1
|
Li F, Zhang X, Xu J, Zhang Y, Li G, Yang X, Deng G, Dai Y, Liu B, Kosan C, Chen X, Cai Y. SIRT7 remodels the cytoskeleton via RAC1 to enhance host resistance to Mycobacterium tuberculosis. mBio 2024; 15:e0075624. [PMID: 39287444 PMCID: PMC11481912 DOI: 10.1128/mbio.00756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Phagocytosis of Mycobacterium tuberculosis (Mtb) followed by its integration into the matured lysosome is critical in the host defense against tuberculosis. How Mtb escapes this immune attack remains elusive. In this study, we unveiled a novel regulatory mechanism by which SIRT7 regulates cytoskeletal remodeling by modulating RAC1 activation. We discovered that SIRT7 expression was significantly reduced in CD14+ monocytes of TB patients. Mtb infection diminished SIRT7 expression by macrophages at both the mRNA and protein levels. SIRT7 deficiency impaired actin cytoskeleton-dependent macrophage phagocytosis, LC3II expression, and bactericidal activity. In a murine tuberculosis model, SIRT7 deficiency detrimentally impacted host resistance to Mtb, while Sirt7 overexpression significantly increased the host defense against Mtb, as determined by bacterial burden and inflammatory-histopathological damage in the lung. Mechanistically, we demonstrated that SIRT7 limits Mtb infection by directly interacting with and activating RAC1, through which cytoskeletal remodeling is modulated. Therefore, we concluded that SIRT7, in its role regulating cytoskeletal remodeling through RAC1, is critical for host responses during Mtb infection and proposes a potential target for tuberculosis treatment.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health issue. Critical to macrophages' defense against Mtb is phagocytosis, governed by the actin cytoskeleton. Previous research has revealed that Mtb manipulates and disrupts the host's actin network, though the specific mechanisms have been elusive. Our study identifies a pivotal role for SIRT7 in this context: Mtb infection leads to reduced SIRT7 expression, which, in turn, diminishes RAC1 activation and consequently impairs actin-dependent phagocytosis. The significance of our research is that SIRT7 directly engages with and activates Rac Family Small GTPase 1 (RAC1), thus promoting effective phagocytosis and the elimination of Mtb. This insight into the dynamic between host and pathogen in TB not only broadens our understanding but also opens new avenues for therapeutic development.
Collapse
Affiliation(s)
- Fuxiang Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Ximeng Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Jinjin Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yue Zhang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Guo Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xirui Yang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Youchao Dai
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Das SK, Joshi A, Bisht L, Goswami V, Faiz A, Dutt G, Sharma S. Godanti bhasma (anhydrous CaSO 4) induces massive cytoplasmic vacuolation in mammalian cells: A model for phagocytosis assay. Methods 2024; 230:158-168. [PMID: 39216714 DOI: 10.1016/j.ymeth.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Phagocytosis is an essential physiological mechanism; its impairment is associated with many diseases. A highly smart particle is required for understanding detailed sequential cellular events in phagocytosis. Recently, we identified an Indian traditional medicine named Godanti Bhasma (GB), a bioactive calcium sulfate particle prepared by thermo-transformation ofgypsum. Thermal processing of the gypsum transforms its native physicochemical properties by removing water molecules into the anhydrous GB, which was confirmed by Raman and FT-IR spectroscopy. GB particle showed a 0.5-5 µm size range and a neutral surface charge. Exposure of mammalian cells to GB particles showed a rapid cellular uptake through phagocytosis and induced massive cytoplasmic vacuolation in cells. Interestingly, no cellular uptake and cytoplasmic vacuolation were observed with the parent gypsum particle. The presence of the GB particles in intra-vacuolar space was confirmed using FESEM coupled with EDX. Flow cytometry analysis and live tracking of GB-treated cells showed particle internalization, vacuole formation, particle dissolution, and later vacuolar turnover. Quantification of GB-induced vacuolation was done using neutral red uptake assay in cells. Treatment of lysosomal inhibitors (BFA1 or CQ) with GB could not induce vacuolation, suggesting the requirement of an acidic environment for the vacuolation. In the mimicking experiment, GB particle dissolution in acidic cell-free solution suggested that degradation of GB occurs by acidic pH inside the cell vacuole. Vacuole formation generally accompanies with cell death, whereas GB-induced massive vacuolation does not cause cell death. Moreover, the cell divides and proliferates with the vacuolar process, intra-vacuolar cargo degradation, and eventually vacuolar turnover. Taken together, the sequential cellular events in this study suggest that GB can be used as a smart particle for phagocytosis assay development in animal cells.
Collapse
Affiliation(s)
- Subrata K Das
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India; Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249405, Uttarakhand, India.
| | - Alpana Joshi
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India; Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249405, Uttarakhand, India
| | - Laxmi Bisht
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249405, Uttarakhand, India
| | - Vishakha Goswami
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| | - Abul Faiz
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| | - Gaurav Dutt
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| | - Shiva Sharma
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| |
Collapse
|
3
|
Xu M, Rutkowski DM, Rebowski G, Boczkowska M, Pollard LW, Dominguez R, Vavylonis D, Ostap EM. Myosin-I synergizes with Arp2/3 complex to enhance the pushing forces of branched actin networks. SCIENCE ADVANCES 2024; 10:eado5788. [PMID: 39270022 PMCID: PMC11397503 DOI: 10.1126/sciadv.ado5788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Class I myosins (myosin-Is) colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by the Arp2/3 complex on the surface of beads coated with myosin-I and nucleation-promoting factor. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Myosin-I triggered symmetry breaking and comet tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations, suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.
Collapse
Affiliation(s)
- Mengqi Xu
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Grzegorz Rebowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luther W. Pollard
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - E. Michael Ostap
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Liu Q, Deng X, Wang L, Xie W, Zhang H, Li Q, Yang Q, Jiang C. Chlorantraniliprole Enhances Cellular Immunity in Larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). INSECTS 2024; 15:586. [PMID: 39194791 DOI: 10.3390/insects15080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The innate immunity of insects encompasses cellular and humoral defense mechanisms and constitutes the primary defense against invading microbial pathogens. Cellular immunity (phagocytosis, nodulation, and encapsulation) is primarily mediated by hemocytes. Plasmatocytes and granulocytes play an important role and require changes in the cytoskeletons of hemocytes. However, research investigating the immunological impacts of insecticides on the fall armyworm (FAW), Spodoptera frugiperda, remains scarce. Therefore, we conducted a study to investigate the effects of chlorantraniliprole exposure on cellular immunity in FAW larvae. Our findings revealed the presence of five types of hemocytes in the larvae: prohemocytes, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. The LD10, LD20, and LD30 of chlorantraniliprole affected both the morphology and total count of some hemocytes in the larvae. Moreover, larvae exposed to chlorantraniliprole showed increased phagocytosis, nodulation, and encapsulation. To determine the mechanism of the enhanced cellular immunity, we studied plasmatocytes in the spread state and the cytoskeleton in hemocytes. It was found that the spreading ratio of plasmatocytes and the areas of the cytoskeletons in hemocytes were increased after chlorantraniliprole treatment. These results suggest that exposure to chlorantraniliprole results in an enhanced immune response function in FAW larvae, which may be mediated by cytoskeletal changes and plasmatocyte spreading. Consequently, this study provides valuable insights into the cellular immune response of FAW larvae to insecticide exposure.
Collapse
Affiliation(s)
- Qingyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyue Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Emeishan Agricultural and Rural Bureau, Emeishan 614200, China
| | - Liuhong Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqi Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huilai Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunfang Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Nelson N, Vita DJ, Broadie K. Experience-dependent glial pruning of synaptic glomeruli during the critical period. Sci Rep 2024; 14:9110. [PMID: 38643298 PMCID: PMC11032375 DOI: 10.1038/s41598-024-59942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure. We find glial projections infiltrate brain neuropil in response to critical period experience, and use Draper (MEGF10) engulfment receptors to prune synaptic glomeruli. Downstream, we find antagonistic Basket (JNK) and Puckered (DUSP) signaling is required for the experience-dependent translocation of activated Basket into glial nuclei. Dependent on this signaling, we find critical period experience drives expression of the F-actin linking signaling scaffold Cheerio (FLNA), which is absolutely essential for the synaptic glomeruli pruning. We find Cheerio mediates experience-dependent regulation of the glial F-actin cytoskeleton for critical period remodeling. These results define a sequential pathway for experience-dependent brain synaptic glomeruli pruning in a strictly-defined critical period; input experience drives neuropil infiltration of glial projections, Draper/MEGF10 receptors activate a Basket/JNK signaling cascade for transcriptional activation, and Cheerio/FLNA induction regulates the glial actin cytoskeleton to mediate targeted synapse phagocytosis.
Collapse
Affiliation(s)
- Nichalas Nelson
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Dominic J Vita
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
6
|
Sheridan SD, Horng JE, Yeh H, McCrea L, Wang J, Fu T, Perlis RH. Loss of Function in the Neurodevelopmental Disease and Schizophrenia-Associated Gene CYFIP1 in Human Microglia-like Cells Supports a Functional Role in Synaptic Engulfment. Biol Psychiatry 2024; 95:676-686. [PMID: 37573007 PMCID: PMC10874584 DOI: 10.1016/j.biopsych.2023.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The CYFIP1 gene, located in the neurodevelopmental risk locus 15q11.2, is highly expressed in microglia, but its role in human microglial function as it relates to neurodevelopment is not well understood. METHODS We generated multiple CRISPR (clustered regularly interspaced short palindromic repeat) knockouts of CYFIP1 in patient-derived models of microglia to characterize function and phenotype. Using microglia-like cells reprogrammed from peripheral blood mononuclear cells, we quantified phagocytosis of synaptosomes (isolated and purified synaptic vesicles) from human induced pluripotent stem cell (iPSC)-derived neuronal cultures as an in vitro model of synaptic pruning. We repeated these analyses in human iPSC-derived microglia-like cells derived from 3 isogenic wild-type/knockout line pairs derived from 2 donors and further characterized microglial development and function through morphology and motility. RESULTS CYFIP1 knockout using orthogonal CRISPR constructs in multiple patient-derived cell lines was associated with a statistically significant decrease in synaptic vesicle phagocytosis in microglia-like cell models derived from both peripheral blood mononuclear cells and iPSCs. Morphology was also shifted toward a more ramified profile, and motility was significantly reduced. However, iPSC-CYFIP1 knockout lines retained the ability to differentiate to functional microglia. CONCLUSIONS The changes in microglial phenotype and function due to the loss of function of CYFIP1 observed in this study implicate a potential impact on processes such as synaptic pruning that may contribute to CYFIP1-related neurodevelopmental disorders. Investigating risk genes in a range of central nervous system cell types, not solely neurons, may be required to fully understand the way in which common and rare variants intersect to yield neuropsychiatric disorders.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Hana Yeh
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Liam McCrea
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Wang
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Ting Fu
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Marston AL, Tyska MJ. Editorial overview: Functional specialization of the cytoskeleton in diverse cell types. Curr Opin Cell Biol 2024; 87:102343. [PMID: 38401180 DOI: 10.1016/j.ceb.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Affiliation(s)
- Adele L Marston
- Wellcome Centre for Cell Biology, Max Born Crescent, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, T-2212 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Qi YT, Zhang FL, Tian SY, Wu HQ, Zhao Y, Zhang XW, Liu YL, Fu P, Amatore C, Huang WH. Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres. NATURE NANOTECHNOLOGY 2024; 19:524-533. [PMID: 38172432 DOI: 10.1038/s41565-023-01575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.
Collapse
Affiliation(s)
- Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, People's Republic of China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, Paris, France.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
9
|
Xu M, Rutkowski DM, Rebowski G, Boczkowska M, Pollard LW, Dominguez R, Vavylonis D, Ostap EM. Myosin-I Synergizes with Arp2/3 Complex to Enhance Pushing Forces of Branched Actin Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579714. [PMID: 38405741 PMCID: PMC10888859 DOI: 10.1101/2024.02.09.579714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Myosin-Is colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by Arp2/3 complex on the surface of beads coated with myosin-I and the WCA domain of N-WASP. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Remarkably, myosin-I triggered symmetry breaking and comet-tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.
Collapse
Affiliation(s)
- Mengqi Xu
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Grzegorz Rebowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Malgorzata Boczkowska
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Luther W Pollard
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roberto Dominguez
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - E Michael Ostap
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
10
|
Lutton JE, Coker HLE, Paschke P, Munn CJ, King JS, Bretschneider T, Kay RR. Formation and closure of macropinocytic cups in Dictyostelium. Curr Biol 2023; 33:3083-3096.e6. [PMID: 37379843 PMCID: PMC7614961 DOI: 10.1016/j.cub.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment.
Collapse
Affiliation(s)
- Judith E Lutton
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Helena L E Coker
- CAMDU, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jason S King
- School of Biosciences, Western Bank, Sheffield S10 2TN, UK.
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
11
|
Swanson JA. Macropinocytosis: Blowing bubbles. Curr Biol 2023; 33:R812-R814. [PMID: 37552948 DOI: 10.1016/j.cub.2023.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Macropinocytosis is a form of endocytosis in which cells engulf relatively large quantities of extracellular fluid through cup-shaped invaginations of the plasma membrane. New work shows that macropinosome closure occurs without a localized constriction of actin filaments, indicating that membrane tension drives cup closure.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| |
Collapse
|
12
|
Vorselen D. Dynamics of phagocytosis mediated by phosphatidylserine. Biochem Soc Trans 2022; 50:1281-1291. [PMID: 36281986 PMCID: PMC9704538 DOI: 10.1042/bst20211254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/13/2023]
Abstract
Phagocytosis triggered by the phospholipid phosphatidylserine (PS) is key for the removal of apoptotic cells in development, tissue homeostasis and infection. Modulation of PS-mediated phagocytosis is an attractive target for therapeutic intervention in the context of atherosclerosis, neurodegenerative disease, and cancer. Whereas the mechanisms of target recognition, lipid and protein signalling, and cytoskeletal remodelling in opsonin-driven modes of phagocytosis are increasingly well understood, PS-mediated phagocytosis has remained more elusive. This is partially due to the involvement of a multitude of receptors with at least some redundancy in functioning, which complicates dissecting their contributions and results in complex downstream signalling networks. This review focusses on the receptors involved in PS-recognition, the signalling cascades that connect receptors to cytoskeletal remodelling required for phagocytosis, and recent progress in our understanding of how phagocytic cup formation is coordinated during PS-mediated phagocytosis.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology, University of Washington, Seattle, WA 98105, U.S.A
| |
Collapse
|