1
|
Zhao G, Jia M, Zhu S, Ren H, Wang G, Xin G, Sun M, Wang X, Lin Q, Jiang Q, Zhang C. Mitotic ER-mitochondria contact enhances mitochondrial Ca 2+ influx to promote cell division. Cell Rep 2024; 43:114794. [PMID: 39342616 DOI: 10.1016/j.celrep.2024.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Cell division is tightly regulated and requires an expanded energy supply. However, how this energy is generated remains unclear. Here, we establish a correlation between two mitochondrial Ca2+ influx events and ATP production during mitosis. While both events promote ATP production during mitosis, the second event, the Ca2+ influx surge, is substantial. To facilitate this Ca2+ influx surge, the lamin B receptor (LBR) organizes a mitosis-specific endoplasmic reticulum (ER)-mitochondrial contact site (ERMCS), creating a rapid Ca2+ transport pathway. LBR acts as a tether, connecting the ER Ca2+ release channel IP3R with the mitochondrial VDAC2. Depletion of LBR disrupts the Ca2+ influx surge, reduces ATP production, and postpones the metaphase-anaphase transition and subsequent cell division. These findings provide insight into the mechanisms underlying mitotic energy production and supply required for cell proliferation.
Collapse
Affiliation(s)
- Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicong Zhu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mengjie Sun
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiangyang Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Fujii J, Imai H. Oxidative Metabolism as a Cause of Lipid Peroxidation in the Execution of Ferroptosis. Int J Mol Sci 2024; 25:7544. [PMID: 39062787 PMCID: PMC11276677 DOI: 10.3390/ijms25147544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis is a type of nonapoptotic cell death that is characteristically caused by phospholipid peroxidation promoted by radical reactions involving iron. Researchers have identified many of the protein factors that are encoded by genes that promote ferroptosis. Glutathione peroxidase 4 (GPX4) is a key enzyme that protects phospholipids from peroxidation and suppresses ferroptosis in a glutathione-dependent manner. Thus, the dysregulation of genes involved in cysteine and/or glutathione metabolism is closely associated with ferroptosis. From the perspective of cell dynamics, actively proliferating cells are more prone to ferroptosis than quiescent cells, which suggests that radical species generated during oxygen-involved metabolism are responsible for lipid peroxidation. Herein, we discuss the initial events involved in ferroptosis that dominantly occur in the process of energy metabolism, in association with cysteine deficiency. Accordingly, dysregulation of the tricarboxylic acid cycle coupled with the respiratory chain in mitochondria are the main subjects here, and this suggests that mitochondria are the likely source of both radical electrons and free iron. Since not only carbohydrates, but also amino acids, especially glutamate, are major substrates for central metabolism, dealing with nitrogen derived from amino groups also contributes to lipid peroxidation and is a subject of this discussion.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Hirotaka Imai
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
- Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
4
|
Jadav N, Velamoor S, Huang D, Cassin L, Hazelton N, Eruera AR, Burga LN, Bostina M. Beyond the surface: Investigation of tumorsphere morphology using volume electron microscopy. J Struct Biol 2023; 215:108035. [PMID: 37805154 DOI: 10.1016/j.jsb.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The advent of volume electron microscopy (vEM) has provided unprecedented insights into cellular and subcellular organization, revolutionizing our understanding of cancer biology. This study presents a previously unexplored comparative analysis of the ultrastructural disparities between cancer cells cultured as monolayers and tumorspheres. By integrating a robust workflow that incorporates high-pressure freezing followed by freeze substitution (HPF/FS), serial block face scanning electron microscopy (SBF-SEM), manual and deep learning-based segmentation, and statistical analysis, we have successfully generated three-dimensional (3D) reconstructions of monolayer and tumorsphere cells, including their subcellular organelles. Our findings reveal a significant degree of variation in cellular morphology in tumorspheres. We observed the increased prevalence of nuclear envelope invaginations in tumorsphere cells compared to monolayers. Furthermore, we detected a diverse range of mitochondrial morphologies exclusively in tumorsphere cells, as well as intricate cellular interconnectivity within the tumorsphere architecture. These remarkable ultrastructural differences emphasize the use of tumorspheres as a superior model for cancer research due to their relevance to in vivo conditions. Our results strongly advocate for the utilization of tumorsphere cells in cancer research studies, enhancing the precision and relevance of experimental outcomes, and ultimately accelerating therapeutic advancements.
Collapse
Affiliation(s)
- Nickhil Jadav
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sailakshmi Velamoor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Huang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Léna Cassin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Niki Hazelton
- Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Jeon M, Schmitt DL, Kyoung M, An S. Size-Specific Modulation of a Multienzyme Glucosome Assembly during the Cell Cycle. ACS BIO & MED CHEM AU 2023; 3:461-470. [PMID: 37876499 PMCID: PMC10591302 DOI: 10.1021/acsbiomedchemau.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Enzymes in glucose metabolism have been subjected to numerous studies, revealing the importance of their biological roles during the cell cycle. However, due to the lack of viable experimental strategies for measuring enzymatic activities particularly in living human cells, it has been challenging to address whether their enzymatic activities and thus anticipated glucose flux are directly associated with cell cycle progression. It has remained largely elusive how human cells regulate glucose metabolism at a subcellular level to meet the metabolic demands during the cell cycle. Meanwhile, we have characterized that rate-determining enzymes in glucose metabolism are spatially organized into three different sizes of multienzyme metabolic assemblies, termed glucosomes, to regulate the glucose flux between energy metabolism and building block biosynthesis. In this work, we first determined using cell synchronization and flow cytometric techniques that enhanced green fluorescent protein-tagged phosphofructokinase is adequate as an intracellular biomarker to evaluate the state of glucose metabolism during the cell cycle. We then applied fluorescence single-cell imaging strategies and discovered that the percentage of Hs578T cells showing small-sized glucosomes is drastically changed during the cell cycle, whereas the percentage of cells with medium-sized glucosomes is significantly elevated only in the G1 phase, but the percentage of cells showing large-sized glucosomes is barely or minimally altered along the cell cycle. Should we consider our previous localization-function studies that showed assembly size-dependent metabolic roles of glucosomes, this work strongly suggests that glucosome sizes are modulated during the cell cycle to regulate glucose flux between glycolysis and building block biosynthesis. Therefore, we propose the size-specific modulation of glucosomes as a behind-the-scenes mechanism that may explain functional association of glucose metabolism with the cell cycle and, thereby, their metabolic significance in human cell biology.
Collapse
Affiliation(s)
- Miji Jeon
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Danielle L. Schmitt
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Minjoung Kyoung
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Program
in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Songon An
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Program
in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Cheung AHK, Hui CHL, Wong KY, Liu X, Chen B, Kang W, To KF. Out of the cycle: Impact of cell cycle aberrations on cancer metabolism and metastasis. Int J Cancer 2023; 152:1510-1525. [PMID: 36093588 DOI: 10.1002/ijc.34288] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The use of cell cycle inhibitors has necessitated a better understanding of the cell cycle in tumor biology to optimize the therapeutic approach. Cell cycle aberrations are common in cancers, and it is increasingly acknowledged that these aberrations exert oncogenic effects beyond the cell cycle. Multiple facets such as cancer metabolism, immunity and metastasis are also affected, all of which are beyond the effect of cell proliferation alone. This review comprehensively summarized the important recent findings and advances in these interrelated processes. In cancer metabolism, cell cycle regulators can modulate various pathways in aerobic glycolysis, glucose uptake and gluconeogenesis, mainly through transcriptional regulation and kinase activities. Amino acid metabolism is also regulated through cell cycle progression. On cancer metastasis, metabolic plasticity, immune evasion, tumor microenvironment adaptation and metastatic site colonization are intricately related to the cell cycle, with distinct regulatory mechanisms at each step of invasion and dissemination. Throughout the synthesis of current understanding, knowledge gaps and limitations in the literature are also highlighted, as are new therapeutic approaches such as combinational therapy and challenges in tackling emerging targeted therapy resistance. A greater understanding of how the cell cycle modulates diverse aspects of cancer biology can hopefully shed light on identifying new molecular targets by harnessing the vast potential of the cell cycle.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
8
|
Cell Cycle Regulation by Integrin-Mediated Adhesion. Cells 2022; 11:cells11162521. [PMID: 36010598 PMCID: PMC9406542 DOI: 10.3390/cells11162521] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cell cycle and cell adhesion are two interdependent cellular processes regulating each other, reciprocally, in every cell cycle phase. The cell adhesion to the extracellular matrix (ECM) via integrin receptors triggers signaling pathways required for the cell cycle progression; the passage from the G1 to S phase and the completion of cytokinesis are the best-understood events. Growing evidence, however, suggests more adhesion-dependent regulatory aspects of the cell cycle, particularly during G2 to M transition and early mitosis. Conversely, the cell cycle machinery regulates cell adhesion in manners recently shown driven mainly by cyclin-dependent kinase 1 (CDK1). This review summarizes the recent findings regarding the role of integrin-mediated cell adhesion and its downstream signaling components in regulating the cell cycle, emphasizing the cell cycle progression through the G2 and early M phases. Further investigations are required to raise our knowledge about the molecular mechanisms of crosstalk between cell adhesion and the cell cycle in detail.
Collapse
|
9
|
Schatton D, Di Pietro G, Szczepanowska K, Veronese M, Marx MC, Braunöhler K, Barth E, Müller S, Giavalisco P, Langer T, Trifunovic A, Rugarli EI. CLUH controls astrin-1 expression to couple mitochondrial metabolism to cell cycle progression. eLife 2022; 11:74552. [PMID: 35559794 PMCID: PMC9135405 DOI: 10.7554/elife.74552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH (clustered mitochondria homolog) is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism, and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.
Collapse
Affiliation(s)
| | - Giada Di Pietro
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| | - Matteo Veronese
- Institute for Genetics, University of Cologne, Cologne, Germany
| | | | | | - Esther Barth
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Thomas Langer
- Langer Department, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Lee JH, Mosher EP, Lee YS, Bumpus NN, Berger JM. Control of topoisomerase II activity and chemotherapeutic inhibition by TCA cycle metabolites. Cell Chem Biol 2022; 29:476-489.e6. [PMID: 34529934 PMCID: PMC8913808 DOI: 10.1016/j.chembiol.2021.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
Topoisomerase II (topo II) is essential for disentangling newly replicated chromosomes. DNA unlinking involves the physical passage of one duplex through another and depends on the transient formation of double-stranded DNA breaks, a step exploited by frontline chemotherapeutics to kill cancer cells. Although anti-topo II drugs are efficacious, they also elicit cytotoxic side effects in normal cells; insights into how topo II is regulated in different cellular contexts is essential to improve their targeted use. Using chemical fractionation and mass spectrometry, we have discovered that topo II is subject to metabolic control through the TCA cycle. We show that TCA metabolites stimulate topo II activity in vitro and that levels of TCA flux modulate cellular sensitivity to anti-topo II drugs in vivo. Our work reveals an unanticipated connection between the control of DNA topology and cellular metabolism, a finding with ramifications for the clinical use of anti-topo II therapies.
Collapse
Affiliation(s)
- Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young-Sam Lee
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Zhao H, Pan X. Mitochondrial Ca 2+ and cell cycle regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:171-207. [PMID: 34253295 DOI: 10.1016/bs.ircmb.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been demonstrated for more than 40 years that intracellular calcium (Ca2+) controls a variety of cellular functions, including mitochondrial metabolism and cell proliferation. Cytosolic Ca2+ fluctuation during key stages of the cell cycle can lead to mitochondrial Ca2+ uptake and subsequent activation of mitochondrial oxidative phosphorylation and a range of signaling. However, the relationship between mitochondrial Ca2+ and cell cycle progression has long been neglected because the molecule responsible for Ca2+ uptake has been unknown. Recently, the identification of the mitochondrial Ca2+ uniporter (MCU) has led to key advances. With improved Ca2+ imaging and detection, effects of MCU-mediated mitochondrial Ca2+ have been observed at different stages of the cell cycle. Elevated Ca2+ signaling boosts ATP and ROS production, remodels cytosolic Ca2+ pathways and reprograms cell fate-determining networks. These findings suggest that manipulating mitochondrial Ca2+ signaling may serve as a potential strategy in the control of many crucial biological events, such as tumor development and cell division in hematopoietic stem cells (HSCs). In this review, we summarize the current understanding of the role of mitochondrial Ca2+ signaling during different stages of the cell cycle and highlight the potential physiological and pathological significance of mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
- Haixin Zhao
- State Key Laboratory of Experimental Haematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
12
|
Liu L, Ma D, Zhuo L, Pang X, You J, Feng J. Progress and Promise of Nur77-based Therapeutics for Central Nervous System Disorders. Curr Neuropharmacol 2021; 19:486-497. [PMID: 32504502 PMCID: PMC8206462 DOI: 10.2174/1570159x18666200606231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022] Open
Abstract
Nur77 belongs to the NR4A subgroup of the nuclear receptor superfamily. Unlike other nuclear receptors, a natural ligand for Nur77 has not been identified yet. However, a few small molecules can interact with this receptor and induce a conformational change to mediate its activity. The expression and activation of Nur77 can be rapidly increased using various physiological and pathological stimuli. In vivo and in vitro studies have demonstrated its regulatory role in tissues and cells of multiple systems by means of participation in cell differentiation, apoptosis, metabolism, mitochondrial homeostasis, and other processes. Although research on Nur77 in the pathophysiology of the central nervous system (CNS) is currently limited, the present data support the fact that Nur77 is involved in many neurological disorders such as stroke, multiple sclerosis, Parkinson’s disease. This indicates that activation of Nur77 has considerable potential in treating these diseases. This review summarizes the regulatory mechanisms of Nur77 in CNS diseases and presents available evidence for its potential as targeted therapy, especially for cerebrovascular and inflammation-related CNS diseases.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - La Zhuo
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xinyuan Pang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jiulin You
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| |
Collapse
|
13
|
Li B, Wang Z, Hong J, Che Y, Chen R, Hu Z, Hu X, Wu Q, Hu J, Zhang M. Iron deficiency promotes aortic medial degeneration via destructing cytoskeleton of vascular smooth muscle cells. Clin Transl Med 2021; 11:e276. [PMID: 33463069 PMCID: PMC7805404 DOI: 10.1002/ctm2.276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Aortic dissection (AD) and aortic aneurysm (AA) are critical illnesses with an unclear pathogenetic mechanism that seriously threaten human life. Aortic medial degeneration (AMD) is the main pathological feature of AD and AA. Diseases of iron metabolism can cause a variety of physiological dysfunctions. In this study, we aimed to clarify the state of iron metabolism in patients with AD and AA, and to explore the effect of iron metabolism on AMD. METHODS A total of 200 patients with AD or AA, and 60 patients with hypertension were included in the study. Blood samples were drawn immediately when patients were admitted to the hospital. Aortic specimens from patients with Stanford type A AD were obtained at the time of surgery. The status of iron metabolism in the circulation and the aortic wall was analyzed. In addition, apolipoprotein E knockout mice were fed chow with a different iron content, and angiotensin II (Ang II) was used to induce AMD. Furthermore, transferrin receptor 1 knockout (TFR1-/-) mice were used to study the effects of iron deficiency (ID) on aortic development, to observe the effects of different iron metabolism status on the formation of AMD in mice, and to explore the cytoskeleton of vascular smooth muscle cells (VSMCs) under different iron metabolism. RESULTS Patients with AMD were iron deficient. ID is associated with the development of AMD in hypertensive patients. Iron-deficient feeding combined with Ang II pumping promoted the formation of AMD and significantly shortened the survival time of mice. ID significantly impaired the cytoskeleton of VSMCs. CONCLUSIONS Our results highlighted that ID was associated with the formation of AMD in patients with hypertension. In this study, we identified a novel mechanism behind VSMCs dysfunction that was induced by ID, thereby suggesting iron homeostasis as a future precaution in patients with hypertension based on its important role in the maintenance of VSMC function.
Collapse
Affiliation(s)
- Bowen Li
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhiwei Wang
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Junmou Hong
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yanjia Che
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ruoshi Chen
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhipeng Hu
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoping Hu
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Wu
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Junxia Hu
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Min Zhang
- Department of Cardiovascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Surgery LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
14
|
Blasco N, Beà A, Barés G, Girón C, Navaridas R, Irazoki A, López-Lluch G, Zorzano A, Dolcet X, Llovera M, Sanchis D. Involvement of the mitochondrial nuclease EndoG in the regulation of cell proliferation through the control of reactive oxygen species. Redox Biol 2020; 37:101736. [PMID: 33032073 PMCID: PMC7552104 DOI: 10.1016/j.redox.2020.101736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The apoptotic nuclease EndoG is involved in mitochondrial DNA replication. Previous results suggested that, in addition to regulate cardiomyocyte hypertrophy, EndoG could be involved in cell proliferation. Here, by using in vivo and cell culture models, we investigated the role of EndoG in cell proliferation. Genetic deletion of Endog both in vivo and in cultured cells or Endog silencing in vitro induced a defect in rodent and human cell proliferation with a tendency of cells to accumulate in the G1 phase of cell cycle and increased reactive oxygen species (ROS) production. The defect in cell proliferation occurred with a decrease in the activity of the AKT/PKB-GSK-3β-Cyclin D axis and was reversed by addition of ROS scavengers. EndoG deficiency did not affect the expression of ROS detoxifying enzymes, nor the expression of the electron transport chain complexes and oxygen consumption rate. Addition of the micropeptide Humanin to EndoG-deficient cells restored AKT phosphorylation and proliferation without lowering ROS levels. Thus, our results show that EndoG is important for cell proliferation through the control of ROS and that Humanin can restore cell division in EndoG-deficient cells and counteracts the effects of ROS on AKT phosphorylation. Reduced expression of the mitochondrial nuclease EndoG induces ROS production. EndoG deficiency hampers cell proliferation through ROS-dependent signaling. Increased ROS in EndoG-deficient cells limits the Akt/Gsk3/cyclin axis activity. Humanin sustains proliferation despite high ROS levels induced by Endog deficiency. Romo-1 deficiency reduces cell proliferation independently of EndoG and ROS.
Collapse
Affiliation(s)
- Natividad Blasco
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Aida Beà
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Gisel Barés
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Cristina Girón
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, CIBERONC, Spain
| | - Andrea Irazoki
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) & CIBERDEM & Departament de Bioquímica I Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Guillermo López-Lluch
- Andalusian Center of Developmental Biology, Pablo de Olavide University, Sevilla, 41013, CIBERER, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) & CIBERDEM & Departament de Bioquímica I Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, CIBERONC, Spain
| | - Marta Llovera
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Daniel Sanchis
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain.
| |
Collapse
|
15
|
Spurlock B, Tullet JMA, Hartman J, Mitra K. Interplay of mitochondrial fission-fusion with cell cycle regulation: Possible impacts on stem cell and organismal aging. Exp Gerontol 2020; 135:110919. [PMID: 32220593 PMCID: PMC7808294 DOI: 10.1016/j.exger.2020.110919] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Declining mitochondrial function and homeostasis is a hallmark of aging. It is appreciated that the role of mitochondria is much more complex than generating reactive oxygen species to cause aging-related tissue damage. More recent literature describes that the ability of mitochondria to undergo fission or fusion events with each other impacts aging processes. A dynamic balance of mitochondrial fission and fusion events is required to sustain critical cellular functions including cell cycle. Specifically, cell cycle regulators modulate molecular activities of the mitochondrial fission (and fusion) machinery towards regulating cell cycle progression. In this review, we discus literature leading to our understanding on how shifts in the dynamic balance of mitochondrial fission and fusion can modulate progression through, exit from, and re-entry to the cell cycle or in undergoing senescence. Importantly, core regulators of mitochondrial fission or fusion are emerging as crucial stem cell regulators. We discuss the implication of such regulation in stem cells in the context of aging, given that aberrations in adult stem cells promote aging. We also propose a few hypotheses that may provide direction for further understanding about the roles of mitochondrial fission-fusion dynamics in aging biology.
Collapse
Affiliation(s)
- B. Spurlock
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - JMA Tullet
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - J.L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - K. Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA,Corresponding author. (K. Mitra)
| |
Collapse
|
16
|
Hartl J, Kiefer P, Kaczmarczyk A, Mittelviefhaus M, Meyer F, Vonderach T, Hattendorf B, Jenal U, Vorholt JA. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat Metab 2020; 2:153-166. [PMID: 32090198 PMCID: PMC7035108 DOI: 10.1038/s42255-019-0166-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Cell cycle progression requires the coordination of cell growth, chromosome replication, and division. Consequently, a functional cell cycle must be coupled with metabolism. However, direct measurements of metabolome dynamics remained scarce, in particular in bacteria. Here, we describe an untargeted metabolomics approach with synchronized Caulobacter crescentus cells to monitor the relative abundance changes of ~400 putative metabolites as a function of the cell cycle. While the majority of metabolite pools remains homeostatic, ~14% respond to cell cycle progression. In particular, sulfur metabolism is redirected during the G1-S transition, and glutathione levels periodically change over the cell cycle with a peak in late S phase. A lack of glutathione perturbs cell size by uncoupling cell growth and division through dysregulation of KefB, a K+/H+ antiporter. Overall, we here describe the impact of the C. crescentus cell cycle progression on metabolism, and in turn relate glutathione and potassium homeostasis to timely cell division.
Collapse
Affiliation(s)
- Johannes Hartl
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland.
| | - Patrick Kiefer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | | | | | - Fabian Meyer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Thomas Vonderach
- ETH Zurich, Laboratory of Inorganic Chemistry, Zurich, Switzerland
| | - Bodo Hattendorf
- ETH Zurich, Laboratory of Inorganic Chemistry, Zurich, Switzerland
| | - Urs Jenal
- Biozentrum of the University of Basel, Basel, Switzerland
| | | |
Collapse
|
17
|
PPM1K Regulates Hematopoiesis and Leukemogenesis through CDC20-Mediated Ubiquitination of MEIS1 and p21. Cell Rep 2019; 23:1461-1475. [PMID: 29719258 DOI: 10.1016/j.celrep.2018.03.140] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
Abstract
In addition to acting as building blocks for biosynthesis, amino acids might serve as signaling regulators in various physiological and pathological processes. However, it remains unknown whether amino acid levels affect the activities of hematopoietic stem cells (HSCs). By using a genetically encoded fluorescent sensor of the intracellular levels of branched-chain amino acids (BCAAs), we could monitor the dynamics of BCAA metabolism in HSCs. A mitochondrial-targeted 2C-type Ser/Thr protein phosphatase (PPM1K) promotes the catabolism of BCAAs to maintain MEIS1 and p21 levels by decreasing the ubiquitination-mediated degradation controlled by the E3 ubiquitin ligase CDC20. PPM1K deficiency led to a notable decrease in MEIS1/p21 signaling to reduce the glycolysis and quiescence of HSCs, followed by a severe impairment in repopulation activities. Moreover, the deletion of Ppm1k dramatically extended survival in a murine leukemia model. These findings will enhance the current understanding of nutrient signaling in metabolism and function of stem cells.
Collapse
|
18
|
Grilo AL, Mantalaris A. A Predictive Mathematical Model of Cell Cycle, Metabolism, and Apoptosis of Monoclonal Antibody‐Producing GS–NS0 Cells. Biotechnol J 2019; 14:e1800573. [DOI: 10.1002/biot.201800573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- António L. Grilo
- Biological Systems Engineering Laboratory Department of Chemical Engineering Centre for Process Systems EngineeringImperial College LondonExhibition Road London SW7 2AZ UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory Department of Chemical Engineering Centre for Process Systems EngineeringImperial College LondonExhibition Road London SW7 2AZ UK
- Wallace H. Coulter Department of Biomedical Engineering Biomedical Systems Engineering LaboratoryGeorgia Institute of Technology950 Atlantic Drive Atlanta GA 30332 USA
| |
Collapse
|
19
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019; 20:536-546. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Several molecular mechanisms are involved in the regulation of skeletal muscle function. Among them, mitochondrial activity can be identified. The mitochondria is an important and essential organelle in the skeletal muscle that is involved in metabolic regulation and ATP production, which are two key elements of muscle contractibility and plasticity. Thus, in this review, we present the critical and recent antecedents regarding the mechanisms through which mitochondrial dysfunction can be involved in the generation and development of skeletal muscle pathologies, its contribution to detrimental functioning in skeletal muscle and its crosstalk with other typical signaling pathways related to muscle diseases. In addition, an update on the development of new strategies with therapeutic potential to inhibit the deleterious impact of mitochondrial dysfunction in skeletal muscle is discussed.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Laboratory of Integrative Physiopathology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.,Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine. Universidad d e Talca, Talca, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
20
|
Cao T, Liccardo D, LaCanna R, Zhang X, Lu R, Finck BN, Leigh T, Chen X, Drosatos K, Tian Y. Fatty Acid Oxidation Promotes Cardiomyocyte Proliferation Rate but Does Not Change Cardiomyocyte Number in Infant Mice. Front Cell Dev Biol 2019; 7:42. [PMID: 30968022 PMCID: PMC6440456 DOI: 10.3389/fcell.2019.00042] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Abstract
Cardiomyocyte proliferation accounts for the increase of cardiac muscle during fetal mammalian heart development. Shortly after birth, cardiomyocyte transits from hyperplasia to hypertrophic growth. Here, we have investigated the role of fatty acid β-oxidation in cardiomyocyte proliferation and hypertrophic growth during early postnatal life in mice. A transient wave of increased cell cycle activity of cardiomyocyte was observed between postnatal day 3 and 5, that proceeded as cardiomyocyte hypertrophic growth and maturation. Assessment of cardiomyocyte metabolism in neonatal mouse heart revealed a myocardial metabolic shift from glycolysis to fatty acid β-oxidation that coincided with the burst of cardiomyocyte cell cycle reactivation and hypertrophic growth. Inhibition of fatty acid β-oxidation metabolism in infant mouse heart delayed cardiomyocyte cell cycle exit, hypertrophic growth and maturation. By contrast, pharmacologic and genetic activation of PPARα, a major regulator of cardiac fatty acid metabolism, induced fatty acid β-oxidation and initially promoted cardiomyocyte proliferation rate in infant mice. As the cell cycle proceeded, activation of PPARα-mediated fatty acid β-oxidation promoted cardiomyocytes hypertrophic growth and maturation, which led to cell cycle exit. As a consequence, activation of PPARα-mediated fatty acid β-oxidation did not alter the total number of cardiomyocytes in infant mice. These findings indicate a unique role of fatty acid β-oxidation in regulating cardiomyocyte proliferation and hypertrophic growth in infant mice.
Collapse
Affiliation(s)
- Tongtong Cao
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Daniela Liccardo
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ryan LaCanna
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaoying Zhang
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Rong Lu
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Tani Leigh
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiongwen Chen
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
21
|
AMPK-mediated activation of MCU stimulates mitochondrial Ca 2+ entry to promote mitotic progression. Nat Cell Biol 2019; 21:476-486. [PMID: 30858581 DOI: 10.1038/s41556-019-0296-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The capacity of cells to alter bioenergetics in response to the demands of various biological processes is essential for normal physiology. The coordination of energy sensing and production with highly energy-demanding cellular processes, such as cell division, is poorly understood. Here, we show that a cell cycle-dependent mitochondrial Ca2+ transient connects energy sensing to mitochondrial activity for mitotic progression. The mitochondrial Ca2+ uniporter (MCU) mediates a rapid mitochondrial Ca2+ transient during mitosis. Inhibition of mitochondrial Ca2+ transients via MCU depletion causes spindle checkpoint-dependent mitotic delay. Cellular ATP levels drop during early mitosis, and the mitochondrial Ca2+ transients boost mitochondrial respiration to restore energy homeostasis. This is achieved through mitosis-specific MCU phosphorylation and activation by the mitochondrial translocation of energy sensor AMP-activated protein kinase (AMPK). Our results establish a critical role for AMPK- and MCU-dependent mitochondrial Ca2+ signalling in mitosis and reveal a mechanism of mitochondrial metabolic adaptation to acute cellular energy stress.
Collapse
|
22
|
Rhee J, Solomon LA, DeKoter RP. A role for ATP Citrate Lyase in cell cycle regulation during myeloid differentiation. Blood Cells Mol Dis 2019; 76:82-90. [PMID: 30853332 DOI: 10.1016/j.bcmd.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Differentiation of myeloid progenitor cells into macrophages is accompanied by increased PU.1 concentration and increasing cell cycle length, culminating in cell cycle arrest. Induction of PU.1 expression in a cultured myeloid cell line expressing low PU.1 concentration results in decreased levels of mRNA encoding ATP-Citrate Lyase (ACL) and cell cycle arrest. ACL is an essential enzyme for generating acetyl-CoA, a key metabolite for the first step in fatty acid synthesis and for histone acetylation. We hypothesized that ACL may play a role in cell cycle regulation in the myeloid lineage. In this study, we found that acetyl-CoA or acetate supplementation was sufficient to rescue cell cycle progression in cultured BN cells treated with an ACL inhibitor or induced for PU.1 expression. Acetyl-CoA supplementation was also sufficient to rescue cell cycle progression in BN cells treated with a fatty acid synthase (FASN) inhibitor. We demonstrated that acetyl-CoA was utilized in both fatty acid synthesis and histone acetylation pathways to promote proliferation. Finally, we found that Acly mRNA transcript levels decrease during normal macrophage differentiation from bone marrow precursors. Our results suggest that regulation of ACL activity is a potentially important point of control for cell cycle regulation in the myeloid lineage.
Collapse
Affiliation(s)
- Jess Rhee
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Lauren A Solomon
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada.
| |
Collapse
|
23
|
Liebmann M, Hucke S, Koch K, Eschborn M, Ghelman J, Chasan AI, Glander S, Schädlich M, Kuhlencord M, Daber NM, Eveslage M, Beyer M, Dietrich M, Albrecht P, Stoll M, Busch KB, Wiendl H, Roth J, Kuhlmann T, Klotz L. Nur77 serves as a molecular brake of the metabolic switch during T cell activation to restrict autoimmunity. Proc Natl Acad Sci U S A 2018; 115:E8017-E8026. [PMID: 30072431 PMCID: PMC6112725 DOI: 10.1073/pnas.1721049115] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T cells critically depend on reprogramming of metabolic signatures to meet the bioenergetic demands during activation and clonal expansion. Here we identify the transcription factor Nur77 as a cell-intrinsic modulator of T cell activation. Nur77-deficient T cells are highly proliferative, and lack of Nur77 is associated with enhanced T cell activation and increased susceptibility for T cell-mediated inflammatory diseases, such as CNS autoimmunity, allergic contact dermatitis and collagen-induced arthritis. Importantly, Nur77 serves as key regulator of energy metabolism in T cells, restricting mitochondrial respiration and glycolysis and controlling switching between different energy pathways. Transcriptional network analysis revealed that Nur77 modulates the expression of metabolic genes, most likely in close interaction with other transcription factors, especially estrogen-related receptor α. In summary, we identify Nur77 as a transcriptional regulator of T cell metabolism, which elevates the threshold for T cell activation and confers protection in different T cell-mediated inflammatory diseases.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Gene Expression Profiling
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Mitochondria/genetics
- Mitochondria/immunology
- Mitochondria/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Oxygen Consumption/immunology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/immunology
- Receptors, Estrogen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Julia Ghelman
- Institute of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Achmet I Chasan
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Shirin Glander
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Muenster, 48149 Muenster, Germany
| | - Martin Schädlich
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Muenster, 48149 Muenster, Germany
| | - Meike Kuhlencord
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Niklas M Daber
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Marc Beyer
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
- Molecular Immunology, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Michael Dietrich
- Department of Neurology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Muenster, 48149 Muenster, Germany
| | - Karin B Busch
- Institute for Molecular Cell Biology, University of Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany;
| |
Collapse
|
24
|
Krishna S, Laxman S. A minimal "push-pull" bistability model explains oscillations between quiescent and proliferative cell states. Mol Biol Cell 2018; 29:2243-2258. [PMID: 30044724 PMCID: PMC6249812 DOI: 10.1091/mbc.e18-01-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A minimal model for oscillating between quiescent and growth/proliferation states, dependent on the availability of a central metabolic resource, is presented. From the yeast metabolic cycles, metabolic oscillations in oxygen consumption are represented as transitions between quiescent and growth states. We consider metabolic resource availability, growth rates, and switching rates (between states) to model a relaxation oscillator explaining transitions between these states. This frustrated bistability model reveals a required communication between the metabolic resource that determines oscillations and the quiescent and growth state cells. Cells in each state reflect memory, or hysteresis of their current state, and “push–pull” cells from the other state. Finally, a parsimonious argument is made for a specific central metabolite as the controller of switching between quiescence and growth states. We discuss how an oscillator built around the availability of such a metabolic resource is sufficient to generally regulate oscillations between growth and quiescence through committed transitions.
Collapse
Affiliation(s)
- Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| |
Collapse
|
25
|
Dumoulin PC, Burleigh BA. Stress-Induced Proliferation and Cell Cycle Plasticity of Intracellular Trypanosoma cruzi Amastigotes. mBio 2018; 9:e00673-18. [PMID: 29991586 PMCID: PMC6050952 DOI: 10.1128/mbio.00673-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
The mammalian stages of the parasite Trypanosoma cruzi, the causative agent of Chagas disease, exhibit a wide host species range and extensive within-host tissue distribution. These features, coupled with the ability of the parasites to persist for the lifetime of the host, suggest an inherent capacity to tolerate changing environments. To examine this potential, we studied proliferation and cell cycle dynamics of intracellular T. cruzi amastigotes experiencing transient metabolic perturbation or drug pressure in the context of an infected mammalian host cell. Parasite growth plasticity was evident and characterized by rapid and reversible suppression of amastigote proliferation in response to exogenous nutrient restriction or exposure to metabolic inhibitors that target glucose metabolism or mitochondrial respiration. In most instances, reduced parasite proliferation was accompanied by the accumulation of amastigote populations in the G1 phase of the cell cycle, in a manner that was rapidly and fully reversible upon release from the metabolic block. Acute amastigote cell cycle changes at the G1 stage were similarly observed following exposure to sublethal concentrations of the first-line therapy drug, benznidazole, and yet, unlike the results seen with inhibitors of metabolism, recovery from exposure occurred at rates inversely proportional to the concentration of benznidazole. Our results show that T. cruzi amastigote growth plasticity is an important aspect of parasite adaptation to stress, including drug pressure, and is an important consideration for growth-based drug screening.IMPORTANCE Infection with the intracellular parasite Trypanosoma cruzi can cause debilitating and potentially life-threatening Chagas disease, where long-term parasite persistence is a critical determinant of clinical disease progression. Such tissue-resident T. cruzi amastigotes are refractory to immune-mediated clearance and to drug treatment, suggesting that in addition to exploiting immune avoidance mechanisms, amastigotes can facilitate their survival by adapting flexibly to diverse environmental stressors. We discovered that T. cruzi intracellular amastigotes exhibit growth plasticity as a strategy to adapt to and rebound from environmental stressors, including metabolic blockades, nutrient starvation, and sublethal exposure to the first-line therapy drug benznidazole. These findings have important implications for understanding parasite persistence, informing drug development, and interpreting drug efficacy.
Collapse
Affiliation(s)
- Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Sun L, Suo C, Li ST, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018; 1870:51-66. [PMID: 29959989 DOI: 10.1016/j.bbcan.2018.06.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
While metabolic reprogramming of cancer cells has long been considered from the standpoint of how and why cancer cells preferentially utilize glucose via aerobic glycolysis, the so-called Warburg Effect, the progress in the following areas during the past several years has substantially advanced our understanding of the rewired metabolic network in cancer cells that is intertwined with oncogenic signaling. First, in addition to the major nutrient substrates glucose and glutamine, cancer cells have been discovered to utilize a variety of unconventional nutrient sources for survival. Second, the deregulated biomass synthesis is intertwined with cell cycle progression to coordinate the accelerated progression of cancer cells. Third, the reciprocal regulation of cancer cell's metabolic alterations and the microenvironment, involving extensive host immune cells and microbiota, have come into view as critical mechanisms to regulate cancer progression. These and other advances are shaping the current and future paradigm of cancer metabolism.
Collapse
Affiliation(s)
- Linchong Sun
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shi-Ting Li
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ping Gao
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
27
|
Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell 2018; 173:1495-1507.e18. [PMID: 29706546 PMCID: PMC5998384 DOI: 10.1016/j.cell.2018.03.053] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/18/2018] [Accepted: 03/21/2018] [Indexed: 11/21/2022]
Abstract
Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.
Collapse
|
28
|
Shen Y, Sherman JW, Chen X, Wang R. Phosphorylation of CDC25C by AMP-activated protein kinase mediates a metabolic checkpoint during cell-cycle G 2/M-phase transition. J Biol Chem 2018; 293:5185-5199. [PMID: 29467227 PMCID: PMC5892595 DOI: 10.1074/jbc.ra117.001379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Indexed: 12/30/2022] Open
Abstract
From unicellular to multicellular organisms, cell-cycle progression is tightly coupled to biosynthetic and bioenergetic demands. Accumulating evidence has demonstrated the G1/S-phase transition as a key checkpoint where cells respond to their metabolic status and commit to replicating the genome. However, the mechanism underlying the coordination of metabolism and the G2/M-phase transition in mammalian cells remains unclear. Here, we show that the activation of AMP-activated protein kinase (AMPK), a highly conserved cellular energy sensor, significantly delays mitosis entry. The cell-cycle G2/M-phase transition is controlled by mitotic cyclin-dependent kinase complex (CDC2-cyclin B), which is inactivated by WEE1 family protein kinases and activated by the opposing phosphatase CDC25C. AMPK directly phosphorylates CDC25C on serine 216, a well-conserved inhibitory phosphorylation event, which has been shown to mediate DNA damage–induced G2-phase arrest. The acute induction of CDC25C or suppression of WEE1 partially restores mitosis entry in the context of AMPK activation. These findings suggest that AMPK-dependent phosphorylation of CDC25C orchestrates a metabolic checkpoint for the cell-cycle G2/M-phase transition.
Collapse
Affiliation(s)
- Yuqing Shen
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and.,the Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - John William Sherman
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| | - Xuyong Chen
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| | - Ruoning Wang
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| |
Collapse
|
29
|
Abstract
Metabolic changes are hallmarks of aging and genetic and pharmacologic alterations of relevant pathways can extend life span. In this review, we will outline how cellular biochemistry and energy homeostasis change during aging. We will highlight protein quality control, mitochondria, epigenetics, nutrient-sensing pathways, as well as the interplay between these systems with respect to their impact on cellular health.
Collapse
Affiliation(s)
- Andre Catic
- Huffington Center on Aging, Stem Cells and Regenerative Medicine Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
30
|
Wani NA, Zhang B, Teng KY, Barajas JM, Motiwala T, Hu P, Yu L, Brüschweiler R, Ghoshal K, Jacob ST. Reprograming of Glucose Metabolism by Zerumbone Suppresses Hepatocarcinogenesis. Mol Cancer Res 2017; 16:256-268. [PMID: 29187559 DOI: 10.1158/1541-7786.mcr-17-0304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent and highly aggressive liver malignancy with limited therapeutic options. Here, the therapeutic potential of zerumbone, a sesquiterpene derived from the ginger plant Zingiber zerumbet, against HCC was explored. Zerumbone inhibited proliferation and clonogenic survival of HCC cells in a dose-dependent manner by arresting cells at the G2-M phase and inducing apoptosis. To elucidate the underlying molecular mechanisms, a phosphokinase array was performed that showed significant inhibition of the PI3K/AKT/mTOR and STAT3 signaling pathways in zerumbone-treated HCC cells. Gene expression profiling using microarray and analysis of microarray data by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) revealed that zerumbone treatment resulted in significant deregulation of genes regulating apoptosis, cell cycle, and metabolism. Indeed, tracing glucose metabolic pathways by growing HCC cells with 13C6-glucose and measuring extracellular and intracellular metabolites by 2D nuclear magnetic resonance (NMR) spectroscopy showed a reduction in glucose consumption and reduced lactate production, suggesting glycolytic inhibition. In addition, zerumbone impeded shunting of glucose-6-phosphate through the pentose phosphate pathway, thereby forcing tumor cells to undergo cell-cycle arrest and apoptosis. Importantly, zerumbone treatment suppressed subcutaneous and orthotopic growth and lung metastasis of HCC xenografts in immunocompromised mice. In conclusion, these findings reveal a novel and potentially effective therapeutic strategy for HCC using a natural product that targets cancer cell metabolism.Implications: Dietary compounds, like zerumbone, that impact cell cycle, apoptosis, and metabolic processes may have therapeutic benefits for HCC patients. Mol Cancer Res; 16(2); 256-68. ©2017 AACR.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Bo Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio
| | - Kun-Yu Teng
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Juan M Barajas
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Tasneem Motiwala
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Peng Hu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Rafael Brüschweiler
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio.,Campus Chemical Instrument Center (CCIC) NMR, The Ohio State University, Columbus, Ohio
| | - Kalpana Ghoshal
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. .,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Samson T Jacob
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio. .,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
31
|
Ma X, Wang L, Huang D, Li Y, Yang D, Li T, Li F, Sun L, Wei H, He K, Yu F, Zhao D, Hu L, Xing S, Liu Z, Li K, Guo J, Yang Z, Pan X, Li A, Shi Y, Wang J, Gao P, Zhang H. Polo-like kinase 1 coordinates biosynthesis during cell cycle progression by directly activating pentose phosphate pathway. Nat Commun 2017; 8:1506. [PMID: 29138396 PMCID: PMC5686148 DOI: 10.1038/s41467-017-01647-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Two hallmarks for cancer cells are the accelerated cell cycle progression as well as the altered metabolism, however, how these changes are coordinated to optimize the growth advantage for cancer cells are still poorly understood. Here we identify that Polo-like kinase 1 (Plk1), a key regulator for cell mitosis, plays a critical role for biosynthesis in cancer cells through activating pentose phosphate pathway (PPP). We find that Plk1 interacts with and directly phosphorylates glucose-6-phosphate dehydrogenase (G6PD). By activating G6PD through promoting the formation of its active dimer, Plk1 increases PPP flux and directs glucose to the synthesis of macromolecules. Importantly, we further demonstrate that Plk1-mediated activation of G6PD is critical for its role to promote cell cycle progression and cancer cell growth. Collectively, these findings establish a critical role for Plk1 in regulating biosynthesis in cancer cells, exemplifying how cell cycle progression and metabolic reprogramming are coordinated for cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Lin Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - De Huang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yunyan Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui, 230031, China
| | - Dongdong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Tingting Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Linchong Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Haoran Wei
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Kun He
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Fazhi Yu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Debiao Zhao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Lan Hu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Songge Xing
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhaoji Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Kui Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jing Guo
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhenye Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ailing Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui, 230031, China.
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
32
|
Boothby M, Rickert RC. Metabolic Regulation of the Immune Humoral Response. Immunity 2017; 46:743-755. [PMID: 28514675 DOI: 10.1016/j.immuni.2017.04.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Productive humoral responses require that naive B cells and their differentiated progeny move among distinct micro-environments. In this review, we discuss how studies are beginning to address the nature of these niches as well as the interplay between cellular signaling, metabolic programming, and adaptation to the locale. Recent work adds evidence to the expectation that B cells at distinct stages of development or functional subsets are influenced by the altered profiles of nutrients and metabolic by-products that distinguish these sites. Moreover, emerging findings reveal a cross-talk among the external milieu, signal transduction pathways, and transcription factors that direct B cell fate in the periphery.
Collapse
Affiliation(s)
- Mark Boothby
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, and Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, School of Medicine, Vanderbilt University, and Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, CA 92037, USA; NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Maycotte P, Marín-Hernández A, Goyri-Aguirre M, Anaya-Ruiz M, Reyes-Leyva J, Cortés-Hernández P. Mitochondrial dynamics and cancer. Tumour Biol 2017; 39:1010428317698391. [PMID: 28468591 DOI: 10.1177/1010428317698391] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the leading causes of death worldwide, and the number of new cases continues to rise. Despite recent advances in diagnosis and therapeutic strategies, millions of cancer-related deaths occur, indicating the need for better therapies and diagnostic strategies. Mitochondria and metabolic alterations have been recognized as important for cancer progression. However, a more precise understanding of how to manipulate mitochondria-related processes for cancer therapy remains to be established. Mitochondria are highly dynamic organelles which continually fuse and divide in response to diverse stimuli. Participation in the aforementioned processes requires a precise regulation at many levels that allows the cell to couple mitochondrial activity to nutrient availability, biosynthetic demands, proliferation rates, and external stimuli. The many functions of these organelles are intimately linked to their morphology. Recent evidence suggests an important link between mitochondrial morphology and disease, including neurodegenerative, inflammatory diseases and cancer. Here, we review recent advances in the understanding of mitochondrial dynamics with a special focus on its relationship to tumor progression.
Collapse
Affiliation(s)
- Paola Maycotte
- 1 CONACYT-Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México.,2 Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
| | - Alvaro Marín-Hernández
- 3 Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, México, México
| | - Miriam Goyri-Aguirre
- 2 Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
| | - Maricruz Anaya-Ruiz
- 2 Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
| | - Julio Reyes-Leyva
- 2 Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
| | - Paulina Cortés-Hernández
- 2 Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
| |
Collapse
|
34
|
Dissect the Dynamic Molecular Circuits of Cell Cycle Control through Network Evolution Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2954351. [PMID: 28466007 PMCID: PMC5390606 DOI: 10.1155/2017/2954351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022]
Abstract
The molecular circuits of cell cycle control serve as a key hub to integrate from endogenous and environmental signals into a robust biological decision driving cell growth and division. Dysfunctional cell cycle control is highlighted in a wide spectrum of human cancers. More importantly the mainstay anticancer treatment such as radiation therapy and chemotherapy targets the hallmark of uncontrolled cell proliferation in cancer cells by causing DNA damage, cell cycle arrest, and cell death. Given the functional importance of cell cycle control, the regulatory mechanisms that drive the cell division have been extensively investigated in a huge number of studies by conventional single-gene approaches. However the complexity of cell cycle control renders a significant barrier to understand its function at a network level. In this study, we used mathematical modeling through modern graph theory and differential equation systems. We believe our network evolution model can help us understand the dynamic cell cycle control in tumor evolution and optimizing dosing schedules for radiation therapy and chemotherapy targeting cell cycle.
Collapse
|
35
|
Coordination of Myeloid Differentiation with Reduced Cell Cycle Progression by PU.1 Induction of MicroRNAs Targeting Cell Cycle Regulators and Lipid Anabolism. Mol Cell Biol 2017; 37:MCB.00013-17. [PMID: 28223367 DOI: 10.1128/mcb.00013-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1, an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism.
Collapse
|
36
|
Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 2017; 119:315-326. [PMID: 28314612 DOI: 10.1016/j.acthis.2017.03.001] [Citation(s) in RCA: 468] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Mitochondria exist in a dynamic cycle of fusion and fission whose balance directly influences the morphology of the 'mitochondrial network', a term that encompasses the branched, reticular structure of fused mitochondria as well as the separate, punctate individual organelles within a eukaryotic cell. Over the past decade, the significance of the mitochondrial network has been increasingly appreciated, motivating the development of various approaches to analyze it. Here, we describe the Mitochondrial Network Analysis (MiNA) toolset, a relatively simple pair of macros making use of existing ImageJ plug-ins, allowing for semi-automated analysis of mitochondrial networks in cultured mammalian cells. MiNA is freely available at https://github.com/ScienceToolkit/MiNA. The tool incorporates optional preprocessing steps to enhance the quality of images before converting the images to binary and producing a morphological skeleton for calculating nine parameters to quantitatively capture the morphology of the mitochondrial network. The efficacy of the macro toolset is demonstrated using a sample set of images from SH-SY5Y, C2C12, and mouse embryo fibroblast (MEF) cell cultures treated under different conditions and exhibiting hyperfused, fused, and fragmented mitochondrial network morphologies.
Collapse
|
37
|
Papagiannakis A, Niebel B, Wit EC, Heinemann M. Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle. Mol Cell 2016; 65:285-295. [PMID: 27989441 DOI: 10.1016/j.molcel.2016.11.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders.
Collapse
Affiliation(s)
- Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bastian Niebel
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ernst C Wit
- Probability and Statistics, Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
38
|
Zhang GM, Deng MT, Zhang YL, Fan YX, Wan YJ, Nie HT, Wang ZY, Wang F, Lei ZH. Effect of PGC-1α overexpression or silencing on mitochondrial apoptosis of goat luteinized granulosa cells. J Bioenerg Biomembr 2016; 48:493-507. [PMID: 27896503 DOI: 10.1007/s10863-016-9684-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
During goat follicular development, abnormal expression of peroxisome proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α) in granulosa cells (GCs) may contribute to follicular atresia with unknown regulatory mechanisms. In this study, we investigate the effect of ectopic expression or interference of PGC-1α on cell apoptosis of goat first passage granulosa cells (FGCs) in vitro. The results indicate that PGC-1α silencing by short hairpin RNA (shRNA) in goat FGCs significantly reduced mitochondrial DNA (mtDNA) copy number (P < 0.05), changed mitochondria ultrastructure, and induced cell apoptosis (P < 0.05). The transcription and translation levels of the apoptosis-related genes BCL-2-associated X protein (BAX), caspase 3, and caspase 9 were significantly up-regulated (P < 0.05, respectively). Moreover, the ratio of BAX/B-cell lymphoma 2 (BCL-2) was reduced (P < 0.05), and the release of cytochrome c (cyt c) and lactate dehydrogenase (LDH) was significantly enhanced (P < 0.05, respectively) in PGC-1α interference goat FGCs. Furthermore, the expression of anti-oxidative related genes superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx) and catalase (CAT) was down-regulated (P < 0.05, respectively) and the activity of glutathione/glutathione disulfide (GSH/GSSG) was inhibited (P < 0.05). While enforced expression of PGC-1α increased the levels of genes involved in the regulation of mitochondrial function and biogenesis, and enhanced the anti-oxidative and anti-apoptosis capacity. Taken together, our results reveal that lack of PGC-1α may lead to mitochondrial dysfunction and disrupt the cellular redox balance, thus resulting in goat GCs apoptosis through the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.,College of veterinary medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Ming-Tian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yi-Xuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Hai-Tao Nie
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Zi-Yu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.
| | - Zhi-Hai Lei
- College of veterinary medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.
| |
Collapse
|
39
|
Fueling the Cell Division Cycle. Trends Cell Biol 2016; 27:69-81. [PMID: 27746095 DOI: 10.1016/j.tcb.2016.08.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/08/2016] [Accepted: 08/25/2016] [Indexed: 11/21/2022]
Abstract
Cell division is a complex process with high energy demands. However, how cells regulate the generation of energy required for DNA synthesis and chromosome segregation is not well understood. Recent data suggest that changes in mitochondrial dynamics and metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis crosstalk with, and are tightly regulated by, the cell division machinery. Alterations in energy availability trigger cell-cycle checkpoints, suggesting a bidirectional connection between cell division and general metabolism. Some of these connections are altered in human disease, and their manipulation may help in designing therapeutic strategies for specific diseases including cancer. We review here recent studies describing the control of metabolism by the cell-cycle machinery.
Collapse
|
40
|
Affiliation(s)
- Fang Ni
- a Department of Pediatrics , Division of Hematology and Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine , Atlanta , GA , USA
| | - Cheng-Kui Qu
- a Department of Pediatrics , Division of Hematology and Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
41
|
Poché RA, Zhang M, Rueda EM, Tong X, McElwee ML, Wong L, Hsu CW, Dejosez M, Burns AR, Fox DA, Martin JF, Zwaka TP, Dickinson ME. RONIN Is an Essential Transcriptional Regulator of Genes Required for Mitochondrial Function in the Developing Retina. Cell Rep 2016; 14:1684-1697. [PMID: 26876175 DOI: 10.1016/j.celrep.2016.01.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/14/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022] Open
Abstract
A fundamental principle governing organ size and function is the fine balance between cell proliferation and cell differentiation. Here, we identify RONIN (THAP11) as a key transcriptional regulator of retinal progenitor cell (RPC) proliferation. RPC-specific loss of Ronin results in a phenotype strikingly similar to that resulting from the G1- to S-phase arrest and photoreceptor degeneration observed in the Cyclin D1 null mutants. However, we determined that, rather than regulating canonical cell-cycle genes, RONIN regulates a cohort of mitochondrial genes including components of the electron transport chain (ETC), which have been recently implicated as direct regulators of the cell cycle. Coincidentally, with premature cell-cycle exit, Ronin mutants exhibited deficient ETC activity, reduced ATP levels, and increased oxidative stress that we ascribe to specific loss of subunits within complexes I, III, and IV. These data implicate RONIN as a positive regulator of mitochondrial gene expression that coordinates mitochondrial activity and cell-cycle progression.
Collapse
Affiliation(s)
- Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda M Rueda
- College of Optometry, University of Houston, Houston, TX 77004, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melissa L McElwee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leeyean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marion Dejosez
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77004, USA
| | - Donald A Fox
- College of Optometry, University of Houston, Houston, TX 77004, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA; Department of Pharmacology, University of Houston, Houston, TX 77004, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA
| | - Thomas P Zwaka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
42
|
|
43
|
Coagulation factor VII is regulated by androgen receptor in breast cancer. Exp Cell Res 2014; 331:239-250. [PMID: 25447311 DOI: 10.1016/j.yexcr.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/22/2022]
Abstract
Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer.
Collapse
|
44
|
Ke XX, Zhang D, Zhu S, Xia Q, Xiang Z, Cui H. Inhibition of H3K9 methyltransferase G9a repressed cell proliferation and induced autophagy in neuroblastoma cells. PLoS One 2014; 9:e106962. [PMID: 25198515 PMCID: PMC4157855 DOI: 10.1371/journal.pone.0106962] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023] Open
Abstract
Histone methylation plays an important role in gene transcription and chromatin organization and is linked to the silencing of a number of critical tumor suppressor genes in tumorigenesis. G9a is a histone methyltransferase (HMTase) for histone H3 lysine 9. In this study, we investigated the role of G9a in neuroblastoma tumor growth together with the G9a inhibitor BIX01294. The exposure of neuroblastoma cells to BIX01294 resulted in the inhibition of cell growth and proliferation, and BIX01294 treatment resulted in the inhibition of the tumorigenicity of neuroblastoma cells in NOD/SCID mice. Therefore, G9a may be a potential therapeutic target in neuroblastoma. Moreover, we found several specific characteristics of autophagy after BIX01294 treatment, including the appearance of membranous vacuoles and microtubule-associated protein light chain 3 (LC3B). Similar results were observed in G9a-knockdown cells. In conclusion, our results demonstrated that G9a is a prognostic marker in neuroblastoma, and revealed a potential role of G9a in regulating the autophagy signaling pathway in neuroblastoma.
Collapse
Affiliation(s)
- Xiao-Xue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dunke Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail: (ZX); (HC)
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail: (ZX); (HC)
| |
Collapse
|
45
|
ZHU SHUNQIN, LIU WANHONG, KE XIAOXUE, LI JIFU, HU RENJIAN, CUI HONGJUAN, SONG GUANBIN. Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma. Oncol Rep 2014; 32:1094-100. [DOI: 10.3892/or.2014.3323] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/15/2014] [Indexed: 11/06/2022] Open
|
46
|
Mazzoccoli G, Tevy MF, Borghesan M, Delle Vergini MR, Vinciguerra M. Caloric restriction and aging stem cells: the stick and the carrot? Exp Gerontol 2013; 50:137-48. [PMID: 24211426 DOI: 10.1016/j.exger.2013.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
Adult tissue stem cells have the ability to adjust to environmental changes and affect also the proliferation of neighboring cells, with important consequences on tissue maintenance and regeneration. Stem cell renewal and proliferation is strongly regulated during aging of the organism. Caloric restriction is the most powerful anti-aging strategy conserved throughout evolution in the animal kingdom. Recent studies relate the properties of caloric restriction to its ability in reprogramming stem-like cell states and in prolonging the capacity of stem cells to self-renew, proliferate, differentiate, and replace cells in several adult tissues. However this general paradigm presents with exceptions. The scope of this review is to highlight how caloric restriction impacts on diverse stem cell compartments and, by doing so, might differentially delay aging in the tissues of lower and higher organisms.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy.
| | - Maria Florencia Tevy
- Genomics and Bioinformatics Centre, Major University of Santiago, Santiago, Chile
| | - Michela Borghesan
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom
| | - Maria Rita Delle Vergini
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy
| | - Manlio Vinciguerra
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom.
| |
Collapse
|