1
|
Jin H, Xue B, Chen X, Ma T, Ma Y, Zou H, Zhu J, Tong X, Song R, Meng W, Liu Z. Polystyrene microplastics induced spermatogenesis disorder via disrupting mitochondrial function through the regulation of the Sirt1-Pgc1α signaling pathway in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125364. [PMID: 39577614 DOI: 10.1016/j.envpol.2024.125364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Microplastics (MPs) have emerged as hazardous substances, eliciting widespread concern regarding their potential toxicity. Although our previous research has indicated that polystyrene MPs (PS-MPs) might cause male reproductive toxicity in mammals, their precise effects on sperm motility parameters and acrosomal development remain uncertain. Herein, the effects on sperm motility of PS-MPs at varied particle sizes (0.5 μm, 4 μm and 10 μm) and the underlying mechanisms were examined. The results revealed that PS-MPs caused a decrease in sperm motility, accompanied by abnormalities in the structure and function of the sperm acrosome. Meanwhile, PS-MPs triggered the elevation of intracellular reactive oxygen species levels and the abnormal expression of antioxidant enzymes (γH2AX, GPX4, Peroxiredoxin 5 and SDHB), indicating disruption of the sperm antioxidant system. Furthermore, we observed aberrant expression of key factors involved in mitochondrial fission/fusion (Drp1, Fis1, Mfn1, Mfn2) and biogenesis (Tfam, Nrf1, Pgc1α), potentially resulting in disrupted mitochondrial dynamics and biogenesis in mice testis and Sertoli cells exposed to PS-MPs. Additionally, PS-MPs induced mitochondrial dysfunction by regulating the Sirt1-Pgc1α signaling pathway. Our data provided novel insights into potential mechanisms underlying the spermatogenesis disorders triggered by PS-MPs.
Collapse
Affiliation(s)
- Haibo Jin
- School of Public Health, Yangzhou University, Yangzhou, Jiangsu, 225000, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Bowen Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xuefang Chen
- School of Public Health, Yangzhou University, Yangzhou, Jiangsu, 225000, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Weiqian Meng
- College of Health Science, Rush University, Chicago, IL, 60612, USA.
| | - Zongping Liu
- School of Public Health, Yangzhou University, Yangzhou, Jiangsu, 225000, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Liu L, Xiao H, Yang G. SPARC Controls Migration and Invasion of Hepatocellular Carcinoma Cells Via Regulating GPD2-Mediated Mitochondrial Respiration. Biochem Genet 2024; 62:4518-4535. [PMID: 38334876 DOI: 10.1007/s10528-024-10682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial respiration and metabolism play a pivotal role in facilitating the migratory and invasive capacities of cancer cells. In this study, we aimed to explore the potential influence of glycoprotein SPARC on mitochondrial respiration and its subsequent influence on the migration and invasion of hepatocellular carcinoma (HCC) cells. Lentivirus-mediated shRNA delivery was employed to deplete SPARC in HCC cell lines. The mitochondria localization of SPARC was validated using cellular fractionation followed by Western blot analysis, as well as immunofluorescence staining and Proteinase K protection assay. Co-immunoprecipitation was employed to investigate the interaction between SPARC and GPD2. Seahorse XF Cell Mito Stress Test was conducted to assess the mitochondrial respiration and functionality of HCC cells. Our study identifies an active pool of SPARC within the mitochondria of HCC cells, with the mitochondrial subset proving crucial for the regulation of migration and invasion. The mitochondrial SPARC interacts with GPD2, influencing its expression levels and subsequently modulating GPD2-mediated mitochondrial respiration. This regulatory mechanism orchestrates the migratory and invasive phenotypes of HCC cells. Notably, SPARC and GPD2 exhibit upregulated expression in HCC tissues compared to normal liver tissues. High expression levels of both SPARC and GPD2 in HCC patients are associated with a poorer prognosis. Our study unveils a novel role for SPARC in governing HCC cell migration and invasion through regulating GPD2-mediated mitochondrial respiration. These findings underscore the importance of mitochondrial processes in cancer progression and propose the SPARC/GPD2 axis as a promising target for HCC interventions.
Collapse
Affiliation(s)
- Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Huawei Xiao
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Guiqing Yang
- Department of Medical Oncology, Yantai Traditional Chinese Medicine Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
3
|
Zhang JN, Zhang Z, Huang ZL, Guo Q, Wu ZQ, Ke C, Lu B, Wang ZT, Ji LL. Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis. Acta Pharmacol Sin 2024; 45:2672-2683. [PMID: 39009651 PMCID: PMC11579498 DOI: 10.1038/s41401-024-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Ze Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chuang Ke
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Luo JF, Wang S, Fu J, Xu P, Shao N, Lu JH, Ming C. Integration of transcriptional and epigenetic regulation of TFEB reveals its dual functional roles in Pan-cancer. NAR Cancer 2024; 6:zcae043. [PMID: 39554489 PMCID: PMC11567160 DOI: 10.1093/narcan/zcae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Transcription factor EB (TFEB) mainly regulates the autophagy-lysosomal pathway, associated with many diseases, including cancer. However, the role of TFEB in pan-cancer has not been investigated systematically. In this study, we comprehensively analyzed TFEB targets under three stresses in Hela cells by cross-validation of RNA-seq and ChIP-seq. 1712 novel TFEB targets have not been reported in the Gene Set Enrichment Analysis and ChIP Enrichment Analysis databases. We further investigated their distributions and roles among the pan-cancer co-expression networks across 32 cancers constructed by multiscale embedded gene co-expression network analysis (MEGENA) based on the Cancer Genome Atlas (TCGA) cohort. Specifically, TFEB might serve as a hidden player with multifaceted functions in regulating pan-cancer risk factors, e.g. CXCL2, PKMYT1 and BUB1, associated with cell cycle and immunosuppression. TFEB might also regulate protective factors, e.g. CD79A, related to immune promotion in the tumor microenvironment. We further developed a Shiny app website to present the comprehensive regulatory targets of TFEB under various stimuli, intending to support further research on TFEB functions. Summarily, we provided references for the TFEB downstream targets responding to three stresses and the dual roles of TFEB and its targets in pan-cancer, which are promising anticancer targets that warrant further exploration.
Collapse
Affiliation(s)
- Jing-Fang Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR999078, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Shijia Wang
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Jiajing Fu
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Peng Xu
- Centre of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Ningyi Shao
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR999078, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
5
|
Faris PS. Verbascum ponticum (Stef.) Extract Induces Lung Cancer Apoptosis via Mitochondrial-Dependent Apoptosis Pathway. Life (Basel) 2024; 14:1520. [PMID: 39598318 PMCID: PMC11595628 DOI: 10.3390/life14111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Non-small-cell lung carcinoma remains a significant health concern due to its high incidence and mortality rates. Traditional medicines play a central role in cancer therapy, with plant-derived bioactive compounds being studied for their potential to offer fewer side effects than conventional treatments. In traditional Kurdish medicine, different Verbascum species are used to treat burns, inflammation, and other conditions. While some species extracts have shown cytotoxic effects against several cancer cell lines like A549, the efficacy and mechanisms of action of the other species like Verbascum ponticum (V. ponticum) remain to be elucidated. Therefore, this study aimed to explore the effect of V. ponticum (Stef.) extract, collected from the Kurdistan region of the Iraq mountains, on A549 cells. A comprehensive approach was employed, utilizing immunocytochemical and functional analyses to assess apoptotic morphology, DNA fragmentation, alongside assays for cellular and mitochondrial function, proliferation, and viability. Additionally, the study investigated AIF mitochondrial translocation and evaluated mitochondrial membrane potential using the Rhodamine 123 assay. The results showed that the V. ponticum flower extract induced mitochondrial-mediated apoptosis in A549 cells via disruption of mitochondrial membrane potential, release of AIF, and translocation to the nucleus, independently of the caspase-3-activation pathway. These findings emphasize the potential of V. ponticum in lung cancer strategic treatments, meriting further phytochemical studies to identify the bioactive compounds it contains.
Collapse
Affiliation(s)
- Pawan S. Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region of Iraq, Iraq;
- Department of Biology, Cihan University-Erbil, Erbil 44001, Kurdistan Region of Iraq, Iraq
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
7
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
8
|
Liu C, Cheng S, Zhou X, Li L, Wang C, Zhang L. Mitochondrial dynamics and energy metabolism interference therapy for promoting photothermal sensitization. J Colloid Interface Sci 2024; 680:429-440. [PMID: 39522238 DOI: 10.1016/j.jcis.2024.10.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
Collapse
Affiliation(s)
- Cuimei Liu
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical and Materials Engineering, Bohai University, 19 Science and Technology Road, Jinzhou 121013, PR China
| | - Sihang Cheng
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical and Materials Engineering, Bohai University, 19 Science and Technology Road, Jinzhou 121013, PR China
| | - Xue Zhou
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Lu Li
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Chungang Wang
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Lingyu Zhang
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China.
| |
Collapse
|
9
|
Jia X, Mao D, Guo J, Ke J, Zhu Y, Zhao X, Luo Z, Liu X, Tang R, Hou R, Lan H, Zheng Q. Epigallocatechin gallate attenuated high glucose-induced pancreatic beta cell dysfunction by modulating DRP1-mediated mitochondrial apoptosis pathways. Sci Rep 2024; 14:16809. [PMID: 39039202 PMCID: PMC11263710 DOI: 10.1038/s41598-024-67867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Long-term exposure to hyperglycemic conditions leads to β-cell dysfunction, particularly mitochondrial dysfunction, and inflammatory and oxidative stress responses, which are considered the primary causes of β-cell death and the hallmarks of diabetes. Plant-active ingredients may play a key role in glycemic control. Epigallocatechin gallate (EGCG) is a characteristic catechin derived from tea that possesses anti-diabetic properties. Nonetheless, its underlying mechanisms remain elusive. Herein, the protective role of EGCG on high glucose (33 mM)-induced pancreatic beta cell dysfunction and its possible molecular mechanisms were investigated. Briefly, MIN6 cells were treated with glucose and EGCG (10 µM, 20 µM, and 40 µM) for 48 h. Our results revealed that EGCG dose-dependently restored mitochondrial membrane potential and concomitantly alleviated cell apoptosis. Mechanistically, the expression level of apoptotic protein BAX and Dynamic related protein 1 (DRP1) was significantly downregulated following EGCG treatment, whereas that of the anti-apoptotic protein BCL-2 was significantly upregulated. Taken together, EGCG alleviated high glucose-induced pancreatic beta cell dysfunction by targeting the DRP1-related mitochondrial apoptosis pathway and thus can serve as a nutritional intervention for the preservation of beta cell dysfunction in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Danting Mao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Jianwei Guo
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Jiangyu Ke
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Yanlin Zhu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoyang Zhao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziren Luo
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Xinghai Liu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Rui Tang
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Ruihan Hou
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Haitao Lan
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
10
|
Lunova M, Jirsa M, Dejneka A, Sullivan GJ, Lunov O. Mechanical regulation of mitochondrial morphodynamics in cancer cells by extracellular microenvironment. BIOMATERIALS AND BIOSYSTEMS 2024; 14:100093. [PMID: 38585282 PMCID: PMC10992729 DOI: 10.1016/j.bbiosy.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| | | | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| |
Collapse
|
11
|
Matyasova K, Soltysova A, Babula P, Krizanova O, Liskova V. Role of the 3-mercaptopyruvate sulfurtransferase in colon/colorectal cancers. Eur J Cell Biol 2024; 103:151415. [PMID: 38631098 DOI: 10.1016/j.ejcb.2024.151415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
The 3-mercaptopyruvate sulfurtransferase (MPST) is a protein persulfidase, occurring mainly in mitochondria. Although function of this protein in cancer cells has been already studied, no clear outcome can be postulated up to now. Therefore, we focused on the determination of function of MPST in colon (HCT116 cells)/colorectal (DLD1 cells) cancers. In silico analysis revealed that in gastrointestinal cancers, MPST together with its binding partners can be either of a high risk or might have a protective effect. Silencing of MPST gene resulted in decreased ATP, while acetyl-CoA levels were elevated. Increased apoptosis was detected in cells with silenced MPST gene, which was accompanied by decrease in mitochondrial membrane potential, but no changes in IP3 receptor's protein. Mitochondria underwent activation of fission and elevated DRP1 expression after MPST silencing. Proliferation and migration of DLD1 and HCT116 cells were markedly affected, showing the importance of MPST protein in colon/colorectal cancer development.
Collapse
Affiliation(s)
- Katarina Matyasova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Soltysova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
12
|
Peng G, Feng Y, Wang X, Huang W, Li Y. The mitochondria-related gene risk mode revealed p66Shc as a prognostic mitochondria-related gene of glioblastoma. Sci Rep 2024; 14:11418. [PMID: 38763954 PMCID: PMC11102912 DOI: 10.1038/s41598-024-62083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
Numerous studies have highlighted the pivotal role of mitochondria-related genes (MRGs) in the initiation and progression of glioblastoma (GBM). However, the specific contributions of MRGs coding proteins to GBM pathology remain incompletely elucidated. The identification of prognostic MRGs in GBM holds promise for the development of personalized targeted therapies and the enhancement of patient prognosis. We combined differential expression with univariate Cox regression analysis to screen prognosis-associated MRGs in GBM. Based on the nine MRGs, the hazard ratio model was conducted using a multivariate Cox regression algorithm. SHC-related survival, pathway, and immune analyses in GBM cohorts were obtained from the Biomarker Exploration of the Solid Tumor database. The proliferation and migration of U87 cells were measured by CCK-8 and transwell assay. Apoptosis in U87 cells was evaluated using flow cytometry. Confocal microscopy was employed to measure mitochondrial reactive oxygen species (ROS) levels and morphology. The expression levels of SHC1 and other relevant proteins were examined via western blotting. We screened 15 prognosis-associated MRGs and constructed a 9 MRGs-based model. Validation of the model's risk score confirmed its efficacy in predicting the prognosis of patients with GBM. Furthermore, analysis revealed that SHC1, a constituent MRG of the prognostic model, was upregulated and implicated in the progression, migration, and immune infiltration of GBM. In vitro experiments elucidated that p66Shc, the longest isoform of SHC1, modulates mitochondrial ROS production and morphology, consequently promoting the proliferation and migration of U87 cells. The 9 MRGs-based prognostic model could predict the prognosis of GBM. SHC1 was upregulated and correlated with the prognosis of patients by involvement in immune infiltration. Furthermore, in vitro experiments demonstrated that p66Shc promotes U87 cell proliferation and migration by mediating mitochondrial ROS production. Thus, p66Shc may serve as a promising biomarker and therapeutic target for GBM.
Collapse
Affiliation(s)
- Gang Peng
- Department of Phamacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yabo Feng
- PET-CT Center, Chenzhou First People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Weicheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Ahn SY. Mitofusin-2 enhances cervical cancer progression through Wnt/β-catenin signaling. BMB Rep 2024; 57:194-199. [PMID: 38449303 PMCID: PMC11058360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Overexpression of mitofusin-2 (MFN2), a mitochondrial fusion protein, is frequently associated with poor prognosis in cervical cancer patients. Here, I aimed to investigate the involvement of MFN2 in cervical cancer progression and determine the effect of MFN2 on prognosis in cervical cancer patients. After generating MFN2-knockdown SiHa cells derived from squamous cell carcinoma, I investigated the effect of MFN2 on SiHa cell proliferation using the Cell Counting Kit-8 assay and determined the mRNA levels of proliferation markers. Colony-forming ability and tumorigenesis were evaluated using a colonyformation assay and tumor xenograft mouse models. The migratory and invasive abilities associated with MFN2 were measured using wound-healing and invasion assays. Wnt/β-cateninmediated epithelial-mesenchymal transition (EMT) markers related to MFN2 were assessed through quantitative RT-PCR. MFN2-knockdown SiHa cells exhibited reduced proliferation, colony formation, migration, invasion, and tumor formation in vivo. The motility of SiHa cells with MFN2 knockdown was reduced through Wnt/β-catenin-mediated EMT inhibition. MFN2 promoted cancer progression and tumorigenesis in SiHa cells. Overall, MFN2 could serve as a therapeutic target and a novel biomarker for cervical cancer. [BMB Reports 2024; 57(4): 194-199].
Collapse
Affiliation(s)
- Sung Yong Ahn
- Department of Orthopaedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
14
|
Gao X, Cai S, Wang L, Guo Y, Liu L, Weng X, Huang K, Yan W, Qu J. Rhodamine-based fluorescent probe for dynamic STED imaging of mitochondria. BIOMEDICAL OPTICS EXPRESS 2024; 15:1595-1604. [PMID: 38495704 PMCID: PMC10942718 DOI: 10.1364/boe.507770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Stimulated emission depletion (STED) microscopy holds tremendous potential and practical implications in the field of biomedicine. However, the weak anti-bleaching performance remains a major challenge limiting the application of STED fluorescent probes. Meanwhile, the main excitation wavelengths of most reported STED fluorescent probes were below 500 nm or above 600 nm, and few of them were between 500-600 nm. Herein, we developed a new tetraphenyl ethylene-functionalized rhodamine dye (TPERh) for mitochondrial dynamic cristae imaging that was rhodamine-based with an excitation wavelength of 560 nm. The TPERh probe exhibits excellent anti-bleaching properties and low saturating stimulated radiation power in mitochondrial STED super-resolution imaging. Given these outstanding properties, the TPERh probe was used to measure mitochondrial deformation, which has positive implications for the study of mitochondria-related diseases.
Collapse
Affiliation(s)
- Xinwei Gao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Songtao Cai
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Luwei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yong Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Chattopadhyay M, Chanda A, Pal B. Unravelling the Nexus: Mitochondrial Oxidative Stress, Tumour Microenvironment, and Escape from Immune Surveillance. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:255-286. [DOI: 10.1007/978-3-031-66421-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
16
|
Prunier C, Chavrier P, Boissan M. Mechanisms of action of NME metastasis suppressors - a family affair. Cancer Metastasis Rev 2023; 42:1155-1167. [PMID: 37353690 PMCID: PMC10713741 DOI: 10.1007/s10555-023-10118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.
Collapse
Affiliation(s)
- Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Philippe Chavrier
- Actin and Membrane Dynamics Laboratory, Institut Curie - Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
- Laboratoire de Biochimie Endocrinienne Et Oncologique, Oncobiologie Cellulaire Et Moléculaire, APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
17
|
Wei F, Nian Q, Zhao M, Wen Y, Yang Y, Wang J, He Z, Chen X, Yin X, Wang J, Ma X, Chen Y, Feng P, Zeng J. Natural products and mitochondrial allies in colorectal cancer therapy. Biomed Pharmacother 2023; 167:115473. [PMID: 37713992 DOI: 10.1016/j.biopha.2023.115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Colorectal cancer (CRC) is a globally prevalent malignancy with a high potential for metastasis. Existing cancer treatments have limitations, including drug resistance and adverse effects. Researchers are striving to develop effective therapies to address these challenges. Impressively, contemporary research has discovered that many natural products derived from foods, plants, insects, and marine invertebrates can suppress the progression, metastasis, and invasion of CRC. In this review, we conducted a comprehensive search of the CNKI, PubMed, Embase, and Web of Science databases from inception to April 2023 to evaluate the efficacy of natural products targeting mitochondria to fight against CRC. Mitochondria are intracellular energy factories involved in cell differentiation, signal transduction, cell cycle regulation, apoptosis, and tumorigenesis. The identified natural products have been classified and summarized based on their mechanisms of action. These findings indicate that natural products can induce apoptosis in colorectal cancer cells by inhibiting the mitochondrial respiratory chain, ROS elevation, disruption of mitochondrial membrane potential, the release of pro-apoptotic factors, modulation of the Bcl-2 protein family to facilitate cytochrome c release, induction of apoptotic vesicle activity by activating the caspase protein family, and selective targeting of mitochondrial division. Furthermore, diverse apoptotic signaling pathways targeting mitochondria, such as the MAPK, p53, STAT3, JNK and AKT pathway, have been triggered by natural products. Natural products such as diosgenin, allopurinol, and clausenidin have demonstrated low toxicity, high efficacy, and multi-targeted properties. Mitochondria-targeting natural products have great potential for overcoming the challenges of CRC therapy.
Collapse
Affiliation(s)
- Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Maoyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Zhelin He
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Peimin Feng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
18
|
Guo Y, Luo C, Sun Y, Guo W, Zhang R, Zhang X, Ke X, Wei L. Inhibition of mitochondrial fusion via SIRT1/PDK2/PARL axis breaks mitochondrial metabolic plasticity and sensitizes cancer cells to glucose restriction therapy. Biomed Pharmacother 2023; 166:115342. [PMID: 37633053 DOI: 10.1016/j.biopha.2023.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Mitochondria dynamically change their morphology via fusion and fission, a process called mitochondrial dynamics. Dysregulated mitochondrial dynamics respond rapidly to metabolic cues, and are linked to the initiation and progression of diverse human cancers. Metabolic adaptations significantly contribute to tumor development and escape from tissue homeostatic defenses. In this work, we identified oroxylin A (OA), a dual GLUT1/mitochondrial fusion inhibitor, which restricted glucose catabolism of hepatocellular carcinoma cells and simultaneously inhibited mitochondrial fusion by disturbing SIRT1/PDK2/PARL axis. Based the dual action of OA in metabolic regulation and mitochondrial dynamics, further results revealed that mitochondrial functional status and spare respiratory capacity (SRC) of cancer cells had a close correlation with mitochondrial metabolic plasticity, and played important roles in the susceptibility to cancer therapy aiming at glucose restriction. Cancer cells with healthy mitochondria and high SRC exhibit greater metabolic flexibility and higher resistance to GLUT1 inhibitors. This phenomenon is attributed to the fact that high SRC cells fuse mitochondria in response to glucose restriction, enhancing tolerance to energy deficiency, but undergo less mitochondrial oxidative stress compared to low SRC cells. Thus, inhibiting mitochondrial fusion breaks mitochondrial metabolic plasticity and increases cancer cell susceptibility to glucose restriction therapy. Collectively, these finding indicate that combining a GLUT1 inhibitor with a mitochondrial fusion inhibitor can work synergistically in cancer therapy and, more broadly, suggest that the incorporations of mitochondrial dynamics and metabolic regulation may become the targetable vulnerabilities bypassing the genotypic heterogeneity of multiple malignancies.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, People's Republic of China
| | - Chengju Luo
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yuening Sun
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenjing Guo
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ruitian Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xin Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xue Ke
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, People's Republic of China.
| | - Libin Wei
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
19
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
20
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
21
|
Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol 2023; 14:1211719. [PMID: 37456742 PMCID: PMC10347406 DOI: 10.3389/fphar.2023.1211719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). It is a leading cause of death among patients with intracranial malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to drug resistance and eventual tumor recurrence. Conventional treatments for GBM include maximum surgical resection of glioma tissue, temozolomide administration, and radiotherapy, but these methods do not effectively halt cancer progression. Therefore, development of novel methods for the treatment of GBM and identification of new therapeutic targets are urgently required. In recent years, studies have shown that drugs related to mitophagy and mitochondrial apoptosis pathways can promote the death of glioblastoma cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP) synthesis, and depleting large amounts of ATP. Some studies have also shown that modern nano-drug delivery technology targeting mitochondria can achieve better drug release and deeper tissue penetration, suggesting that mitochondria could be a new target for intervention and therapy. The combination of drugs targeting mitochondrial apoptosis and autophagy pathways with nanotechnology is a promising novel approach for treating GBM.This article reviews the current status of drug therapy for GBM, drugs targeting mitophagy and mitochondrial apoptosis pathways, the potential of mitochondria as a new target for GBM treatment, the latest developments pertaining to GBM treatment, and promising directions for future research.
Collapse
|
22
|
Yeon M, Bertolini I, Agarwal E, Ghosh JC, Tang HY, Speicher DW, Keeney F, Sossey-Alaoui K, Pluskota E, Bialkowska K, Plow EF, Languino LR, Skordalakes E, Caino MC, Altieri DC. Parkin ubiquitination of Kindlin-2 enables mitochondria-associated metastasis suppression. J Biol Chem 2023; 299:104774. [PMID: 37142218 PMCID: PMC10236456 DOI: 10.1016/j.jbc.2023.104774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Mitochondria are signaling organelles implicated in cancer, but the mechanisms are elusive. Here, we show that Parkin, an E3 ubiquitination (Ub) ligase altered in Parkinson's disease, forms a complex with the regulator of cell motility, Kindlin-2 (K2), at mitochondria of tumor cells. In turn, Parkin ubiquitinates Lys581 and Lys582 using Lys48 linkages, resulting in proteasomal degradation of K2 and shortened half-life from ∼5 h to ∼1.5 h. Loss of K2 inhibits focal adhesion turnover and β1 integrin activation, impairs membrane lamellipodia size and frequency, and inhibits mitochondrial dynamics, altogether suppressing tumor cell-extracellular matrix interactions, migration, and invasion. Conversely, Parkin does not affect tumor cell proliferation, cell cycle transitions, or apoptosis. Expression of a Parkin Ub-resistant K2 Lys581Ala/Lys582Ala double mutant is sufficient to restore membrane lamellipodia dynamics, correct mitochondrial fusion/fission, and preserve single-cell migration and invasion. In a 3D model of mammary gland developmental morphogenesis, impaired K2 Ub drives multiple oncogenic traits of EMT, increased cell proliferation, reduced apoptosis, and disrupted basal-apical polarity. Therefore, deregulated K2 is a potent oncogene, and its Ub by Parkin enables mitochondria-associated metastasis suppression.
Collapse
Affiliation(s)
- Minjeong Yeon
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Irene Bertolini
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ekta Agarwal
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jagadish C Ghosh
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA; Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David W Speicher
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA; Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Frederick Keeney
- Imaging Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elzbieta Pluskota
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Katarzyna Bialkowska
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward F Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lucia R Languino
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emmanuel Skordalakes
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
23
|
Altieri DC. Mitochondria in cancer: clean windmills or stressed tinkerers? Trends Cell Biol 2023; 33:293-299. [PMID: 36055942 PMCID: PMC9938083 DOI: 10.1016/j.tcb.2022.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
There is now a consensus that mitochondria are important tumor drivers, sophisticated biological machines that can engender a panoply of key disease traits. How this happens, however, is still mostly elusive. The opinion presented here is that what cancer exploits are not the normal mitochondria of oxygenated and nutrient-replete tissues, but the unfit, damaged, and dysfunctional organelles generated by the hostile environment of tumor growth. These 'ghost' mitochondria survive quality control and thwart cell death to relay multiple comprehensive 'danger signals' of metabolic starvation, cellular stress, and reprogrammed gene expression. The result is a new, treacherous cellular phenotype, proliferatively quiescent but highly motile, that enables tumor cell escape from a threatening environment and colonization of distant, more favorable sites (metastasis).
Collapse
Affiliation(s)
- Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Liu N, Liu C, Wang Z, Wang L, Wang J, Kong J. FTO demethylates m6A modifications in CDKAL1 mRNA and promotes gastric cancer chemoresistance by altering mitochondrial dynamics. Clin Exp Pharmacol Physiol 2023; 50:307-315. [PMID: 36628934 DOI: 10.1111/1440-1681.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
N6-methyladenosine (m6A) modification is the most common mRNA modification that is considered a new layer of mRNA epigenetic regulation. Demethylase fat mass and obesity-associated protein (FTO) are important in the dynamic regulation of m6A, but their role in gastric cancer (GC) is not fully understood. This study revealed that FTO and CDKAL1 were up-regulated in GC cells and tissue. CDKAL1 is the downstream target of FTO-mediated m6A modification, with FTO promoting GC cell proliferation through CDKAL1 and inducing mitochondrial fusion, eventually causing GC chemoresistance. In conclusion, FTO contributes to the increasing resistance of GC cells to 5-fluorouracil (5-Fu) by upregulating CDKAL1 and inducing mitochondrial fusion.
Collapse
Affiliation(s)
- Na Liu
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry, Fushun, China
| | - Chang Liu
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry, Fushun, China
| | - Zixuan Wang
- Internal Medicine Department, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, China
| | - Longqing Wang
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry, Fushun, China
| | - Jiang Wang
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry, Fushun, China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
26
|
Nóbrega-Pereira S, Santos F, Oliveira Santos M, Serafim TL, Lopes AP, Coutinho D, Carvalho FS, Domingues RM, Domingues P, Bernardes de Jesus B, Morais VA, Dias S. Mitochondrial Metabolism Drives Low-density Lipoprotein-induced Breast Cancer Cell Migration. CANCER RESEARCH COMMUNICATIONS 2023; 3:709-724. [PMID: 37377750 PMCID: PMC10132314 DOI: 10.1158/2767-9764.crc-22-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Most cancer-related deaths are due to metastases. Systemic factors, such as lipid-enriched environments [as low-density lipoprotein (LDL)-cholesterol], favor breast cancer, including triple-negative breast cancer (TNBC) metastasis formation. Mitochondria metabolism impacts TNBC invasive behavior but its involvement in a lipid-enriched setting is undisclosed. Here we show that LDL increases lipid droplets, induces CD36 and augments TNBC cells migration and invasion in vivo and in vitro. LDL induces higher mitochondrial mass and network spread in migrating cells, in an actin remodeling-dependent manner, and transcriptomic and energetic analyses revealed that LDL renders TNBC cells dependent on fatty acids (FA) usage for mitochondrial respiration. Indeed, engagement on FA transport into the mitochondria is required for LDL-induced migration and mitochondrial remodeling. Mechanistically, LDL treatment leads to mitochondrial long-chain fatty acid accumulation and increased reactive oxygen species (ROS) production. Importantly, CD36 or ROS blockade abolished LDL-induced cell migration and mitochondria metabolic adaptations. Our data suggest that LDL induces TNBC cells migration by reprogramming mitochondrial metabolism, revealing a new vulnerability in metastatic breast cancer. Significance LDL induces breast cancer cell migration that relies on CD36 for mitochondrial metabolism and network remodeling, providing an antimetastatic metabolic strategy.
Collapse
Affiliation(s)
- Sandrina Nóbrega-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Francisco Santos
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Miguel Oliveira Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Teresa L. Serafim
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana Patrícia Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Diogo Coutinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Filipa S. Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rosário M. Domingues
- Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
- Department of Chemistry and CESAM&ECOMARE, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Bruno Bernardes de Jesus
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Sérgio Dias
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
27
|
Wei Y, Xiao G, Xu H, Sun X, Shi Y, Wang F, Kang J, Peng J, Zhou F. Radiation resistance of cancer cells caused by mitochondrial dysfunction depends on SIRT3-mediated mitophagy. FEBS J 2023. [PMID: 36871142 DOI: 10.1111/febs.16769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/14/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Radiation resistance is the leading cause of radiotherapy failure in patients with cancer. Enhanced DNA damage repair is the main reason for cancer cells to develop resistance to radiation. Autophagy has been widely reported to be linked to increased genome stability and radiation resistance. Mitochondria are highly involved in the cell response to radiotherapy. However, the autophagy subtype mitophagy has not been studied in terms of genome stability. We have previously demonstrated that mitochondrial dysfunction is the cause of radiation resistance in tumour cells. In the present study, we found that SIRT3 was highly expressed in colorectal cancer cells with mitochondrial dysfunction, leading to PINK1/Parkin-mediated mitophagy. Excessive activation of mitophagy enhanced DNA damage repair, therefore promoting the resistance of tumour cells to radiation. Mechanistically, mitophagy resulted in decreased RING1b expression, which led to a reduction in the ubiquitination of histone H2A at K119, thereby enhancing the repair of DNA damage caused by radiation. Additionally, high expression of SIRT3 was related to a poor tumour regression grade in rectal cancer patients treated with neoadjuvant radiotherapy. These findings suggest that restoring mitochondrial function could be an effective method for increasing the radiosensitivity of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yan Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Guohui Xiao
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xuehua Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yingying Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fen Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jinlin Kang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Han L, Zhang C, Wang D, Zhang J, Tang Q, Li MJ, Sack MN, Wang L, Zhu L. Retrograde regulation of mitochondrial fission and epithelial to mesenchymal transition in hepatocellular carcinoma by GCN5L1. Oncogene 2023; 42:1024-1037. [PMID: 36759571 DOI: 10.1038/s41388-023-02621-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Metabolic reprogram is crucial to support cancer cell growth and movement as well as determine cell fate. Mitochondrial protein acetylation regulates mitochondrial metabolism, which is relevant to cancer cell migration and invasion. The functional role of mitochondrial protein acetylation on cancer cell migration remains unclear. General control of amino acid synthesis 5 like-1(GCN5L1), as the regulator of mitochondrial protein acetylation, functions on metabolic reprogramming in mouse livers. In this study, we find that GCN5L1 expression is significantly decreased in metastatic HCC tissues. Loss of GCN5L1 promotes reactive oxygen species (ROS) generation through enhanced fatty acid oxidation (FAO), followed by activation of cellular ERK and DRP1 to promote mitochondrial fission and epithelia to mesenchymal transition (EMT) to boost cell migration. Moreover, palmitate and carnitine-stimulated FAO promotes mitochondrial fission and EMT gene expression to activate HCC cell migration. On the other hand, increased cellular acetyl-CoA level, the product of FAO, enhances HCC cell migration. Taken together, our finding uncovers the metastasis suppressor role as well as the underlying mechanism of GCN5L1 in HCC and also provides evidence of FAO retrograde control of HCC metastasis.
Collapse
Affiliation(s)
- Linmeng Han
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunyu Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Danni Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiqi Tang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin, China
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Lingdi Wang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Lu Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
29
|
Grieco JP, Compton SLE, Bano N, Brookover L, Nichenko AS, Drake JC, Schmelz EM. Mitochondrial plasticity supports proliferative outgrowth and invasion of ovarian cancer spheroids during adhesion. Front Oncol 2023; 12:1043670. [PMID: 36727073 PMCID: PMC9884807 DOI: 10.3389/fonc.2022.1043670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background Ovarian cancer cells aggregate during or after exfoliation from the primary tumor to form threedimensional spheroids. Spheroid formation provides a survival advantage during peritoneal dissemination in nutrient and oxygen-depleted conditions which is accompanied by a suppressed metabolic phenotype and fragmented mitochondria. Upon arrival to their metastatic sites, spheroids adhere to peritoneal organs and transition to a more epithelial phenotype to support outgrowth and invasion. In this study, we investigated the plasticity of mitochondrial morphology, dynamics, and function upon adhesion. Methods Using our slow-developing (MOSE-L) and fast-developing (MOSE-LTICv) ovarian cancer models, we mimicked adhesion and reoxygenation conditions by plating the spheroids onto tissue culture dishes and changing culture conditions from hypoxia and low glucose to normoxia with high glucose levels after adhesion. We used Western Blot, microscopy and Seahorse analyses to determine the plasticity of mitochondrial morphology and functions upon adhesion, and the impact on proliferation and invasion capacities. Results Independent of culture conditions, all spheroids adhered to and began to grow onto the culture plates. While the bulk of the spheroid was unresponsive, the mitochondrial morphology in the outgrowing cells was indistinguishable from cells growing in monolayers, indicating that mitochondrial fragmentation in spheroids was indeed reversible. This was accompanied by an increase in regulators of mitobiogenesis, PGC1a, mitochondrial mass, and respiration. Reoxygenation increased migration and invasion in both cell types but only the MOSE-L responded with increased proliferation to reoxygenation. The highly aggressive phenotype of the MOSE-LTICv was characterized by a relative independence of oxygen and the preservation of higher levels of proliferation, migration and invasion even in limiting culture conditions but a higher reliance on mitophagy. Further, the outgrowth in these aggressive cells relies mostly on proliferation while the MOSE-L cells both utilize proliferation and migration to achieve outgrowth. Suppression of proliferation with cycloheximide impeded aggregation, reduced outgrowth and invasion via repression of MMP2 expression and the flattening of the spheroids. Discussion Our studies indicate that the fragmentation of the mitochondria is reversible upon adhesion. The identification of regulatory signaling molecules and pathways of these key phenotypic alterations that occur during primary adhesion and invasion is critical for the identification of druggable targets for therapeutic intervention to prevent aggressive metastatic disease.
Collapse
Affiliation(s)
- Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Stephanie L. E. Compton
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Nazia Bano
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Lucy Brookover
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Anna S. Nichenko
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Joshua C. Drake
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States,*Correspondence: Eva M. Schmelz,
| |
Collapse
|
30
|
Rinaldi L, Senatore E, Iannucci R, Chiuso F, Feliciello A. Control of Mitochondrial Activity by the Ubiquitin Code in Health and Cancer. Cells 2023; 12:234. [PMID: 36672167 PMCID: PMC9856579 DOI: 10.3390/cells12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cellular homeostasis is tightly connected to the broad variety of mitochondrial functions. To stay healthy, cells need a constant supply of nutrients, energy production and antioxidants defenses, undergoing programmed death when a serious, irreversible damage occurs. The key element of a functional integration of all these processes is the correct crosstalk between cell signaling and mitochondrial activities. Once this crosstalk is interrupted, the cell is not able to communicate its needs to mitochondria, resulting in oxidative stress and development of pathological conditions. Conversely, dysfunctional mitochondria may affect cell viability, even in the presence of nutrients supply and energy production, indicating the existence of feed-back control mechanisms between mitochondria and other cellular compartments. The ubiquitin proteasome system (UPS) is a multi-step biochemical pathway that, through the conjugation of ubiquitin moieties to specific protein substrates, controls cellular proteostasis and signaling, removing damaged or aged proteins that might otherwise accumulate and affect cell viability. In response to specific needs or changed extracellular microenvironment, the UPS modulates the turnover of mitochondrial proteins, thus influencing the organelle shape, dynamics and function. Alterations of the dynamic and reciprocal regulation between mitochondria and UPS underpin genetic and proliferative disorders. This review focuses on the mitochondrial metabolism and activities supervised by UPS and examines how deregulation of this control mechanism results in proliferative disorders and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, 80131 Naples, Italy
| |
Collapse
|
31
|
Nayak D, Adiga D, Khan NG, Rai PS, Dsouza HS, Chakrabarty S, Gassman NR, Kabekkodu SP. Impact of Bisphenol A on Structure and Function of Mitochondria: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:10. [DOI: 10.1007/s44169-022-00011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 04/02/2024]
Abstract
AbstractBisphenol A (BPA) is an industrial chemical used extensively to manufacture polycarbonate plastics and epoxy resins. Because of its estrogen-mimicking properties, BPA acts as an endocrine-disrupting chemical. It has gained attention due to its high chances of daily and constant human exposure, bioaccumulation, and the ability to cause cellular toxicities and diseases at extremely low doses. Several elegant studies have shown that BPA can exert cellular toxicities by interfering with the structure and function of mitochondria, leading to mitochondrial dysfunction. Exposure to BPA results in oxidative stress and alterations in mitochondrial DNA (mtDNA), mitochondrial biogenesis, bioenergetics, mitochondrial membrane potential (MMP) decline, mitophagy, and apoptosis. Accumulation of reactive oxygen species (ROS) in conjunction with oxidative damage may be responsible for causing BPA-mediated cellular toxicity. Thus, several reports have suggested using antioxidant treatment to mitigate the toxicological effects of BPA. The present literature review emphasizes the adverse effects of BPA on mitochondria, with a comprehensive note on the molecular aspects of the structural and functional alterations in mitochondria in response to BPA exposure. The review also confers the possible approaches to alleviate BPA-mediated oxidative damage and the existing knowledge gaps in this emerging area of research.
Collapse
|
32
|
Kuo CC, Wu JY, Wu KK. Cancer-derived extracellular succinate: a driver of cancer metastasis. J Biomed Sci 2022; 29:93. [DOI: 10.1186/s12929-022-00878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSuccinate is a tricarboxylic acid (TCA) cycle intermediate normally confined to the mitochondrial matrix. It is a substrate of succinate dehydrogenase (SDH). Mutation of SDH subunits (SDHD and SDHB) in hereditary tumors such as paraganglioma or reduction of SDHB expression in cancer results in matrix succinate accumulation which is transported to cytoplasma and secreted into the extracellular milieu. Excessive cytosolic succinate is known to stabilize hypoxia inducible factor-1α (HIF-1α) by inhibiting prolyl hydroxylase. Recent reports indicate that cancer-secreted succinate enhances cancer cell migration and promotes cancer metastasis by activating succinate receptor-1 (SUCNR-1)-mediated signaling and transcription pathways. Cancer-derived extracellular succinate enhances cancer cell and macrophage migration through SUCNR-1 → PI-3 K → HIF-1α pathway. Extracellular succinate induces tumor angiogenesis through SUCNR-1-mediated ERK1/2 and STAT3 activation resulting in upregulation of vascular endothelial growth factor (VEGF) expression. Succinate increases SUCNR-1 expression in cancer cells which is considered as a target for developing new anti-metastasis drugs. Furthermore, serum succinate which is elevated in cancer patients may be a theranostic biomarker for selecting patients for SUCNR-1 antagonist therapy.
Collapse
|
33
|
Song C, Pan S, Zhang J, Li N, Geng Q. Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif 2022; 55:e13327. [PMID: 36200262 DOI: 10.1111/cpr.13327] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mitophagy refers to the selective self-elimination of mitochondria under damaged or certain developmental conditions. As an important regulatory mechanism to remove damaged mitochondria and maintain the internal and external cellular balance, mitophagy plays pivotal roles in carcinogenesis and progression as well as treatment. MATERIALS AND METHODS Here, we combined data from recent years to comprehensively describe the regulatory mechanisms of mitophagy and its multifaceted significance in cancer, and discusse the potential of targeted mitophagy as a cancer treatment strategy. RESULTS The molecular mechanisms regulating mitophagy are complex, diverse, and cross-talk. Inducing or blocking mitophagy has the same or completely different effects in different cancer contexts. Mitophagy plays an indispensable role in regulating cancer metabolic reprogramming, cell stemness, and chemotherapy resistance for better adaptation to tumor microenvironment. In cancer cell biology, mitophagy is considered to be a double-edged sword. And to fully understand the role of mitophagy in cancer development can provide new targets for cancer treatment in clinical practice. CONCLUSIONS This review synthesizes a large body of data to comprehensively describe the molecular mechanisms of mitophagy and its multidimensional significance in cancer and cancer treatment, which will undoubtedly deepen the understanding of mitophagy.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Zhang
- Department of Emergency, Taihe Hospital, Shiyan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Su J, Li Y, Liu Q, Peng G, Qin C, Li Y. Identification of SSBP1 as a ferroptosis-related biomarker of glioblastoma based on a novel mitochondria-related gene risk model and in vitro experiments. J Transl Med 2022; 20:440. [PMID: 36180956 PMCID: PMC9524046 DOI: 10.1186/s12967-022-03657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor that leads to lethality. Several studies have demonstrated that mitochondria play an important role in GBM and that mitochondria-related genes (MRGs) are potential therapeutic targets. However, the role of MRGs in GBM remains unclear. Methods Differential expression and univariate Cox regression analyses were combined to screen for prognostic differentially-expressed (DE)-MRGs in GBM. Based on LASSO Cox analysis, 12 DE-MRGs were selected to construct a risk score model. Survival, time dependent ROC, and stratified analyses were performed to evaluate the performance of this risk model. Mutation and functional enrichment analyses were performed to determine the potential mechanism of the risk score. Immune cell infiltration analysis was used to determine the association between the risk score and immune cell infiltration levels. CCK-8 and transwell assays were performed to evaluate cell proliferation and migration, respectively. Mitochondrial reactive oxygen species (ROS) levels and morphology were measured using a confocal laser scanning microscope. Genes and proteins expression levels were investigated by quantitative PCR and western blotting, respectively. Results We identified 21 prognostic DE-MRGs, of which 12 DE-MRGs were selected to construct a prognostic risk score model for GBM. This model presented excellent performance in predicting the prognosis of patients with GBM and acted as an independent predictive factor. Functional enrichment analysis revealed that the risk score was enriched in the inflammatory response, extracellular matrix, and pro-cancer-related and immune related pathways. Additionally, the risk score was significantly associated with gene mutations and immune cell infiltration in GBM. Single-stranded DNA-binding protein 1 (SSBP1) was considerably upregulated in GBM and associated with poor prognosis. Furthermore, SSBP1 knockdown inhibited GBM cell progression and migration. Mechanistically, SSBP1 knockdown resulted in mitochondrial dysfunction and increased ROS levels, which, in turn, increased temozolomide (TMZ) sensitivity in GBM cells by enhancing ferroptosis. Conclusion Our 12 DE-MRGs-based prognostic model can predict the GBM patients prognosis and 12 MRGs are potential targets for the treatment of GBM. SSBP1 was significantly upregulated in GBM and protected U87 cells from TMZ-induced ferroptosis, which could serve as a prognostic and therapeutic target/biomarker for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03657-4.
Collapse
Affiliation(s)
- Jun Su
- Department of Neurosurgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Yue Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
35
|
Nahacka Z, Novak J, Zobalova R, Neuzil J. Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol 2022; 10:937753. [PMID: 35959487 PMCID: PMC9358137 DOI: 10.3389/fcell.2022.937753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| | - Jaromir Novak
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Renata Zobalova
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| |
Collapse
|
36
|
Qiu K, Zou W, Fang H, Hao M, Mehta K, Tian Z, Guan JL, Zhang K, Huang T, Diao J. Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts. Nat Commun 2022; 13:4303. [PMID: 35879298 PMCID: PMC9314359 DOI: 10.1038/s41467-022-31970-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are highly dynamic organelles whose fragmentation by fission is critical to their functional integrity and cellular homeostasis. Here, we develop a method via optogenetic control of mitochondria–lysosome contacts (MLCs) to induce mitochondrial fission with spatiotemporal accuracy. MLCs can be achieved by blue-light-induced association of mitochondria and lysosomes through various photoactivatable dimerizers. Real-time optogenetic induction of mitochondrial fission is tracked in living cells to measure the fission rate. The optogenetic method partially restores the mitochondrial functions of SLC25A46−/− cells, which display defects in mitochondrial fission and hyperfused mitochondria. The optogenetic MLCs system thus provides a platform for studying mitochondrial fission and treating mitochondrial diseases. Existing methods can lack spatiotemporal accuracy to manipulate dynamic mitochondrial behaviour in live cells. Here the authors report an optogenetic method to control mitochondria-lysosome contacts and induce mitochondrial fission; they use photoactivatable dimerizers including CRY2/CIB and SspB/iLID.
Collapse
Affiliation(s)
- Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Weiwei Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hongbao Fang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kritika Mehta
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhiqi Tian
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University at Buffalo, 1001 Main Street, Buffalo, NY, 14203, USA.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
37
|
Li S, Han S, Zhang Q, Zhu Y, Zhang H, Wang J, Zhao Y, Zhao J, Su L, Li L, Zhou D, Ye C, Feng XH, Liang T, Zhao B. FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion. Nat Commun 2022; 13:3486. [PMID: 35710796 PMCID: PMC9203792 DOI: 10.1038/s41467-022-31187-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondria generate ATP and play regulatory roles in various cellular activities. Cancer cells often exhibit fragmented mitochondria. However, the underlying mechanism remains elusive. Here we report that a mitochondrial protein FUN14 domain containing 2 (FUNDC2) is transcriptionally upregulated in primary mouse liver tumors, and in approximately 40% of human hepatocellular carcinoma (HCC). Importantly, elevated FUNDC2 expression inversely correlates with patient survival, and its knockdown inhibits liver tumorigenesis in mice. Mechanistically, the amino-terminal region of FUNDC2 interacts with the GTPase domain of mitofusin 1 (MFN1), thus inhibits its activity in promoting fusion of outer mitochondrial membrane. As a result, loss of FUNDC2 leads to mitochondrial elongation, decreased mitochondrial respiration, and reprogrammed cellular metabolism. These results identified a mechanism of mitochondrial fragmentation in cancer through MFN1 inhibition by FUNDC2, and suggested FUNDC2 as a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Shuaifeng Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Shixun Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yibing Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haitao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Junli Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin Su
- Department of Ultrasound Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dawang Zhou
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Cunqi Ye
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China.
| |
Collapse
|
38
|
Xie C, Wang FY, Sang Y, Chen B, Huang JH, He FJ, Li H, Zhu Y, Liu X, Zhuang SM, Fang JH. Mitochondrial micropeptide STMP1 enhances mitochondrial fission to promote tumor metastasis. Cancer Res 2022; 82:2431-2443. [PMID: 35544764 DOI: 10.1158/0008-5472.can-21-3910] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Micropeptides are a recently discovered class of molecules that play vital roles in various cellular processes, including differentiation, proliferation, and apoptosis. Here, we sought to identify cancer-associated micropeptides and to uncover their mechanistic functions. A micropeptide named short trans-membrane protein 1 (STMP1) that localizes at the inner mitochondrial membrane was identified to be upregulated in various cancer types and associated with metastasis and recurrence of hepatocellular carcinoma. Both gain- and loss-of-function studies revealed that STMP1 increased dynamin-related protein 1 (DRP1) activation to promote mitochondrial fission and enhanced migration of tumor cells. STMP1 silencing inhibited in vivo tumor metastasis in xenograft mouse models. Overexpression of STMP1 led to redistribution of mitochondria to the leading edge of cells and enhanced lamellipodia formation. Treatment with a DRP1 inhibitor abrogated the promotive effect of STMP1 on mitochondrial fission, lamellipodia formation, and tumor cell migration in vitro and metastasis in vivo. Furthermore, STMP1 interacted with myosin heavy chain 9 (MYH9), the subunit of non-muscle myosin II, and silencing MYH9 abrogated STMP1-induced DRP1 activation, mitochondrial fission, and cell migration. Collectively, this study identifies STMP1 as a critical regulator of metastasis and a novel unit of the mitochondrial fission protein machinery, providing a potential therapeutic target for treating metastases.
Collapse
Affiliation(s)
- Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Yi Wang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ye Sang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Bin Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Hui Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Jun He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hui Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
39
|
Expression status and prognostic significance of mitochondrial dynamics OPA3 in human ovarian cancer. Aging (Albany NY) 2022; 14:3874-3886. [PMID: 35507809 PMCID: PMC9134952 DOI: 10.18632/aging.204050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Early diagnosis of ovarian cancer and the discovery of prognostic markers can significantly improve survival and reduce mortality. OPA3 protein exists in a structure called mitochondria, which is the energy production center of cells, but its molecular and biological functions in ovarian cancer are still unclear. Here, the expression of OPA3 mRNA in ovarian cancer was estimated using TCGA, Oncomine, TIMER databases. We found that functional OPA3 activation caused by mutations and profound deletions predicted poor prognosis in OV patients. OPA3 was highly expressed in both OV tissues and cells compared to normal ovarian tissues/cells. High OPA3 expression is associated with poorer overall survival (OS). The association between OPA3 and immune infiltration of ovarian cancer was assessed by TIMER and CIBERSORT algorithms. OPA3 showed a strong correlation with various immune marker sets. Most importantly, pharmacogenetic analysis of OV cell lines revealed that OPA3 inactivation was associated with increased sensitivity to PFI-1, and WZ4003. Therefore, we investigated the clinical application of OPA3 to provide a basis for sensitive diagnosis, prognosis and targeted treatment of ovarian cancer.
Collapse
|
40
|
Liskova V, Kajsik M, Chovancova B, Roller L, Krizanova O. Camptothecin, triptolide, and apoptosis inducer kit have differential effects on mitochondria in colorectal carcinoma cells. FEBS Open Bio 2022; 12:913-924. [PMID: 35318813 PMCID: PMC9063445 DOI: 10.1002/2211-5463.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial fission and fusion are required for cell survival, and several studies have shown an imbalance between fission and fusion in cancer. High levels of mitochondrial fusion are observed in drug‐resistant tumor cells, whereas mitochondrial fission may be important in sensitizing tumor cells to chemotherapy drugs. Based on current knowledge, we hypothesized that different chemotherapeutics might differentially affect mitochondrial dynamics and energy production. Thus, we selected chemotherapeutics with different mechanisms of action (camptothecin, triptolide and apoptosis inducer kit) and investigated their effect on mitochondria in colorectal carcinoma cells. We report that these chemotherapeutics decreased the activity of complex I and reduced the mitochondrial membrane potential, and also decreased the size of mitochondria in the colorectal carcinoma cell lines DLD1 and HCT‐116. Treatment with camptothecin, triptolide and/or apoptosis inducer kit results in differential effects of fission on apoptosis in these cells. Our results suggest that fission is an important process in apoptosis induced by chemotherapeutics.
Collapse
Affiliation(s)
- Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Kajsik
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava, Slovakia
| | - Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava, Slovakia
| |
Collapse
|
41
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
42
|
Schuster C, Wolpert N, Moustaid-Moussa N, Gollahon LS. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants (Basel) 2022; 11:591. [PMID: 35326241 PMCID: PMC8945099 DOI: 10.3390/antiox11030591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Major obstacles in current breast cancer treatment efficacy include the ability of breast cancer cells to develop resistance to chemotherapeutic drugs and the off-target cytotoxicity of these drugs on normal cells, leading to debilitating side effects. One major difference between cancer and normal cells is their metabolism, as cancer cells acquire glycolytic and mitochondrial metabolism alterations throughout tumorigenesis. In this study, we sought to exploit this metabolic difference by investigating alternative breast cancer treatment options based on the application of phytochemicals. Herein, we investigated three phytochemicals, namely cinnamaldehyde (CA), chlorogenic acid (CGA), and arctigenin (Arc), regarding their anti-breast-cancer properties. These phytochemicals were administered alone or in combination to MCF-7, MDA-MB-231, and HCC1419 breast cancer or normal MCF-10A and MCF-12F breast cells. Overall, our results indicated that the combination treatments showed stronger inhibitory effects on breast cancer cells versus single treatments. However, only treatments with CA (35 μM), CGA (250 μg/mL), and the combination of CA + CGA (35 μM + 250 μg/mL) showed no significant cytotoxic effects on normal mammary epithelial cells, suggesting that Arc was the driver of normal cell cytotoxicity in all other treatments. CA + CGA and, to a lesser extent, CGA alone effectively induced breast cancer cell death accompanied by decreases in mitochondrial membrane potential, increased mitochondrial superoxide, reduced mitochondrial and glycolytic ATP production, and led to significant changes in cellular and mitochondrial morphology. Altogether, the combination of CA + CGA was determined as the best anti-breast-cancer treatment strategy due to its strong anti-breast-cancer effects without strong adverse effects on normal mammary epithelial cells. This study provides evidence that targeting the mitochondria may be an effective anticancer treatment, and that using phytochemicals or combinations thereof offers new approaches in treating breast cancer that significantly reduce off-target effects on normal cells.
Collapse
Affiliation(s)
- Caroline Schuster
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren S. Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
43
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
44
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
45
|
Denisenko TV, Gogvadze V, Zhivotovsky B. Mitophagy in carcinogenesis and cancer treatment. Discov Oncol 2021; 12:58. [PMID: 35201480 PMCID: PMC8777571 DOI: 10.1007/s12672-021-00454-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
In order to maintain a functional mitochondrial network, cells have developed a quality control mechanism, namely mitophagy. This process can be induced through different pathways. The most studied is the so-called PINK1/Parkin pathway, which is associated with ubiquitylation of several mitochondrial proteins that were initially found to be related to Parkinson's disease. Another type of mitophagy is known as receptor-mediated mitophagy, which includes proteins, such as BNIP3 and BNIP3L, also known as Nix. Through these two mechanisms, mitophagy fulfills its functions and maintains cellular homeostasis. Here, we summarize the current knowledge about the mechanisms of mitophagy regulation and their interplay with cancer progression as well as anticancer treatment.
Collapse
Affiliation(s)
| | - Vladimir Gogvadze
- MV Lomonosov Moscow State University, 119991, Moscow, Russia
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| | - Boris Zhivotovsky
- MV Lomonosov Moscow State University, 119991, Moscow, Russia.
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| |
Collapse
|
46
|
Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis. Signal Transduct Target Ther 2021; 6:401. [PMID: 34848680 PMCID: PMC8632923 DOI: 10.1038/s41392-021-00790-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Met tyrosine kinase, a receptor for a hepatocyte growth factor (HGF), plays a critical role in tumor growth, metastasis, and drug resistance. Mitochondria are highly dynamic and undergo fission and fusion to maintain a functional mitochondrial network. Dysregulated mitochondrial dynamics are responsible for the progression and metastasis of many cancers. Here, using structured illumination microscopy (SIM) and high spatial and temporal resolution live cell imaging, we identified mitochondrial trafficking of receptor tyrosine kinase Met. The contacts between activated Met kinase and mitochondria formed dramatically, and an intact HGF/Met axis was necessary for dysregulated mitochondrial fission and cancer cell movements. Mechanically, we found that Met directly phosphorylated outer mitochondrial membrane protein Fis1 at Tyr38 (Fis1 pY38). Fis1 pY38 promoted mitochondrial fission by recruiting the mitochondrial fission GTPase dynamin-related protein-1 (Drp1) to mitochondria. Fragmented mitochondria fueled actin filament remodeling and lamellipodia or invadopodia formation to facilitate cell metastasis in hepatocellular carcinoma (HCC) cells both in vitro and in vivo. These findings reveal a novel and noncanonical pathway of Met receptor tyrosine kinase in the regulation of mitochondrial activities, which may provide a therapeutic target for metastatic HCC.
Collapse
|
47
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
48
|
Microtubule-Based Mitochondrial Dynamics as a Valuable Therapeutic Target in Cancer. Cancers (Basel) 2021; 13:cancers13225812. [PMID: 34830966 PMCID: PMC8616325 DOI: 10.3390/cancers13225812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.
Collapse
|
49
|
Lacombe ML, Lamarche F, De Wever O, Padilla-Benavides T, Carlson A, Khan I, Huna A, Vacher S, Calmel C, Desbourdes C, Cottet-Rousselle C, Hininger-Favier I, Attia S, Nawrocki-Raby B, Raingeaud J, Machon C, Guitton J, Le Gall M, Clary G, Broussard C, Chafey P, Thérond P, Bernard D, Fontaine E, Tokarska-Schlattner M, Steeg P, Bièche I, Schlattner U, Boissan M. The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor. BMC Biol 2021; 19:228. [PMID: 34674701 PMCID: PMC8529772 DOI: 10.1186/s12915-021-01155-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. Results We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. Conclusions These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01155-5.
Collapse
Affiliation(s)
- Marie-Lise Lacombe
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Frederic Lamarche
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | | | - Alyssa Carlson
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Anda Huna
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Sophie Vacher
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Céline Desbourdes
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Isabelle Hininger-Favier
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Stéphane Attia
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Béatrice Nawrocki-Raby
- Reims Champagne Ardenne University, INSERM, P3Cell UMR-S 1250, SFR CAP-SANTE, Reims, France
| | - Joël Raingeaud
- INSERM U1279, Gustave Roussy Institute, Villejuif, France
| | - Christelle Machon
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Jérôme Guitton
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Morgane Le Gall
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Guilhem Clary
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Cedric Broussard
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Philippe Chafey
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Patrice Thérond
- AP-HP, CHU Bicêtre, Laboratory of Biochemistry, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France.,EA7537, Paris Saclay University, Châtenay-Malabry, France
| | - David Bernard
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Patricia Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Uwe Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Institut Universitaire de France (IUF), Grenoble, France.
| | - Mathieu Boissan
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France. .,AP-HP, Laboratory of Biochemistry and Hormonology, Tenon Hospital, Paris, France.
| |
Collapse
|
50
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|