1
|
Rayat Pisheh H, Darvishi A, Masoomkhah SS. Amniotic membrane, a novel bioscaffold in cardiac diseases: from mechanism to applications. Front Bioeng Biotechnol 2024; 12:1521462. [PMID: 39758951 PMCID: PMC11696288 DOI: 10.3389/fbioe.2024.1521462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases represent one of the leading causes of death worldwide. Despite significant advances in the diagnosis and treatment of these diseases, numerous challenges remain in managing them. One of these challenges is the need for replacements for damaged cardiac tissues that can restore the normal function of the heart. Amniotic membrane, as a biological scaffold with unique properties, has attracted the attention of many researchers in recent years. This membrane, extracted from the human placenta, contains growth factors, cytokines, and other biomolecules that play a crucial role in tissue repair. Its anti-inflammatory, antibacterial, and wound-healing properties have made amniotic membrane a promising option for the treatment of heart diseases. This review article examines the applications of amniotic membrane in cardiovascular diseases. By focusing on the mechanisms of action of this biological scaffold and the results of clinical studies, an attempt will be made to evaluate the potential of using amniotic membrane in the treatment of heart diseases. Additionally, the existing challenges and future prospects in this field will be discussed.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
2
|
Li Y, Wu C, Long X, Wang X, Gao W, Deng K, Xie B, Zhang S, Wu M, Liu Q. Single-cell transcriptomic analysis of glioblastoma reveals pericytes contributing to the blood-brain-tumor barrier and tumor progression. MedComm (Beijing) 2024; 5:e70014. [PMID: 39640361 PMCID: PMC11617595 DOI: 10.1002/mco2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
The blood-brain barrier is often altered in glioblastoma (GBM) creating a blood-brain-tumor barrier (BBTB) composed of pericytes. The BBTB affects chemotherapy efficacy. However, the expression signatures of BBTB-associated pericytes remain unclear. We aimed to identify BBTB-associated pericytes in single-cell RNA sequencing data of GBM using pericyte markers, a normal brain pericyte expression signature, and functional enrichment. We identified parathyroid hormone receptor-1 (PTH1R) as a potential marker of pericytes associated with BBTB function. These pericytes interact with other cells in GBM mainly through extracellular matrix-integrin signaling pathways. Compared with normal pericytes, pericytes in GBM exhibited upregulation of several ECM genes (including collagen IV and FN1), and high expression levels of these genes were associated with a poor prognosis. Cell line experiments showed that PTH1R knockdown in pericytes increased collagen IV and FN1 expression levels. In mice models, the expression levels of PTH1R, collagen IV, and FN1 were consistent with these trends. Evans Blue leakage and IgG detection in the brain tissue suggested a negative correlation between PTH1R expression levels and blood-brain barrier function. Further, a risk model based on differentially expressed genes in PTH1R+ pericytes had predictive value for GBM, as validated using independent and in-house cohorts.
Collapse
Affiliation(s)
- Yuzhe Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NeurosurgeryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changwu Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinmiao Long
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Xiangyu Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Gao
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Kun Deng
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Bo Xie
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sen Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Minghua Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Qing Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio 2024; 29:101280. [PMID: 39399243 PMCID: PMC11470555 DOI: 10.1016/j.mtbio.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ji Wang
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Wei Li
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| |
Collapse
|
4
|
Saravanan V, Gopalakrishnan V, Mahendran MIMS, Vaithianathan R, Srinivasan S, Boopathy V, Krishnamurthy S. Biofilm mediated integrin activation and directing acceleration of colorectal cancer. APMIS 2024; 132:688-705. [PMID: 39246244 DOI: 10.1111/apm.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Bacterial biofilm plays a vital role in influencing several diseases, infections, metabolic pathways and communication channels. Biofilm influence over colorectal cancer (CRC) has been a booming area of research interest. The virulence factors of bacterial pathogen have a high tendency to induce metabolic pathway to accelerate CRC. The bacterial species biofilm may induce cancer through regulating the major signalling pathways responsible for cell proliferation, differentiation, survival and growth. Activation of cancer signals may get initiated from the chronic infections through bacterial biofilm species. Integrin mediates in the activation of major pathway promoting cancer. Integrin-mediated signals are expected to be greatly influenced by biofilm. Integrins are identified as an important dimer, whose dysfunction may alter the signalling cascade specially focusing on TGF-β, PI3K/Akt/mToR, MAPK and Wnt pathway. Along with biofilm shield, the tumour gains greater resistance from radiation, chemotherapy and also from other antibiotics. The biofilm barrier is known to cause challenges for CRC patients undergoing treatment.
Collapse
Affiliation(s)
- Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | - Rajan Vaithianathan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Sowmya Srinivasan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | | |
Collapse
|
5
|
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Rep 2024; 43:114725. [PMID: 39276354 PMCID: PMC11476202 DOI: 10.1016/j.celrep.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Mechanical forces are transmitted from the actin cytoskeleton to the membrane during clathrin-mediated endocytosis (CME) in the fission yeast Schizosaccharomyces pombe. End4p directly transmits force in CME by binding to both the membrane (through the AP180 N-terminal homology [ANTH] domain) and F-actin (through the talin-HIP1/R/Sla2p actin-tethering C-terminal homology [THATCH] domain). We show that 7 pN force is required for stable binding between THATCH and F-actin. We also characterized a domain in End4p, Rend (rod domain in End4p), that resembles R12 of talin. Membrane localization of Rend primes the binding of THATCH to F-actin, and force-induced unfolding of Rend at 15 pN terminates the transmission of force. We show that the mechanical properties (mechanical stability, unfolding extension, hysteresis) of Rend and THATCH are tuned to form a circuit for the initiation, transmission, and termination of force between the actin cytoskeleton and membrane. The mechanical circuit by Rend and THATCH may be conserved and coopted evolutionarily in cell adhesion complexes.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA.
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
7
|
Haake SM, Rios BL, Pozzi A, Zent R. Integrating integrins with the hallmarks of cancer. Matrix Biol 2024; 130:20-35. [PMID: 38677444 DOI: 10.1016/j.matbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Epithelial cells adhere to a specialized extracellular matrix called the basement membrane which allows them to polarize and form epithelial tissues. The extracellular matrix provides essential physical scaffolding and biochemical and biophysical cues required for tissue morphogenesis, differentiation, function, and homeostasis. Epithelial cell adhesion to the extracellular matrix (i.e., basement membrane) plays a critical role in organizing epithelial tissues, separating the epithelial cells from the stroma. Epithelial cell detachment from the basement membrane classically results in death, though detachment or invasion through the basement membrane represents a critical step in carcinogenesis. Epithelial cells bind to the extracellular matrix via specialized matrix receptors, including integrins. Integrins are transmembrane receptors that form a mechanical linkage between the extracellular matrix and the intracellular cytoskeleton and are required for anchorage-dependent cellular functions such as proliferation, migration, and invasion. The role of integrins in the development, growth, and dissemination of multiple types of carcinomas has been investigated by numerous methodologies, which has led to great complexity. To organize this vast array of information, we have utilized the "Hallmarks of Cancer" from Hanahan and Weinberg as a convenient framework to discuss the role of integrins in the pathogenesis of cancers. This review explores this biology and how its complexity has impacted the development of integrin-targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- Scott M Haake
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA.
| | - Brenda L Rios
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Ambra Pozzi
- Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roy Zent
- Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Kenchappa R, Radnai L, Young EJ, Zarco N, Lin L, Dovas A, Meyer CT, Haddock A, Hall A, Canoll P, Cameron MD, Nagaiah NK, Rumbaugh G, Griffin PR, Kamenecka TM, Miller CA, Rosenfeld SS. MT-125 Inhibits Non-Muscle Myosin IIA and IIB, Synergizes with Oncogenic Kinase Inhibitors, and Prolongs Survival in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591399. [PMID: 38746089 PMCID: PMC11092436 DOI: 10.1101/2024.04.27.591399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.
Collapse
|
10
|
Hebel D, Schönherr H. Mild Quantitative One Step Removal of Macrophages from Cocultures with Human Umbilical Vein Endothelial Cells Using Thermoresponsive Poly(Di(Ethylene Glycol)Methyl Ether Methacrylate) Brushes. Macromol Biosci 2024; 24:e2300408. [PMID: 37916483 DOI: 10.1002/mabi.202300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The authors report on a mild, label-free, and fast method for the separation of human umbilical vein endothelial cells (HUVEC), which are relevant cells, whose use is not limited to studies of endothelial dysfunction, from cocultures with macrophages to afford HUVEC in ≈100% purity. Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes with a dry thickness of (5 ± 1) nm afford the highly effective one-step separation by selective HUVEC detachment, which is based on the brushes' thermoresponsive behavior. Below the thermal transition at 32 °C the brushes swells and desorbs attached proteins, resulting in markedly decreased cell adhesion. Specifically, HUVEC and macrophages, which are differentiated from THP-1 monocytes, are seeded and attached to PDEGMA brushes at 37°C. After decreasing the temperature to 22°C, HUVEC shows a decrease in their cell area, while the macrophages are not markedly affected by the temperature change. After mild flushing with a cell culture medium, the HUVEC can be released from the surface and reseeded again with ≈100% purity on a new surface. With this selective cell separation and removal method, it is possible to separate and thereby purify HUVEC from macrophages without the use of any releasing reagent or expensive labels, such as antibodies.
Collapse
Affiliation(s)
- Diana Hebel
- Department of Chemistry and Biology, University of Siegen, Physical Chemistry I & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ), Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Holger Schönherr
- Department of Chemistry and Biology, University of Siegen, Physical Chemistry I & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ), Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
11
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
12
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
13
|
Takada YK, Shimoda M, Takada Y. CD40L Activates Platelet Integrin αIIbβ3 by Binding to the Allosteric Site (Site 2) in a KGD-Independent Manner and HIGM1 Mutations Are Clustered in the Integrin-Binding Sites of CD40L. Cells 2023; 12:1977. [PMID: 37566056 PMCID: PMC10416995 DOI: 10.3390/cells12151977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
CD40L is expressed in activated T cells, and it plays a major role in immune response and is a major therapeutic target for inflammation. High IgM syndrome type 1 (HIGM1) is a congenital functional defect in CD40L/CD40 signaling due to defective CD40L. CD40L is also stored in platelet granules and transported to the surface upon platelet activation. Platelet integrin αIIbβ3 is known to bind to fibrinogen and activation of αIIbβ3 is a key event that triggers platelet aggregation. Also, the KGD motif is critical for αIIbβ3 binding and the interaction stabilizes thrombus. Previous studies showed that CD40L binds to and activates integrins αvβ3 and α5β1 and that HIGM1 mutations are clustered in the integrin-binding sites. However, the specifics of CD40L binding to αIIbβ3 were unclear. Here, we show that CD40L binds to αIIbβ3 in a KGD-independent manner using CD40L that lacks the KGD motif. Two HIGM1 mutants, S128E/E129G and L155P, reduced the binding of CD40L to the classical ligand-binding site (site 1) of αIIbβ3, indicating that αIIbβ3 binds to the outer surface of CD40L trimer. Also, CD40L bound to the allosteric site (site 2) of αIIbβ3 and allosterically activated αIIbβ3 without inside-out signaling. Two HIMG1 mutants, K143T and G144E, on the surface of trimeric CD40L suppressed CD40L-induced αIIbβ3 activation. These findings suggest that CD40L binds to αIIbβ3 in a manner different from that of αvβ3 and α5β1 and induces αIIbβ3 activation. HIGM1 mutations are clustered in αIIbβ3 binding sites in CD40L and are predicted to suppress thrombus formation and immune responses through αIIbβ3.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Kumar S, Stainer A, Dubrulle J, Simpkins C, Cooper JA. Cas phosphorylation regulates focal adhesion assembly. eLife 2023; 12:e90234. [PMID: 37489578 PMCID: PMC10435235 DOI: 10.7554/elife.90234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated and associated with its Crk/CrkL effectors in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin β1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin β1 is activated and core focal adhesion proteins including vinculin, talin, kindlin, and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs, and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin β1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.
Collapse
Affiliation(s)
- Saurav Kumar
- Fred Hutchinson Cancer CenterSeattleUnited States
| | | | | | | | | |
Collapse
|
15
|
Campbell S, Mendoza MC, Rammohan A, McKenzie ME, Bidone TC. Computational model of integrin adhesion elongation under an actin fiber. PLoS Comput Biol 2023; 19:e1011237. [PMID: 37410718 DOI: 10.1371/journal.pcbi.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Cells create physical connections with the extracellular environment through adhesions. Nascent adhesions form at the leading edge of migrating cells and either undergo cycles of disassembly and reassembly, or elongate and stabilize at the end of actin fibers. How adhesions assemble has been addressed in several studies, but the exact role of actin fibers in the elongation and stabilization of nascent adhesions remains largely elusive. To address this question, here we extended our computational model of adhesion assembly by incorporating an actin fiber that locally promotes integrin activation. The model revealed that an actin fiber promotes adhesion stabilization and elongation. Actomyosin contractility from the fiber also promotes adhesion stabilization and elongation, by strengthening integrin-ligand interactions, but only up to a force threshold. Above this force threshold, most integrin-ligand bonds fail, and the adhesion disassembles. In the absence of contraction, actin fibers still support adhesions stabilization. Collectively, our results provide a picture in which myosin activity is dispensable for adhesion stabilization and elongation under an actin fiber, offering a framework for interpreting several previous experimental observations.
Collapse
Affiliation(s)
- Samuel Campbell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Aravind Rammohan
- Corning Life Sciences, Tewksburry, Massachusetts, United States of America
| | - Matthew E McKenzie
- Corning Research and Development Corporation, Corning, New York, United States of America
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
16
|
Mia MS, Hossain D, Woodbury E, Kelleher S, Palamuttam RJ, Rao R, Steen P, Jarajapu YP, Mathew S. Integrin β1 is a key determinant of the expression of angiotensin-converting enzyme 2 (ACE2) in the kidney epithelial cells. Eur J Cell Biol 2023; 102:151316. [PMID: 37084657 PMCID: PMC11086052 DOI: 10.1016/j.ejcb.2023.151316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
The expression of the angiotensin-converting enzyme 2 (ACE2) is altered in multiple chronic kidney diseases like hypertension and renal fibrosis, where the signaling from the basal membrane proteins is critical for the development and progression of the various pathologies. Integrins are heterodimeric cell surface receptors that have important roles in the progression of these chronic kidney diseases by altering various cell signaling pathways in response to changes in the basement membrane proteins. It is unclear whether integrin or integrin-mediated signaling affects the ACE2 expression in the kidney. The current study tests the hypothesis that integrin β1 regulates the expression of ACE2 in kidney epithelial cells. The role of integrin β1 in ACE2 expression in renal epithelial cells was investigated by shRNA-mediated knockdown and pharmacological inhibition. In vivo studies were carried out using epithelial cell-specific deletion of integrin β1 in the kidneys. Deletion of integrin β1 from the mouse renal epithelial cells reduced the expression of ACE2 in the kidney. Furthermore, the downregulation of integrin β1 using shRNA decreased ACE2 expression in human renal epithelial cells. ACE2 expression levels were also decreased in renal epithelial cells and cancer cells when treated with an integrin α2β1 antagonist, BTT 3033. SARS-CoV-2 viral entry to human renal epithelial cells and cancer cells was also inhibited by BTT 3033. This study demonstrates that integrin β1 positively regulates the expression of ACE2, which is required for the entry of SARS-CoV-2 into kidney cells.
Collapse
Affiliation(s)
- Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Delowar Hossain
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Emerson Woodbury
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sean Kelleher
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | | | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Preston Steen
- Sanford Health Roger Maris Cancer Center, Fargo, ND, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA; Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
17
|
Impact of baculoviral transduction of fluorescent actin on cellular forces. Eur J Cell Biol 2023; 102:151294. [PMID: 36791652 DOI: 10.1016/j.ejcb.2023.151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Live staining of actin brings valuable information in the field of mechanobiology. Gene transfer of GFP-actin has been reported to disturb cell rheological properties while gene transfer of fluorescent actin binding proteins was not. However the influence of gene transfer on cellular forces in adhered cells has never been investigated. This would provide a more complete picture of mechanical disorders induced by actin live staining for mechanobiology studies. Indeed, most of these techniques were shown to alter cell morphology. Change in cell morphology may in itself be sufficient to perturb cellular forces. Here we focus on quantifying the alterations of cellular stresses that result from baculoviral transduction of GFP-actin in MDCK cell line. We report that GFP-actin transduction increases the proportion of cells with large intracellular or surface stresses, especially in epithelia with low cell density. We show that the enhancement of the mechanical stresses is accompanied by small perturbations of cell shape, but not by a significant change in cell size. We thus conclude that this live staining method enhances the cellular forces but only brings subtle shape alterations.
Collapse
|
18
|
Mana G, Valdembri D, Askari JA, Li Z, Caswell P, Zhu C, Humphries MJ, Ballestrem C, Serini G. The βI domain promotes active β1 integrin clustering into mature adhesion sites. Life Sci Alliance 2023; 6:e202201388. [PMID: 36410791 PMCID: PMC9679427 DOI: 10.26508/lsa.202201388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Modulation of integrin function is required in many physiological and pathological settings, such as angiogenesis and cancer. Integrin allosteric changes, clustering, and trafficking cooperate to regulate cell adhesion and motility on extracellular matrix proteins via mechanisms that are partly defined. By exploiting four monoclonal antibodies recognizing distinct conformational epitopes, we show that in endothelial cells (ECs), the extracellular βI domain, but not the hybrid or I-EGF2 domain of active β1 integrins, promotes their FAK-regulated clustering into tensin 1-containing fibrillar adhesions and impairs their endocytosis. In this regard, the βI domain-dependent clustering of active β1 integrins is necessary to favor fibronectin-elicited directional EC motility, which cannot be effectively promoted by β1 integrin conformational activation alone.
Collapse
Affiliation(s)
- Giulia Mana
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Janet A Askari
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zhenhai Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Patrick Caswell
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Christoph Ballestrem
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Guido Serini
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| |
Collapse
|
19
|
Ihog proteins contribute to integrin-mediated focal adhesions. SCIENCE CHINA. LIFE SCIENCES 2023; 66:366-375. [PMID: 36103028 DOI: 10.1007/s11427-022-2154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 10/14/2022]
Abstract
Integrin expression forms focal adhesions, but how this process is physiologically regulated is unclear. Ihog proteins are evolutionarily conserved, playing roles in Hedgehog signaling and serving as trans-homophilic adhesion molecules to mediate cell-cell interactions. Whether these proteins are also engaged in other cell adhesion processes remains unknown. Here, we report that Drosophila Ihog proteins function in the integrin-mediated adhesions. Removal of Ihog proteins causes blister and spheroidal muscle in wings and embryos, respectively. We demonstrate that Ihog proteins interact with integrin via the extracellular portion and that their removal perturbs integrin distribution. Finally, we show that Boc, a mammalian Ihog protein, rescues the embryonic defects caused by removing its Drosophila homologs. We thus propose that Ihog proteins contribute to integrin-mediated focal adhesions.
Collapse
|
20
|
Micropattern Silk Fibroin Film Facilitates Tendon Repair In Vivo and Promotes Tenogenic Differentiation of Tendon Stem/Progenitor Cells through the α2 β1/FAK/PI3K/AKT Signaling Pathway In Vitro. Stem Cells Int 2023; 2023:2915826. [PMID: 36684388 PMCID: PMC9859702 DOI: 10.1155/2023/2915826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Background Tendon injuries are common clinical disorders. Due to the limited regeneration ability of tendons, tissue engineering technology is often used as an adjuvant treatment. This study explored the molecular pathways underlying micropattern SF film-regulated TSPC propensity and their repairing effects to highlight the application value of micropattern SF films. Methods First, we characterized the physical properties of the micropattern SF films and explored their repairing effects on the injured tendons in vivo. Then, we seeded TSPCs on SF films in vitro and determined the micropattern SF film-induced gene expression and activation of signaling pathways in TSPCs through high-throughput RNA sequencing and proteomics assays. Results The results of in vivo studies suggested that micropattern SF films can promote remodeling of the injured tendon. In addition, immunohistochemistry (IHC) results showed that tendon marker genes were significantly increased in the micropattern SF film repair group. Transcriptomic and proteomic analyses demonstrated that micropattern SF film-induced genes and proteins in TSPCs were mainly enriched in the focal adhesion kinase (FAK)/actin and phosphoinositide 3-kinase (PI3K)/AKT pathways. Western blot analysis showed that the expression of integrins α2β1, tenascin-C (TNC), and tenomodulin (TNMD) and the phosphorylation of AKT were significantly increased in the micropattern SF film group, which could be abrogated by applying PI3K/AKT inhibitors. Conclusion Micropattern SF films modified by water annealing can promote remodeling of the injured tendon in vivo and regulate the tendon differentiation of TSPCs through the α2β1/FAK/PI3K/AKT signaling pathway in vitro. Therefore, they have great medical value in tendon repair.
Collapse
|
21
|
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood DA. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods Mol Biol 2023; 2608:17-38. [PMID: 36653699 PMCID: PMC9999384 DOI: 10.1007/978-1-0716-2887-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled exocytosis and endocytosis of integrin adhesion receptors is required for normal cell adhesion, migration, and signaling. In this chapter, we describe the design of functional β1 integrins carrying extracellular fluorescent or chemically traceable tags (ecto-tag) and methods for their use to image β1 integrin trafficking in cells. We provide approaches to generate cells in which endogenous β1 integrins are replaced by ecto-tagged integrins containing a pH-sensitive fluorophore pHluorin or a HaloTag and describe strategies using photobleaching, selective extracellular/intracellular labeling, and chase, quenching, and blocking to reveal β1 integrin exocytosis, endocytosis, and recycling by live total internal reflection fluorescence (TIRF) microscopy.
Collapse
Affiliation(s)
- Clotilde Huet-Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Derek Toomre
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - David A Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
23
|
Kim MJ, Park JH, Lee JH, Kim H, Choi HJ, Lee HC, Lee JH, Byun JH, Oh SH. Bioactive Porous Particles as Biological and Physical Stimuli for Bone Regeneration. ACS Biomater Sci Eng 2022; 8:5233-5244. [PMID: 36384281 DOI: 10.1021/acsbiomaterials.2c00664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Even though bony defects can be recovered to their original condition with full functionality, critical-sized bone injuries continue to be a challenge in clinical fields due to deficiencies in the scaffolding matrix and growth factors at the injury region. In this study, we prepared bone morphogenetic protein-2 (BMP-2)-loaded porous particles as a bioactive bone graft for accelerated bone regeneration. The porous particles with unique leaf-stacked morphology (LSS particles) were fabricated by a simple cooling procedure of hot polycaprolactone (PCL) solution. The unique leaf-stacked structure in the LSS particles provided a large surface area and complex release path for the sufficient immobilization of BMP-2 and sustained release of BMP-2 for 26 days. The LSS was also recognized as a topographical cue for cell adhesion and differentiation. In in vitro cell culture and in vivo animal study using a canine mandible defect model, BMP-2-immobilized LSS particles provided a favorable environment for osteogenic differentiation of stem cells and bone regeneration. In vitro study suggests a dual stimulus of bone mineral-like (leaf-stacked) structure (a physical cue) and continuously supplied BMP-2 (a biological cue) to be the cause of this improved healing outcome. Thus, LSS particles containing BMP-2 can be a promising bioactive grafting material for effective new bone formation.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jae-Hoon Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyeonjo Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyeon-Jong Choi
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
24
|
Al-Maslamani NA, Oldershaw R, Tew S, Curran J, D’Hooghe P, Yamamoto K, Horn HF. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells 2022; 11:cells11244011. [PMID: 36552775 PMCID: PMC9777101 DOI: 10.3390/cells11244011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype. In this review we focus on examining the de-differentiation phenotype from a mechanobiology and biophysical perspective, highlighting some of the nuclear mechanics and chromatin changes in chondrocytes seen during the expansion process and how this relates to the gene expression profile. We propose that manipulating chondrocyte nuclear architecture and chromatin organization will highlight mechanisms that will help to preserve the chondrocyte phenotype.
Collapse
Affiliation(s)
- Noor A. Al-Maslamani
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Correspondence:
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Pieter D’Hooghe
- Department of Orthopaedic Surgery, Aspetar Orthopaedic and Sports Medicine Hospital, Doha P.O. Box 29222, Qatar
| | - Kazuhiro Yamamoto
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
25
|
Tingting Gan, Liu X, Chen X, Shi Y, Wang W. Okadaic Acid Inhibits Protein Phosphatases to Suppress Spermatogonial Cell Proliferation. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Ha BH, Yigit S, Natarajan N, Morse EM, Calderwood DA, Boggon TJ. Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Commun Biol 2022; 5:1257. [PMID: 36385162 PMCID: PMC9669019 DOI: 10.1038/s42003-022-04157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Integrin adhesion receptors provide links between extracellular ligands and cytoplasmic signaling. Multiple kinases have been found to directly engage with integrin β tails, but the molecular basis for these interactions remain unknown. Here, we assess the interaction between the kinase domain of p21-activated kinase 4 (PAK4) and the cytoplasmic tail of integrin β5. We determine three crystal structures of PAK4-β5 integrin complexes and identify the PAK-binding site. This is a region in the membrane-proximal half of the β5 tail and confirmed by site-directed mutagenesis. The β5 tail engages the kinase substrate-binding groove and positions the non-phosphorylatable integrin residue Glu767 at the phosphoacceptor site. Consistent with this, integrin β5 is poorly phosphorylated by PAK4, and in keeping with its ability to occlude the substrate-binding site, weakly inhibits kinase activity. These findings demonstrate the molecular basis for β5 integrin-PAK4 interactions but suggest modifications in understanding the potential cellular role of this interaction.
Collapse
Affiliation(s)
- Byung Hak Ha
- The Department of Pharmacology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA
| | - Sezin Yigit
- The Department of Pharmacology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA
| | - Nalini Natarajan
- The Department of Pharmacology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA
| | - Elizabeth M Morse
- The Department of Cell Biology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA
| | - David A Calderwood
- The Department of Pharmacology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
- The Department of Cell Biology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
| | - Titus J Boggon
- The Department of Pharmacology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
- The Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Ke W, Ma L, Wang B, Song Y, Luo R, Li G, Liao Z, Shi Y, Wang K, Feng X, Li S, Hua W, Yang C. N-cadherin mimetic hydrogel enhances MSC chondrogenesis through cell metabolism. Acta Biomater 2022; 150:83-95. [DOI: 10.1016/j.actbio.2022.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
|
28
|
Kausar S, Abbas MN, Gul I, Liu Y, Tang BP, Maqsood I, Liu QN, Dai LS. Integrins in the Immunity of Insects: A Review. Front Immunol 2022; 13:906294. [PMID: 35757717 PMCID: PMC9218073 DOI: 10.3389/fimmu.2022.906294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022] Open
Abstract
Integrins are a large group of cell-surface proteins that are classified as transmembrane proteins. Integrins are classified into different types based on sequence variations, leading to structural and functional diversity. They are broadly distributed in animals and have a wide range of biological functions such as cell-to-cell communication, intracellular cytoskeleton organization, cellular signaling, immune responses, etc. Integrins are among the most abundant cell surface proteins in insects, exhibiting their indispensability in insect physiology. Because of their critical biological involvement in physiological processes, they appear to be a novel target for designing effective pest control strategies. In the current literature review, we first discuss the discovery and expression responses of integrins against various types of pathogens. Secondly, we examine the specific biological roles of integrins in controlling microbial pathogens, such as phagocytosis, encapsulation, nodulation, immune signaling, and so on. Finally, we describe the possible uses of integrins to control agricultural insect pests.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Woman University, Peshawar, Pakistan
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Shi P, Zhao T, Wang W, Peng F, Wang T, Jia Y, Zou L, Wang P, Yang S, Fan Y, Zong J, Qu X, Wang S. Protective effect of homogeneous polysaccharides of Wuguchong (HPW) on intestinal mucositis induced by 5-fluorouracil in mice. Nutr Metab (Lond) 2022; 19:36. [PMID: 35585561 PMCID: PMC9118848 DOI: 10.1186/s12986-022-00669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hospitalized patients, drug side effects usually trigger intestinal mucositis (IM), which in turn damages intestinal absorption and reduces the efficacy of treatment. It has been discovered that natural polysaccharides can relieve IM. In this study, we extracted and purified homogenous polysaccharides of Wuguchong (HPW), a traditional Chinese medicine, and explored the protective effect of HPW on 5-fluorouracil (5-FU)-induced IM. METHODS AND RESULTS First, we identified the physical and chemical properties of the extracted homogeneous polysaccharides. The molecular weight of HPW was 616 kDa, and it was composed of 14 monosaccharides. Then, a model of small IM induced by 5-FU (50 mg/kg) was established in mice to explore the effect and mechanism of HPW. The results showed that HPW effectively increased histological indicators such as villus height, crypt depth and goblet cell count. Moreover, HPW relieved intestinal barrier indicators such as D-Lac and diamine oxidase (DAO). Subsequently, western blotting was used to measure the expression of Claudin-1, Occludin, proliferating cell nuclear antigen, and inflammatory proteins such as NF-κB (P65), tumour necrosis factor-α (TNF-α), and COX-2. The results also indicated that HPW could reduce inflammation and protect the barrier at the molecular level. Finally, we investigated the influence of HPW on the levels of short-chain fatty acids, a metabolite of intestinal flora, in the faeces of mice. CONCLUSIONS HPW, which is a bioactive polysaccharide derived from insects, has protective effects on the intestinal mucosa, can relieve intestinal inflammation caused by drug side effects, and deserves further development and research.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Tianqi Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Wendong Wang
- Department of Orthopaedics, The Second People's Hospital of Dalian, 29 Hongji Street, Dalian, China
| | - Fangli Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Yong Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,Dalian Runxi Technology Development Co., Ltd, 3 Jinxia Street, Dalian, China
| | - Peng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Simengge Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Yue Fan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| | - Xueling Qu
- Pelvic Floor Repair Centre, The Affiliated Dalian Maternity Hospital of Dalian Medical University, 1 Dunhuang Road, Dalian, China. .,Pelvic Floor Repair Centre, Dalian Women and Children Medical Centre (Group), No. 1 Road of Sports New Town, Dalian, China.
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| |
Collapse
|
30
|
Ming R, Jiang Y, Fan J, An C, Li J, Chen T, Li X. High-Efficiency Capture of Cells by Softening Cell Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106547. [PMID: 35112794 DOI: 10.1002/smll.202106547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The capture of circulating tumor cells (CTCs) by nanostructured substrate surface is a useful method for early diagnosis of cancer. At present, most methods used to improve the cell capture efficiency are based on changing substrate surface properties. However, there are still some gaps between these methods and practical applications. Here, a method is presented for improving cell capture efficiency from a different perspective, that is, changing the properties of the cells. Concretely, the mechanical properties of the cell membrane are changed by adding Cytochalasin D to soften the cell membrane. Furthermore, a corresponding theoretical model is proposed to explain the experimental results. It is found that cell softening can reduce the resistance of cell adhesion, which makes the adhesion ability stronger. The high-efficiency capture of cells by softening the cell membrane provides a potential method to improve the detection performance of CTCs.
Collapse
Affiliation(s)
- Ruiqi Ming
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ye Jiang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Fan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chunchun An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinqi Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co. Ltd., Qingyuan, 511517, China
| | - Xinlei Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
31
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
32
|
Atakhani A, Bogdziewiez L, Verger S. Characterising the mechanics of cell-cell adhesion in plants. QUANTITATIVE PLANT BIOLOGY 2022; 3:e2. [PMID: 37077973 PMCID: PMC10095952 DOI: 10.1017/qpb.2021.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/03/2023]
Abstract
Cell-cell adhesion is a fundamental feature of multicellular organisms. To ensure multicellular integrity, adhesion needs to be tightly controlled and maintained. In plants, cell-cell adhesion remains poorly understood. Here, we argue that to be able to understand how cell-cell adhesion works in plants, we need to understand and quantitatively measure the mechanics behind it. We first introduce cell-cell adhesion in the context of multicellularity, briefly explain the notions of adhesion strength, work and energy and present the current knowledge concerning the mechanisms of cell-cell adhesion in plants. Because still relatively little is known in plants, we then turn to animals, but also algae, bacteria, yeast and fungi, and examine how adhesion works and how it can be quantitatively measured in these systems. From this, we explore how the mechanics of cell adhesion could be quantitatively characterised in plants, opening future perspectives for understanding plant multicellularity.
Collapse
Affiliation(s)
- Asal Atakhani
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Léa Bogdziewiez
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Author for correspondence: S. Verger, E-mail:
| |
Collapse
|
33
|
Li J, Yan J, Springer TA. Low affinity integrin states have faster ligand binding kinetics than the high affinity state. eLife 2021; 10:73359. [PMID: 34854380 PMCID: PMC8730728 DOI: 10.7554/elife.73359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Integrin conformational ensembles contain two low-affinity states, bent-closed and extended-closed, and an active, high-affinity, extended-open state. It is widely thought that integrins must be activated before they bind ligand; however, one model holds that activation follows ligand binding. As ligand-binding kinetics are not only rate limiting for cell adhesion but also have important implications for the mechanism of activation, we measure them here for integrins α4β1 and α5β1 and show that the low-affinity states bind substantially faster than the high-affinity state. On- and off-rates are similar for integrins on cell surfaces and as ectodomain fragments. Although the extended-open conformation’s on-rate is ~20-fold slower, its off-rate is ~25,000-fold slower, resulting in a large affinity increase. The tighter ligand-binding pocket in the open state may slow its on-rate. Low-affinity integrin states not only bind ligand more rapidly, but are also more populous on the cell surface than high-affinity states. Thus, our results suggest that integrin binding to ligand may precede, rather than follow, activation by ‘inside-out signaling.’
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| |
Collapse
|
34
|
Zuchtriegel G, Uhl B, Pick R, Ramsauer M, Dominik J, Mittmann LA, Canis M, Kanse S, Sperandio M, Krombach F, Reichel CA. Vitronectin stabilizes intravascular adhesion of neutrophils by coordinating β2 integrin clustering. Haematologica 2021; 106:2641-2653. [PMID: 32703799 PMCID: PMC8485676 DOI: 10.3324/haematol.2019.226241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/09/2022] Open
Abstract
The recruitment of neutrophils from the microvasculature to the site of injury or infection represents a key event in the inflammatory response. Vitronectin (VN) is a multifunctional macromolecule abundantly present in blood and extracellular matrix. The role of this glycoprotein in the extravasation process of circulating neutrophils remains elusive. Employing advanced in vivo/ex vivo imaging techniques in different mouse models as well as in vitro methods, we uncovered a previously unrecognized function of VN in the transition of dynamic to static intravascular interactions of neutrophils with microvascular endothelial cells. These distinct properties of VN require the heteromerization of this glycoprotein with plasminogen activator inhibitor-1 (PAI- 1) on the activated venular endothelium and subsequent interactions of this protein complex with the scavenger receptor low-density lipoprotein receptor-related protein-1 on intravascularly adhering neutrophils. This induces p38 mitogen-activated protein kinases-dependent intracellular signaling events which, in turn, regulates the proper clustering of the b2 integrin lymphocyte function associated antigen-1 on the surface of these immune cells. As a consequence of this molecular interplay, neutrophils become able to stabilize their adhesion to the microvascular endothelium and, subsequently, to extravasate to the perivascular tissue. Hence, endothelial-bound VN-PAI-1 heteromers stabilize intravascular adhesion of neutrophils by coordinating b2 integrin clustering on the surface of these immune cells, thereby effectively controlling neutrophil trafficking to inflamed tissue. Targeting this protein complex might be beneficial for the prevention and treatment of inflammatory pathologies.
Collapse
Affiliation(s)
- Gabriele Zuchtriegel
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität München, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität München, Germany
| | - Robert Pick
- Dept. of Otorhinolaryngology, Klinikum der Universität Munchen, Munich, Germany
| | - Michaela Ramsauer
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität Munchen, Germany
| | - Julian Dominik
- Dept. of Otorhinolaryngology, Klinikum der Universität Munchen, Munich, Germany
| | - Laura A Mittmann
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität Munchen, Germany
| | | | - Sandip Kanse
- Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Markus Sperandio
- Dept. of Otorhinolaryngology, Klinikum der Universität Munchen, Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität Munchen, Germany
| |
Collapse
|
35
|
Scalise AA, Kakogiannos N, Zanardi F, Iannelli F, Giannotta M. The blood-brain and gut-vascular barriers: from the perspective of claudins. Tissue Barriers 2021; 9:1926190. [PMID: 34152937 PMCID: PMC8489939 DOI: 10.1080/21688370.2021.1926190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In some organs, such as the brain, endothelial cells form a robust and highly selective blood-to-tissue barrier. However, in other organs, such as the intestine, endothelial cells provide less stringent permeability, to allow rapid exchange of solutes and nutrients where needed. To maintain the structural and functional integrity of the highly dynamic blood–brain and gut–vascular barriers, endothelial cells form highly specialized cell-cell junctions, known as adherens junctions and tight junctions. Claudins are a family of four-membrane-spanning proteins at tight junctions and they have both barrier-forming and pore-forming properties. Tissue-specific expression of claudins has been linked to different diseases that are characterized by barrier impairment. In this review, we summarize the more recent progress in the field of the claudins, with particular attention to their expression and function in the blood–brain barrier and the recently described gut–vascular barrier, under physiological and pathological conditions. Abbreviations: 22q11DS 22q11 deletion syndrome; ACKR1 atypical chemokine receptor 1; AD Alzheimer disease; AQP aquaporin; ATP adenosine triphosphate; Aβ amyloid β; BAC bacterial artificial chromosome; BBB blood-brain barrier; C/EBP-α CCAAT/enhancer-binding protein α; cAMP cyclic adenosine monophosphate (or 3ʹ,5ʹ-cyclic adenosine monophosphate); CD cluster of differentiation; CNS central nervous system; DSRED discosoma red; EAE experimental autoimmune encephalomyelitis; ECV304 immortalized endothelial cell line established from the vein of an apparently normal human umbilical cord; EGFP enhanced green fluorescent protein; ESAM endothelial cell-selective adhesion molecule; GLUT-1 glucose transporter 1; GVB gut-vascular barrier; H2B histone H2B; HAPP human amyloid precursor protein; HEK human embryonic kidney; JACOP junction-associated coiled coil protein; JAM junctional adhesion molecules; LYVE1 lymphatic vessel endothelial hyaluronan receptor 1; MADCAM1 mucosal vascular addressin cell adhesion molecule 1; MAPK mitogen-activated protein kinase; MCAO middle cerebral artery occlusion; MMP metalloprotease; MS multiple sclerosis; MUPP multi-PDZ domain protein; PATJ PALS-1-associated tight junction protein; PDGFR-α platelet-derived growth factor receptor α polypeptide; PDGFR-β platelet-derived growth factor receptor β polypeptide; RHO rho-associated protein kinase; ROCK rho-associated, coiled-coil-containing protein kinase; RT-qPCR real time quantitative polymerase chain reactions; PDGFR-β soluble platelet-derived growth factor receptor, β polypeptide; T24 human urinary bladder carcinoma cells; TG2576 transgenic mice expressing the human amyloid precursor protein; TNF-α tumor necrosis factor α; WTwild-type; ZO zonula occludens.
Collapse
|
36
|
Uhl B, A Mittmann L, Dominik J, Hennel R, Smiljanov B, Haring F, B Schaubächer J, Braun C, Padovan L, Pick R, Canis M, Schulz C, Mack M, Gutjahr E, Sinn P, Heil J, Steiger K, Kanse SM, Weichert W, Sperandio M, Lauber K, Krombach F, Reichel CA. uPA-PAI-1 heteromerization promotes breast cancer progression by attracting tumorigenic neutrophils. EMBO Mol Med 2021; 13:e13110. [PMID: 33998175 PMCID: PMC8185543 DOI: 10.15252/emmm.202013110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/28/2021] [Accepted: 03/25/2021] [Indexed: 01/13/2023] Open
Abstract
High intratumoral levels of urokinase-type plasminogen activator (uPA)-plasminogen activator inhibitor-1 (PAI-1) heteromers predict impaired survival and treatment response in early breast cancer. The pathogenetic role of this protein complex remains obscure. Here, we demonstrate that heteromerization of uPA and PAI-1 multiplies the potential of the single proteins to attract pro-tumorigenic neutrophils. To this end, tumor-released uPA-PAI-1 utilizes very low-density lipoprotein receptor and mitogen-activated protein kinases to initiate a pro-inflammatory program in perivascular macrophages. This enforces neutrophil trafficking to cancerous lesions and skews these immune cells toward a pro-tumorigenic phenotype, thus supporting tumor growth and metastasis. Blockade of uPA-PAI-1 heteromerization by a novel small-molecule inhibitor interfered with these events and effectively prevented tumor progression. Our findings identify a therapeutically targetable, hitherto unknown interplay between hemostasis and innate immunity that drives breast cancer progression. As a personalized immunotherapeutic strategy, blockade of uPA-PAI-1 heteromerization might be particularly beneficial for patients with highly aggressive uPA-PAI-1high tumors.
Collapse
Affiliation(s)
- Bernd Uhl
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Laura A Mittmann
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Julian Dominik
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Roman Hennel
- Department of Radiation OncologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Bojan Smiljanov
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Florian Haring
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Johanna B Schaubächer
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Constanze Braun
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Lena Padovan
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Robert Pick
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Martin Canis
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Christian Schulz
- Department of CardiologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Matthias Mack
- Department of Internal MedicineUniversity of RegensburgRegensburgGermany
| | - Ewgenija Gutjahr
- Institute for PathologyUniversity of HeidelbergHeidelbergGermany
| | - Peter Sinn
- Institute for PathologyUniversity of HeidelbergHeidelbergGermany
| | - Jörg Heil
- Department of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
| | - Katja Steiger
- Department of PathologyTechnical University of MunichMunichGermany
| | - Sandip M Kanse
- Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Wilko Weichert
- Department of PathologyTechnical University of MunichMunichGermany
- German Cancer Consortium (DKTK), partner site MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and PathophysiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Kirsten Lauber
- Department of Radiation OncologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Christoph A Reichel
- Department of OtorhinolaryngologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Walter Brendel Centre of Experimental MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
37
|
Modaresifar K, Ganjian M, Angeloni L, Minneboo M, Ghatkesar MK, Hagedoorn PL, Fratila-Apachitei LE, Zadpoor AA. On the Use of Black Ti as a Bone Substituting Biomaterial: Behind the Scenes of Dual-Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100706. [PMID: 33978318 DOI: 10.1002/smll.202100706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Despite the potential of small-scale pillars of black titanium (bTi) for killing the bacteria and directing the fate of stem cells, not much is known about the effects of the pillars' design parameters on their biological properties. Here, three distinct bTi surfaces are designed and fabricated through dry etching of the titanium, each featuring different pillar designs. The interactions of the surfaces with MC3T3-E1 preosteoblast cells and Staphylococcus aureus bacteria are then investigated. Pillars with different heights and spatial organizations differently influence the morphological characteristics of the cells, including their spreading area, aspect ratio, nucleus area, and cytoskeletal organization. The preferential formation of focal adhesions (FAs) and their size variations also depend on the type of topography. When the pillars are neither fully separated nor extremely tall, the colocalization of actin fibers and FAs as well as an enhanced matrix mineralization are observed. However, the killing efficiency of these pillars against the bacteria is not as high as that of fully separated and tall pillars. This study provides a new perspective on the dual-functionality of bTi surfaces and elucidates how the surface design and fabrication parameters can be used to achieve a surface topography with balanced bactericidal and osteogenic properties.
Collapse
Affiliation(s)
- Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mahya Ganjian
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Livia Angeloni
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Murali K Ghatkesar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
38
|
Wu S, Rish AJ, Skomo A, Zhao Y, Drennen JK, Anderson CA. Rapid serum-free/suspension adaptation: Medium development using a definitive screening design for Chinese hamster ovary cells. Biotechnol Prog 2021; 37:e3154. [PMID: 33864359 DOI: 10.1002/btpr.3154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
The biopharmaceutical industry prefers to culture the mammalian cells in suspension with a serum-free media (SFM) due to improved productivity and process consistency. However, mammalian cells preferentially grow as adherent cells in a complete medium (CM) containing serum. Therefore, cells require adaptation from adherence in CM to suspension culture in SFM. This work proposes an adaptation method that includes media supplementation during the adaption of Chinese hamster ovary cells. As a result, the adaptation was accelerated compared to the traditional repetitive subculturing. Ca2+ /Mg2+ supplementation significantly reduced the doubling time compared to the adaptation without supplementation during the adaptation of adherent cells from 100% CM to 75% CM (p < 0.05). Furthermore, a definitive screening design (DSD) was applied to select essential nutrients during the adaptation from 10% CM to 0% CM. The main effects of Ca2+ and Dulbecco's modified essential medium (DMEM) were found significant to both viable cell density and viability at harvest. Additionally, the interaction term between Ca2+ and DMEM was found significant, which highlights the ability of DSD to capture interaction terms. Eventually, the media supplementation method resulted in adaptation SFM in 27 days, compared to the previously reported 66 days. Additionally, the membrane surface integrin expression was found significantly decreased when adherent cells were adapted to suspension. Moreover, the Ca2+ /Mg2+ supplementation correlated with faster integrin recovery after trypsinization. However, faster integrin recovery did not contribute to the accelerated cell growth when subculturing from 100% CM to 75% CM.
Collapse
Affiliation(s)
- Suyang Wu
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Adam J Rish
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Alec Skomo
- Rangos School of Health Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Yuxiang Zhao
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - James K Drennen
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Chen H, Chen L, Wang X, Ge X, Sun L, Wang Z, Xu X, Song Y, Chen J, Deng Q, Xie H, Chen T, Chen Y, Ding K, Wu J, Wang J. Transgenic overexpression of ITGB6 in intestinal epithelial cells exacerbates dextran sulfate sodium-induced colitis in mice. J Cell Mol Med 2021; 25:2679-2690. [PMID: 33491282 PMCID: PMC7933932 DOI: 10.1111/jcmm.16297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Integrins, as a large family of cell adhesion molecules, play a crucial role in maintaining intestinal homeostasis. In inflammatory bowel disease (IBD), homeostasis is disrupted. Integrin αvβ6, which is mainly regulated by the integrin β6 subunit gene (ITGB6), is a cell adhesion molecule that mediates cell-cell and cell-matrix interactions. However, the role of ITGB6 in the pathogenesis of IBD remains elusive. In this study, we found that ITGB6 was markedly upregulated in inflamed intestinal tissues from patients with IBD. Then, we generated an intestinal epithelial cell-specific ITGB6 transgenic mouse model. Conditional ITGB6 transgene expression exacerbated experimental colitis in mouse models of acute and chronic dextran sulphate sodium (DSS)-induced colitis. Survival analyses revealed that ITGB6 transgene expression correlated with poor prognosis in DSS-induced colitis. Furthermore, our data indicated that ITGB6 transgene expression increased macrophages infiltration, pro-inflammatory cytokines secretion, integrin ligands expression and Stat1 signalling pathway activation. Collectively, our findings revealed a previously unknown role of ITGB6 in IBD and highlighted the possibility of ITGB6 as a diagnostic marker and therapeutic target for IBD.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Radiation OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Liubo Chen
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Wang
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoxu Ge
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lifeng Sun
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhanhuai Wang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoming Xu
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of PathologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yongmao Song
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jing Chen
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qun Deng
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haiting Xie
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ting Chen
- Key Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalCancer InstituteZhejiang University School of MedicineHangzhouChina
| | - Yan Chen
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jian Wang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Center for Inflammatory Bowel DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
40
|
Wang Y, Zhou J, Tang C, Yu J, Zhu W, Guo J, Wang Y. Positive effect of Astragaloside IV on neurite outgrowth via talin-dependent integrin signaling and microfilament force. J Cell Physiol 2021; 236:2156-2168. [PMID: 32853433 DOI: 10.1002/jcp.30002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Integrin plays a prominent role in neurite outgrowth by transmitting both mechanical and chemical signals. Integrin expression is closely associated with Astragaloside IV (AS-IV), the main component extracted from Astragali radix, which has a positive effect on neural-protection. However, the relationship between AS-IV and neurite outgrowth has not been studied exhaustively to date. The present study investigated the underlying mechanism of AS-IV on neurite outgrowth. Longer neurites have been observed in SH-SY5Y cells or cortical neurons after AS-IV treatment. Furthermore, AS-IV not only increased the expression of integrin β but also activated it. The AS-IV-induced increased integrin activity was attributed to the integrin-activating protein talin. Application of the actin force probe showed that AS-IV led to an increase in intracellular microfilament force during neurite growth. Furthermore, in response to AS-IV, the microfilament force was regulated by talin and integrin activity during neurite growth. These results suggest that AS-IV has the ability to increase intracellular structural force and facilitate neurite elongation by integrin signaling, which highlights its therapeutic potential for neurite outgrowth.
Collapse
Affiliation(s)
- Yifan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jingwen Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chuanfeng Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jia Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wen Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
41
|
Peng JM, Lin SH, Yu MC, Hsieh SY. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest 2021; 131:133525. [PMID: 33079727 DOI: 10.1172/jci133525] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Membrane protrusion and adhesion to the extracellular matrix, which involves the extension of actin filaments and formation of adhesion complexes, are the fundamental processes for cell migration, tumor invasion, and metastasis. How cancer cells efficiently coordinate these processes remains unclear. Here, we showed that membrane-targeted chloride intracellular channel 1 (CLIC1) spatiotemporally regulates the formation of cell-matrix adhesions and membrane protrusions through the recruitment of PIP5Ks to the plasma membrane. Comparative proteomics identified CLIC1 upregulated in human hepatocellular carcinoma (HCC) and associated with tumor invasiveness, metastasis, and poor prognosis. In response to migration-related stimuli, CLIC1 recruited PIP5K1A and PIP5K1C from the cytoplasm to the leading edge of the plasma membrane, where PIP5Ks generate a phosphatidylinositol 4,5-bisphosphate-rich (PIP2-rich) microdomain to induce the formation of integrin-mediated cell-matrix adhesions and the signaling for cytoskeleon extension. CLIC1 silencing inhibited the attachment of tumor cells to culture plates and the adherence and extravasation in the lung alveoli, resulting in suppressed lung metastasis in mice. This study reveals what we believe is an unrecognized mechanism that spatiotemporally coordinates the formation of both lamellipodium/invadopodia and nascent cell-matrix adhesions for directional migration and tumor invasion/metastasis. The unique traits of upregulation and membrane targeting of CLIC1 in cancer cells make it an excellent therapeutic target for tumor metastasis.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Hsuan Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
42
|
Chen L, Wu C, Wei D, Chen S, Xiao Z, Zhu H, Luo H, Sun J, Fan H. Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111613. [PMID: 33321656 DOI: 10.1016/j.msec.2020.111613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023]
Abstract
Construction of biomimetic microenvironment is vital to understand the relationship between matrix mechanical cues and cell fate, as well as to explore potential tissue engineering scaffolds for clinical application. In this study, through the enzymatic mineralizable collagen hydrogel system, we established the biomimetic bone matrix which was capable of realizing mechanical regulation independent of mineralization by incorporation of phosphorylated molecules (vinylphosphonic acid, VAP). Then, based on the biomimetic mineralized matrix with same composition but significantly different mechanical stiffness, we further investigated the effect of matrix stiffness on osteogenic differentiation of bone marrow stromal cells (BMSCs). The results clearly demonstrated that biomimetic mineralized microenvironment with higher mechanical strength promoted osteogenic differentiation of BMSCs. Further mechanism analysis demonstrated that the mineralized hydrogel with higher stiffness promoted cytoskeletal assembly, which enhanced the expression and nuclear colocalization of YAP and RUNX2, thereby promoted the osteogenic differentiation of stem cells. This study supplies a promising material platform not only for bone tissue engineering but also for exploring the mechanism of biomimetic bone matrix mechanics on osteogenesis.
Collapse
Affiliation(s)
- Lu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Hua Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China.
| |
Collapse
|
43
|
Henning Stumpf B, Ambriović-Ristov A, Radenovic A, Smith AS. Recent Advances and Prospects in the Research of Nascent Adhesions. Front Physiol 2020; 11:574371. [PMID: 33343382 PMCID: PMC7746844 DOI: 10.3389/fphys.2020.574371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Nascent adhesions are submicron transient structures promoting the early adhesion of cells to the extracellular matrix. Nascent adhesions typically consist of several tens of integrins, and serve as platforms for the recruitment and activation of proteins to build mature focal adhesions. They are also associated with early stage signaling and the mechanoresponse. Despite their crucial role in sampling the local extracellular matrix, very little is known about the mechanism of their formation. Consequently, there is a strong scientific activity focused on elucidating the physical and biochemical foundation of their development and function. Precisely the results of this effort will be summarized in this article.
Collapse
Affiliation(s)
- Bernd Henning Stumpf
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
44
|
Tang B, Shen X, Yang Y, Xu Z, Yi J, Yao Y, Cao M, Zhang Y, Xia H. Enhanced cellular osteogenic differentiation on CoFe 2O 4/P(VDF-TrFE) nanocomposite coatings under static magnetic field. Colloids Surf B Biointerfaces 2020; 198:111473. [PMID: 33250417 DOI: 10.1016/j.colsurfb.2020.111473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Cellular responses can be regulated and manipulated through combining stimuli-responsive biomaterial with external stimulus. In this present, the magneto-responsive CoFe2O4/P(VDF-TrFE) nanocomposite coatings were designed to understand cell behaviors of preosteoblasts, as well as get insight into the underlying mechanism of osteogenic differentiation under static magnetic field (SMF). CoFe2O4/P(VDF-TrFE) nanocomposite coatings with differential magnetic property (low, medium and high magnetization) were prepared by incorporation of different mass fraction of CoFe2O4 nanoparticles (6%, 13 %, 20 %) into P(VDF-TrFE) matrix. Cell experiments indicated that all nanocomposite coatings with the assistance of SMF could promote the cell attachment, proliferation and osteogenic differentiation of MC3T3-E1 cells. Among different nanocomposite coatings, low magnetization coating (6%) showed a higher ALP activity and gene expression of Runx2, Col-I, OCN. Molecular biology assays demonstrated that the combination of nanocomposite coatings and SMF could significantly up-regulate the expression level of α2β1 integrin and p-ERK. Whereas, the addition of inhibitor U0126 down-regulated sharply the expression level of p-ERK, which indicated that cellular osteogenic differentiation of MC3T3-E1 cells was governed through α2β1 integrin-mediated MEK/ERK signaling pathways during CoFe2O4/P(VDF-TrFE) nanocomposite coatings were combined with SMF. This work provided a promising strategy to enhance cellular osteogenic differentiation through a remote-control manner, which exhibited great potential in the application of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Bolin Tang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Xiaojun Shen
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Zhi Xu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Jie Yi
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yongbo Yao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Miao Cao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yalin Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongqin Xia
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
45
|
Abstract
Cerebral cavernous malformations (CCMs) are neurovascular abnormalities characterized by thin, leaky blood vessels resulting in lesions that predispose to haemorrhages, stroke, epilepsy and focal neurological deficits. CCMs arise due to loss-of-function mutations in genes encoding one of three CCM complex proteins, KRIT1, CCM2 or CCM3. These widely expressed, multi-functional adaptor proteins can assemble into a CCM protein complex and (either alone or in complex) modulate signalling pathways that influence cell adhesion, cell contractility, cytoskeletal reorganization and gene expression. Recent advances, including analysis of the structures and interactions of CCM proteins, have allowed substantial progress towards understanding the molecular bases for CCM protein function and how their disruption leads to disease. Here, we review current knowledge of CCM protein signalling with a focus on three pathways which have generated the most interest—the RhoA–ROCK, MEKK3–MEK5–ERK5–KLF2/4 and cell junctional signalling pathways—but also consider ICAP1-β1 integrin and cdc42 signalling. We discuss emerging links between these pathways and the processes that drive disease pathology and highlight important open questions—key among them is the role of subcellular localization in the control of CCM protein activity.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Cell Biology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
46
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
47
|
Tang B, Shen X, Ye G, Yang Y, Jiang Y, Xia H, Chen X. Magnetic-Field-Assisted Cellular Osteogenic Differentiation on Magnetic Zinc Ferrite Coatings via MEK/ERK Signaling Pathways. ACS Biomater Sci Eng 2020; 6:6864-6873. [PMID: 33320603 DOI: 10.1021/acsbiomaterials.0c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Combining an external stimulus and stimuli-responsive biomaterials can regulate cellular behaviors. In this paper, a magneto-responsive zinc ferrite (ZnFe2O4) coating was designed to gain insight into the preosteoblasts behaviors and osteogenic differentiation mechanism under a static magnetic field (SMF). ZnFe2O4 coatings with distinct magnetization (low, medium, and high magnetizations) were prepared by being annealed at different temperatures. Cellular biology experiments indicated that all ZnFe2O4 coatings with the assistance of SMF could promote the early proliferation (3 days) and osteogenic differentiation of MC3T3-E1 cells. Among different ZnFe2O4 samples, low and medium magnetization of ZnFe2O4 showed a higher osteogenesis-related gene expression (Runx2, Col-I, OCN) than that of high magnetization ZnFe2O4 under SMF, while cellular adhesion and proliferation cultured on different ZnFe2O4 samples presented insignificant differences. Molecular biology tests showed that the combination of ferromagnetic ZnFe2O4 and SMF could significantly improve the expression level of α2β1 integrin and p-ERK. However, the addition of the inhibitor U0126 sharply reduced the expression level of p-ERK, which indicated that α2β1 integrin-mediated MEK/ERK signaling pathways play a key role in SMF-assisted cellular osteogenic differentiation over ZnFe2O4 coatings. This work provides an attractive strategy to enhance cellular osteogenic differentiation in a remote-control way, which exhibited enormous potential in the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Bolin Tang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaojun Shen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Guanchen Ye
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,China Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Yaru Yang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Yang Jiang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Hongqin Xia
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaoyi Chen
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,China Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
48
|
In vitro analysis of the trajectories of adhesive microbubbles approaching endothelial cells. J Colloid Interface Sci 2020; 578:758-767. [PMID: 32574909 DOI: 10.1016/j.jcis.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022]
Abstract
Adhesion is a key process when ultrasound contrast agents, i.e. microbubbles, approach pathological tissues. A way to accomplish tumour targeting is to tether surface engineered microbubbles to endothelial cells of the up-regulated vascularization of cancer tissues. This can be achieved by coupling the microbubbles surface with the Arginine-Glycine-Aspartate, RGD, sequence. Such molecule interacts with the integrin receptors placed on the endothelial cells. Stability and trajectories of RGD modified lipid shelled MBs have been analysed in vitro using microchannels coated with human umbilical vein endothelial cells, HUVEC. In the microchannels realistic conditions, close to the physiological ones, were reproduced replicating shear rate, roughness comparable to the endothelium and channel size mimicking the postcapillary venules. In these conditions, the analysis of the trajectories close to the walls highlights a substantial difference between the modified MBs and the plain ones. Moreover, MBs adhesion has dynamic features recalling the motion of neutrophils engaged near the substrate such as rolling, translations and transient detachments. These findings are useful for the optimization of in vivo imaging and targeting functions.
Collapse
|
49
|
Fu H, Sun Y, Shao Y, Saredy J, Cueto R, Liu L, Drummer C, Johnson C, Xu K, Lu Y, Li X, Meng S, Xue ER, Tan J, Jhala NC, Yu D, Zhou Y, Bayless KJ, Yu J, Rogers TJ, Hu W, Snyder NW, Sun J, Qin X, Jiang X, Wang H, Yang X. Interleukin 35 Delays Hindlimb Ischemia-Induced Angiogenesis Through Regulating ROS-Extracellular Matrix but Spares Later Regenerative Angiogenesis. Front Immunol 2020; 11:595813. [PMID: 33154757 PMCID: PMC7591706 DOI: 10.3389/fimmu.2020.595813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL) 35 is a novel immunosuppressive heterodimeric cytokine in IL-12 family. Whether and how IL-35 regulates ischemia-induced angiogenesis in peripheral artery diseases are unrevealed. To fill this important knowledge gap, we used loss-of-function, gain-of-function, omics data analysis, RNA-Seq, in vivo and in vitro experiments, and we have made the following significant findings: i) IL-35 and its receptor subunit IL-12RB2, but not IL-6ST, are induced in the muscle after hindlimb ischemia (HLI); ii) HLI-induced angiogenesis is improved in Il12rb2-/- mice, in ApoE-/-/Il12rb2-/- mice compared to WT and ApoE-/- controls, respectively, where hyperlipidemia inhibits angiogenesis in vivo and in vitro; iii) IL-35 cytokine injection as a gain-of-function approach delays blood perfusion recovery at day 14 after HLI; iv) IL-35 spares regenerative angiogenesis at the late phase of HLI recovery after day 14 of HLI; v) Transcriptome analysis of endothelial cells (ECs) at 14 days post-HLI reveals a disturbed extracellular matrix re-organization in IL-35-injected mice; vi) IL-35 downregulates three reactive oxygen species (ROS) promoters and upregulates one ROS attenuator, which may functionally mediate IL-35 upregulation of anti-angiogenic extracellular matrix proteins in ECs; and vii) IL-35 inhibits human microvascular EC migration and tube formation in vitro mainly through upregulating anti-angiogenic extracellular matrix-remodeling proteins. These findings provide a novel insight on the future therapeutic potential of IL-35 in suppressing ischemia/inflammation-triggered inflammatory angiogenesis at early phase but sparing regenerative angiogenesis at late phase.
Collapse
Affiliation(s)
- Hangfei Fu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinyuan Li
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Eric R Xue
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Judy Tan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nirag C Jhala
- Department of Pathology & Laboratory Medicine Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jun Yu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W Snyder
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
50
|
Rios De La Rosa JM, Spadea A, Donno R, Lallana E, Lu Y, Puri S, Caswell P, Lawrence MJ, Ashford M, Tirelli N. Microfluidic-assisted preparation of RGD-decorated nanoparticles: exploring integrin-facilitated uptake in cancer cell lines. Sci Rep 2020; 10:14505. [PMID: 32879363 PMCID: PMC7468293 DOI: 10.1038/s41598-020-71396-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
This study is about fine tuning the targeting capacity of peptide-decorated nanoparticles to discriminate between cells that express different integrin make-ups. Using microfluidic-assisted nanoprecipitation, we have prepared poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles with a PEGylated surface decorated with two different arginine-glycine-aspartic acid (RGD) peptides: one is cyclic (RGDFC) and has specific affinity towards αvβ3 integrin heterodimers; the other is linear (RGDSP) and is reported to bind equally αvβ3 and α5β1. We have then evaluated the nanoparticle internalization in two cell lines with a markedly different integrin fingerprint: ovarian carcinoma A2780 (almost no αvβ3, moderate in α5β1) and glioma U87MG (very high in αvβ3, moderate/high in α5β1). As expected, particles with cyclic RGD were heavily internalized by U87MG (proportional to the peptide content and abrogated by anti-αvβ3) but not by A2780 (same as PEGylated particles). The linear peptide, on the other hand, did not differentiate between the cell lines, and the uptake increase vs. control particles was never higher than 50%, indicating a possible low and unselective affinity for various integrins. The strong preference of U87MG for cyclic (vs. linear) peptide-decorated nanoparticles was shown in 2D culture and further demonstrated in spheroids. Our results demonstrate that targeting specific integrin make-ups is possible and may open the way to more precise treatment, but more efforts need to be devoted to a better understanding of the relation between RGD structure and their integrin-binding capacity.
Collapse
Affiliation(s)
- Julio M Rios De La Rosa
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Cambridge Enterprise Limited, University of Cambridge, The Hauser Forum, 3 Charles Babbage Road, Cambridge, CB3 0GT, UK.
| | - Alice Spadea
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Roberto Donno
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Enrique Lallana
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Yu Lu
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Cambridge, UK
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - M Jayne Lawrence
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Macclesfield, UK
| | - Nicola Tirelli
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy.
| |
Collapse
|