1
|
Poletto V, Galimberti V, Guerra G, Rosti V, Moccia F, Biggiogera M. Fine structural detection of calcium ions by photoconversion. Eur J Histochem 2016; 60:2695. [PMID: 27734989 PMCID: PMC5062637 DOI: 10.4081/ejh.2016.2695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
We propose a tool for a rapid high-resolution detection of calcium ions which can be used in parallel with other techniques. We have applied a new approach by photo-oxidation of diaminobenzidine in presence of the emission of an excited fluorochrome specific for calcium detection. This method combines the selectivity of available fluorophores to the high spatial resolution offered by transmission electron microscopy to detect fluorescing molecules even when present in low amounts in membrane-bounded organelles. We show in this paper that Mag-Fura 2 photoconversion via diaminobenzidine oxidation is an efficient way for localizing Ca2+ ions at electron microscopy level, is easily carried out and reproducible, and can be obtained on a good amount of cells, since the exposure in our conditions is not limited to the direct irradiation of the sample via an objective but obtained with a germicide lamp. The end product is sufficiently electron dense to be detected clearly when present in sufficient amount within a membrane boundary.
Collapse
Affiliation(s)
- V Poletto
- San Matteo foundation for health, hospitalization and care.
| | | | | | | | | | | |
Collapse
|
2
|
Abstract
In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.
Collapse
Affiliation(s)
- Diego De Stefani
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , ,
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , , .,National Research Council (CNR) Neuroscience Institute, 35121 Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , , .,National Research Council (CNR) Neuroscience Institute, 35121 Padova, Italy.,Venetian Institute of Molecular Medicine, 35121 Padova, Italy
| |
Collapse
|
3
|
Sun S, Zhou X, Corvera J, Gallick GE, Lin SH, Kuang J. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov 2015; 1:15018. [PMID: 27462417 PMCID: PMC4860835 DOI: 10.1038/celldisc.2015.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Joe Corvera
- A&G Pharmaceuticals, Inc. , Baltimore, MD, USA
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Kolomiiets' OV, Danylovych IV, Danylovych HV, Kosterin SO. [Ca2+ accumulation study in isolated smooth muscle mitochondria using fluo-4 AM]. UKRAINIAN BIOCHEMICAL JOURNAL 2013; 85:30-9. [PMID: 24319970 DOI: 10.15407/ubj85.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The opportunity of Ca2+-sensitive fluorescent dye Fluo-4 AM and spectrofluorimetry method application for the study of energy-dependent Ca2+ accumulation in mitochondria from uterus smooth muscle is proved. It has been found that the presence of mitochondrial preparation increases time-dependent fluorescent response considerably and this effect depends on Ca2+ concentration in the medium. Thus, in these conditions, deesterification active probe is formed which is sensitive to Ca2+. It is shown that the accumulation of calcium ions in mitochondria in the presence of Mg-ATP and succinate depends on exogenous Ca2+ concentration and is characterized by substrate saturating. The apparent activation constant of Ca2+ accumulation is 53.9 +/- 6.9 mM, which corresponds to the physiological concentration of the cation in the cell next to mitochondria. Transit addition of Ca2+-ionophore A23187 to the incubation me- dium caused a rapid release of ionized cation from mitochondria. When proton gradient on the inner mitochondrial membrane is dissipated by protonophore CCCP, in the case of suppressing the generation of the gradient by oligomycin and in the presence of ruthenium red that inhibits Ca2+ mitochondrial accumulation systems, Ca2+ entry is significantly reduced. The results indicate the prospects of using Fluo-4 AM to study the properties of the Ca2+ accumulation system in isolated mitochondria of the myometrium.
Collapse
|
5
|
Isshiki M, Nishimoto M, Mizuno R, Fujita T. FRET-based sensor analysis reveals caveolae are spatially distinct Ca2+ stores in endothelial cells. Cell Calcium 2013; 54:395-403. [PMID: 24120096 DOI: 10.1016/j.ceca.2013.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/01/2023]
Abstract
Ca2+-regulating and Ca2+-dependent molecules enriched in caveolae are typically shaped as plasmalemmal invaginations or vesicles. Caveolae structure and subcellular distribution are critical for Ca2+ release from endoplasmic reticulum Ca2+ stores and for Ca2+ influx from the extracellular space into the cell. However, Ca2+ dynamics inside caveolae have never been directly measured and remain uncharacterized. To target the fluorescence resonance energy transfer (FRET)-based Ca2+ sensing protein D1, a mutant of cameleon, to the intra-caveolar space, we made a cDNA construct encoding a chimeric protein of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) and D1 (LOXD1). Immunofluorescence and immunoelectron microscopy confirmed that a significant portion of LOXD1 was localized with caveolin-1 at morphologically apparent caveolar vesicles in endothelial cells. LOXD1 detected ATP-induced transient Ca2+ decreases by confocal FRET imaging in the presence or absence of extracellular Ca2+. This ATP-induced Ca2+ decrease was abolished following knockdown of caveoin-1, suggesting an association with caveolae. The X-ray spectra obtained by the spot analysis of electron-opaque pyroantimonate precipitates further confirmed that ATP-induced calcium decreases in intra-caveolar vesicles. In conclusion, subplasmalemmal caveolae function as Ca2+-releasable Ca2+ stores in response to ATP. This intracellular local Ca2+ delivery system may contribute to the complex spatiotemporal organization of Ca2+ signaling.
Collapse
Affiliation(s)
- Masashi Isshiki
- Department of Molecular Vascular Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
6
|
Ast S, Fischer T, Müller H, Mickler W, Schwichtenberg M, Rurack K, Holdt HJ. Integration of the 1,2,3-triazole "click" motif as a potent signalling element in metal ion responsive fluorescent probes. Chemistry 2013; 19:2990-3005. [PMID: 23319382 DOI: 10.1002/chem.201201575] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Indexed: 12/28/2022]
Abstract
In a systematic approach we synthesized a new series of fluorescent probes incorporating donor-acceptor (D-A) substituted 1,2,3-triazoles as conjugative π-linkers between the alkali metal ion receptor N-phenylaza-[18]crown-6 and different fluorophoric groups with different electron-acceptor properties (4-naphthalimide, meso-phenyl-BODIPY and 9-anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge-transfer (CT) type probes 1, 2 and 7, the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge-separated states. In the presence of Na(+) and K(+) ICT is interrupted, which resulted in a lighting-up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7, which contains a 9-anthracenyl moiety as the electron-accepting fluorophore, is the only probe which retains light-up features in water and works as a highly K(+)/Na(+)-selective probe under simulated physiological conditions. Virtually decoupled BODIPY-based 6 and photoinduced electron transfer (PET) type probes 3-5, where the 10-substituted anthracen-9-yl fluorophores are connected to the 1,2,3-triazole through a methylene spacer, show strong ion-induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3-triazole fluoroionophores.
Collapse
Affiliation(s)
- Sandra Ast
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht Str. 24-25, 14467 Golm, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Chao CC, Huang CC, Lu DY, Wong KL, Chen YR, Cheng TH, Leung YM. Ca2+ store depletion and endoplasmic reticulum stress are involved in P2X7 receptor-mediated neurotoxicity in differentiated NG108-15 cells. J Cell Biochem 2012; 113:1377-85. [PMID: 22134903 DOI: 10.1002/jcb.24010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
P2X7 receptor (P2X7R) activation by extracellular ATP triggers influx of Na(+) and Ca(2+), cytosolic Ca(2+) overload and consequently cytotoxicity. Whether disturbances in endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are involved in P2X7R-mediated cell death is unknown. In this study, a P2X7R agonist (BzATP) was used to activate P2X7R in differentiated NG108-15 neuronal cells. In a concentration-dependent manner, application of BzATP (10-100 µM) immediately raised cytosolic Ca(2+) concentration ([Ca(2+)]i) and caused cell death after a 24-h incubation. P2X7R activation for 2 h did not cause cell death but resulted in a sustained reduction in ER Ca2+ pool size, as evidenced by a diminished cyclopiazonic acid-induced Ca(2+) discharge (fura 2 assay) and a lower fluorescent signal in cells loaded with Mag-fura 2 (ER-specific Ca(2+)-fluorescent dye). Furthermore, P2X7R activation (2 h) led to the appearance of markers of ER stress [phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α) and C/EBP homologous protein (CHOP)] and apoptosis (cleaved caspase 3). Xestospongin C (XeC), an antagonist of inositol-1,4,5-trisphosphate (IP3) receptor (IP3R), strongly inhibited BzATP-triggered [Ca(2+)]i elevation, suggesting that the latter involved Ca(2+) release via IP3R. XeC pretreatment not only attenuated the reduction in Ca(2+) pool size in BzATP-treated cells, but also rescued cell death and prevented BzATP-induced appearance of ER stress and apoptotic markers. These novel observations suggest that P2X7R activation caused not only Ca(2+) overload, but also Ca(2+) release via IP3R, sustained Ca(2+) store depletion, ER stress and eventually apoptotic cell death.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Apáti Á, Pászty K, Erdei Z, Szebényi K, Homolya L, Sarkadi B. Calcium signaling in pluripotent stem cells. Mol Cell Endocrinol 2012; 353:57-67. [PMID: 21945604 DOI: 10.1016/j.mce.2011.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.
Collapse
Affiliation(s)
- Ágota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
9
|
Papp B, Brouland JP. Altered Endoplasmic Reticulum Calcium Pump Expression during Breast Tumorigenesis. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:163-74. [PMID: 21863130 PMCID: PMC3153116 DOI: 10.4137/bcbcr.s7481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum calcium homeostasis is involved in several essential cell functions including cell proliferation, protein synthesis, stress responses or secretion. Calcium uptake into the endoplasmic reticulum is performed by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). In order to study endoplasmic reticulum calcium homeostasis in situ in mammary tissue, in this work SERCA3 expression was investigated in normal breast and in its benign and malignant lesions in function of the cell type, degree of malignancy, and histological and molecular parameters of the tumors. Our data indicate, that although normal breast acinar epithelial cells express SERCA3 abundantly, its expression is strongly decreased already in very early non-malignant epithelial lesions such as adenosis, and remains low in lobular carcinomas. Whereas normal duct epithelium expresses significant amounts of SERCA3, its expression is decreased in several benign ductal lesions, as well as in ductal adenocarcinoma. The loss of SERCA3 expression is correlated with Elston-Ellis grade, negative hormone receptor expression or triple negative status in ductal carcinomas. The concordance between decreased SERCA3 expression and several histological, as well as molecular markers of ductal carcinogenesis indicates that endoplasmic reticulum calcium homeostasis is remodeled during tumorigenesis in the breast epithelium.
Collapse
Affiliation(s)
- Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S 940, Institut Universitaire d'Hématologie, 16, rue de la Grange aux Belles, 75010 Paris, Université Paris Diderot, Sorbonne Paris Cité
| | | |
Collapse
|
10
|
Okada Y, Imendra KG, Miyazaki T, Hotokezaka H, Fujiyama R, Toda K. High extracellular Ca2+ stimulates Ca2+-activated Cl- currents in frog parathyroid cells through the mediation of arachidonic acid cascade. PLoS One 2011; 6:e19158. [PMID: 21559478 PMCID: PMC3084778 DOI: 10.1371/journal.pone.0019158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/21/2011] [Indexed: 01/28/2023] Open
Abstract
Elevation of extracellular Ca(2+) concentration induces intracellular Ca(2+) signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+) pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+) concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+) signaling in frog parathyroid cells and show that Ca(2+)-activated Cl(-) channels are activated by intracellular Ca(2+) increase through an inositol 1,4,5-trisphophate (IP(3))-independent pathway. High extracellular Ca(2+) induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50) ∼6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+)-induced and Ca(2+) dialysis-induced currents reversed at the equilibrium potential of Cl(-) and were inhibited by niflumic acid (a specific blocker of Ca(2+)-activated Cl(-) channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+)-induced current, suggesting the change of intracellular Cl(-) concentration in a few minutes. Extracellular Ca(2+)-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca(2+)-induced current. IP(3) dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca(2+)-induced conductance. These results indicate that high extracellular Ca(2+) raises intracellular Ca(2+) concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(-) conductance.
Collapse
Affiliation(s)
- Yukio Okada
- Integrative Sensory Physiology, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Webb SE, Rogers KL, Karplus E, Miller AL. The use of aequorins to record and visualize Ca(2+) dynamics: from subcellular microdomains to whole organisms. Methods Cell Biol 2010; 99:263-300. [PMID: 21035690 DOI: 10.1016/b978-0-12-374841-6.00010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter, we describe the practical aspects of measuring [Ca(2+)] transients that are generated in a particular cytoplasmic domain, or within a specific organelle or its periorganellar environment, using bioluminescent, genetically encoded and targeted Ca(2+) reporters, especially those based on apoaequorin. We also list examples of the organisms, tissues, and cells that have been transfected with apoaequorin or an apoaequorin-BRET complex, as well as of the organelles and subcellular domains that have been specifically targeted with these bioluminescent Ca(2+) reporters. In addition, we summarize the various techniques used to load the apoaequorin cofactor, coelenterazine, and its analogs into cells, tissues, and intact organisms, and we describe recent advances in the detection and imaging technologies that are currently being used to measure and visualize the luminescence generated by the aequorin-Ca(2+) reaction within these various cytoplasmic domains and subcellular compartments.
Collapse
Affiliation(s)
- Sarah E Webb
- Biochemistry and Cell Biology Section and State Key Laboratory of Molecular Neuroscience, Division of Life Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, PR China
| | | | | | | |
Collapse
|
12
|
Bowman BJ, Draskovic M, Freitag M, Bowman EJ. Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. EUKARYOTIC CELL 2009; 8:1845-55. [PMID: 19801418 PMCID: PMC2794220 DOI: 10.1128/ec.00174-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/25/2009] [Indexed: 11/20/2022]
Abstract
We wanted to examine the cellular locations of four Neurospora crassa proteins that transport calcium. However, the structure and distribution of organelles in live hyphae of N. crassa have not been comprehensively described. Therefore, we made recombinant genes that generate translational fusions of putative organellar marker proteins with green or red fluorescent protein. We observed putative endoplasmic reticulum proteins, encoded by grp-78 and dpm, in the nuclear envelope and associated membranes. Proteins of the vacuolar membrane, encoded by vam-3 and vma-1, were in an interconnected network of small tubules and vesicles near the hyphal tip, while in more distal regions they were in large and small spherical vacuoles. Mitochondria, visualized with tagged ARG-4, were abundant in all regions of the hyphae. Similarly, we tagged the four N. crassa proteins that transport calcium with green or red fluorescent protein to examine their cellular locations. NCA-1 protein, a homolog of the SERCA-type Ca(2+)-ATPase of animal cells, colocalized with the endoplasmic reticulum markers. The NCA-2 and NCA-3 proteins are homologs of Ca(2+)-ATPases in the vacuolar membrane in yeast or in the plasma membrane in animal cells. They colocalized with markers in the vacuolar membrane, and they also occurred in the plasma membrane in regions of the hyphae more than 1 mm from the tip. The cax gene encodes a Ca(2+)/H(+) exchange protein found in vacuoles. As expected, the CAX protein localized to the vacuolar compartment. We observed, approximately 50 to 100 mum from the tip, a few spherical organelles that had high amounts of tagged CAX protein and tagged subunits of the vacuolar ATPase (VMA-1 and VMA-5). We suggest that this organelle, not described previously in N. crassa, may have a role in sequestering calcium.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
13
|
Mori Y, Watanabe M, Inui T, Nimura Y, Araki M, Miyamoto M, Takenaka H, Kubota T. Ca(2+) regulation of endocochlear potential in marginal cells. J Physiol Sci 2009; 59:355-65. [PMID: 19504169 PMCID: PMC10717738 DOI: 10.1007/s12576-009-0043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/02/2009] [Indexed: 11/26/2022]
Abstract
We examined the effect of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) in marginal cells on the asphyxia- or furosemide-induced decrease in the endocochlear potential (EP) by perfusing the endolymph with or without a Ca(2+) chelator or inhibitors of Ca(2+)-permeable channels or Ca(2+)-pump during transient asphyxia or intravenous administration of furosemide. We obtained the following results. (1) Endolymphatic administration of SKF96365 (an inhibitor of TRPC and L-type Ca(2+) channels) or EGTA-acetoxymethyl ester (EGTA-AM) significantly inhibited both the transient asphyxia-induced decrease in EP (TAID) and the furosemide-induced decrease in EP (FUID). (2) Endolymphatic perfusion with nifedipine significantly inhibited the TAID but not the FUID. (3) The recovery from the FUID was significantly suppressed by perfusing the endolymph with EGTA-AM, nifedipine, or SKF96365. (4) Endolymphatic administration of thapsigargin inhibited both the FUID and TAID. (5) The recovery rate from the FUID was much slower than that from the TAID, indicating that furosemide may inhibit the Ca(2+)-pump. (6) A strong reaction in immunohistochemical staining for TRPC channels was observed in the luminal and basolateral membranes of marginal cells. (7) A positive staining reaction for the gamma subunit of epithelial Na(+) channels was observed in the luminal and basolateral membranes of marginal cells. (8) Positive EP was diminished toward 0 mV by the endolymphatic perfusion with 10 muM amiloride or 10 muM phenamil. Taken together, these findings suggest that [Ca(2+)](c) regulated by endoplasmic Ca(2+)-pump and Ca(2+)-permeable channels in marginal cells may regulate the positive EP, which is partly produced by the diffusion potential of Na(+) across the basolateral membrane in marginal cells.
Collapse
Affiliation(s)
- Yoshiaki Mori
- Department of Physiology II, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686 Japan
| | - Masahito Watanabe
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Takaki Inui
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Yoshitsugu Nimura
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Michitoshi Araki
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Manabu Miyamoto
- Department of Physiology II, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686 Japan
| | - Hiroshi Takenaka
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Takahiro Kubota
- Department of Physiology II, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686 Japan
| |
Collapse
|
14
|
Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJM, Gerasimenko OV. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 2009; 284:20796-803. [PMID: 19515844 PMCID: PMC2742844 DOI: 10.1074/jbc.m109.025353] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Indexed: 01/16/2023] Open
Abstract
We have investigated in detail the role of intra-organelle Ca2+ content during induction of apoptosis by the oxidant menadione while changing and monitoring the Ca2+ load of endoplasmic reticulum (ER), mitochondria, and acidic organelles. Menadione causes production of reactive oxygen species, induction of oxidative stress, and subsequently apoptosis. In both pancreatic acinar and pancreatic tumor AR42J cells, menadione was found to induce repetitive cytosolic Ca2+ responses because of the release of Ca2+ from both ER and acidic stores. Ca2+ responses to menadione were accompanied by elevation of Ca2+ in mitochondria, mitochondrial depolarization, and mitochondrial permeability transition pore (mPTP) opening. Emptying of both the ER and acidic Ca2+ stores did not necessarily prevent menadione-induced apoptosis. High mitochondrial Ca2+ at the time of menadione application was the major factor determining cell fate. However, if mitochondria were prevented from loading with Ca2+ with 10 mum RU360, then caspase-9 activation did not occur irrespective of the content of other Ca2+ stores. These results were confirmed by ratiometric measurements of intramitochondrial Ca2+ with pericam. We conclude that elevated Ca2+ in mitochondria is the crucial factor in determining whether cells undergo oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Heidi K. Baumgartner
- From the Physiological Laboratory, School of Biomedical Sciences
- the Division of Gastroenterology, School of Clinical Sciences, and
| | | | | | - Pawel Ferdek
- From the Physiological Laboratory, School of Biomedical Sciences
| | - Tullio Pozzan
- the Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padua, Viale G Colombo 3, 35121 Padua, Italy
| | | | - Ole H. Petersen
- From the Physiological Laboratory, School of Biomedical Sciences
| | - Robert Sutton
- the Division of Surgery and Oncology, School of Cancer Studies, Liverpool University, Liverpool L69 3BX, United Kingdom and
| | | | | |
Collapse
|
15
|
Davies SA, Terhzaz S. Organellar calcium signalling mechanisms in Drosophilaepithelial function. J Exp Biol 2009; 212:387-400. [DOI: 10.1242/jeb.024513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Calcium signalling and calcium homeostasis are essential for life. Studies of calcium signalling thus constitute a major proportion of research in the life sciences, although the majority of these studies are based in cell lines or isolated cells. Epithelial cells and tissues are essential in the regulation of critical physiological processes, including fluid transport; and so the modulation of such processes in vivo by cell-specific calcium signalling is thus of interest. In this review, we describe the approaches to measuring intracellular calcium in the genetically tractable fluid-transporting tissue, the Drosophila Malpighian tubule by targeting cell-specific protein-based calcium reporters to defined regions,cells and intracellular compartments of the intact Malpighian tubule. We also discuss recent findings on the roles of plasma membrane and intracellular calcium channels; and on organellar stores – including mitochondria,Golgi and peroxisomes – in Malpighian tubule function.
Collapse
Affiliation(s)
- Shireen A. Davies
- Integrative and Systems Biology Group, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Selim Terhzaz
- Integrative and Systems Biology Group, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| |
Collapse
|
16
|
Fedirko N, Gerasimenko JV, Tepikin AV, Gerasimenko OV. Regulation of early response genes in pancreatic acinar cells: external calcium and nuclear calcium signalling aspects. Acta Physiol (Oxf) 2009; 195:51-60. [PMID: 18983455 DOI: 10.1111/j.1748-1716.2008.01935.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nuclear calcium signalling has been an important topic of investigation for many years and some aspects have been the subject of debate. Our data from isolated nuclei suggest that the nuclear pore complexes (NPCs) are open even after depletion of the Ca(2+) store in the nuclear envelope (NE). The NE contains ryanodine receptors (RyRs) and Ins(1,4,5)P(3) receptors [Ins(1,4,5)P(3)Rs], most likely on both sides of the NE and these can be activated separately and independently: the RyRs by either NAADP or cADPR, and the Ins(1,4,5)P(3)Rs by Ins(1,4,5)P(3). We have also investigated the possible consequences of nuclear calcium signals: the role of Ca(2+) in the regulation of immediate early genes (IEG): c-fos, c-myc and c-jun in pancreatic acinar cells. Stimulation with Ca(2+)-mobilizing agonists induced significant increases in levels of expression. Cholecystokinin (CCK) (10 nm) evoked a substantial rise in the expression levels, highly dependent on external Ca(2+): the IEG expression level was lowest in Ca(2+)-free solution, increased at the physiological level of 1 mm [Ca(2+)](o) and was maximal at 10 mm [Ca(2+)](o), i.e.: 102 +/- 22% and 163 +/- 15% for c-fos; c-myc -73 +/- 13% and 106 +/- 24%; c-jun -49 +/- 8% and 59 +/- 9% at 1 and 10 mm of extracellular Ca(2+) respectively. A low CCK concentration (10 pm) induced a small increase in expression. We conclude that extracellular Ca(2+) together with nuclear Ca(2+) signals induced by CCK play important roles in the induction of IEG expression.
Collapse
Affiliation(s)
- N Fedirko
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | |
Collapse
|
17
|
Ca2+ stores and use-dependent facilitation of presynaptic Ca2+ signaling. Proc Natl Acad Sci U S A 2008; 105:E80; author reply E81. [PMID: 18987323 DOI: 10.1073/pnas.0808119105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Morgan AJ, Galione A. Investigating cADPR and NAADP in intact and broken cell preparations. Methods 2008; 46:194-203. [PMID: 18852050 DOI: 10.1016/j.ymeth.2008.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 09/12/2008] [Indexed: 11/26/2022] Open
Abstract
The body of literature characterizing cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) as Ca2+-mobilizing second messengers is growing apace. However, their unique properties may, for the uninitiated, make them difficult to work with. This article reviews many of the available techniques (and associated pitfalls) for investigating these nucleotide messengers, predominantly focusing upon optical techniques using fluorescent reporters to measure Ca2+ in the cytosol as well as Ca2+ or pH within the lumen of intracellular organelles.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxon OX1 3QT, UK.
| | | |
Collapse
|
19
|
Kumar V, Jong YJI, O'Malley KL. Activated nuclear metabotropic glutamate receptor mGlu5 couples to nuclear Gq/11 proteins to generate inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ release. J Biol Chem 2008; 283:14072-83. [PMID: 18337251 DOI: 10.1074/jbc.m708551200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently we have shown that the metabotropic glutamate 5 (mGlu5) receptor can be expressed on nuclear membranes of heterologous cells or endogenously on striatal neurons where it can mediate nuclear Ca2+ changes. Here, pharmacological, optical, and genetic techniques were used to show that upon activation, nuclear mGlu5 receptors generate nuclear inositol 1,4,5-trisphosphate (IP3) in situ. Specifically, expression of an mGlu5 F767S mutant in HEK293 cells that blocks Gq/11 coupling or introduction of a dominant negative Galphaq construct in striatal neurons prevented nuclear Ca2+ changes following receptor activation. These data indicate that nuclear mGlu5 receptors couple to Gq/11 to mobilize nuclear Ca2+. Nuclear mGlu5-mediated Ca2+ responses could also be blocked by the phospholipase C (PLC) inhibitor, U73122, the phosphatidylinositol (PI) PLC inhibitor 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH3), or by using small interfering RNA targeted against PLCbeta1 demonstrating that PI-PLC is involved. Direct assessment of inositol phosphate production using a PIP2/IP3 "biosensor" revealed for the first time that IP3 can be generated in the nucleus following activation of nuclear mGlu5 receptors. Finally, both IP3 and ryanodine receptor blockers prevented nuclear mGlu5-mediated increases in intranuclear Ca2+. Collectively, this study shows that like plasma membrane receptors, activated nuclear mGlu5 receptors couple to Gq/11 and PLC to generate IP3-mediated release of Ca2+ from Ca2+-release channels in the nucleus. Thus the nucleus can function as an autonomous organelle independent of signals originating in the cytoplasm, and nuclear mGlu5 receptors play a dynamic role in mobilizing Ca2+ in a specific, localized fashion.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
20
|
Galloux M, Libersou S, Morellet N, Bouaziz S, Da Costa B, Ouldali M, Lepault J, Delmas B. Infectious bursal disease virus, a non-enveloped virus, possesses a capsid-associated peptide that deforms and perforates biological membranes. J Biol Chem 2007; 282:20774-84. [PMID: 17488723 DOI: 10.1074/jbc.m701048200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double-stranded RNA (dsRNA) virions constitute transcriptionally competent machines that must translocate across cell membranes to function within the cytoplasm. The entry mechanism of such non-enveloped viruses is not well described. Birnaviruses are unique among dsRNA viruses because they possess a single shell competent for entry. We hereby report how infectious bursal disease virus, an avian birnavirus, can disrupt cell membranes and enter into its target cells. One of its four structural peptides, pep46 (a 46-amino acid amphiphilic peptide) deforms synthetic membranes and induces pores visualized by electron cryomicroscopy, having a diameter of less than 10 nm. Using both biological and synthetic membranes, the pore-forming domain of pep46 was identified as its N terminus moiety (pep22). The N and C termini of pep22 are shown to be accessible during membrane destabilization and pore formation. NMR studies show that pep46 inserted into micelles displays a cis-trans proline isomerization at position 16 that we propose to be associated to the pore formation process. Reverse genetic experiments confirm that the amphiphilicity and proline isomerization of pep46 are both essential to the viral cycle. Furthermore, we show that virus infectivity and its membrane activity (probably because of the release of pep46 from virions) are controlled differently by calcium concentration, suggesting that entry is performed in two steps, endocytosis followed by endosome permeabilization. Our findings reveal a possible entry pathway of infectious bursal disease virus: in endosomes containing viruses, the lowering of the calcium concentration promotes the release of pep46 that induces the formation of pores in the endosomal membrane.
Collapse
Affiliation(s)
- Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, UR892, Batiment de Biotechnologies, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Oheim M, Kirchhoff F, Stühmer W. Calcium microdomains in regulated exocytosis. Cell Calcium 2006; 40:423-39. [PMID: 17067670 DOI: 10.1016/j.ceca.2006.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/19/2022]
Abstract
Katz and co-workers showed that Ca(2+) triggers exocytosis. The existence of sub-micrometer domains of greater than 100 microM [Ca(2+)](i) was postulated on theoretical grounds. Using a modified, low-affinity aequorin, Llinas et al. were the first to demonstrate the existence of Ca(2+) 'microdomains' in squid presynaptic terminals. Over the past several years, it has become clear that individual Ca(2+) nano- and microdomains forming around the mouth of voltage-gated Ca(2+) channels ascertain the tight coupling of fast synaptic vesicle release to membrane depolarization by action potentials. Recent work has established different geometric arrangements of vesicles and Ca(2+) channels at different central synapses and pointed out the role of Ca(2+) syntillas - localized, store operated Ca(2+) signals - in facilitation and spontaneous release. The coupling between Ca(2+) increase and evoked exocytosis is more sluggish in peripheral terminals and neuroendocrine cells, where channels are less clustered and Ca(2+) comes from different sources, including Ca(2+) influx via the plasma membrane and the mobilization of Ca(2+) from intracellular stores. Finally, also non- (electrically) excitable cells display highly localized Ca(2+) signaling domains. We discuss in particular the organization of structural microdomains of Bergmann glia, specialized astrocytes of the cerebellum that have only recently been considered as secretory cells. Glial microdomains are the spatial substrate for functionally segregated Ca(2+) signals upon metabotropic activation. Our review emphasizes the large diversity of different geometric arrangements of vesicles and Ca(2+) sources, leading to a wide spectrum of Ca(2+) signals triggering release.
Collapse
Affiliation(s)
- Martin Oheim
- Molecular and Cellular Biophysics of Synaptic Transmission, INSERM, U603, Paris, France.
| | | | | |
Collapse
|
22
|
Gerasimenko JV, Flowerdew SE, Voronina SG, Sukhomlin TK, Tepikin AV, Petersen OH, Gerasimenko OV. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J Biol Chem 2006; 281:40154-63. [PMID: 17074764 DOI: 10.1074/jbc.m606402200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gallstones can cause acute pancreatitis, an often fatal disease in which the pancreas digests itself. This is probably because of biliary reflux into the pancreatic duct and subsequent bile acid action on the acinar cells. Because Ca(2+) toxicity is important for the cellular damage in pancreatitis, we have studied the mechanisms by which the bile acid taurolithocholic acid 3-sulfate (TLC-S) liberates Ca(2+). Using two-photon plasma membrane permeabilization and measurement of [Ca(2+)] inside intracellular stores at the cell base (dominated by ER) and near the apex (dominated by secretory granules), we have characterized the Ca(2+) release pathways. Inhibition of inositol trisphosphate receptors (IP(3)Rs), by caffeine and 2-APB, reduced Ca(2+) release from both the ER and an acidic pool in the granular area. Inhibition of ryanodine receptors (RyRs) by ruthenium red (RR) also reduced TLC-S induced liberation from both stores. Combined inhibition of IP(3)Rs and RyRs abolished Ca(2+) release. RyR activation depends on receptors for nicotinic acid adenine dinucleotide phosphate (NAADP), because inactivation by a high NAADP concentration inhibited release from both stores, whereas a cyclic ADPR-ribose antagonist had no effect. Bile acid-elicited intracellular Ca(2+) liberation from both the ER and the apical acidic stores depends on both RyRs and IP(3)Rs.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006; 40:553-60. [PMID: 17074387 PMCID: PMC2692319 DOI: 10.1016/j.ceca.2006.08.016] [Citation(s) in RCA: 466] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 12/30/2022]
Abstract
Local Ca(2+) transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca(2+) release to activate mitochondrial Ca(2+) uptake and to evoke a matrix [Ca(2+)] ([Ca(2+)](m)) rise. [Ca(2+)](m) exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca(2+) release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca(2+) sensitivity of both the Ca(2+) release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca(2+) accumulation in various apoptotic paradigms, methods are available for buffering of [Ca(2+)], for dissipation of the driving force of the mitochondrial Ca(2+) uptake and for inhibition of the mitochondrial Ca(2+) transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca(2+) handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca(2+) uptake on cytosolic [Ca(2+)] and [Ca(2+)](m) in intact cultured cells.
Collapse
Affiliation(s)
- György Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Burdakov D, Verkhratsky A. Biophysical re-equilibration of Ca2+ fluxes as a simple biologically plausible explanation for complex intracellular Ca2+ release patterns. FEBS Lett 2005; 580:463-8. [PMID: 16386246 DOI: 10.1016/j.febslet.2005.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Physiological regulation of Ca(2+) release from the endoplasmic reticulum (ER) is critical for cell function. Recent direct measurements of free [Ca(2+)] inside the ER ([Ca(2+)](ER)) revealed that [Ca(2+)](ER) itself is a key regulator of ER Ca(2+) handling. However, the role of this new regulatory process in generating various patterns of Ca(2+) release remains to be elucidated in detail. Here, we incorporate the recently quantified experimental correlations between [Ca(2+)](ER) and Ca(2+) movements across the ER membrane into a mathematical model ER Ca(2+) handling. The model reproduces basic experimental dynamics of [Ca(2+)](ER). Although this was not goal in model design, the model also exhibits mechanistically unclear experimental phenomena such as "quantal" Ca(2+) release, and "store charging" by increasing resting cytosolic [Ca(2+)]. While more complex explanations cannot be ruled out, on the basis of our data we propose that "quantal release" and "store charging" could be simple re-equilibration phenomena, predicted by the recently quantified biophysical dynamics of Ca(2+) movements across the ER membrane.
Collapse
Affiliation(s)
- Denis Burdakov
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|