 1 (FAK) proteins. The C-terminal domain of DGKA was responsible for the SRC SH3 domain binding, while the catalytic domain of DGKA interacted with the FREM domain of FAK. DGKA phosphorylated the SRC protein at Tyr416 and the FAK protein at Tyr397 to form and activate the DGKA/SRC/FAK complex, thus initiating the downstream WNT/β-catenin and VEGF signaling pathways, promoting epithelial-mesenchymal transition (EMT) and angiogenesis, and resulting in the metastasis of NSCLC. DGKA knockdown inhibited the invasive phenotype of NSCLC cells in vitro. Pharmacologic ablation of DGKA inhibited the metastasis of NSCLC cells in vivo, and this was reversed by the overexpression of DGKA. These results suggested that DGKA was a potential prognostic biomarker as well as a promising therapeutic target for NSCLC, especially when there was lymphatic or distant metastasis.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ru Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Neng Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jing Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Censhan Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Shilu Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Liyan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Qian Cui
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
23
|
Shimizu T, Kimura K, Sugihara E, Yamaguchi-Iwai S, Nobusue H, Sampetrean O, Otsuki Y, Fukuchi Y, Saitoh K, Kato K, Soga T, Muto A, Saya H. MEK inhibition preferentially suppresses anchorage-independent growth in osteosarcoma cells and decreases tumors in vivo. J Orthop Res 2021; 39:2732-2743. [PMID: 33751653 DOI: 10.1002/jor.25023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Osteosarcoma is the most common high-grade malignancy of bone, and novel therapeutic options are urgently required. Previously, we developed mouse osteosarcoma AXT cells that can proliferate both under adherent and nonadherent conditions. Based on metabolite levels, nonadherent conditions were more similar to the in vivo environment than adherent conditions. A drug screen identified MEK inhibitors, including trametinib, that preferentially decreased the viability of nonadherent AXT cells. Trametinib inhibited the cell cycle and induced apoptosis in AXT cells, and both effects were stronger under nonadherent conditions. Trametinib also potently decreased viability in U2OS cells, but its effects were less prominent in MG63 or Saos2 cells. By contrast, MG63 and Saos2 cells were more sensitive to PI3K inhibition than AXT or U2OS cells. Notably, the combination of MAPK/ERK kinase (MEK) and PI3K inhibition synergistically decreased viability in U2OS and AXT cells, but this effect was less pronounced in MG63 or Saos2 cells. Therefore, signal dependence for cell survival and crosstalk between MEK-ERK and PI3K-AKT pathways in osteosarcoma are cell context-dependent. The activation status of other kinases including CREB varied in a cell context-dependent manner, which might determine the response to MEK inhibition. A single dose of trametinib was sufficient to decrease the size of the primary tumor and circulating tumor cells in vivo. Moreover, combined administration of trametinib and rapamycin or conventional anticancer drugs further increased antitumor activity. Thus, given optimal biomarkers for predicting its effects, trametinib holds therapeutic potential for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Takatsune Shimizu
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.,Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kiyomi Kimura
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.,Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Sayaka Yamaguchi-Iwai
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yumi Fukuchi
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Akihiro Muto
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
24
|
Huang CW, Lin YC, Hung CH, Chen HM, Lin JT, Wang CJ, Kao SH. Adenine Inhibits the Invasive Potential of DLD-1 Human Colorectal Cancer Cell via the AMPK/FAK Axis. Pharmaceuticals (Basel) 2021; 14:ph14090860. [PMID: 34577560 PMCID: PMC8469022 DOI: 10.3390/ph14090860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 01/05/2023] Open
Abstract
Tumor metastasis is a major cause of death of patients with colorectal cancer (CRC). Our previous findings show that adenine has antiproliferation activity against tumor cells. However, whether adenine reduces the invasiveness of DLD-1 and SW480 CRC cells has not been thoroughly explored. In this study, we aimed to explore the effects of adenine on the invasion potential of DLD-1 cells. Our findings showed that adenine at concentrations of ≤200 μM did not influence the cell viability of DLD-1 and SW480 CRC cells. By contrast, adenine reduced the migratory potential of the CRC cells. Moreover, it decreased the invasion capacity of the CRC cells in a dose-dependent manner. We further observed that adenine downregulated the protein levels of tissue plasminogen activator, matrix metalloproteinase-9, Snail, TWIST, and vimentin, but upregulated the tissue inhibitor of metalloproteinase-1 expression in DLD-1 cells. Adenine decreased the integrin αV level and reduced the activation of integrin-associated signaling components, including focal adhesion kinase (FAK), paxillin, and Src in DLD-1 cells. Further observations showed that adenine induced AMP-activated protein kinase (AMPK) activation and inhibited mTOR phosphorylation in DLD-1 cells. The knockdown of AMPK restored the reduced integrin αV level and FAK/paxillin/Src signaling inhibited by adenine in DLD-1 cells. Collectively, these findings reveal that adenine reduces the invasion potential of DLD-1 cells through the AMPK/integrin/FAK axis, suggesting that adenine may have anti-metastatic potential in CRC cells.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan;
- Department of Nursing, Tajen University, Pingtung 907101, Taiwan
| | - You-Cian Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Medicine, China Medical University, Taichung 404332, Taiwan
| | - Chia-Hung Hung
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (C.-H.H.); (C.-J.W.)
| | - Han-Min Chen
- Institute of Applied Science and Engineering, Catholic Fu Jen University, New Taipei 242048, Taiwan;
| | - Jiun-Tsai Lin
- Energenesis Biomedical Co. Ltd., Taipei 114694, Taiwan;
| | - Chau-Jong Wang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (C.-H.H.); (C.-J.W.)
| | - Shao-Hsuan Kao
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (C.-H.H.); (C.-J.W.)
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
- Correspondence: ; Tel.: +886-4-247-30022 (ext. 11681)
| |
Collapse
|
25
|
Nonpanya N, Sanookpan K, Joyjamras K, Wichadakul D, Sritularak B, Chaotham C, Chanvorachote P. Norcycloartocarpin targets Akt and suppresses Akt-dependent survival and epithelial-mesenchymal transition in lung cancer cells. PLoS One 2021; 16:e0254929. [PMID: 34383763 PMCID: PMC8360371 DOI: 10.1371/journal.pone.0254929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
In searching for novel targeted therapeutic agents for lung cancer treatment, norcycloartocarpin from Artocarpus gomezianus was reported in this study to promisingly interacted with Akt and exerted the apoptosis induction and epithelial-to-mesenchymal transition suppression. Selective cytotoxic profile of norcycloartocarpin was evidenced with approximately 2-fold higher IC50 in normal dermal papilla cells (DPCs) compared with human lung cancer A549, H460, H23, and H292 cells. We found that norcycloartocarpin suppressed anchorage-independent growth, cell migration, invasion, filopodia formation, and decreased EMT in a dose-dependent manner at 24 h, which were correlated with reduced protein levels of N-cadherin, Vimentin, Slug, p-FAK, p-Akt, as well as Cdc42. In addition, norcycloartocarpin activated apoptosis caspase cascade associating with restoration of p53, down-regulated Bcl-2 and augmented Bax in A549 and H460 cells. Interestingly, norcycloartocarpin showed potential inhibitory role on protein kinase B (Akt) the up-stream dominant molecule controlling EMT and apoptosis. Computational molecular docking analysis further confirmed that norcycloartocarpin has the best binding affinity of -12.52 kcal/mol with Akt protein at its critical active site. As Akt has recently recognized as an attractive molecular target for therapeutic approaches, these findings support its use as a plant-derived anticancer agent in cancer therapy.
Collapse
Affiliation(s)
- Nongyao Nonpanya
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Keerati Joyjamras
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Duangdao Wichadakul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Departments of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Min W, He C, Zhang S, Zhao Y. c-Src Increases the Sensitivity to TKIs in the EGFR-Mutant Lung Adenocarcinoma. Front Oncol 2021; 11:602900. [PMID: 34367939 PMCID: PMC8339729 DOI: 10.3389/fonc.2021.602900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
c-Src and the epidermal growth factor receptor (EGFR) are key apical kinases that govern cell responses to microenvironmental cues. How c-Src affects EGFR-related signaling and targeted therapy remains elusive. Initially, caspase-8 phosphorylated at tyrosine 380 by c-Src predominantly enhancing c-Src activation to facilitate metastasis through attaining epithelial-mesenchymal transition (EMT) phenotype in lung adenocarcinoma. Mechanistically, the linkage of c-Src SH2 domain with phosphotyrosine 380 of caspase-8 and SH3 domain with “PDEP” motif of caspase-8 overactivates c-Src as compared with other c-Src-partner proteins. c-Src is incapable of triggering EGFR-related signaling. This is reflected by the levels of phosphotyrosine 1068, 1086, and 1145, which have no impact on c-Src activation. Tyrosine kinase inhibitors (TKIs) suppress EGFR-related signaling to yield cell deaths of lung adenocarcinoma by both necroptosis and intrinsic apoptosis. Given that c-Src activation is frequent in lung adenocarcinoma, blocking c-Src activation through dasatinib can seal the survival-signaling-related phosphotyrosines of EGFR by its SH2 domain, which in turn increases the antitumor activity of TKIs in EGFR-mutant lung adenocarcinoma. Collectively, c-Src inactivation by dasatinib administration sensitizes EGFR-mutant lung adenocarcinoma to TKIs.
Collapse
Affiliation(s)
- Weili Min
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenyang He
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Moritz MN, Merkel AR, Feldman EG, Selistre-de-Araujo HS, Rhoades (Sterling) JA. Biphasic α2β1 Integrin Expression in Breast Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:6906. [PMID: 34199096 PMCID: PMC8269289 DOI: 10.3390/ijms22136906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2β1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2β1 in the context of bone metastasis. In this study, we aimed to understand the role of α2β1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2β1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2β1 expression and bone-metastatic potential. Inhibiting α2β1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.
Collapse
Affiliation(s)
- Milene N.O. Moritz
- Program in Evolutionary Genetics and Molecular Biology, Federal University of Sao Carlos, Sao Carlos, SP 13565-905, Brazil; (M.N.O.M.); (H.S.S.-d.-A.)
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Alyssa R. Merkel
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ean G. Feldman
- Vanderbilt Graduate School Program in Biomedical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Heloisa S. Selistre-de-Araujo
- Program in Evolutionary Genetics and Molecular Biology, Federal University of Sao Carlos, Sao Carlos, SP 13565-905, Brazil; (M.N.O.M.); (H.S.S.-d.-A.)
- Department of Physiological Sciences, Federal University of Sao Carlos, Sao Carlos, SP 13565-905, Brazil
| | - Julie A. Rhoades (Sterling)
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans’ Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
28
|
Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, Zhao H, Xu Z. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:199. [PMID: 34154618 PMCID: PMC8215834 DOI: 10.1186/s13046-021-01999-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zinc transporters have been found to be associated with the pathogenesis of numerous human diseases including cancer. As the most lethal gynecologic malignancy, ovarian cancer is characterized by rapid progression and widespread metastases. However, the function and underlying mechanism of zinc transporters in ovarian cancer metastasis remain unclear. METHODS The relationship between zinc transporter gene expressions and clinical outcomes of ovarian cancer was assessed with the online database Kaplan-Meier plotter ( http://kmplot.com/analysis/ ). Immunohistochemistry was performed to investigate the prognostic importance of ZIP13. The expression of ZIP13 in ovarian cancer cell lines was depleted to explore its effect on proliferation, adhesion, migration, and invasion both in vitro and in vivo assays. RNA-Seq, quantitative RT-PCR, and western blot analysis were performed to explore ZIP13-regulated downstream target genes. RESULTS The expressions of several zinc transporters were highly associated the clinical outcomes of ovarian cancer patients. Among them, high ZIP13 expression was an independent prognostic factor for poor survival in patients with ovarian cancer. ZIP13 knockout suppressed the malignant phenotypes of ovarian cancer cells both in vitro and in vivo. Further investigation revealed that ZIP13 regulated intracellular zinc distribution and then affected the expressions of genes involved in extracellular matrix organization and cytokine-mediated signaling pathway. This led to the activation of Src/FAK pathway with increased expressions of pro-metastatic genes but decreased expressions of tumor suppressor genes. CONCLUSIONS ZIP13 is shown to be a novel driver of metastatic progression by modulating the Src/FAK signaling pathway, which may serve as a promising biomarker for prognostic evaluation and targeted therapy in ovarian cancer.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Chunling Liu
- Department of Pathology, North China University of Science and Technology Affiliated Tangshan People's Hospital, 063000, Tangshan, China
| | - Tianduo Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Ningzhi Yang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
29
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Ma RR, Zhang H, Chen HF, Zhang GH, Tian YR, Gao P. MiR-19a/miR-96-mediated low expression of KIF26A suppresses metastasis by regulating FAK pathway in gastric cancer. Oncogene 2021; 40:2524-2538. [PMID: 33674746 DOI: 10.1038/s41388-020-01610-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is one of the most common malignant neoplasms. Invasion and metastasis are the main causes of GC-related deaths. Recently, kinesins were discovered to be involved in tumor development. The aim of this study was to elucidate the roles of kinesin superfamily protein 26A (KIF26A) in GC and its underlying molecular mechanism in regulating tumor invasion and metastasis. Using real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC), we showed that KIF26A expression was lower in GC tissues without lymph node metastasis (LNM) than in nontumorous gastric mucosa, and even lower in GC tissues with LNM than in GC tissues without LNM. Functional experiments showed that KIF26A inhibited migration and invasion of GC cells. We further identified focal-adhesion kinase (FAK), phosphatidylinositol 3-kinase regulatory subunit alpha (PI3KR1), VAV3, Rac1 and p21-activated kinase 2, and β-PAK (PAK3) as downstream effectors of KIF26A in the focal-adhesion pathway, and we found that KIF26A could regulate FAK mRNA expression through inhibiting c-MYC by MAPK pathway. c-MYC could bind to the promoter of FAK and activate FAK transcription. Moreover, we found that KIF26A-mediated inactivation of the focal-adhesion pathway could reduce the occurrence of the epithelial-to-mesenchymal transition (EMT) by increasing expression of E-cadherin and reducing that of Snail. Luciferase assays and Western blotting revealed that miR-19a and miR-96 negatively regulate KIF26A. Finally, we found that decreased expression of KIF26A has been positively correlated with histological differentiation, Lauren classification, LNM, distal metastasis, and clinical stage, as well as poor survival in patients with GC. These data indicate that KIF26A could inhibit GC migration and invasion by regulating the focal-adhesion pathway and repressing the occurrence of EMT.
Collapse
Affiliation(s)
- Ran-Ran Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Hui Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Hong-Fang Chen
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.,Department of Pathology, Yidu Central Hospital of Weifang, Weifang, PR China
| | - Guo-Hao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Ya-Ru Tian
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China. .,Department of Pathology, Qilu Hospital, Shandong University, Jinan, PR China.
| |
Collapse
|
31
|
Blockage of Squamous Cancer Cell Collective Invasion by FAK Inhibition Is Released by CAFs and MMP-2. Cancers (Basel) 2020; 12:cancers12123708. [PMID: 33321813 PMCID: PMC7764466 DOI: 10.3390/cancers12123708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancers include a diverse collection of cells harboring distinct molecular signatures with different levels of pro-metastatic activities. This intratumoral heterogeneity and phenotypic plasticity are major causes of targeted therapeutic failure and it should be considered when developing prognostic tests. Through the analysis of the Focal Adhesion Kinase (FAK) protein and the matrix metalloprotease MMP-2, both implicated in multiple steps of the metastatic spectrum, in complex multicellular tumor spheroids we show that cancer cell populations over-expressing MMP-2 or cancer-associated fibroblasts can release FAK-deficient cancer cells from their constrained metastatic fitness. Consistently, MMP-2, not FAK, serves as an independent prognostic factor in head and neck squamous cell carcinomas. Measurement of intratumor heterogeneity facilitate the development of more efficient biomarkers to predict the risk of metastasis and of more-effective personalized cancer therapies. Abstract Metastasis remains a clinically unsolved issue in cancer that is initiated by the acquisition of collective migratory properties of cancer cells. Phenotypic and functional heterogeneity that arise among cancer cells within the same tumor increase cellular plasticity and promote metastasis, however, their impact on collective cell migration is incompletely understood. Here, we show that in vitro collective cancer cell migration depends on FAK and MMP-2 and on the presence of cancer-associated fibroblasts (CAFs). The absence of functional FAK rendered cancer cells incapable of invading the surrounding stroma. However, CAFs and cancer cells over-expressing MMP-2 released FAK-deficient cells from this constraint by taking the leader positions in the invasive tracks, pushing FAK-deficient squamous cell carcinoma (SCC) cells towards the stroma and leading to the transformation of non-invasive cells into invasive cells. Our cell-based studies and the RNAseq data from the TCGA cohort of patients with head and neck squamous cell carcinomas reveal that, although both FAK and MMP-2 over-expression are associated with epithelial–mesenchymal transition, it is only MMP-2, not FAK, that functions as an independent prognostic factor. Given the significant role of MMP-2 in cancer dissemination, targeting of this molecule, better than FAK, presents a more promising opportunity to block metastasis.
Collapse
|
32
|
Dolinschek R, Hingerl J, Benge A, Zafiu C, Schüren E, Ehmoser EK, Lössner D, Reuning U. Constitutive activation of integrin αvβ3 contributes to anoikis resistance of ovarian cancer cells. Mol Oncol 2020; 15:503-522. [PMID: 33155399 PMCID: PMC7858284 DOI: 10.1002/1878-0261.12845] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 02/01/2023] Open
Abstract
Epithelial ovarian cancer involves the shedding of single tumor cells or spheroids from the primary tumor into ascites, followed by their survival, and transit to the sites of metastatic colonization within the peritoneal cavity. During their flotation, anchorage-dependent epithelial-type tumor cells gain anoikis resistance, implicating integrins, including αvß3. In this study, we explored anoikis escape, cisplatin resistance, and prosurvival signaling as a function of the αvß3 transmembrane conformational activation state in cells suspended in ascites. A high-affinity and constitutively signaling-competent αvß3 variant, which harbored unclasped transmembrane domains, was found to confer delayed anoikis onset, enhanced cisplatin resistance, and reduced cell proliferation in ascites or 3D-hydrogels, involving p27kip upregulation. Moreover, it promoted EGF-R expression and activation, prosurvival signaling, implicating FAK, src, and PKB/Akt. This led to the induction of the anti-apoptotic factors Bcl-2 and survivin suppressing caspase activation, compared to a signaling-incapable αvß3 variant displaying firmly associated transmembrane domains. Dissecting the mechanistic players for αvß3-dependent survival and peritoneal metastasis of ascitic ovarian cancer spheroids is of paramount importance to target their anchorage independence by reversing anoikis resistance and blocking αvß3-triggered prosurvival signaling.
Collapse
Affiliation(s)
- Romana Dolinschek
- Department for Obstetrics & Gynecology, Clinical Research Unit, Technische Universität München, Germany
| | - Julia Hingerl
- Department for Obstetrics & Gynecology, Clinical Research Unit, Technische Universität München, Germany
| | - Anke Benge
- Department for Obstetrics & Gynecology, Clinical Research Unit, Technische Universität München, Germany
| | - Christian Zafiu
- Department of Water, Atmosphere, and Environment, University for Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Elisabeth Schüren
- Department for Obstetrics & Gynecology, Clinical Research Unit, Technische Universität München, Germany
| | - Eva-Kathrin Ehmoser
- Department for Nanobiotechnology, Institute for Synthetic Bioarchitectures, University for Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Daniela Lössner
- Faculties of Engineering and Medicine, Nursing & Health Sciences, Monash University, Melbourne, Vic., Australia
| | - Ute Reuning
- Department for Obstetrics & Gynecology, Clinical Research Unit, Technische Universität München, Germany
| |
Collapse
|
33
|
The Crosstalk between FAK and Wnt Signaling Pathways in Cancer and Its Therapeutic Implication. Int J Mol Sci 2020; 21:ijms21239107. [PMID: 33266025 PMCID: PMC7730291 DOI: 10.3390/ijms21239107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) and Wnt signaling pathways are important contributors to tumorigenesis in several cancers. While most results come from studies investigating these pathways individually, there is increasing evidence of a functional crosstalk between both signaling pathways during development and tumor progression. A number of FAK-Wnt interactions are described, suggesting an intricate, context-specific, and cell type-dependent relationship. During development for instance, FAK acts mainly upstream of Wnt signaling; and although in intestinal homeostasis and mucosal regeneration Wnt seems to function upstream of FAK signaling, FAK activates the Wnt/β-catenin signaling pathway during APC-driven intestinal tumorigenesis. In breast, lung, and pancreatic cancers, FAK is reported to modulate the Wnt signaling pathway, while in prostate cancer, FAK is downstream of Wnt. In malignant mesothelioma, FAK and Wnt show an antagonistic relationship: Inhibiting FAK signaling activates the Wnt pathway and vice versa. As the identification of effective Wnt inhibitors to translate in the clinical setting remains an outstanding challenge, further understanding of the functional interaction between Wnt and FAK could reveal new therapeutic opportunities and approaches greatly needed in clinical oncology. In this review, we summarize some of the most relevant interactions between FAK and Wnt in different cancers, address the current landscape of Wnt- and FAK-targeted therapies in different clinical trials, and discuss the rationale for targeting the FAK-Wnt crosstalk, along with the possible translational implications.
Collapse
|
34
|
Amable G, Martínez-León E, Picco ME, Nemirovsky SI, Rozengurt E, Rey O. Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. J Cell Physiol 2020; 235:8334-8344. [PMID: 32239671 PMCID: PMC7529638 DOI: 10.1002/jcp.29677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
E-cadherin, a central component of the adherens junction (AJ), is a single-pass transmembrane protein that mediates cell-cell adhesion. The loss of E-cadherin surface expression, and therefore cell-cell adhesion, leads to increased cell migration and invasion. Treatment of colorectal cancer (CRC)-derived cells (SW-480 and HT-29) with 2.0 mM metformin promoted a redistribution of cytosolic E-cadherin to de novo formed puncta along the length of the contacting membranes of these cells. Metformin also promoted translocation from the cytosol to the plasma membrane of p120-catenin, another core component of the AJs. Furthermore, E-cadherin and p120-catenin colocalized with β-catenin at cell-cell contacts. Western blot analysis of lysates of CRC-derived cells revealed a substantial metformin-induced increase in the level of p120-catenin as well as E-cadherin phosphorylation on Ser838/840 , a modification associated with β-catenin/E-cadherin interaction. These modifications in E-cadherin, p120-catenin and β-catenin localization suggest that metformin induces rebuilding of AJs in CRC-derived cells. Those modifications were accompanied by the inhibition of focal adhesion kinase (FAK), as revealed by a significant decrease in the phosphorylation of FAK at Tyr397 and paxillin at Tyr118 . These changes were associated with a reduction in the numbers, but an increase in the size, of focal adhesions and by the inhibition of cell migration. Overall, these observations indicate that metformin targets multiple pathways associated with CRC development and progression.
Collapse
Affiliation(s)
- Gastón Amable
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Eduardo Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - María Elisa Picco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1428EGA, Argentina
| | - Enrique Rozengurt
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, CA, 90095-1768, USA
| | - Osvaldo Rey
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| |
Collapse
|
35
|
Lian Y, Wen D, Meng X, Wang X, Li H, Hao L, Xue H, Zhao J. Inhibition of invadopodia formation by diosgenin in tumor cells. Oncol Lett 2020; 20:283. [PMID: 33014161 PMCID: PMC7520800 DOI: 10.3892/ol.2020.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Diosgenin is a type of steroid extracted from the rhizome of Dioscorea plants. In traditional Chinese medicine, Dioscorea has the effect of ‘eliminating phlegm, promoting digestion, relaxing tendons, promoting blood circulation and inhibiting malaria’. Recent studies have confirmed that diosgenin exhibits a number of pharmacological effects, including antitumor activities. Through its antitumor effect, diosgenin is able to block tumor progression and increase the survival rate of patients with cancer; ultimately improving their quality of life. However, the mechanism underlying its pharmacological action remains unclear. Once tumor cells reach a metastatic phase, it can be fatal. Increased migration and invasiveness are the hallmarks of metastatic tumor cells. Invadopodia formation is key to maintaining the high migration and invasive ability of tumor cells. Invadopodia are a type of membrane structure process rich in filamentous-actin and are common in highly invasive tumor cells. In addition to actin, numerous actin regulators, including cortical actin-binding protein (Cortactin), accumulate in invadopodia. Cortactin is a microfilament actin-binding protein with special repetitive domains that are directly involved in the formation of the cortical microfilament actin cell skeleton. Cortactin is also one of the main substrates of intracellular Src-type tyrosine protein kinases and represents a highly conserved family of intracellular cortical signaling proteins. In recent years, great progress has been made in understanding the role of Cortactin and its molecular mechanism in cell motility. However, the diosgenin-Cortactin-invadopodia mechanism is still under investigation. Therefore, the present review focused on the current research on the regulation of invadopodia by diosgenin via Cortactin.
Collapse
Affiliation(s)
- Yaxin Lian
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dezhong Wen
- Department of Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoting Meng
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaozhen Wang
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongcheng Li
- GeneScience Pharmaceuticals Co., Ltd., Changchun, Jilin 130021, P.R. China
| | - Liming Hao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Xue
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
36
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
37
|
Su W, Guo C, Wang L, Wang Z, Yang X, Niu F, Tzou D, Yang X, Huang X, Wu J, Chen X, Zou L, Yang Z, Chen G. LncRNA MIR22HG abrogation inhibits proliferation and induces apoptosis in esophageal adenocarcinoma cells via activation of the STAT3/c-Myc/FAK signaling. Aging (Albany NY) 2020; 11:4587-4596. [PMID: 31291201 PMCID: PMC6660029 DOI: 10.18632/aging.102071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have involved in human malignancies and played an important role in gene regulations. The dysregulation of lncRNA MIR22HG has been reported in several cancers. However, the role of MIR22HG in esophageal adenocarcinoma (EAC) is poorly understood. Loss of function approaches were used to investigate the biological role of MIR22HG in EAC cells. The effects of MIR22HG on cell proliferation were evaluated by WST-1 and colony formation assays. The effects of MIR22HG on cell migration and invasion were examined using transwell assays. QRT-PCR and Western blot were used to evaluate the mRNA and protein expression of related genes. In this study, abrogation of MIR22HG inhibited cell proliferation, colony formation, invasion and migration in EAC 3 cell lines (OE33, OE19 and FLO-1). Mechanistically, MIR22HG silencing decreased the expression of STAT3/c-Myc/p-FAK proteins and induced apoptosis in EAC cell lines. These results delineate a novel mechanism of MIR22HG in EAC, and may provide potential targets by developing lncRNA-based therapies for EAC.
Collapse
Affiliation(s)
- Wenmei Su
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunfang Guo
- Department of Surgery, University of Michigan, Ann Arbor, Ann Arbor, MI 48109, USA
| | - Lihui Wang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhuwen Wang
- Department of Surgery, University of Michigan, Ann Arbor, Ann Arbor, MI 48109, USA
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, China
| | - Feiyu Niu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Daniel Tzou
- Department of Surgery, University of Michigan, Ann Arbor, Ann Arbor, MI 48109, USA
| | - Xiao Yang
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaobi Huang
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiancong Wu
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorao Chen
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lei Zou
- Department of Organ Transplant, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhixiong Yang
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
39
|
Cao S, Aboelkassem Y, Wang A, Valdez-Jasso D, Saucerman JJ, Omens JH, McCulloch AD. Quantification of model and data uncertainty in a network analysis of cardiac myocyte mechanosignalling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190336. [PMID: 32448062 PMCID: PMC7287329 DOI: 10.1098/rsta.2019.0336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 05/21/2023]
Abstract
Cardiac myocytes transduce changes in mechanical loading into cellular responses via interacting cell signalling pathways. We previously reported a logic-based ordinary differential equation model of the myocyte mechanosignalling network that correctly predicts 78% of independent experimental results not used to formulate the original model. Here, we use Monte Carlo and polynomial chaos expansion simulations to examine the effects of uncertainty in parameter values, model logic and experimental validation data on the assessed accuracy of that model. The prediction accuracy of the model was robust to parameter changes over a wide range being least sensitive to uncertainty in time constants and most affected by uncertainty in reaction weights. Quantifying epistemic uncertainty in the reaction logic of the model showed that while replacing 'OR' with 'AND' reactions greatly reduced model accuracy, replacing 'AND' with 'OR' reactions was more likely to maintain or even improve accuracy. Finally, data uncertainty had a modest effect on assessment of model accuracy. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Shulin Cao
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yasser Aboelkassem
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ariel Wang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Kang HR, Moon JY, Ediriweera MK, Song YW, Cho M, Kasiviswanathan D, Cho SK. Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549-IR) by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway. Food Sci Nutr 2020; 8:2059-2067. [PMID: 32328272 PMCID: PMC7174229 DOI: 10.1002/fsn3.1495] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Myricetin is a commonly found dietary flavonoid. In the present study, we investigated the effects of myricetin on migration and invasion of radioresistant lung cancer cells (A549-IR). Transcriptome analysis of A549-IR cells identified several differentially expressed genes (DEGs) in A549-IR cells compared to parental A549 cells. Functional enrichment analysis revealed that most of the DEGs were linked with PI3K-AKT signaling, proteoglycans, focal adhesion, and ECM-receptor interactions. A549-IR cells demonstrated enhanced migratory potential with increased expression of vimentin, snail and slug, and reduced expression of E-cadherin. A549-IR cells exposed to myricetin displayed reduced migration and suppressed MMP-2 and MMP-9 expression. Notably, myricetin inhibited the phosphorylation of focal adhesion kinase (FAK) and altered the F-actin/G-actin ratio in A549-IR cells, without modulation of EMT markers. These findings suggest that myricetin can inhibit migration of A549-IR cells by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway.
Collapse
Affiliation(s)
- Hye R. Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuKorea
| | - Jeong Y. Moon
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuKorea
| | | | - Yeon W. Song
- Faculty of BiotechnologyCollege of Applied Life SciencesSARIJeju National UniversityJejuKorea
| | - Moonjae Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuKorea
- Department of BiochemistrySchool of MedicineJeju National UniversityJejuKorea
| | | | - Somi K. Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuKorea
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuKorea
- Faculty of BiotechnologyCollege of Applied Life SciencesSARIJeju National UniversityJejuKorea
- School of Biomaterial Science and TechnologyCollege of Applied Life SciencesJeju National UniversityJejuKorea
| |
Collapse
|
41
|
Tan Q, Liang XJ, Lin SM, Cheng Y, Ding YQ, Liu TF, Zhou WJ. Engagement of Robo1 by Slit2 induces formation of a trimeric complex consisting of Src-Robo1-E-cadherin for E-cadherin phosphorylation and epithelial-mesenchymal transition. Biochem Biophys Res Commun 2020; 522:757-762. [PMID: 31791578 DOI: 10.1016/j.bbrc.2019.11.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Loss of E-cadherin elicits epithelial-mesenchymal transition (EMT). While both the Src family of membrane-associated non-receptor tyrosine kinases (SFKs) and Slit2 binding to Roundabout 1 (Robo1) have been shown to induce E-cadherin repression and EMT, whether these two signaling pathways are mechanistically coupled remains unknown in epithelial cells. Here we found that Slit2 and Robo1 overexpression activated Src kinases for tyrosine phosphorylation, degradation of E-cadherin and induction of EMT. Specific blockade of Slit2 binding to Robo1 inactivated Src, prevented E-cadherin phosphorylation and EMT induction. Biochemically, the cytoplasmic CC3 motif of Robo1 (CC3) bound directly to the SH2 and 3 domains of c-Src and the cytoplasmic domains of E-cadherin. Slit2 induced Robo1 association with endogenous c-Src and E-cadherin, whereas ectopic expression of CC3 dissociated this protein complex in colorectal epithelial cells. These results indicate that Slit2 not only induces Robo1 binding to Src, but also recruits Src to E-cadherin for tyrosine phosphorylation of E-cadherin, leading to E-cadherin degradation and EMT induction in colorectal epithelial cells.
Collapse
Affiliation(s)
- Qi Tan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China; Department of Pathology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangzhou, 518172, China
| | - Xiang-Jing Liang
- Ultrasound Medical Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Si-Min Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China.
| | - Teng-Fei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China.
| | - Wei-Jie Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China; Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510005, China.
| |
Collapse
|
42
|
Liu D, Zhou G, Shi H, Chen B, Sun X, Zhang X. Downregulation of Transmembrane protein 40 by miR-138-5p Suppresses Cell Proliferation and Mobility in Clear Cell Renal Cell Carcinoma. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2270. [PMID: 32884956 PMCID: PMC7461706 DOI: 10.30498/ijb.2019.85193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) represents approximately 70% of RCC,as the most frequent histological subtype of RCC. MiR-138-5p, a tumor-related microRNA (miRNA), has been reported to be implicated in the diverse types of human malignancies, but its role in ccRCCremains unclear. Objective The study was designed to investigate the functional behaviors and regulatory mechanisms of miR-138-5p in ccRCC. Materials and Methods Quantitative real-time PCR and western blotting analyses were performed to determine the expression of miR-138-5p and TMEM40 in ccRCC tissues. Pearson's correlation coefficient was utilized to evaluate the correlation between miR-138-5p and TMEM40 expression. The function of miR-138-5p and TMEM40 in the cell proliferation, migration and invasion of ccRCC cells (786-O and ACHN) was assessed by CCK-8, colony formation, wound healing and transwell assay, respectively. A luciferase reporter assay was performed to confirm the direct binding of miR-138-5p to the target gene TMEM40. Results We found the expression of miR-138-5p was significantly down-regulated, while TMEM40 was remarkably up-regulated in ccRCC tissues. TMEM40 expression was discovered to be inversely correlated with miR-138-5p expression in ccRCC tissues. Functional studies demonstrated that miR-138-5p overexpression or TMEM40 knockdown significantly suppressed ccRCC cell proliferation, migration and invasion in vitro. Notably, we experimentally confirmed that miR-138-5p directly recognizes the 3'-UTR of the TMEM40 transcript and down-regulated its expression in ccRCC cells. Conclusions Taken together, our findings provide the first clues regarding the role of miR-138-5p as a tumor suppressor in ccRCC by directly targeting of TMEM40.
Collapse
Affiliation(s)
- Dongcao Liu
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Guang Zhou
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hongbo Shi
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Bin Chen
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiaosong Sun
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xuejun Zhang
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
43
|
Huang CC, Hung CH, Hung TW, Lin YC, Wang CJ, Kao SH. Dietary delphinidin inhibits human colorectal cancer metastasis associating with upregulation of miR-204-3p and suppression of the integrin/FAK axis. Sci Rep 2019; 9:18954. [PMID: 31831830 PMCID: PMC6908670 DOI: 10.1038/s41598-019-55505-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Delphinidin is a flavonoid belonging to dietary anthocyanidin family that has been reported to possess diverse anti-tumoral activities. However, the effects of delphinidin on colorectal cancer (CRC) cells and the underlying mechanisms are not fully understood. Thus, we aimed to investigate the anti-cancer activity of delphinidin in CRC cells and the underlying molecular mechanisms. The effects of delphinidin on the viability, metastatic characteristics, signaling, and microRNA (miR) profile of human CRC cell lines used were analyzed. In vivo metastasis was also evaluated using xenograft animal models. Our findings showed that delphinidin (<100 μM) inhibited the colony formation of DLD-1, SW480, and SW620 cells, but non-significantly affected cell viability. Delphinidin also suppressed the migratory ability and invasiveness of the tested CRC cell lines, downregulated integrin αV/β3 expression, inhibited focal adhesion kinase (FAK)/Src/paxillin signaling, and interfered with cytoskeletal construction. Analysis of the miR expression profile revealed a number of miRs, particularly miR-204-3p, that were significantly upregulated and downregulated by delphinidin. Abolishing the expression of one upregulated miR, miR-204-3p, with an antagomir restored delphinidin-mediated inhibition of cell migration and invasiveness in DLD-1 cells as well as the αV/β3-integrin/FAK/Src axis. Delphinidin also inhibited the lung metastasis of DLD-1 cells in the xenograft animal model. Collectively, these results indicate that the migration and invasion of CRC cells are inhibited by delphinidin, and the mechanism may involve the upregulation of miR-204-3p and consequent suppression of the αV/β3-integrin/FAK axis. These findings suggest that delphinidin exerts anti-metastatic effects in CRC cells by inhibiting integrin/FAK signaling and indicate that miR-204-3p may play an important role in CRC metastasis.
Collapse
Affiliation(s)
- Chi-Chou Huang
- Department of Colorectal Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hung Hung
- Institute of Biochemistry, Microbiology, and Immunology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Wei Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chieh Lin
- Institute of Biochemistry, Microbiology, and Immunology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology, and Immunology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology, and Immunology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
44
|
Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol 2019; 19:219. [PMID: 31703690 PMCID: PMC6842207 DOI: 10.1186/s12886-019-1229-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background The signaling pathway of epithelial to mesenchymal transition (EMT) is regulated by c-Src kinase in many cells. The purpose of this study was to investigate the effects of c-Src kinase on EMT of human lens epithelial cells in vivo stimulated by different factors. Methods Human lens epithelial cells, HLE-B3, were exposed to either an inflammatory factor, specifically IL-1α, IL-6, TNF-α or IL-1β, at 10 ng/mL or high glucose (35.5 mM) for 30 mins. Activity of c-Src kinase was evaluated by the expression of p-Src418 with western blot assay. To investigate the effects of activation of c-Src on EMT, HLE-B3 cells were transfected with pCDNA3.1-SrcY530F to upregulate activity of c-Src kinase, and pSlience4.1-ShSrc to knock it down. The expressions of c-Src kinase and molecular markers of EMT such as E-cadherin, ZO-1, α-SMA, and Vimentin were examined at 48 h by RT-PCR and western blot. At 48 h and 72 h of transfection, cell proliferation was detected by MTT, and cell mobility and migration were determined by scratch and transwell assays. Results Activity of c-Src kinase, which causes the expression of p-Src418, was upregulated by different inflammatory factors and high glucose in HLE-B3 cells. When HLE-B3 cells were transfected with pCDNA3.1-SrcY530F, the expression of c-Src kinase was upregulated on both mRNA and protein levels, and activity of c-Src kinase, expression of p-Src418 increased. The expressions of both E-cadherin and ZO-1 were suppressed, while the expressions of vimentin and α-SMA were elevated on both mRNA and protein levels at the same time. Cell proliferation, mobility and migration increased along with activation of c-Src kinase. Conversely, when HLE-B3 cells were transfected with pSlience4.1-ShSrc, both c-Src kinase and p-Src418 expressions were knocked down. The expressions of E-cadherin and ZO-1 increased, but the expressions of Vimentin and α-SMA decreased; meanwhile, cell proliferation, mobility and migration reduced. Conclusions The c-Src kinase in lens epithelial cells is easily activated by external stimuli, resulting in the induction of cell proliferation, mobility, migration and EMT.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Fang Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Meixia Ren
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Minjuan Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jian Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
45
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
46
|
Hermida-Prado F, Granda-Díaz R, del-Río-Ibisate N, Villaronga MÁ, Allonca E, Garmendia I, Montuenga LM, Rodríguez R, Vallina A, Alvarez-Marcos C, Rodrigo JP, García-Pedrero JM. The Differential Impact of SRC Expression on the Prognosis of Patients with Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11111644. [PMID: 31731442 PMCID: PMC6896085 DOI: 10.3390/cancers11111644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Aberrant SRC expression and activation is frequently detected in multiple cancers, and hence, targeting SRC has emerged as a promising therapeutic strategy. Different SRC inhibitors have demonstrated potent anti-tumor activity in preclinical models, although they largely lack clinical efficacy as monotherapy in late-stage solid tumors, including head and neck squamous cell carcinomas (HNSCC). Adequate selection and stratification of patients who may respond to and benefit from anti-SRC therapies is therefore needed to guide clinical trials and treatment efficacy. This study investigates the prognostic significance of active SRC expression in a homogeneous cohort of 122 human papillomavirus (HPV)-negative, surgically treated HNSCC patients. Immunohistochemical evaluation of the active form of SRC by means of anti-SRC Clone 28 monoclonal antibody was specifically performed and subsequently correlated with clinical data. The expression of p-SRC (Tyr419), total SRC, and downstream SRC effectors was also analyzed. Our results uncovered striking differences in the prognostic relevance of SRC expression in HNSCC patients depending on the tumor site. Active SRC expression was found to significantly associate with advanced disease stages, presence of lymph node metastasis, and tumor recurrences in patients with laryngeal tumors, but not in the pharyngeal subgroup. Multivariate Cox analysis further revealed active SRC expression as an independent predictor of cancer-specific mortality in patients with laryngeal carcinomas. Concordantly, expression of p-SRC (Tyr419) and the SRC substrates focal adhesion kinase (FAK) and the Arf GTPase-activating protein ASAP1 also showed specific associations with poor prognosis in the larynx. These findings could have important implications in ongoing Src family kinase (SFK)-based clinical trials, as these new criteria could help to improve patient selection and develop biomarker-stratified trials.
Collapse
Affiliation(s)
- Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Nagore del-Río-Ibisate
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - M. Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Irati Garmendia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA); Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain;
| | - Luis M. Montuenga
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Program in Solid Tumors, Center for Applied Medical Research (CIMA); Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain;
| | - René Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Aitana Vallina
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain;
| | - César Alvarez-Marcos
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Juan P. Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Correspondence: (J.P.R.); (J.M.G.-P.)
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Correspondence: (J.P.R.); (J.M.G.-P.)
| |
Collapse
|
47
|
Corallo D, Donadon M, Pantile M, Sidarovich V, Cocchi S, Ori M, De Sarlo M, Candiani S, Frasson C, Distel M, Quattrone A, Zanon C, Basso G, Tonini GP, Aveic S. LIN28B increases neural crest cell migration and leads to transformation of trunk sympathoadrenal precursors. Cell Death Differ 2019; 27:1225-1242. [PMID: 31601998 DOI: 10.1038/s41418-019-0425-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023] Open
Abstract
The RNA-binding protein LIN28B regulates developmental timing and determines stem cell identity by suppressing the let-7 family of microRNAs. Postembryonic reactivation of LIN28B impairs cell commitment to differentiation, prompting their transformation. In this study, we assessed the extent to which ectopic lin28b expression modulates the physiological behavior of neural crest cells (NCC) and governs their transformation in the trunk region of developing embryos. We provide evidence that the overexpression of lin28b inhibits sympathoadrenal cell differentiation and accelerates NCC migration in two vertebrate models, Xenopus leavis and Danio rerio. Our results highlight the relevance of ITGA5 and ITGA6 in the LIN28B-dependent regulation of the invasive motility of tumor cells. The results also establish that LIN28B overexpression supports neuroblastoma onset and the metastatic potential of malignant cells through let-7a-dependent and let-7a-independent mechanisms.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.
| | - Michael Donadon
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marcella Pantile
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Viktoryia Sidarovich
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Simona Cocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Ori
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Miriam De Sarlo
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Chiara Frasson
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Martin Distel
- Innovative Cancer Models, Children's Cancer Research Institute (CCRI), Wien, Austria
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giuseppe Basso
- Department of Women and Child Health, Haematology-Oncology Clinic, University of Padua, Padova, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy. .,Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
48
|
Recondo G, Mezquita L, Facchinetti F, Planchard D, Gazzah A, Bigot L, Rizvi AZ, Frias RL, Thiery JP, Scoazec JY, Sourisseau T, Howarth K, Deas O, Samofalova D, Galissant J, Tesson P, Braye F, Naltet C, Lavaud P, Mahjoubi L, Abou Lovergne A, Vassal G, Bahleda R, Hollebecque A, Nicotra C, Ngo-Camus M, Michiels S, Lacroix L, Richon C, Auger N, De Baere T, Tselikas L, Solary E, Angevin E, Eggermont AM, Andre F, Massard C, Olaussen KA, Soria JC, Besse B, Friboulet L. Diverse Resistance Mechanisms to the Third-Generation ALK Inhibitor Lorlatinib in ALK-Rearranged Lung Cancer. Clin Cancer Res 2019; 26:242-255. [PMID: 31585938 DOI: 10.1158/1078-0432.ccr-19-1104] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Lorlatinib is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor with proven efficacy in patients with ALK-rearranged lung cancer previously treated with first- and second-generation ALK inhibitors. Beside compound mutations in the ALK kinase domain, other resistance mechanisms driving lorlatinib resistance remain unknown. We aimed to characterize the mechanisms of resistance to lorlatinib occurring in patients with ALK-rearranged lung cancer and design new therapeutic strategies in this setting. EXPERIMENTAL DESIGN Resistance mechanisms were investigated in 5 patients resistant to lorlatinib. Longitudinal tumor biopsies were studied using high-throughput next-generation sequencing. Patient-derived models were developed to characterize the acquired resistance mechanisms, and Ba/F3 cell mutants were generated to study the effect of novel ALK compound mutations. Drug combinatory strategies were evaluated in vitro and in vivo to overcome lorlatinib resistance. RESULTS Diverse biological mechanisms leading to lorlatinib resistance were identified. Epithelial-mesenchymal transition (EMT) mediated resistance in two patient-derived cell lines and was susceptible to dual SRC and ALK inhibition. We characterized three ALK kinase domain compound mutations occurring in patients, L1196M/D1203N, F1174L/G1202R, and C1156Y/G1269A, with differential susceptibility to ALK inhibition by lorlatinib. We identified a novel bypass mechanism of resistance caused by NF2 loss-of-function mutations, conferring sensitivity to treatment with mTOR inhibitors. CONCLUSIONS This study shows that mechanisms of resistance to lorlatinib are diverse and complex, requiring new therapeutic strategies to tailor treatment upon disease progression.
Collapse
Affiliation(s)
- Gonzalo Recondo
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Laura Mezquita
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Francesco Facchinetti
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Anas Gazzah
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Ludovic Bigot
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Ahsan Z Rizvi
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Rosa L Frias
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Jean Paul Thiery
- Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
- Institute of Biomedicine and Health, Chinese Academy of Science, Beijing, P.R. China
- CCBIO, Department of Clinical Medicine, Faculty of Medicine and Dentistry, The University of Bergen, Bergen, Norway
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong
- CNRS UMR 7057 Matter and Complex Systems, University Paris Denis Diderot, Paris, France
| | - Jean-Yves Scoazec
- Université Paris-Saclay, Paris, France
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Sourisseau
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | | | | | - Dariia Samofalova
- Life Chemicals Inc., Ontario, Canada
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | - Justine Galissant
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Pauline Tesson
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Floriane Braye
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Charles Naltet
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pernelle Lavaud
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Linda Mahjoubi
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Aurélie Abou Lovergne
- Université Paris-Saclay, Paris, France
- Department of Clinical Research, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gilles Vassal
- Department of Clinical Research, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rastilav Bahleda
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudio Nicotra
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Maud Ngo-Camus
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Stefan Michiels
- Department of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ludovic Lacroix
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Catherine Richon
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Auger
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Thierry De Baere
- Department of Interventional Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Solary
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Angevin
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Fabrice Andre
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Massard
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Ken A Olaussen
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
| | - Jean-Charles Soria
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Besse
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Paris, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Luc Friboulet
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France.
- Université Paris-Saclay, Paris, France
| |
Collapse
|
49
|
Hermida-Prado F, Villaronga MÁ, Granda-Díaz R, Del-Río-Ibisate N, Santos L, Hermosilla MA, Oro P, Allonca E, Agorreta J, Garmendia I, Tornín J, Perez-Escuredo J, Fuente R, Montuenga LM, Morís F, Rodrigo JP, Rodríguez R, García-Pedrero JM. The SRC Inhibitor Dasatinib Induces Stem Cell-Like Properties in Head and Neck Cancer Cells that are Effectively Counteracted by the Mithralog EC-8042. J Clin Med 2019; 8:jcm8081157. [PMID: 31382448 PMCID: PMC6722627 DOI: 10.3390/jcm8081157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
The frequent dysregulation of SRC family kinases (SFK) in multiple cancers prompted various inhibitors to be actively tested in preclinical and clinical trials. Disappointingly, dasatinib and saracatinib failed to demonstrate monotherapeutic efficacy in patients with head and neck squamous cell carcinomas (HNSCC). Deeper functional and mechanistic knowledge of the actions of these drugs is therefore needed to improve clinical outcome and to develop more efficient combinational strategies. Even though the SFK inhibitors dasatinib and saracatinib robustly blocked cell migration and invasion in HNSCC cell lines, this study unveils undesirable stem cell-promoting functions that could explain the lack of clinical efficacy in HNSCC patients. These deleterious effects were targeted by the mithramycin analog EC-8042 that efficiently eliminated cancer stem cells (CSC)-enriched tumorsphere cultures as well as tumor bulk cells and demonstrated potent antitumor activity in vivo. Furthermore, combination treatment of dasatinib with EC-8042 provided favorable complementary anti-proliferative, anti-invasive, and anti-CSC functions without any noticeable adverse interactions of both agents. These findings strongly support combinational strategies with EC-8042 for clinical testing in HNSCC patients. These data may have implications on ongoing dasatinib-based trials.
Collapse
Affiliation(s)
- Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - M Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Nagore Del-Río-Ibisate
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Laura Santos
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | | | - Patricia Oro
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Jackeline Agorreta
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Irati Garmendia
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Juan Tornín
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | | | - Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis M Montuenga
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - René Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain.
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain.
| |
Collapse
|
50
|
Agius MP, Ko KS, Johnson TK, Kwarcinski FE, Phadke S, Lachacz EJ, Soellner MB. Selective Proteolysis to Study the Global Conformation and Regulatory Mechanisms of c-Src Kinase. ACS Chem Biol 2019; 14:1556-1563. [PMID: 31287657 PMCID: PMC7254491 DOI: 10.1021/acschembio.9b00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.
Collapse
Affiliation(s)
- Michael P. Agius
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | - Kristin S. Ko
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Sameer Phadke
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Eric J. Lachacz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Matthew B. Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|