1
|
Po WW, Choi WS, Khing TM, Lee JY, Lee JH, Bang JS, Min YS, Jeong JH, Sohn UD. Benzyl Isothiocyanate-Induced Cytotoxicity via the Inhibition of Autophagy and Lysosomal Function in AGS Cells. Biomol Ther (Seoul) 2022; 30:348-359. [PMID: 35768332 PMCID: PMC9252883 DOI: 10.4062/biomolther.2022.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/05/2022] Open
Abstract
Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 μM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.
Collapse
Affiliation(s)
- Wah Wah Po
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tin Myo Khing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Hyuk Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young Sil Min
- Department of Pharmaceutical Science, Jungwon University, Goesan 28024, Republic of Korea
| | - Ji Hoon Jeong
- College of Medicine, Chung-Ang University, and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Chen Y, Jia Y, Mao M, Gu Y, Xu C, Yang J, Hu W, Shen J, Hu D, Chen C, Li Z, Chen L, Ruan J, Shen P, Zhou J, Wei Q, Wang L. PLAC8 promotes adriamycin resistance via blocking autophagy in breast cancer. J Cell Mol Med 2021; 25:6948-6962. [PMID: 34117724 PMCID: PMC8278087 DOI: 10.1111/jcmm.16706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Adriamycin (ADM) is currently one of the most effective chemotherapeutic agents in breast cancer treatment. However, growing resistance to ADM could lead to treatment failure and poor outcome. PLAC8 was reported as a novel highly conserved protein and functioned as an oncogene or tumour suppressor in various tumours. Here, we found higher PLAC8 expression was correlated with worse outcome and aggressive phenotype in breast cancer. Breast cancer patients with higher PLAC8 expression showed potential ADM resistance. In vitro experiments further confirmed that PLAC8 inhibited by siRNA or enforced overexpression by infecting pcDNA3.1(C)‐PLAC8 plasmid correspondingly decreased or increased ADM resistance. Subsequently, we demonstrated that ectopic PLAC8 expression in MCF‐7/ADMR cell blocked the accumulation of the autophagy‐associated protein LC3 and resulted in cellular accumulation of p62. Rapamycin‐triggered autophagy significantly increased cell response to ADM, while the autophagy inhibitor 3‐MA enhanced ADM resistance. 3‐MA and PLAC8 could synergistically cause ADM resistance via blocking the autophagy process. Additionally, the down‐regulation of p62 by siRNA attenuated the activation of autophagy and PLAC8 expression in breast cancer cells. Thus, our findings suggest that PLAC8, through the participation of p62, inhibits autophagy and consequently results in ADM resistance in breast cancer. PLAC8/p62 pathway may act as novel therapeutic targets in breast cancer treatment and has potential clinical application in overcoming ADM resistance.
Collapse
Affiliation(s)
- Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlu Jia
- Department of Medical oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Gu
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenpu Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxian Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dengdi Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ruan
- Department of Medical oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shen
- Department of Medical oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qun Wei
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. Saponins in Cancer Treatment: Current Progress and Future Prospects. PATHOPHYSIOLOGY 2021; 28:250-272. [PMID: 35366261 PMCID: PMC8830467 DOI: 10.3390/pathophysiology28020017] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported the role of saponins in cancer and the mechanism of actions, including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis and autophagy. Despite the extensive research and significant anticancer effects of saponins, there are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed to a number of limitations, including toxicities and drug-likeness properties. Recent studies have explored options such as combination therapy and drug delivery systems to ensure increased efficacy and decreased toxicity in saponin. This review discusses the current knowledge on different saponins, their anticancer activity and mechanisms of action, as well as promising research within the last two decades and recommendations for future studies.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Femi Olawale
- Nanogene and Drug Delivery Group, Department of Biochemistry, University of Kwa-Zulu Natal, Durban 4000, South Africa;
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos 101017, Nigeria
| | - Esther Opeyemi Ariyo
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| |
Collapse
|
4
|
Yoon K, Kim N, Park Y, Kim BK, Park JH, Shin CM, Lee DH, Surh YJ. Correlation between macrophage migration inhibitory factor and autophagy in Helicobacter pylori-associated gastric carcinogenesis. PLoS One 2019; 14:e0211736. [PMID: 30742638 PMCID: PMC6370197 DOI: 10.1371/journal.pone.0211736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
The role of macrophage migration inhibitory factor (MIF) and autophagy in gastric cancer is not clear. We determined H. pylori infection status of the subjects and investigated the expression of MIF and autophagy markers (Atg5, LC3A and LC3B) in human gastric tissue at baseline. Then H. pylori eradication was done for H. pylori positive patients and MIF and Atg5 levels were investigated on each follow-up for both H. pylori-eradicated and H. pylori negative patients. Baseline tissue mRNA expression of MIF, Atg5, LC3A and LC3B was measured by real-time PCR in 453 patients (control 165, gastric dysplasia 82, and gastric cancer 206). Three hundred three patients (66.9%) had H. pylori infection at the time of enrollment. Only within H. pylori-positive group, MIF level was significantly elevated in patients with cancer than in control or dysplasia groups (P<0.05). LC3A and LC3B levels also showed significant differences within H. pylori-positive subgroups. H. pylori-positive dysplasia subgroup showed significantly lower (LC3A) (P<0.05) and higher (LC3B) mRNA levels (P<0.05) than in other subgroups. On follow-up, within H. pylori-eradicated group, Atg5 expression increased sequentially from control to dysplasia and cancer subgroups. Multiple linear regression showed autophagy markers (LC3A, LC3B, and Atg5) directly predicted MIF level (adjusted R2 = 0.492, P<0.001). Serial follow-up showed longitudinal increase in Atg5 level in general, with constantly higher levels in H. pylori-eradicated group than in -negative group. Intestinal metaplasia (IM) group initially showed higher Atg5 expression than the IM-negative group. However, it was reversed between the groups eventually because of the lower rate of increase in IM group. These results suggest a role of MIF and autophagy markers and their interaction in H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Kichul Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail:
| | - Youngmi Park
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bo Kyung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Metformin prevents cell tumorigenesis through autophagy-related cell death. Sci Rep 2019; 9:66. [PMID: 30635619 PMCID: PMC6329809 DOI: 10.1038/s41598-018-37247-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/03/2018] [Indexed: 11/15/2022] Open
Abstract
Autophagy is a cellular mechanism by which cells degrade intracellular components in lysosomes, maintaining cellular homeostasis. It has been hypothesized that autophagy could have a role in cancer prevention through the elimination of damaged proteins and organelles; this could explain epidemiological evidence showing the chemopreventive properties of the autophagy-inducer metformin. In this study, we analyzed the autophagy-related effect of metformin in both cancer initiation and progression in non-tumorigenic cells. We also analyzed the induction of tumorigenesis in autophagy-deficient cells, and its correlation with the ER stress. Our results showed that metformin induced massive cell death in preneoplastic JB6 Cl 41-5a cells treated with tumor promoter (phorbol) and in NIH/3T3 treated with H2O2. Inhibiting autophagy with wortmannin or ATG7 silencing, the effect of metformin decreased, indicating an autophagy-related cytotoxic activity under stress conditions. We also found an induction of tumorigenesis in ATG7-silenced NIH/3T3 cell clone (3T3-619C3 cells), but not in wild-type and in scrambled transfected cells, and an upregulation of unfolded protein response (UPR) markers in 3T3-619C3 cells treated with H2O2. These findings suggest that autophagic cell death could be considered as a new mechanism by which eliminate damaged cells, representing an attractive strategy to eliminate potential tumorigenic cells.
Collapse
|
6
|
Ma J, Wu K, Liu K, Miao R. Effects of MALAT1 on proliferation and apo- ptosis of human non-small cell lung cancer A549 cells in vitro and tumor xenograft growth in vivo by modulating autophagy. Cancer Biomark 2018; 22:63-72. [PMID: 29439314 DOI: 10.3233/cbm-170917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To explore the ability of MALAT1 to influence non-small cell lung cancer (NSCLC) A549 cells in vitro and tumor xenograft growth in vivo by modulating autophagy. METHODS LncRNA MALAT-1 in normal HBE cells and human NSCLC cells was measured. A549 cells were treated with si-MALAT-1, negative control and si-MALAT-1 + rapamycin. The mRNA levels of MALAT-1, P62 and LC3 was determined by the qRT-PCR and the protein levels of autophagy-related proteins by the western blotting. The CCK8 assay was performed for cell proliferation, the scratch test for cell migration, the Transwell assay for cell invasion, and the flow cytometry for cell cycle and apoptosis. Tumor xenograft in nude mice is performed to test tumorigenesis of the transfected A549 cells. RESULTS The expression level of MALAT-1 in A549, SPC-A-1 and NCI-H460 cells was increased compared to HBE cells. And A549 with a high expression level of MALAT-1 were selected for cell transfection. si-MALAT-1 decreased cell proliferation, migration, invasion, and LC3-II/LC3-I ratio, reduced cell cycle progression, and increased cell apoptosis and P62 protein expression. No significant difference was found between A549 cells and A549 cells transfected with si-MALAT-1 + RAPA, A549 cells transfected with NC and A549 cells transfected with si-MALAT-1 + RAPA. Nude mice injected with A549 cells transfected with si-MALAT-1 had smallest tumor on size and weight among other nude mice. CONCLUSION Downregulation of MALAT1 may promote apoptosis and suppress proliferation, migration and invasion of human NSCLC A549 cells by inhibiting autophagy, thereby suppressing the development of NSCLC.
Collapse
Affiliation(s)
- Jun Ma
- Thoracic Surgery Department, 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Kaiming Wu
- Colorectal Surgery Department, 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Kuanzhi Liu
- Department of Anaesthesiology, 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Rong Miao
- Physical Exam. Center, The Eastern Hospital of 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510700, Guangdong, China
| |
Collapse
|
7
|
Cadena I, Werth VP, Levine P, Yang A, Downey A, Curtin J, Muggia F. Lasting pathologic complete response to chemotherapy for ovarian cancer after receiving antimalarials for dermatomyositis. Ecancermedicalscience 2018; 12:837. [PMID: 29910834 PMCID: PMC5985755 DOI: 10.3332/ecancer.2018.837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 01/07/2023] Open
Abstract
Could hydroxychloroquine and quinacrine antimalarial therapy for dermatomyositis later attributed to a paraneoplasic manifestation of an ovarian cancer enhance its subsequent response to chemotherapy? Five months after being diagnosed with dermatomyositis, while somewhat improved with hydroxychloroquine, quinacrine and methotrexate, this 63-year-old woman presented with an advanced intra-abdominal epithelial ovarian cancer documented (but not resected) at laparotomy. Neoadjuvant carboplatin/paclitaxel resulted in remarkable improvement of symptoms, tumour markers and imaging findings leading to thorough cytoreductive surgery at completion of five cycles. No tumour was found in the resected omentum, gynaecologic organs, as well as hepatic and nodal sampling thus documenting a complete pathologic response; a subcutaneous port and an intraperitoneal (IP) catheter were placed for two cycles of IP cisplatin consolidation. She remains free of disease 3 years after such treatment and her dermatomyositis is in remission in the absence of any treatment. We discuss a possible role of autophagy in promoting tumour cell survival and chemoresistance that is potentially reversed by antimalarial drugs. Thus, chemotherapy following their use may subsequently lead to dramatic potentiation of anticancer treatment.
Collapse
Affiliation(s)
| | | | | | - Annie Yang
- New York University, New York, NY 10003, USA
| | | | - John Curtin
- New York University, New York, NY 10003, USA
| | | |
Collapse
|
8
|
Iron(III)-Tannic Molecular Nanoparticles Enhance Autophagy effect and T 1 MRI Contrast in Liver Cell Lines. Sci Rep 2018; 8:6647. [PMID: 29703912 PMCID: PMC5923259 DOI: 10.1038/s41598-018-25108-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Herein, a new molecular nanoparticle based on iron(III)-tannic complexes (Fe–TA NPs) is presented. The Fe–TA NPs were simply obtained by mixing the precursors in a buffered solution at room temperature, and they exhibited good physicochemical properties with capability of inducing autophagy in both hepatocellular carcinoma cells (HepG2.2.15) and normal rat hepatocytes (AML12). The Fe–TA NPs were found to induce HepG2.2.15 cell death via autophagic cell death but have no effect on cell viability in AML12 cells. This is possibly due to the much higher uptake of the Fe–TA NPs by the HepG2.2.15 cells via the receptor-mediated endocytosis pathway. As a consequence, enhancement of the T1 MRI contrast was clearly observed in the HepG2.2.15 cells. The results demonstrate that the Fe–TA NPs could provide a new strategy combining diagnostic and therapeutic functions for hepatocellular carcinoma. Additionally, because of their autophagy-inducing properties, they can be applied as autophagy enhancers for prevention and treatment of other diseases.
Collapse
|
9
|
Bridgeman BB, Wang P, Ye B, Pelling JC, Volpert OV, Tong X. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention. Cell Signal 2016; 28:460-468. [PMID: 26876613 DOI: 10.1016/j.cellsig.2016.02.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022]
Abstract
Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by aberrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer.
Collapse
Affiliation(s)
- Bryan B Bridgeman
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pu Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Boping Ye
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jill C Pelling
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olga V Volpert
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xin Tong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Cheong JH, Kim H, Hong MJ, Yang MH, Kim JW, Yoo H, Yang H, Park JH, Sung SH, Kim HP, Kim J. Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells: disparity in cytotoxicity and autophagy-inducing effects due to 20(S)-epimers. Biol Pharm Bull 2015; 38:102-8. [PMID: 25744465 DOI: 10.1248/bpb.b14-00603] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy has been an emerging field in the treatment of hepatic carcinoma since anticancer therapies were shown to ignite autophagy in vitro and in vivo. Here we report that ginsenoside Rg3 and Rh2, major components of red ginseng, induce apoptotic cell death in a stereoisomer-specific fashion. The 20(S)-forms of Rg3 and Rh2, but not their respective 20(R)-forms, promoted cell death in a dose-dependent manner accompanied by downregulation of Bcl2 and upregulation of Fas, resulting in apoptosis of HepG2 cells with poly ADP ribose polymerase cleavage. The LD50 value [45 µM for Rg3(S), less than 10 µM for Rh2(S)] and gross morphological electron microscopic observation revealed more severe cellular damage in cells treated with Rh2(S) than in those treated with Rg3(S). Both Rg3(S) and Rh2(S) also induced autophagy when undergoing induced apoptosis. Inhibition of autophagy with lysosomotrophic agents significantly potentiated the cellular damage, implying a favorable switch of the cell fate to tumor cell death. Blocking intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) restored the cell death induced by both Rg3(S) and Rh2(S). Our results suggest that the 20(S)-forms of Rg3 and Rh2 in red ginseng possess more potent antitumor activity with autophagy than their 20(R)-forms via calcium-dependent apoptosis.
Collapse
Affiliation(s)
- Jong Hye Cheong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schiavano GF, De Santi M, Brandi G, Fanelli M, Bucchini A, Giamperi L, Giomaro G. Inhibition of Breast Cancer Cell Proliferation and In Vitro Tumorigenesis by a New Red Apple Cultivar. PLoS One 2015; 10:e0135840. [PMID: 26284516 PMCID: PMC4540469 DOI: 10.1371/journal.pone.0135840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the antiproliferative activity in breast cancer cells and the inhibition of tumorigenesis in pre-neoplastic cells of a new apple cultivar with reddish pulp, called the Pelingo apple. METHODS The antiproliferative activity was evaluated in MCF-7 and MDA-MB-231 human breast cancer cells. The inhibition of tumorigenesis was performed in JB6 promotion-sensitive (P+) cells. RESULTS Results showed that Pelingo apple juice is characterized by a very high polyphenol content and strongly inhibited breast cancer cell proliferation. Its antiproliferative activity was found to be higher than the other five apple juices tested. Pelingo juice induced cell accumulation in the G2/M phase of the cell cycle and autophagy through overexpression of p21, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) activity and an increase in lipidated microtubule-associated protein-1 light chain-3 beta (LC3B). Remarkably, Pelingo juice inhibited the 12-o-tetra-decanoyl-phorbol-13-acetate (TPA)-induced tumorigenesis of JB6 P+ cells, suppressing colony formation in semi-solid medium and TPA-induced ERK1/2 phosphorylation. CONCLUSIONS Our data indicate that the Pelingo apple is rich in food components that can markedly inhibit in vitro tumorigenesis and growth of human breast cancer cells and could provide natural bioactive non-nutrient compounds, with potential chemopreventive activity.
Collapse
Affiliation(s)
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Anahi Bucchini
- Department of Earth, Life and Environmental Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Laura Giamperi
- Department of Earth, Life and Environmental Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Giovanna Giomaro
- Department of Earth, Life and Environmental Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| |
Collapse
|
12
|
Ducasse H, Arnal A, Vittecoq M, Daoust SP, Ujvari B, Jacqueline C, Tissot T, Ewald P, Gatenby RA, King KC, Bonhomme F, Brodeur J, Renaud F, Solary E, Roche B, Thomas F. Cancer: an emergent property of disturbed resource-rich environments? Ecology meets personalized medicine. Evol Appl 2015; 8:527-40. [PMID: 26136819 PMCID: PMC4479509 DOI: 10.1111/eva.12232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/17/2015] [Indexed: 12/13/2022] Open
Abstract
For an increasing number of biologists, cancer is viewed as a dynamic system governed by evolutionary and ecological principles. Throughout most of human history, cancer was an uncommon cause of death and it is generally accepted that common components of modern culture, including increased physiological stresses and caloric intake, favor cancer development. However, the precise mechanisms for this linkage are not well understood. Here, we examine the roles of ecological and physiological disturbances and resource availability on the emergence of cancer in multicellular organisms. We argue that proliferation of 'profiteering phenotypes' is often an emergent property of disturbed, resource-rich environments at all scales of biological organization. We review the evidence for this phenomenon, explore it within the context of malignancy, and discuss how this ecological framework may offer a theoretical background for novel strategies of cancer prevention. This work provides a compelling argument that the traditional separation between medicine and evolutionary ecology remains a fundamental limitation that needs to be overcome if complex processes, such as oncogenesis, are to be completely understood.
Collapse
Affiliation(s)
- Hugo Ducasse
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Audrey Arnal
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Marion Vittecoq
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
- Centre de Recherche de la Tour du ValatArles, France
| | - Simon P Daoust
- Department of Biology, John Abbott CollegeSainte-Anne-de-Bellevue, QC, Canada
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin UniversityWaurn Ponds, Vic., Australia
| | - Camille Jacqueline
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Tazzio Tissot
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of LouisvilleLouisville, KY, USA
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research InstituteTampa, FL, USA
| | - Kayla C King
- Department of Zoology, University of OxfordOxford, UK
| | - François Bonhomme
- ISEM Institut des sciences de l'évolution, Université Montpellier 2, CNRS/IRD/UM2 UMR 5554Montpellier Cedex, France
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| | - François Renaud
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Eric Solary
- INSERM U1009, Université Paris-Sud, Gustave RoussyVillejuif, France
| | - Benjamin Roche
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
- Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes (UMI IRD/UPMC UMMISCO)BondyCedex, France
| | - Frédéric Thomas
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| |
Collapse
|
13
|
Dickinson SE, Olson ER, Levenson C, Janda J, Rusche JJ, Alberts DS, Bowden GT. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes. Arch Biochem Biophys 2014. [PMID: 25004464 DOI: 10.1016/j.abb.2014.06.021.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.
Collapse
Affiliation(s)
- Sally E Dickinson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| | - Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Corey Levenson
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Jaroslav Janda
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jadrian J Rusche
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - David S Alberts
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - G Timothy Bowden
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Kang S, Kim JE, Song NR, Jung SK, Lee MH, Park JS, Yeom MH, Bode AM, Dong Z, Lee KW. The ginsenoside 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol induces autophagy and apoptosis in human melanoma via AMPK/JNK phosphorylation. PLoS One 2014; 9:e104305. [PMID: 25137374 PMCID: PMC4138097 DOI: 10.1371/journal.pone.0104305] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that a major metabolite of the red ginseng ginsenoside Rb1, called 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol (GPD), exhibits anticancer properties. However, the chemotherapeutic effects and molecular mechanisms behind GPD action in human melanoma have not been previously investigated. Here we report the anticancer activity of GPD and its mechanism of action in melanoma cells. GPD, but not its parent compound Rb1, inhibited melanoma cell proliferation in a dose-dependent manner. Further investigation revealed that GPD treatment achieved this inhibition through the induction of autophagy and apoptosis, while Rb1 failed to show significant effect at the same concentrations. The inhibitory effect of GPD appears to be mediated through the induction of AMPK and the subsequent attenuation of mTOR phosphorylation. In addition, GPD activated c-Jun by inducing JNK phosphorylation. Our findings suggest that GPD suppresses melanoma growth by inducing autophagic cell death and apoptosis via AMPK/JNK pathway activation. GPD therefore has the potential to be developed as a chemotherapeutic agent for the treatment of human melanoma.
Collapse
Affiliation(s)
- Soouk Kang
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Nu Ry Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Sung Keun Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America; Functional Food Resources Research Group, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Mee Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Jun Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Myeong-Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea; Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
15
|
Dickinson SE, Olson ER, Levenson C, Janda J, Rusche JJ, Alberts DS, Bowden GT. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes. Arch Biochem Biophys 2014; 558:143-52. [PMID: 25004464 DOI: 10.1016/j.abb.2014.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.
Collapse
Affiliation(s)
- Sally E Dickinson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| | - Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Corey Levenson
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Jaroslav Janda
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jadrian J Rusche
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - David S Alberts
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - G Timothy Bowden
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Titone R, Morani F, Follo C, Vidoni C, Mezzanzanica D, Isidoro C. Epigenetic control of autophagy by microRNAs in ovarian cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:343542. [PMID: 24877083 PMCID: PMC4022060 DOI: 10.1155/2014/343542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/14/2014] [Indexed: 12/22/2022]
Abstract
Autophagy is a lysosomal-driven catabolic process that contributes to the preservation of cell homeostasis through the regular elimination of cellular damaged, aged, and redundant molecules and organelles. Autophagy plays dual opposite roles in cancer: on one hand it prevents carcinogenesis; on the other hand it confers an advantage to cancer cells to survive under prohibitive conditions. Autophagy has been implicated in ovarian cancer aggressiveness and in ovarian cancer cell chemoresistance and dormancy. Small noncoding microRNAs (miRNAs) regulate gene expression at posttranscriptional level, thus playing an important role in many aspects of cell pathophysiology, including cancerogenesis and cancer progression. Certain miRNAs have recently emerged as important epigenetic modulators of autophagy in cancer cells. The mRNA of several autophagy-related genes contains, in fact, the target sequence for miRNAs belonging to different families, with either oncosuppressive or oncogenic activities. MiRNA profiling studies have identified some miRNAs aberrantly expressed in ovarian cancer tissues that can impact autophagy. In addition, plasma and stroma cell-derived miRNAs in tumour-bearing patients can regulate the expression of relevant autophagy genes in cancer cells. The present review focuses on the potential implications of miRNAs regulating autophagy in ovarian cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
17
|
Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 2013; 19:428-46. [DOI: 10.1016/j.molmed.2013.04.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022]
|
18
|
Chen RJ, Tsai SJ, Ho CT, Pan MH, Ho YS, Wu CH, Wang YJ. Chemopreventive effects of pterostilbene on urethane-induced lung carcinogenesis in mice via the inhibition of EGFR-mediated pathways and the induction of apoptosis and autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11533-11541. [PMID: 23113763 DOI: 10.1021/jf302778a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer deaths globally. Due to the lack of successful chemopreventive agents for lung cancer, there is an emerging need to evaluate new and effective agents for lung cancer prevention. Pterostilbene, a naturally occurring analogue of resveratrol, has been reported to be an effective chemopreventive agent against many cancers. The aim of this study is to investigate the chemopreventive effects of pterostilbene in urethane-induced murine lung tumors. Pretreatment with pterostilbene at 50 or 250 mg/kg significantly reduced tumor multiplicity by 26 and 49%, respectively. Pterostilbene also significantly inhibited tumor volume by 25 and 34% and decreased the tumor burden per mouse by 45 and 63%, respectively. The mechanisms by which pterostilbene suppresses lung tumorigenesis have been investigated in lung tissues and homogenates. The results indicate that the pterostilbene-mediated chemopreventive effects in vivo were a result of the inhibition of epidermal growth factor receptor (EGFR) and its downstream pathways, leading to retarded cell cycle progression, and of the induction of apoptosis and autophagy during urethane-induced lung tumorigenesis.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Naves T, Battu S, Jauberteau MO, Cardot PJ, Ratinaud MH, Verdier M. Autophagic Subpopulation Sorting by Sedimentation Field-Flow Fractionation. Anal Chem 2012; 84:8748-55. [DOI: 10.1021/ac302032v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Thomas Naves
- Université de Limoges, Institut 145 GEIST, EA 3842 “Homéostasie
cellulaire et pathologies”, Faculté de Médecine,
2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Serge Battu
- Université de Limoges, Institut 145 GEIST, EA 3842 “Homéostasie
cellulaire et pathologies”, Faculté de Médecine,
2 rue du Dr Marcland, 87025 Limoges Cedex, France
- Faculté de Pharmacie, Laboratoire de Chimie Analytique et Bromatologie, 87025
Limoges Cedex, France
| | - Marie-Odile Jauberteau
- Université de Limoges, Institut 145 GEIST, EA 3842 “Homéostasie
cellulaire et pathologies”, Faculté de Médecine,
2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Philippe J.P. Cardot
- Université de Limoges, Institut 145 GEIST, EA 3842 “Homéostasie
cellulaire et pathologies”, Faculté de Médecine,
2 rue du Dr Marcland, 87025 Limoges Cedex, France
- Faculté de Pharmacie, Laboratoire de Chimie Analytique et Bromatologie, 87025
Limoges Cedex, France
| | - Marie-Hélène Ratinaud
- Université de Limoges, Institut 145 GEIST, EA 3842 “Homéostasie
cellulaire et pathologies”, Faculté de Médecine,
2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Mireille Verdier
- Université de Limoges, Institut 145 GEIST, EA 3842 “Homéostasie
cellulaire et pathologies”, Faculté de Médecine,
2 rue du Dr Marcland, 87025 Limoges Cedex, France
| |
Collapse
|
20
|
Involvement of autophagy in ovarian cancer: a working hypothesis. J Ovarian Res 2012; 5:22. [PMID: 22974323 PMCID: PMC3506510 DOI: 10.1186/1757-2215-5-22] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/11/2012] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a lysosomal-driven catabolic process that contributes to preserve cell and tissue homeostases through the regular elimination of damaged, aged and redundant self-constituents. In normal cells, autophagy protects from DNA mutation and carcinogenesis by preventive elimination of pro-oxidative mitochondria and protein aggregates. Mutations in oncogenes and oncosuppressor genes dysregulate autophagy. Up-regulated autophagy may confer chemo- and radio-resistance to cancer cells, and also a pro-survival advantage in cancer cells experiencing oxygen and nutrient shortage. This fact is the rationale for using autophagy inhibitors along with anti-neoplastic therapies. Yet, aberrant hyper-induction of autophagy can lead to cell death, and this phenomenon could also be exploited for cancer therapy. The actual level of autophagy in the cancer cell is greatly affected by vascularization, inflammation, and stromal cell infiltration. In addition, small non-coding microRNAs have recently emerged as important epigenetic modulators of autophagy. The present review focuses on the potential involvement of macroautophagy, and on its genetic and epigenetic regulation, in ovarian cancer pathogenesis and progression.
Collapse
|
21
|
Sacco F, Gherardini PF, Paoluzi S, Saez-Rodriguez J, Helmer-Citterich M, Ragnini-Wilson A, Castagnoli L, Cesareni G. Mapping the human phosphatome on growth pathways. Mol Syst Biol 2012; 8:603. [PMID: 22893001 PMCID: PMC3435503 DOI: 10.1038/msb.2012.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023] Open
Abstract
Large-scale siRNA screenings allow linking the function of poorly characterized genes to phenotypic readouts. According to this strategy, genes are associated with a function of interest if the alteration of their expression perturbs the phenotypic readouts. However, given the intricacy of the cell regulatory network, the mapping procedure is low resolution and the resulting models provide little mechanistic insights. We have developed a new strategy that combines multiparametric analysis of cell perturbation with logic modeling to achieve a more detailed functional mapping of human genes onto complex pathways. A literature-derived optimized model is used to infer the cell activation state following upregulation or downregulation of the model entities. By matching this signature with the experimental profile obtained in the high-throughput siRNA screening it is possible to infer the target of each protein, thus defining its 'entry point' in the network. By this novel approach, 41 phosphatases that affect key growth pathways were identified and mapped onto a human epithelial cell-specific growth model, thus providing insights into the mechanisms underlying their function.
Collapse
Affiliation(s)
- Francesca Sacco
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | | | - Serena Paoluzi
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | | | | | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- High-throughput Microscopy Facility, Department of Translational and Cellular Pharmacology, Consorzio Mario Negri Sud, SM Imbaro, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
McCarty MF. mTORC1 activity as a determinant of cancer risk--rationalizing the cancer-preventive effects of adiponectin, metformin, rapamycin, and low-protein vegan diets. Med Hypotheses 2011; 77:642-8. [PMID: 21862237 DOI: 10.1016/j.mehy.2011.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 07/01/2011] [Indexed: 02/07/2023]
Abstract
Increased plasma levels of adiponectin, metformin therapy of diabetes, rapamycin administration in transplant patients, and lifelong consumption of low-protein plant-based diets have all been linked to decreased risk for various cancers. These benefits may be mediated, at least in part, by down-regulated activity of the mTORC1 complex, a key regulator of protein translation. By boosting the effective availability of the translation initiator eIF4E, mTORC1 activity promotes the translation of a number of "weak" mRNAs that code for proteins, often up-regulated in cancer, that promote cellular proliferation, invasiveness, and angiogenesis, and that abet cancer promotion and chemoresistance by opposing apoptosis. Measures which inhibit eIF4E activity, either directly or indirectly, may have utility not only for cancer prevention, but also for the treatment of many cancers in which eIF4E drives malignancy. Since eIF4E is overexpressed in many cancers, strategies which target eIF4E directly--some of which are now being assessed clinically--may have the broadest efficacy in this regard. Many of the "weak" mRNAs coding for proteins that promote malignant behavior or chemoresistance are regulated transcriptionally by NF-kappaB and/or Stat3, which are active in a high proportion of cancers; thus, regimens concurrently targeting eIF4E, NF-kappaB, and Stat3 may suppress these proteins at both the transcriptional and translational levels, potentially achieving a very marked reduction in their expression.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
23
|
Tameno H, Chano T, Ikebuchi K, Ochi Y, Arai A, Kishimoto M, Shimada T, Hisa Y, Okabe H. Prognostic significance of RB1-inducible coiled-coil 1 in salivary gland cancers. Head Neck 2011; 34:674-80. [PMID: 21717524 DOI: 10.1002/hed.21797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2011] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hitosuke Tameno
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kapty J, Murray D, Mercer J. Radiotracers for noninvasive molecular imaging of tumor cell death. Cancer Biother Radiopharm 2011; 25:615-28. [PMID: 21204755 DOI: 10.1089/cbr.2010.0793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The need to monitor cancer therapy-induced cellular and tissue changes using noninvasive imaging techniques continues to stimulate both basic and clinical research. Monitoring changes in cellular proliferative capacity that occur after treatment with radiation and/or chemotherapy has the potential to provide longitudinal information on the cellular dynamics of tumors before, during, and after therapeutic intervention. Cells can lose their reproductive potential through one of several mechanisms, including apoptosis and autophagy (which are forms of programmed cell death), premature senescence, or necrosis. When a tumor responds to therapy, current imaging methods do not provide information about the exact mechanism of cell death executed. We are now beginning to develop the molecular imaging tools that will enable us to noninvasively image cell death mechanisms both in experimental models and in the clinical cancer environment. Studies with these imaging tools will contribute to a better understanding of therapeutic responses and assist in the design and evaluation of more effective treatments. This review examines the state-of-the-art in the use of (radio)tracers for the purpose of imaging mechanisms of tumor cell inactivation (cell death) in animal models and in clinical trials.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
25
|
Tong X, Smith KA, Pelling JC. Apigenin, a chemopreventive bioflavonoid, induces AMP-activated protein kinase activation in human keratinocytes. Mol Carcinog 2011; 51:268-79. [PMID: 21538580 DOI: 10.1002/mc.20793] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/01/2011] [Accepted: 04/08/2011] [Indexed: 12/19/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Although AMPK is traditionally thought to play a major role in the regulation of cellular lipid and protein metabolism, recent discoveries reveal that AMPK inhibits mammalian target of rapamycin (mTOR) signaling and connects with several tumor suppressors such as liver kinase B1 (LKB1), p53, and tuberous sclerosis complex 2 (TSC2), indicating that AMPK may be a potential target for cancer prevention and treatment. For the first time, we demonstrated that apigenin, a naturally occurring nonmutagenic flavonoid, induced AMPK activation in human keratinocytes (both cultured HaCaT cell line and primary normal human epidermal keratinocytes). Through experiments with over-expression of constitutively active Akt and knockdown of LKB1 expression by siRNAs, we further found that the activation of AMPK by apigenin was not dependent on its inhibition of Akt, and was independent of the activation of upstream kinase LKB1. Instead, another upstream kinase of AMPK, calcium/calmodulin-dependent protein kinase kinase-β (CaMKKβ), was required for apigenin-induced AMPK activation. We have demonstrated that knockdown of CaMKKβ expression by siRNA or inhibition of CaMKKβ activity by either CaMKK inhibitor STO-609 or BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; a chelator of intracellular Ca(2+)) prevented apigenin-induced AMPK activation. Apigenin-induced AMPK activation inhibited mTOR signaling and further induced autophagy in human keratinocytes. These results suggest that one of the mechanisms by which apigenin exerts its chemopreventive action may be through activation of AMPK and induction of autophagy in human keratinocytes.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
26
|
Mechanism of autophagy induction and role of autophagy in antagonizing mitomycin C-induced cell apoptosis in silibinin treated human melanoma A375-S2 cells. Eur J Pharmacol 2011; 659:7-14. [DOI: 10.1016/j.ejphar.2010.12.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/20/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022]
|
27
|
|
28
|
Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3. [PMID: 20716941 PMCID: PMC2952075 DOI: 10.4161/oxim.3.3.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autophagy is a catalytic process of the bulk degradation of long-lived cellular components, ultimately resulting in lysosomal digestion within mature cytoplasmic compartments known as autophagolysosomes. Autophagy serves many functions in the cell, including maintaining cellular homeostasis, a means of cell survival during stress (e.g., nutrient deprivation or starvation) or conversely as a mechanism for cell death. Increased reactive oxygen species (ROS) production and the resulting oxidative cell stress that occurs in many disease states has been shown to induce autophagy. The following review focuses on the roles that autophagy plays in response to the ROS generated in several diseases.
Collapse
Affiliation(s)
- Eric E Essick
- Whitaker Cardiovascular Institute; Boston University School of Medicine; Boston, MA USA
| | - Flora Sam
- Whitaker Cardiovascular Institute; Boston University School of Medicine; Boston, MA USA,Cardiovascular Section and Evans Department of Medicine; Boston University School of Medicine; Boston, MA USA
| |
Collapse
|