1
|
Zhuang Z, Meng Y, Xue Y, Wang Y, Cheng X, Jing J. Adaptation of STIM1 structure-function relationships for optogenetic control of calcium signaling. J Biol Chem 2024; 300:107636. [PMID: 39122007 PMCID: PMC11402311 DOI: 10.1016/j.jbc.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.
Collapse
Affiliation(s)
- Zirui Zhuang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yu Xue
- School of Life Science, Tianjin University, Tianjin, China
| | - Yan Wang
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Mantesso A, Nör JE. Stem cells in clinical dentistry. J Am Dent Assoc 2023; 154:1048-1057. [PMID: 37804275 DOI: 10.1016/j.adaj.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Stem cells are present in most of the tissues in the craniofacial complex and play a major role in tissue homeostasis and repair. These cells are characterized by their capacity to differentiate into multiple cell types and to self-renew to maintain a stem cell pool throughout the life of the tissue. TYPES OF STUDIES REVIEWED The authors discuss original data from experiments and comparative analyses and review articles describing the identification and characterization of stem cells of the oral cavity. RESULTS Every oral tissue except enamel, dentin, and cementum contains stem cells for the entire life span. These stem cells self-renew to maintain a pool of cells that can be activated to replace terminally differentiated cells (for example, odontoblasts) or to enable wound healing (for example, dentin bridge in pulp exposures and healing of periodontal tissues after surgery). In addition, dental stem cells can differentiate into functional blood vessels and nerves. Initial clinical trials have shown that transplanting dental pulp stem cells into disinfected necrotic teeth has allowed for the recovery of tooth vitality and vertical and horizontal root growth in immature teeth with incomplete root formation. PRACTICAL IMPLICATIONS As a consequence of these groundbreaking discoveries, stem cell banks are now offering services for the cryopreservation of dental stem cells. The future use of stem cell-based therapies in the clinic will depend on the collaboration of clinicians and researchers in projects designed to understand whether these treatments are safe, efficacious, and clinically feasible.
Collapse
|
4
|
Wang X, Li X. Regulation of pain neurotransmitters and chondrocytes metabolism mediated by voltage-gated ion channels: A narrative review. Heliyon 2023; 9:e17989. [PMID: 37501995 PMCID: PMC10368852 DOI: 10.1016/j.heliyon.2023.e17989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of chronic pain and dysfunction. It is essential to comprehend the nature of pain and cartilage degeneration and its influencing factors on OA treatment. Voltage-gated ion channels (VGICs) are essential in chondrocytes and extracellular matrix (ECM) metabolism and regulate the pain neurotransmitters between the cartilage and the central nervous system. This narrative review focused primarily on the effects of VGICs regulating pain neurotransmitters and chondrocytes metabolism, and most studies have focused on voltage-sensitive calcium channels (VSCCs), voltage-gated sodium channels (VGSCs), acid-sensing ion channels (ASICs), voltage-gated potassium channels (VGKCs), voltage-gated chloride channels (VGCCs). Various ion channels coordinate to maintain the intracellular environment's homeostasis and jointly regulate metabolic and pain under normal circumstances. In the OA model, the ion channel transport of chondrocytes is abnormal, and calcium influx is increased, which leads to increased neuronal excitability. The changes in ion channels are strongly associated with the OA disease process and individual OA risk factors. Future studies should explore how VGICs affect the metabolism of chondrocytes and their surrounding tissues, which will help clinicians and pharmacists to develop more effective targeted drugs to alleviate the progression of OA disease.
Collapse
|
5
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Van Gelder P, Audenaert E, Calders P, Leybaert L. A new look at osteoarthritis: Threshold potentials and an analogy to hypocalcemia. FRONTIERS IN AGING 2023; 4:977426. [PMID: 36970729 PMCID: PMC10031104 DOI: 10.3389/fragi.2023.977426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
Cartilage is a tissue that consist of very few cells embedded in a highly negatively charged extracellular matrix (ECM). This tissue is dealing with several electrical potentials which have been shown to control the production of ECM. Cartilage is present at joints and is constantly prone to degradation. Failing to repair the damage will result in the occurrence of osteoarthritis (OA). This perspective aims to link biophysical insights with biomolecular research in order to provide an alternative view on the possible causes of OA. Firstly, we hypothesize the existence of a threshold potential, which should be reached in order to initiate repair but if not met, unrepaired damage will evolve to OA. Measurements of the magnitude of this threshold electrical potential would be a helpful diagnostic tool. Secondly, since electrical potential alterations can induce chondrocytes to synthesize ECM, a cellular sensor must be present. We here propose an analogy to the hypocalcemia ‘unshielding’ situation to comprehend electrical potential generation and explore possible sensing mechanisms translating the electrical message into cellular responses. A better understanding of the cellular voltage sensors and down-stream signalling mechanisms may lead to the development of novel treatments for cartilage regeneration.
Collapse
Affiliation(s)
- P. Van Gelder
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - E. Audenaert
- Department of Orthopaedic Surgery and Traumatology, Ghent University, Ghent, Belgium
| | - P. Calders
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - L. Leybaert
- Department of Basic and Applied Medical Sciences (BAMS), Physiology Group, Ghent University, Ghent, Belgium
- *Correspondence: L. Leybaert,
| |
Collapse
|
7
|
Reyes Fernandez PC, Wright CS, Warden SJ, Hum J, Farach-Carson MC, Thompson WR. Effects of Gabapentin and Pregabalin on Calcium Homeostasis: Implications for Physical Rehabilitation of Musculoskeletal Tissues. Curr Osteoporos Rep 2022; 20:365-378. [PMID: 36149592 PMCID: PMC10108402 DOI: 10.1007/s11914-022-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Julia Hum
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA.
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Poillot P, Snuggs JW, Le Maitre CL, Huyghe JM. L-type Voltage-Gated calcium channels partly mediate Mechanotransduction in the intervertebral disc. JOR Spine 2022; 5:e1213. [PMID: 36601377 PMCID: PMC9799080 DOI: 10.1002/jsp2.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration continues to be a major global health challenge, with strong links to lower back pain, while the pathogenesis of this disease is poorly understood. In cartilage, much more is known about mechanotransduction pathways involving the strain-generated potential (SGP) and function of voltage-gated ion channels (VGICs) in health and disease. This evidence implicates a similar important role for VGICs in IVD matrix turnover. However, the field of VGICs, and to a lesser extent the SGP, remains unexplored in the IVD. Methods A two-step process was utilized to investigate the role of VGICs in the IVD. First, immunohistochemical staining was used to identify and localize several different VGICs in bovine and human IVDs. Second, a pilot study was conducted on the function of L-type voltage gated calcium channels (VGCCs) by inhibiting these channels with nifedipine (Nf) and measuring calcium influx in monolayer or gene expression from 3D cell-embedded alginate constructs subject to dynamic compression. Results Several VGICs were identified at the protein level, one of which, Cav2.2, appears to be upregulated with the onset of human IVD degeneration. Inhibiting L-type VGCCs with Nf supplementation led to an altered cell calcium influx in response to osmotic loading as well as downregulation of col 1a, aggrecan and ADAMTS-4 during dynamic compression. Conclusions This study demonstrates the presence of several VGICs in the IVD, with evidence supporting a role for L-type VGCCs in mechanotransduction. These findings highlight the importance of future detailed studies in this area to fully elucidate IVD mechanotransduction pathways and better inform treatment strategies for IVD degeneration.
Collapse
Affiliation(s)
| | - Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | | | - Jacques M. Huyghe
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
9
|
Han AY, Ha SM, Shin YK, Seol GH. Ginsenoside Rg-1 prevents elevated cytosolic Ca 2+ via store-operated Ca 2+ entry in high-glucose-stimulated vascular endothelial and smooth muscle cells. BMC Complement Med Ther 2022; 22:166. [PMID: 35733160 PMCID: PMC9215051 DOI: 10.1186/s12906-022-03647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ginsenoside Rg-1 (Rg-1), a triterpenoid saponin abundantly present in Panax ginseng, is a type of naturally occurring steroid with known anti-diabetic and anti-inflammatory effects. In this study, we sought to confirm the effects and mechanisms of action of Rg-1 on store-operated Ca2+ entry (SOCE) in human vascular endothelial cell line (EA) and murine aortic vascular smooth muscle cell line (MOVAS) cells exposed to high glucose. METHODS Cytosolic Ca2+ concentrations in EA and MOVAS cells were measured by monitoring fluorescence of the ratiometric Ca2+-indicator, Fura-2 AM. RESULTS High glucose significantly increased Ca2+ influx by abnormally activating SOCE in EA and MOVAS cells. Notably, this high glucose-induced increase in SOCE was restored to normal levels in EA and MOVAS cells by Rg-1. Moreover, Rg-1 induced reductions in SOCE in cells exposed to high glucose were significantly inhibited by the plasma membrane Ca2+ ATPase (PMCA) blocker lanthanum, the Na+/K+-ATPase blocker ouabain, or the Na+/Ca2+ exchanger (NCX) blockers Ni2+ and KB-R7943. These observations suggest that the mechanism of action of Rg-1 inhibition of SOCE involves PMCA and Na+/K+-ATPase, and an increase in Ca2+ efflux via NCXs in both EA and MOVAS cells exposed to high glucose. CONCLUSIONS These findings indicate that Rg-1 may protect vascular endothelial and smooth muscle cells from Ca2+ increases following exposure to hyperglycemic conditions.
Collapse
Affiliation(s)
- A Young Han
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Nursing, College of Life Science and Industry, Sunchon National University, Suncheon, Republic of Korea
| | - Su Min Ha
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Gao W, Hasan H, Anderson DE, Lee W. The Role of Mechanically-Activated Ion Channels Piezo1, Piezo2, and TRPV4 in Chondrocyte Mechanotransduction and Mechano-Therapeutics for Osteoarthritis. Front Cell Dev Biol 2022; 10:885224. [PMID: 35602590 PMCID: PMC9114637 DOI: 10.3389/fcell.2022.885224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanical factors play critical roles in the pathogenesis of joint disorders like osteoarthritis (OA), a prevalent progressive degenerative joint disease that causes debilitating pain. Chondrocytes in the cartilage are responsible for extracellular matrix (ECM) turnover, and mechanical stimuli heavily influence cartilage maintenance, degeneration, and regeneration via mechanotransduction of chondrocytes. Thus, understanding the disease-associated mechanotransduction mechanisms can shed light on developing effective therapeutic strategies for OA through targeting mechanotransducers to halt progressive cartilage degeneration. Mechanosensitive Ca2+-permeating channels are robustly expressed in primary articular chondrocytes and trigger force-dependent cartilage remodeling and injury responses. This review discusses the current understanding of the roles of Piezo1, Piezo2, and TRPV4 mechanosensitive ion channels in cartilage health and disease with a highlight on the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA.
Collapse
Affiliation(s)
- Winni Gao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hamza Hasan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Devon E. Anderson
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Whasil Lee
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
11
|
Elídóttir KL, Scott L, Lewis R, Jurewicz I. Biomimetic approach to articular cartilage tissue engineering using carbon nanotube-coated and textured polydimethylsiloxane scaffolds. Ann N Y Acad Sci 2022; 1513:48-64. [PMID: 35288951 PMCID: PMC9545810 DOI: 10.1111/nyas.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
There is a significant need to understand the complexity and heterogeneity of articular cartilage to develop more effective therapeutic strategies for diseases such as osteoarthritis. Here, we show that carbon nanotubes (CNTs) are excellent candidates as a material for synthetic scaffolds to support the growth of chondrocytes—the cells that produce and maintain cartilage. Chondrocyte morphology, proliferation, and alignment were investigated as nanoscale CNT networks were applied to macroscopically textured polydimethylsiloxane (PDMS) scaffolds. The application of CNTs to the surface of PDMS‐based scaffolds resulted in an up to 10‐fold increase in cell adherence and 240% increase in proliferation, which is attributable to increased nanoscale roughness and hydrophilicity. The introduction of macroscale features to PDMS induced alignment of chondrocytes, successfully mimicking the cell behavior observed in the superficial layer of cartilage. Raman spectroscopy was used as a noninvasive, label‐free method to monitor extracellular matrix production and chondrocyte phenotype. Chondrocytes on these scaffolds successfully produced collagen, glycosaminoglycan, and aggrecan. This study demonstrates that introducing physical features at different length scales allows for a high level of control over tissue scaffold design and, thus, cell behavior. Ultimately, these textured scaffolds can serve as platforms to improve the understanding of osteoarthritis and for early‐stage therapeutic testing.
Collapse
Affiliation(s)
- Katrín Lind Elídóttir
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK.,Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Louie Scott
- Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Rebecca Lewis
- Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Izabela Jurewicz
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
12
|
Deng Z, Chen X, Lin Z, Alahdal M, Wang D, Liu J, Li W. The Homeostasis of Cartilage Matrix Remodeling and the Regulation of Volume-Sensitive Ion Channel. Aging Dis 2022; 13:787-800. [PMID: 35656105 PMCID: PMC9116913 DOI: 10.14336/ad.2021.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Degenerative joint diseases of the hips and knees are common and are accompanied by severe pain and movement disorders. At the microscopic level, the main characteristics of osteoarthritis are the continuous destruction and degeneration of cartilage, increased cartilage extracellular matrix catabolism, decreased anabolism, increased synovial fluid, and decreased osmotic pressure. Cell volume stability is mainly regulated by ion channels, many of which are expressed in chondrocytes. These ion channels are closely related to pain regulation, volume regulation, the inflammatory response, cell proliferation, apoptosis, and cell differentiation. In this review, we focus on the important role of volume control-related ion channels in cartilage matrix remodeling and summarize current views. In addition, the potential mechanism of the volume-sensitive anion channel LRRC8A in the early occurrence of osteoarthritis is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianquan Liu
- Correspondence should be addressed to: Dr. Jianquan Liu, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: ; Dr. Wencui Li, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: .
| | - Wencui Li
- Correspondence should be addressed to: Dr. Jianquan Liu, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: ; Dr. Wencui Li, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: .
| |
Collapse
|
13
|
Zhang K, Wang L, Liu Z, Geng B, Teng Y, Liu X, Yi Q, Yu D, Chen X, Zhao D, Xia Y. Mechanosensory and mechanotransductive processes mediated by ion channels in articular chondrocytes: Potential therapeutic targets for osteoarthritis. Channels (Austin) 2021; 15:339-359. [PMID: 33775217 PMCID: PMC8018402 DOI: 10.1080/19336950.2021.1903184] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage consists of an extracellular matrix including many proteins as well as embedded chondrocytes. Articular cartilage formation and function are influenced by mechanical forces. Hind limb unloading or simulated microgravity causes articular cartilage loss, suggesting the importance of the healthy mechanical environment in articular cartilage homeostasis and implying a significant role of appropriate mechanical stimulation in articular cartilage degeneration. Mechanosensitive ion channels participate in regulating the metabolism of articular chondrocytes, including matrix protein production and extracellular matrix synthesis. Mechanical stimuli, including fluid shear stress, stretch, compression and cell swelling and decreased mechanical conditions (such as simulated microgravity) can alter the membrane potential and regulate the metabolism of articular chondrocytes via transmembrane ion channel-induced ionic fluxes. This process includes Ca2+ influx and the resulting mobilization of Ca2+ that is due to massive released Ca2+ from stores, intracellular cation efflux and extracellular cation influx. This review brings together published information on mechanosensitive ion channels, such as stretch-activated channels (SACs), voltage-gated Ca2+ channels (VGCCs), large conductance Ca2+-activated K+ channels (BKCa channels), Ca2+-activated K+ channels (SKCa channels), voltage-activated H+ channels (VAHCs), acid sensing ion channels (ASICs), transient receptor potential (TRP) family channels, and piezo1/2 channels. Data based on epithelial sodium channels (ENaCs), purinergic receptors and N-methyl-d-aspartate (NMDA) receptors are also included. These channels mediate mechanoelectrical physiological processes essential for converting physical force signals into biological signals. The primary channel-mediated effects and signaling pathways regulated by these mechanosensitive ion channels can influence the progression of osteoarthritis during the mechanosensory and mechanoadaptive process of articular chondrocytes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Lifu Wang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Zhongcheng Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Bin Geng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yuanjun Teng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xuening Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Qiong Yi
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dechen Yu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xiangyi Chen
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dacheng Zhao
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yayi Xia
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| |
Collapse
|
14
|
Trompeter N, Gardinier JD, DeBarros V, Boggs M, Gangadharan V, Cain WJ, Hurd L, Duncan RL. Insulin-like growth factor-1 regulates the mechanosensitivity of chondrocytes by modulating TRPV4. Cell Calcium 2021; 99:102467. [PMID: 34530313 PMCID: PMC8541913 DOI: 10.1016/j.ceca.2021.102467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Both mechanical and biochemical stimulation are required for maintaining the integrity of articular cartilage. However, chondrocytes respond differently to mechanical stimuli in osteoarthritic cartilage when biochemical signaling pathways, such as Insulin-like Growth Factor-1 (IGF-1), are altered. The Transient Receptor Potential Vanilloid 4 (TRPV4) channel is central to chondrocyte mechanotransduction and regulation of cartilage homeostasis. Here, we propose that changes in IGF-1 can modulate TRPV4 channel activity. We demonstrate that physiologic levels of IGF-1 suppress hypotonic-induced TRPV4 currents and intracellular calcium flux by increasing apparent cell stiffness that correlates with actin stress fiber formation. Disruption of F-actin following IGF-1 treatment results in the return of the intracellular calcium response to hypotonic swelling. Using point mutations of the TRPV4 channel at the microtubule-associated protein 7 (MAP-7) site shows that regulation of TRPV4 by actin is mediated via the interaction of actin with the MAP-7 domain of TRPV4. We further highlight that ATP release, a down-stream response to mechanical stimulation in chondrocytes, is mediated by TRPV4 during hypotonic challenge. This response is significantly abrogated with IGF-1 treatment. As chondrocyte mechanosensitivity is greatly altered during osteoarthritis progression, IGF-1 presents as a promising candidate for prevention and treatment of articular cartilage damage.
Collapse
Affiliation(s)
- Nicholas Trompeter
- Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Joseph D Gardinier
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States; Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Victor DeBarros
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Mary Boggs
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Vimal Gangadharan
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - William J Cain
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Lauren Hurd
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Randall L Duncan
- Biomedical Engineering, University of Delaware, Newark, DE, United States; Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States; Department of Biology, University of Michigan-Flint, Flint, MI, United States.
| |
Collapse
|
15
|
Maumus M, Fonteneau G, Ruiz M, Assou S, Boukhaddaoui H, Pastoureau P, De Ceuninck F, Jorgensen C, Noel D. Neuromedin B promotes chondrocyte differentiation of mesenchymal stromal cells via calcineurin and calcium signaling. Cell Biosci 2021; 11:183. [PMID: 34663442 PMCID: PMC8525028 DOI: 10.1186/s13578-021-00695-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/30/2021] [Indexed: 11/11/2022] Open
Abstract
Background Articular cartilage is a complex tissue with poor healing capacities. Current approaches for cartilage repair based on mesenchymal stromal cells (MSCs) are often disappointing because of the lack of relevant differentiation factors that could drive MSC differentiation towards a stable mature chondrocyte phenotype. Results We used a large-scale transcriptomic approach to identify genes that are modulated at early stages of chondrogenic differentiation using the reference cartilage micropellet model. We identified several modulated genes and selected neuromedin B (NMB) as one of the early and transiently modulated genes. We found that the timely regulated increase of NMB was specific for chondrogenesis and not observed during osteogenesis or adipogenesis. Furthermore, NMB expression levels correlated with the differentiation capacity of MSCs and its inhibition resulted in impaired chondrogenic differentiation indicating that NMB is required for chondrogenesis. We further showed that NMB activated the calcineurin activity through a Ca2+-dependent signaling pathway. Conclusion NMB is a newly described chondroinductive bioactive factor that upregulates the key chondrogenic transcription factor Sox9 through the modulation of Ca2+ signaling pathway and calcineurin activity. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00695-1.
Collapse
Affiliation(s)
- Marie Maumus
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | - Maxime Ruiz
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Hassan Boukhaddaoui
- INM, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Philippe Pastoureau
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Frédéric De Ceuninck
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Danièle Noel
- IRMB, Univ Montpellier, INSERM, Montpellier, France. .,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
16
|
Expression and Localization of Thrombospondins, Plastin 3, and STIM1 in Different Cartilage Compartments of the Osteoarthritic Varus Knee. Int J Mol Sci 2021; 22:ijms22063073. [PMID: 33802838 PMCID: PMC8002632 DOI: 10.3390/ijms22063073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease which is characterized by a change in the homeostasis of the extracellular matrix (ECM). The ECM is essential for the function of the articular cartilage and plays an important role in cartilage mechanotransduction. To provide a better understanding of the interaction between the ECM and the actin cytoskeleton, we investigated the localization and expression of the Ca2+-dependent proteins cartilage oligomeric matrix protein (COMP), thrombospondin-1 (TSP-1), plastin 3 (PLS3) and stromal interaction molecule 1 (STIM1). We investigated 16 patients who suffered from varus knee OA and performed a topographical analysis of the cartilage from the medial and lateral compartment of the proximal tibial plateau. In a varus knee, OA is more pronounced in the medial compared to the lateral compartment as a result of an overloading due to the malalignment. We detected a location-dependent staining of PLS3 and STIM1 in the articular cartilage tissue. The staining intensity for both proteins correlated with the degree of cartilage degeneration. The staining intensity of TSP-1 was clearly reduced in the cartilage of the more affected medial compartment, an observation that was confirmed in cartilage extracts by immunoblotting. The total amount of COMP was unchanged; however, slight changes were detected in the localization of the protein. Our results provide novel information on alterations in OA cartilage suggesting that Ca2+-dependent mechanotransduction between the ECM and the actin cytoskeleton might play an essential role in the pathomechanism of OA.
Collapse
|
17
|
Li A, Zhou J, Widelitz RB, Chow RH, Chuong CM. Integrating Bioelectrical Currents and Ca 2+ Signaling with Biochemical Signaling in Development and Pathogenesis. Bioelectricity 2020; 2:210-220. [PMID: 34476353 PMCID: PMC8370337 DOI: 10.1089/bioe.2020.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Roles of bioelectrical signals are increasingly recognized in excitable and nonexcitable non-neural tissues. Diverse ion-selective channels, pumps, and gap junctions participate in bioelectrical signaling, including those transporting calcium ions (Ca2+). Ca2+ is the most versatile transported ion, because it serves as an electrical charge carrier and a biochemical regulator for multiple molecular binding, enzyme, and transcription activities. We aspire to learn how bioelectrical signals crosstalk to biochemical/biomechanical signals. In this study, we review four recent studies showing how bioelectrical currents and Ca2+ signaling affect collective dermal cell migration during feather bud elongation, affect chondrogenic differentiation in limb development, couple with mechanical tension in aligning gut smooth muscle, and affect mitochondrial function and skeletal muscle atrophy. We observe bioelectrical signals involved in several developmental and pathological conditions in chickens and mice at multiple spatial scales: cellular, cellular collective, and subcellular. These examples inspire novel concept and approaches for future basic and translational studies.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Randall B. Widelitz
- Department of Pathology and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Robert H. Chow
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cheng-Ming Chuong
- Department of Pathology and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
18
|
K + and Ca 2+ Channels Regulate Ca 2+ Signaling in Chondrocytes: An Illustrated Review. Cells 2020; 9:cells9071577. [PMID: 32610485 PMCID: PMC7408816 DOI: 10.3390/cells9071577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
An improved understanding of fundamental physiological principles and progressive pathophysiological processes in human articular joints (e.g., shoulders, knees, elbows) requires detailed investigations of two principal cell types: synovial fibroblasts and chondrocytes. Our studies, done in the past 8–10 years, have used electrophysiological, Ca2+ imaging, single molecule monitoring, immunocytochemical, and molecular methods to investigate regulation of the resting membrane potential (ER) and intracellular Ca2+ levels in human chondrocytes maintained in 2-D culture. Insights from these published papers are as follows: (1) Chondrocyte preparations express a number of different ion channels that can regulate their ER. (2) Understanding the basis for ER requires knowledge of (a) the presence or absence of ligand (ATP/histamine) stimulation and (b) the extraordinary ionic composition and ionic strength of synovial fluid. (3) In our chondrocyte preparations, at least two types of Ca2+-activated K+ channels are expressed and can significantly hyperpolarize ER. (4) Accounting for changes in ER can provide insights into the functional roles of the ligand-dependent Ca2+ influx through store-operated Ca2+ channels. Some of the findings are illustrated in this review. Our summary diagram suggests that, in chondrocytes, the K+ and Ca2+ channels are linked in a positive feedback loop that can augment Ca2+ influx and therefore regulate lubricant and cytokine secretion and gene transcription.
Collapse
|
19
|
Matta C, Juhász T, Fodor J, Hajdú T, Katona É, Szűcs-Somogyi C, Takács R, Vágó J, Oláh T, Bartók Á, Varga Z, Panyi G, Csernoch L, Zákány R. N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis. Cell Commun Signal 2019; 17:166. [PMID: 31842918 PMCID: PMC6915923 DOI: 10.1186/s12964-019-0487-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background In vitro chondrogenesis depends on the concerted action of numerous signalling pathways, many of which are sensitive to the changes of intracellular Ca2+ concentration. N-methyl-D-aspartate (NMDA) glutamate receptor is a cation channel with high permeability for Ca2+. Whilst there is now accumulating evidence for the expression and function of NMDA receptors in non-neural tissues including mature cartilage and bone, the contribution of glutamate signalling to the regulation of chondrogenesis is yet to be elucidated. Methods We studied the role of glutamatergic signalling during the course of in vitro chondrogenesis in high density chondrifying cell cultures using single cell fluorescent calcium imaging, patch clamp, transient gene silencing, and western blotting. Results Here we show that key components of the glutamatergic signalling pathways are functional during in vitro chondrogenesis in a primary chicken chondrogenic model system. We also present the full glutamate receptor subunit mRNA and protein expression profile of these cultures. This is the first study to report that NMDA-mediated signalling may act as a key factor in embryonic limb bud-derived chondrogenic cultures as it evokes intracellular Ca2+ transients, which are abolished by the GluN2B subunit-specific inhibitor ifenprodil. The function of NMDARs is essential for chondrogenesis as their functional knock-down using either ifenprodil or GRIN1 siRNA temporarily blocks the differentiation of chondroprogenitor cells. Cartilage formation was fully restored with the re-expression of the GluN1 protein. Conclusions We propose a key role for NMDARs during the transition of chondroprogenitor cells to cartilage matrix-producing chondroblasts.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Katona
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla Szűcs-Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Ádám Bartók
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
20
|
Ju Y, Ren X, Zhao S. Distal C-terminus of Ca v 1.2 is indispensable for the chondrogenic differentiation of rat dental pulp stem cells. Cell Biol Int 2019; 44:512-523. [PMID: 31631478 DOI: 10.1002/cbin.11251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
The α1 subunit (Cav1.2) of the L-type calcium channel (LTCC), which is presently existing in both excitatory cells and non-excitatory cells, is involved in the differentiation and proliferation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs), MSCs derived from dental pulp, exhibit multipotent characteristics similar to those of MSCs. The aim of the present study was to examine the contribution of Cav1.2 and its distal C-terminus (DCT) to the commitment of rat DPSCs (rDPSCs) toward chondrocytes and adipocytes in vitro. The expression of Cav1.2 was obviously elevated in chondrogenic differentiation but did not differ significantly in adipogenic differentiation. The chondrogenic differentiation but not adipogenic of rDPSCs was inhibited by either blocking LTCC using nimodipine or knockdown of Cav1.2 via short hairpin RNA (shRNA). Overexpression of DCT rescued the inhibition by Cav1.2-shRNA during chondrogenic differentiation, indicating that DCT is essential for the chondrogenic differentiation of rDPSCs. However, the protein level of DCT decreased after chondrogenic differentiation in wild-type cells, and overexpression of DCT in rDPSCs inhibited the phenotype. These data suggest that DCT is indispensable for chondrogenic differentiation of rDPSCs but that superfluous DCT inhibits this process. Through the analysis of differentially expressed genes using RNA-seq data, we speculated that the regulation of DCT might be mediated by the mitogen-activated protein kinase/extracellular-regulated kinase and c-Jun N-terminal kinase signaling pathways, or Chondromodulin-1.
Collapse
Affiliation(s)
- Yanqin Ju
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Xudong Ren
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| |
Collapse
|
21
|
Szegeczki V, Bauer B, Jüngling A, Fülöp BD, Vágó J, Perényi H, Tarantini S, Tamás A, Zákány R, Reglődi D, Juhász T. Age-related alterations of articular cartilage in pituitary adenylate cyclase-activating polypeptide (PACAP) gene-deficient mice. GeroScience 2019; 41:775-793. [PMID: 31655957 PMCID: PMC6925077 DOI: 10.1007/s11357-019-00097-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionarly conserved neuropeptide which is produced by various neuronal and non-neuronal cells, including cartilage and bone cells. PACAP has trophic functions in tissue development, and it also plays a role in cellular and tissue aging. PACAP takes part in the regulation of chondrogenesis, which prevents insufficient cartilage formation caused by oxidative and mechanical stress. PACAP knockout (KO) mice have been shown to display early aging signs affecting several organs. In the present work, we investigated articular cartilage of knee joints in young and aged wild-type (WT) and PACAP KO mice. A significant increase in the thickness of articular cartilage was detected in aged PACAP gene-deficient mice. Amongst PACAP receptors, dominantly PAC1 receptor was expressed in WT knee joints and a remarkable decrease was found in aged PACAP KO mice. Expression of PKA-regulated transcription factors, Sox5, Sox9 and CREB, decreased both in young and aged gene deficient mice, while Sox6, collagen type II and aggrecan expressions were elevated in young but were reduced in aged PACAP KO animals. Increased expression of hyaluronan (HA) synthases and HA-binding proteins was detected parallel with an elevated presence of HA in aged PACAP KO mice. Expression of bone related collagens (I and X) was augmented in young and aged animals. These results suggest that loss of PACAP signaling results in dysregulation of cartilage matrix composition and may transform articular cartilage in a way that it becomes more prone to degenerate.
Collapse
Affiliation(s)
- Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Balázs Bauer
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Adél Jüngling
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Szigeti út 12, Pecs, 7624, Hungary
| | - Balázs Daniel Fülöp
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Szigeti út 12, Pecs, 7624, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Helga Perényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea Tamás
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Szigeti út 12, Pecs, 7624, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Dóra Reglődi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Szigeti út 12, Pecs, 7624, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
22
|
Cruciani S, Santaniello S, Montella A, Ventura C, Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J Stem Cells 2019; 11:464-475. [PMID: 31523367 PMCID: PMC6716083 DOI: 10.4252/wjsc.v11.i8.464] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog, the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications, highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Operative Unit of Clinical Genetics and Developmental Biology, Sassari 07100, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari 09042, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
23
|
Lu Y, Deng Y, Liu W, Jiang M, Bai G. Searching for calcium antagonists for hypertension disease therapy from Moutan Cortex, using bioactivity integrated UHPLC-QTOF-MS. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:456-463. [PMID: 30859657 DOI: 10.1002/pca.2828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Calcium channel blockers (CCBs) are currently the most commonly used drugs for the treatment of hypertension. Moutan Cortex (MC), a traditional Chinese herb, has been found to have an anti-hypertensive effect. However, its potential mechanisms in the regulation of intracellular calcium concentration ([Ca2+ ]i ) remain poorly understood. OBJECTIVE The main objective of this work was to identify the potential calcium antagonists from MC and study their molecular mechanisms. METHODS Ultra-high performance liquid chromatography-quadrupole-time-of-fight-mass spectrometry (UHPLC-QTOF-MS) analysis combined with a dual-luciferase reporter assay was utilised to systematically screen the calcium antagonistic active ingredients in the methanol extract of MC. Additionally, the molecular mechanism of these compounds was further studied using live-cell imaging analysis with the calcium ion (Ca2+ ) probe dye fluo-4/AM to monitor changes in [Ca2+ ]i . RESULTS Three monoterpenoids (paeoniflorin, benzoylpaeoniflorin and mudanpioside C), one phenolic acid (paeonol) and one gallotannin (1,2,3,4,6-O-pentagalloylglucose) were screened out as potential calcium antagonists in MC. Among them, the calcium antagonistic activity of benzoylpaeoniflorin, mudanpioside C and 1,2,3,4,6-O-pentagalloylglucose is first reported. Additionally, paeoniflorin, benzoylpaeoniflorin, mudanpioside C and paeonol can effectively block voltage-operated Ca2+ channels (VOCCs) to exert calcium antagonism, while 1,2,3,4,6-O-pentagalloylglucose plays a role in blocking inositol 1,4,5-trisphosphate receptors (IP3Rs). CONCLUSION This work indicated that the anti-hypertensive efficacy of MC acted through multiple components selectively antagonising multiple cell signalling pathways to regulate [Ca2+ ]i . Furthermore, they could be considered as a reference standard for controlling the quality of Chinese medicinal materials.
Collapse
Affiliation(s)
- Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, P. R. China
| | - Yanfang Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, P. R. China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, P. R. China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, P. R. China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, P. R. China
| |
Collapse
|
24
|
Genetic Manipulation of Calcium Release-Activated Calcium Channel 1 Modulates the Multipotency of Human Cartilage-Derived Mesenchymal Stem Cells. J Immunol Res 2019; 2019:7510214. [PMID: 30906790 PMCID: PMC6398003 DOI: 10.1155/2019/7510214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/12/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Calcium is a ubiquitous intracellular messenger that has a crucial role in determining the proliferation, differentiation, and functions of multipotent mesenchymal stem cells (MSCs). Our study is aimed at elucidating the influence of genetically manipulating Ca2+ release-activated Ca2+ (CRAC) channel-mediated intercellular Ca2+ signaling on the multipotency of MSCs. The abilities of genetically engineered MSCs, including CRAC-overexpressing and CRAC-knockout MSCs, to differentiate into multiple mesenchymal lineages, including adipogenic, osteogenic, and chondrogenic lineages, were evaluated. CRAC channel-mediated Ca2+ influx into these cells was regulated, and the differentiation fate of MSCs was modified. Upregulation of intracellular Ca2+ signals attenuated the adipogenic differentiation ability and slightly increased the osteogenic differentiation potency of MSCs, whereas downregulation of CRACM1 expression promoted chondrogenic differentiation potency. The findings demonstrated the effects of genetically manipulating MSCs by targeting CRACM1. CRAC-modified MSCs had distinct differentiation fates to adipocytes, osteoblasts, and chondrocytes. To aid in the clinical implementation of tissue engineering strategies for joint regeneration, these data may allow us to identify prospective factors for effective treatments and could maximize the therapeutic potential of MSC-based transplantation.
Collapse
|
25
|
Zhou Y, Lv M, Li T, Zhang T, Duncan R, Wang L, Lu XL. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J 2019; 33:4675-4687. [PMID: 30601690 DOI: 10.1096/fj.201801460r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular calcium ([Ca2+]i) oscillation is a fundamental signaling response of cartilage cells under mechanical loading or osmotic stress. Chondrocytes are usually considered as nonexcitable cells with no spontaneous [Ca2+]i signaling. This study proved that chondrocytes can exhibit robust spontaneous [Ca2+]i signaling without explicit external stimuli. The intensity of [Ca2+]i peaks from individual chondrocytes maintain a consistent spatiotemporal pattern, acting as a unique "fingerprint" for each cell. Statistical analysis revealed lognormal distributions of the temporal parameters of [Ca2+]i peaks, as well as strong linear correlations between their means and sds. Based on these statistical findings, we hypothesized that the spontaneous [Ca2+]i peaks may result from an autocatalytic process and that [Ca2+]i oscillation is controlled by a threshold-regulating mechanism. To test these 2 mechanisms, we established a multistage biophysical model by assuming the spontaneous [Ca2+]i signaling of chondrocytes as a combination of deterministic and stochastic processes. The theoretical model successfully explained the lognormal distribution of the temporal parameters and the fingerprint feature of [Ca2+]i peaks. In addition, by using antagonists for 10 pathways, we revealed that the initiation of spontaneous [Ca2+]i peaks in chondrocytes requires the presence of extracellular Ca2+, and that the PLC-inositol 1,4,5-trisphosphate pathway, which controls the release of calcium from the endoplasmic reticulum, can affect the initiation of spontaneous [Ca2+]i peaks in chondrocytes. The purinoceptors and transient receptor potential vanilloid 4 channels on the plasma membrane also play key roles in the spontaneous [Ca2+]i signaling of chondrocytes. In contrast, blocking the T-type or L-type voltage-gated calcium channel promoted the spontaneous calcium signaling. This study represents a systematic effort to understand the features and initiation mechanisms of spontaneous [Ca2+]i signaling in chondrocytes, which are critical for chondrocyte mechanobiology.-Zhou, Y., Lv, M., Li, T., Zhang, T., Duncan, R., Wang, L., Lu, X. L. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mengxi Lv
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Tong Li
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA.,Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; and
| | - Tiange Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
26
|
Saitta B, Elphingstone J, Limfat S, Shkhyan R, Evseenko D. CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFβ and BMP through SMAD signaling. Osteoarthritis Cartilage 2019; 27:158-171. [PMID: 30205161 PMCID: PMC6309757 DOI: 10.1016/j.joca.2018.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Upregulation of calcium/calmodulin-dependent kinase II (CaMKII) is implicated in the pathogenesis of osteoarthritis (OA) and reactivation of articular cartilage hypertrophy. However, direct inhibition of CaMKII unexpectedly augmented symptoms of OA in animal models. The role of CaMKII in OA remains unclear and requires further investigation. METHODS Analysis of CaMKII expression was performed in normal human and OA articular chondrocytes, and signaling mechanisms were assessed in articular, fetal and Pluripotent Stem Cell (PSC)-derived human chondrocytes using pharmacological (KN93), peptide (AC3-I) and small interfering RNA (siRNA) inhibitors of CaMKII. RESULTS Expression levels of phospho-CaMKII (pCaMKII) were significantly and consistently increased in human OA specimens. BMP2/4 activated expression of pCaMKII as well as COLII and COLX in human adult articular chondrocytes, and also increased the levels and nuclear localization of SMADs1/5/8, while TGFβ1 showed minimal or no activation of the chondrogenic program in adult chondrocytes. Targeted blockade of CaMKII with specific siRNAs decreased levels of pSMADs, COLII, COLX and proteoglycans in normal and OA adult articular chondrocytes in the presence of both BMP4 and TGFβ1. Both human fetal and PSC-derived chondrocytes also demonstrated a decrease of chondrogenic differentiation in the presence of small molecule and peptide inhibitors of CaMKII. Furthermore, immunoprecipitation for SMADs1/5/8 or 2/3 followed by western blotting for pCaMKII showed direct interaction between SMADs and pCaMKII in primary chondrocytes. CONCLUSION Current study demonstrates a direct role for CaMKII in TGF-β and BMP-mediated responses in primary and PSC-derived chondrocytes. These findings have direct implications for tissue engineering of cartilage tissue from stem cells and therapeutic management of OA.
Collapse
Affiliation(s)
- Biagio Saitta
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA,Medicine Div. of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sean Limfat
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA,Stem Cell Research and Regenerative Medicine Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA,Corresponding Author:Denis Evseenko MD, PhD., Associate Professor of Orthopaedic Surgery, Stem Cell Research and Regenerative Medicine, Keck School of Medicine of USC, 1450 Biggy St, NRT 4509, Los Angeles, CA 90033,
| |
Collapse
|
27
|
Gong X, Li G, Huang Y, Fu Z, Song X, Chen C, Yang L. Synergistically regulated spontaneous calcium signaling is attributed to cartilaginous extracellular matrix metabolism. J Cell Physiol 2018; 234:9711-9722. [PMID: 30370672 DOI: 10.1002/jcp.27657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Ca2+ has been recognized as a key molecule for chondrocytes, however, the role and mechanism of spontaneous [Ca 2+ ] i signaling in cartilaginous extracellular matrix (ECM) metabolism regulation are unclear. Here we found that spontaneous Ca 2+ signal of in-situ porcine chondrocytes was [Ca 2+ ] o dependent, and mediated by [Ca 2+ ] i store release. T-type voltage-dependent calcium channel (T-VDCC) mediated [Ca 2+ ] o influx was associated with decreased cell viability and expression levels of ECM deposition genes. Further analysis revealed that chondrocytes expressed both inositol 1,4,5-trisphosphate receptor (InsP3R) and Orai isoforms. Inhibition of endoplasmic reticulum (ER) Ca 2+ release and store-operated calcium entry significantly abolished spontaneous [Ca 2+ ] i signaling of in-situ chondrocytes. Moreover, blocking ER Ca 2+ release with InsP3R inhibitors significantly upregulated ECM degradation enzymes production, and was accompanied by decreased proteoglycan and collagen type II intensity. Taken together, our data provided evidence that spontaneous [Ca 2+ ] i signaling of in-situ porcine chondrocytes was tightly regulated by [Ca 2+ ] o influx, InsP3Rs mediated [Ca 2+ ] i store release, and Orais mediated calcium release-activated calcium channels activation. Both T-VDCC mediated [Ca 2+ ] o influx and InsP3Rs mediated ER Ca 2+ release were found crucial to cartilaginous ECM metabolism through distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoming Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
28
|
Uzieliene I, Bernotas P, Mobasheri A, Bernotiene E. The Role of Physical Stimuli on Calcium Channels in Chondrogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19102998. [PMID: 30275359 PMCID: PMC6212952 DOI: 10.3390/ijms19102998] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSC) are becoming increasingly popular in tissue engineering. They are the most frequently used stem cell source for clinical applications due to their high potential to differentiate into several lineages. Cartilage is known for its low capacity for self-maintenance and currently there are no efficient methods to improve cartilage repair. Chondrogenic differentiation of hMSC isolated from different tissues is widely employed due to a high clinical demand for the improvement of cartilage regeneration. Calcium channels that are regulated by physical stimuli seem to play a pivotal role in chondrogenic differentiation of MSCs. These channels increase intracellular calcium concentration, which leads to the initiation of the relevant cellular processes that are required for differentiation. This review will focus on the impact of different physical stimuli, including electrical, electromagnetic/magnetic and mechanical on various calcium channels and calcium signaling mechanisms during chondrogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| |
Collapse
|
29
|
Parisi C, Chandaria VV, Nowlan NC. Blocking mechanosensitive ion channels eliminates the effects of applied mechanical loading on chick joint morphogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0317. [PMID: 30249769 PMCID: PMC6158207 DOI: 10.1098/rstb.2017.0317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
Abnormalities in joint shape are increasingly considered a critical risk factor for developing osteoarthritis in life. It has been shown that mechanical forces during prenatal development, particularly those due to fetal movements, play a fundamental role in joint morphogenesis. However, how mechanical stimuli are sensed or transduced in developing joint tissues is unclear. Stretch-activated and voltage-gated calcium ion channels have been shown to be involved in the mechanoregulation of chondrocytes in vitro. In this study, we analyse, for the first time, how blocking these ion channels influences the effects of mechanical loading on chick joint morphogenesis. Using in vitro culture of embryonic chick hindlimb explants in a mechanostimulation bioreactor, we block stretch-activated and voltage-gated ion channels using, respectively, gadolinium chloride and nifedipine. We find that the administration of high doses of either drug largely removed the effects of mechanical stimulation on growth and shape development in vitro, while neither drug had any effect in static cultures. This study demonstrates that, during joint morphogenesis, mechanical cues are transduced—at least in part—through mechanosensitive calcium ion channels, advancing our understanding of cartilage development and mechanotransduction. This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.
Collapse
Affiliation(s)
- Cristian Parisi
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vikesh V Chandaria
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
30
|
Mobasheri A, Matta C, Uzielienè I, Budd E, Martín-Vasallo P, Bernotiene E. The chondrocyte channelome: A narrative review. Joint Bone Spine 2018; 86:29-35. [PMID: 29452304 DOI: 10.1016/j.jbspin.2018.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
Chondrocytes are the main cells in the extracellular matrix (ECM) of articular cartilage and possess a highly differentiated phenotype that is the hallmark of the unique physiological functions of this specialised load-bearing connective tissue. The plasma membrane of articular chondrocytes contains a rich and diverse complement of membrane proteins, known as the membranome, which defines the cell surface phenotype of the cells. The membranome is a key target of pharmacological agents and is important for chondrocyte function. It includes channels, transporters, enzymes, receptors, and anchors for intracellular, cytoskeletal and ECM proteins and other macromolecular complexes. The chondrocyte channelome is a sub-compartment of the membranome and includes a complete set of ion channels and porins expressed in these cells. Many of these are multi-functional proteins with "moonlighting" roles, serving as channels, receptors and signalling components of larger molecular assemblies. The aim of this review is to summarise our current knowledge of the fundamental aspects of the chondrocyte channelome, discuss its relevance to cartilage biology and highlight its possible role in the pathogenesis of osteoarthritis (OA). Excessive and inappropriate mechanical loads, an inflammatory micro-environment, alternative splicing of channel components or accumulation of basic calcium phosphate crystals can result in an altered chondrocyte channelome impairing its function. Alterations in Ca2+ signalling may lead to defective synthesis of ECM macromolecules and aggravated catabolic responses in chondrocytes, which is an important and relatively unexplored aspect of the complex and poorly understood mechanism of OA development.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, United Kingdom; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilona Uzielienè
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Emma Budd
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Pablo Martín-Vasallo
- Department of Biochemistry and Molecular Biology, University of La Laguna, Tenerife, Spain
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
31
|
Liu L, Chang X, Zhang Y, Wu C, Li R, Tang L, Zhou Z. Fluorochloridone induces primary cultured Sertoli cells apoptosis: Involvement of ROS and intracellular calcium ions-mediated ERK1/2 activation. Toxicol In Vitro 2017; 47:228-237. [PMID: 29248592 DOI: 10.1016/j.tiv.2017.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/18/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
Fluorochloridone (FLC) is a widely used pyrrolidone selective herbicide and reported to induce testis injuries in male rats, but the underlying mechanism is largely unknown. In the present study, primary-cultured Sertoli cells were exposed to FLC at the concentration of 0-10.00μM to study the mechanism of FLC-induced apoptosis. The roles of ROS, intracellular calcium, endoplasmic reticulum (ER), and ERK1/2 were looked at with ROS scavenger N-acetyl-cysteine (NAC), intracellular calcium chelator BAPTA-AM, ER calcium depleting agent thapsigargin (TG), and ERK1/2 inhibitor U0126, respectively. FLC induced dose-dependent apoptosis increase as well as the elevation in levels of ROS, intracellular calcium, and ERK1/2 activation. FLC treatment led to constantly increasing apoptotic rates and ERK1/2 activation over time, while inversed-V shaped change tendencies of ROS and intracellular calcium levels were observed. FLC-induced ROS generation disrupted the intracellular calcium homeostasis by attacking the ER, and the elevated intracellular calcium levels resulted in ERK1/2 over-phosphorylation and consequently promoted Sertoli cell apoptosis. Taken together, ROS and intracellular calcium-mediated ERK1/2 activation led to FLC-induced Sertoli cell apoptosis.
Collapse
Affiliation(s)
- Luqing Liu
- School of Public Health/MOE Key Laboratory for Public Health Safety/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health/MOE Key Laboratory for Public Health Safety/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory for Public Health Safety/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Rui Li
- School of Public Health/MOE Key Laboratory for Public Health Safety/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China; Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Zhou J, Yue D, Bai Y, Kong F, Pan J. Map and correlate intracellular calcium response and matrix deposition in cartilage under physiological oxygen tensions. J Cell Physiol 2017; 233:4949-4960. [PMID: 29215706 DOI: 10.1002/jcp.26326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/29/2017] [Indexed: 12/28/2022]
Abstract
Face to the limited repair capability of cartilage, we intended to find out signaling responsible for its matrix synthesis. Since spontaneous calcium response likes a label of cell status, here it was mapped in fresh and 24 hr cultured in situ chondrocytes under oxygen tensions of 20%, 5%, and 1% as well as mimic hypoxia conditions. The calcium source was traced using ethylene glycol-bis (β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and thapsigargin (TG) to treat cartilage. Their relative matrix of type II collagen (COLL-II) and glycosaminoglycan (GAG) were quantified after cultured for 3 and 7 days. We disclosed the specific fingerprint of calcium response and matrix deposition along the histological zones under various oxygen tensions, from which the effects of hyperoxia, normoxia, and hypoxia conditions on as well as the optimal oxygen tensions for maintenance of various zones of cartilage or chondrocytes were derived and obtained. Our results revealed that cytoplasm calcium was conducive to synthesize COLL-II but detrimental to synthesize GAG. These results provide correlation in addition to details of intracellular calcium response and matrix deposition in in situ cartilage along its histological zones under physiological oxygen tensions.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Danyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuying Bai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Fei Kong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
33
|
Zhang M, Chen X, Pu X, Liao X, Huang Z, Yin G. Dissolution behavior of CaO-MgO-SiO2
-based multiphase bioceramic powders and effects of the released ions on osteogenesis. J Biomed Mater Res A 2017; 105:3159-3168. [DOI: 10.1002/jbm.a.36154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Mengjiao Zhang
- College of Materials Science and Engineering; Sichuan University; Chengdu 610064 People's Republic of China
| | - Xianchun Chen
- College of Materials Science and Engineering; Sichuan University; Chengdu 610064 People's Republic of China
| | - Ximing Pu
- College of Materials Science and Engineering; Sichuan University; Chengdu 610064 People's Republic of China
| | - Xiaoming Liao
- College of Materials Science and Engineering; Sichuan University; Chengdu 610064 People's Republic of China
| | - Zhongbing Huang
- College of Materials Science and Engineering; Sichuan University; Chengdu 610064 People's Republic of China
| | - Guangfu Yin
- College of Materials Science and Engineering; Sichuan University; Chengdu 610064 People's Republic of China
| |
Collapse
|
34
|
Parate D, Franco-Obregón A, Fröhlich J, Beyer C, Abbas AA, Kamarul T, Hui JHP, Yang Z. Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields. Sci Rep 2017; 7:9421. [PMID: 28842627 PMCID: PMC5572790 DOI: 10.1038/s41598-017-09892-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
Collapse
Affiliation(s)
- Dinesh Parate
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, IE Kent Ridge Road, Singapore, 119228, Singapore. .,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 medical Drive, #14-01, Singapore, 117599, Singapore.
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, IE Kent Ridge Road, Singapore, 119228, Singapore.,Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Rämistrasse 101, 8092, Zurich, Switzerland
| | - Christian Beyer
- Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Rämistrasse 101, 8092, Zurich, Switzerland
| | - Azlina A Abbas
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, 50603, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, 50603, Malaysia
| | - James H P Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| |
Collapse
|
35
|
Diaz-Romero J, Nesic D. S100A1 and S100B: Calcium Sensors at the Cross-Roads of Multiple Chondrogenic Pathways. J Cell Physiol 2017; 232:1979-1987. [DOI: 10.1002/jcp.25720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/13/2023]
Affiliation(s)
- José Diaz-Romero
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Dobrila Nesic
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| |
Collapse
|
36
|
Kumagai K, Toyoda F, Staunton C, Maeda T, Okumura N, Matsuura H, Matsusue Y, Imai S, Barrett-Jolley R. Activation of a chondrocyte volume-sensitive Cl(-) conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament transection osteoarthritis model. Osteoarthritis Cartilage 2016; 24:1786-1794. [PMID: 27266646 PMCID: PMC5756537 DOI: 10.1016/j.joca.2016.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The anterior cruciate ligament transection (ACLT) rabbit osteoarthritis (OA) model confers permanent knee instability and induces joint degeneration. The degeneration process is complex, but includes chondrocyte apoptosis and OA-like loss of cartilage integrity. Previously, we reported that activation of a volume-sensitive Cl(-) current (ICl,vol) can mediate cell shrinkage and apoptosis in rabbit articular chondrocytes. Our objective was therefore to investigate whether ICl,vol was activated in the early stages of the rabbit ACLT OA model. DESIGN Adult Rabbits underwent unilateral ACLT and contralateral arthrotomy (sham) surgery. Rabbits were euthanized at 2 or 4 weeks. Samples were analyzed histologically and with assays of cell volume, apoptosis and electrophysiological characterization of ICl,vol. RESULTS At 2 and 4 weeks post ACLT cartilage appeared histologically normal, nevertheless cell swelling and caspase 3/7 activity were both significantly increased compared to sham controls. In cell-volume experiments, exposure of chondrocytes to hypotonic solution led to a greater increase in cell size in ACLT compared to controls. Caspase-3/7 activity, an indicator of apoptosis, was elevated in both ACLT 2wk and 4wk. Whole-cell currents were recorded with patch clamp of chondrocytes in iso-osmotic and hypo-osmotic external solutions under conditions where Na(+), K(+) and Ca(2+) currents were minimized. ACLT treatment resulted in a large increase in hypotonic-activated chloride conductance. CONCLUSION Changes in chondrocyte ion channels take place prior to the onset of apparent cartilage loss in the ACLT rabbit model of OA. Further studies are needed to investigate if pharmacological inhibition of ICl,vol decreases progression of OA in animal models.
Collapse
Affiliation(s)
- K. Kumagai
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - F. Toyoda
- Department of Physiology, Shiga University of Medical Science, Japan
| | - C.A. Staunton
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK
| | - T. Maeda
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - N. Okumura
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - H. Matsuura
- Department of Physiology, Shiga University of Medical Science, Japan
| | - Y. Matsusue
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - S. Imai
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - R. Barrett-Jolley
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Address correspondence and reprint requests to: R. Barrett-Jolley, Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK.Department of Musculoskeletal BiologyInstitute of Aging and Chronic DiseaseUniversity of LiverpoolUK
| |
Collapse
|
37
|
XU JINMEI, ZHOU YAN, GAO LONG, ZHOU SHUXIAN, LIU WEIHUA, LI XIAOAN. Stromal interaction molecule 1 plays an important role in gastric cancer progression. Oncol Rep 2016; 35:3496-504. [DOI: 10.3892/or.2016.4704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
|
38
|
Matta C, Fodor J, Csernoch L, Zákány R. Purinergic signalling-evoked intracellular Ca(2+) concentration changes in the regulation of chondrogenesis and skeletal muscle formation. Cell Calcium 2016; 59:108-16. [PMID: 26925979 DOI: 10.1016/j.ceca.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 01/23/2016] [Indexed: 01/28/2023]
Abstract
It is now widely recognised that changes of the intracellular calcium concentration have deep impact on the differentiation of various non-excitable cells including the elements of the vertebrate skeleton. It has become evident that purinergic signalling is one of the most ancient cellular mechanisms that can cause such alterations in the intracellular Ca(2+)-homeostasis, which are precisely set either spatially or temporally. Purinergic signalling is believed to regulate intracellular Ca(2+)-concentration of developing cartilage and skeletal muscle cells and suggested to play roles in the modulation of various cellular functions. This idea is supported by the fact that pluripotent mesenchymal cells, chondroprogenitors or muscle precursors, as well as mature chondrocytes all are capable of releasing ectonucleotides, and express various types of purinoreceptors and ectonucleotidases. The presence of the basic components of purinergic signalling proves that cells of the chondrogenic lineage can utilise this mechanism for modulating their intracellular Ca(2+) concentration independently from the surrounding skeletal muscle and bone tissues, which are well known to release ectopurines during development and mechanical stress. In this review, we summarize accumulating experimental evidence supporting the importance of purinergic signalling in the regulation of chondrogenesis and during skeletal muscle formation.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary; Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine and Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, United Kingdom
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary.
| |
Collapse
|
39
|
Abstract
Chondrocytes, the single cell type in adult articular cartilage, have conventionally been considered to be non-excitable cells. However, recent evidence suggests that their resting membrane potential (RMP) is less negative than that of excitable cells, and they are fully equipped with channels that control ion, water and osmolyte movement across the chondrocyte membrane. Amongst calcium-specific ion channels, members of the voltage-dependent calcium channel (VDCC) family are expressed in chondrocytes where they are functionally active. L-type VDCC inhibitors such as nifedipine and verapamil have contributed to our understanding of the roles of these ion channels in chondrogenesis, chondrocyte signalling and mechanotransduction. In this narrative review, we discuss published data indicating that VDCC function is vital for chondrocyte health, especially in regulating proliferation and maturation. We also highlight the fact that activation of VDCC function appears to accompany various inflammatory aspects of osteoarthritis (OA) and, based on in vitro data, the application of nifedipine and/or verapamil may be a promising approach for ameliorating OA severity. However, very few studies on clinical outcomes are available regarding the influence of calcium antagonists, which are used primarily for treating cardiovascular conditions in OA patients. This review is intended to stimulate further research on the chondrocyte 'channelome', contribute to the development of novel therapeutic strategies and facilitate the retargeting and repositioning of existing pharmacological agents currently used for other comorbidities for the treatment of OA.
Collapse
|
40
|
Zhou Y, David MA, Chen X, Wan LQ, Duncan RL, Wang L, Lu XL. Effects of Osmolarity on the Spontaneous Calcium Signaling of In Situ Juvenile and Adult Articular Chondrocytes. Ann Biomed Eng 2015. [PMID: 26219403 DOI: 10.1007/s10439-015-1406-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcium is a universal second messenger that mediates the metabolic activity of chondrocytes in articular cartilage. Spontaneous intracellular calcium ([Ca(2+)]i) oscillations, similar to those in neurons and myocytes, have recently been observed in chondrocytes. This study analyzed and compared the effects of different osmotic environments (hypertonic, hypotonic, and isotonic) on the spontaneous [Ca(2+)]i signaling of in situ chondrocytes residing in juvenile and adult cartilage explants. In spite of a lower cell density, a significantly higher percentage of chondrocytes in adult cartilage under all osmotic environments demonstrated spontaneous [Ca(2+)]i oscillations than chondrocytes in juvenile cartilage. For both juvenile and adult chondrocytes, hypotonic stress increased while hypertonic stress decreased the response rates. Furthermore, the spatiotemporal characteristics of the [Ca(2+)]i peaks vary in an age-dependent manner. In the hypotonic environment, the [Ca(2+)]i oscillation frequency of responsive adult cells is almost tripled whereas the juvenile cells respond with an increased duration and magnitude of each [Ca(2+)]i peak. Both juvenile and adult chondrocytes demonstrated significantly slower [Ca(2+)]i oscillations with longer rising and recovery time under the hypertonic condition. Taken together, these results shed new insights into the interplay between age and osmotic environment that may regulate the fundamental metabolism of chondrocytes.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - Michael A David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xingyu Chen
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA.
| |
Collapse
|
41
|
Johnsson M, Jonsson KB, Andersson L, Jensen P, Wright D. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems. PLoS Genet 2015; 11:e1005250. [PMID: 26023928 PMCID: PMC4449198 DOI: 10.1371/journal.pgen.1005250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone. In this work we seek to further the understanding of bone genetics by mapping bone traits and gene expression in the chicken. Bone in female birds is special due to egg production. In this study, we combine the genetic mapping of bone traits with bone gene expression to find candidate quantitative trait genes that explain the differences between wild and domestic chickens in terms of bone production. The concept of combining genetic mapping and gene expression mapping is not new, and has already been successful in isolating bone-related genes in mammals, however this is the first time it has been applied to an avian system with such unique bone modelling processes. We aim to reveal new molecular mechanisms of bone regulation, and many of the candidates we find are new, highlighting the potential this technique has to identify the potential differences between avian and mammalian bone biology.
Collapse
Affiliation(s)
- Martin Johnsson
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kenneth B. Jonsson
- Department of Surgical Sciences, Orthopaedics, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
42
|
Tóth A, Fodor J, Vincze J, Oláh T, Juhász T, Zákány R, Csernoch L, Zádor E. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells. PLoS One 2015; 10:e0123583. [PMID: 25893964 PMCID: PMC4404259 DOI: 10.1371/journal.pone.0123583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo gene silencing results in decreased skeletal muscle differentiation.
Collapse
Affiliation(s)
- Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - Ernő Zádor
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
43
|
Inayama M, Suzuki Y, Yamada S, Kurita T, Yamamura H, Ohya S, Giles WR, Imaizumi Y. Orai1-Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines. Cell Calcium 2015; 57:337-47. [PMID: 25769459 DOI: 10.1016/j.ceca.2015.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/01/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Ca(2+) influx via store-operated Ca(2+) entry (SOCE) plays critical roles in many essential cellular functions. The Ca(2+) release-activated Ca(2+) (CRAC) channel complex, consisting of Orai and STIM, is one of the major components of store-operated Ca(2+) (SOC) channels. Our previous study demonstrated that histamine can cause sustained Ca(2+) entry through SOC channels in OUMS-27 cells derived from human chondrosarcoma. This SOCE was increased by low- and decreased by high-concentrations of 2-aminoethoxydiphenyl borate. Quantitative reverse transcription PCR and Western blot analyses revealed abundant expressions of Orai1, Orai2 and STIM1. Introduction of dominant negative mutant of Orai1, or siOrai1 knockdown significantly attenuated SOCE. Following histamine application, single molecule imaging using total internal reflection fluorescence (TIRF) microscopy demonstrated punctate Orai1-STIM1 complex formation in plasma membrane. In contrast, knockdown or over-expression of Orai2 resulted in an increase or a decrease in SOCE, respectively. Finally, TIRF imaging revealed direct coupling between Orai1 and Orai2, and suggested that Orai2 reduces Orai1 function by formation of a hetero-tetramer. These results provide substantial evidence that Orai1, Orai2 and STIM1 form functional CRAC channels in OUMS-27 cells and that these complexes are responsible for sustained Ca(2+) entry in response to agonist stimulation.
Collapse
Affiliation(s)
- Munenori Inayama
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Satoshi Yamada
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takashi Kurita
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Susumu Ohya
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Wayne R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
44
|
Zhou Y, Park M, Cheung E, Wang L, Lu XL. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture. J Biomech 2015; 48:990-6. [PMID: 25700610 DOI: 10.1016/j.jbiomech.2015.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/06/2023]
Abstract
Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Miri Park
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Enoch Cheung
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA.
| |
Collapse
|
45
|
Makris EA, Huang BJ, Hu JC, Chen-Izu Y, Athanasiou KA. Digoxin and adenosine triphosphate enhance the functional properties of tissue-engineered cartilage. Tissue Eng Part A 2014; 21:884-94. [PMID: 25473799 DOI: 10.1089/ten.tea.2014.0360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca(2+)-modulating agents have been used to enhance matrix synthesis and biomechanical properties of engineered cartilage. The objective of this study was to determine whether other known Ca(2+) modulators, digoxin and adenosine triphosphate (ATP), can be employed as novel stimuli to increase collagen synthesis and functional properties of engineered cartilage. Neocartilage constructs were formed by scaffold-free self-assembling of primary bovine articular chondrocytes. Digoxin, ATP, or both agents were added to the culture medium for 1 h/day on days 10-14. After 4 weeks of culture, neocartilage properties were assessed for gross morphology, biochemical composition, and biomechanical properties. Digoxin and ATP were found to increase neocartilage collagen content by 52-110% over untreated controls, while maintaining proteoglycan content near native tissue values. Furthermore, digoxin and ATP increased the tensile modulus by 280% and 180%, respectively, while the application of both agents increased the modulus by 380%. The trends in tensile properties were found to correlate with the amount of collagen cross-linking. Live Ca(2+) imaging experiments revealed that both digoxin and ATP were able to increase Ca(2+) oscillations in monolayer-cultured chondrocytes. This study provides a novel approach toward directing neocartilage maturation and enhancing its functional properties using novel Ca(2+) modulators.
Collapse
Affiliation(s)
- Eleftherios A Makris
- 1 Department of Biomedical Engineering, University of California Davis , Davis, California
| | | | | | | | | |
Collapse
|
46
|
Liang WZ, Chou CT, Chang HT, Cheng JS, Kuo DH, Ko KC, Chiang NN, Wu RF, Shieh P, Jan CR. The mechanism of honokiol-induced intracellular Ca(2+) rises and apoptosis in human glioblastoma cells. Chem Biol Interact 2014; 221:13-23. [PMID: 25106108 DOI: 10.1016/j.cbi.2014.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022]
Abstract
Honokiol, an active constituent of oriental medicinal herb Magnolia officinalis, caused Ca(2+) mobilization and apoptosis in different cancer cells. In vivo, honokiol crossed the blood-brain or -cerebrospinal fluid barrier, suggesting that it may be an effective drug for the treatment of brain tumors, including glioblastoma. This study examined the effect of honokiol on intracellular Ca(2+) concentration ([Ca(2+)]i) and apoptosis in DBTRG-05MG human glioblastoma cells. Honokiol concentration-dependently induced a [Ca(2+)]i rise. The signal was decreased partially by removal of extracellular Ca(2+). Honokiol-triggered [Ca(2+)]i rise was not suppressed by store-operated Ca(2+) channel blockers (nifedipine, econazole, SK&F96365) and the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate (PMA), but was inhibited by the PKC inhibitor GF109203X. GF109203X-induced inhibition was not altered by removal of extracellular Ca(2+). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished honokiol-induced [Ca(2+)]i rise. Conversely, incubation with honokiol abolished TG or BHQ-induced [Ca(2+)]i rise. Inhibition of phospholipase C (PLC) with U73122 abolished honokiol-induced [Ca(2+)]i rise. Honokiol (20-80μM) reduced the cell viability, which was not reversed by prechelating cytosolic Ca(2+) with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester). Honokiol (20-60μM) enhanced reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, released cytochrome c, and activated caspase-9/caspase-3. Together, honokiol induced a [Ca(2+)]i rise by inducing PLC-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via PKC-dependent, non store-operated Ca(2+) channels. Moreover, honokiol activated the mitochondrial pathway of apoptosis in DBTRG-05MG human glioblastoma cells.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Jin-Shiung Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Daih-Huang Kuo
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan, ROC
| | - Kuang-Chung Ko
- Department of Gastroenterology, Kaohsiung Veterans General Hospital-Pingtung Branch 912, Taiwan, ROC
| | - Ni-Na Chiang
- Department of Pharmacy, Kaohsiung Veterans General Hospital-Pingtung Branch 912, Taiwan, ROC
| | - Ru-Fang Wu
- Department of Pharmacy, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung 802, Taiwan, ROC
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC.
| |
Collapse
|
47
|
Matta C, Mobasheri A, Gergely P, Zákány R. Ser/Thr-phosphoprotein phosphatases in chondrogenesis: neglected components of a two-player game. Cell Signal 2014; 26:2175-85. [PMID: 25007994 DOI: 10.1016/j.cellsig.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation plays a determining role in the regulation of chondrogenesis in vitro. While signalling pathways governed by protein kinases including PKA, PKC, and mitogen-activated protein kinases (MAPK) have been mapped in great details, published data relating to the specific role of phosphoprotein phosphatases (PPs) in differentiating chondroprogenitor cells or in mature chondrocytes is relatively sparse. This review discusses the known functions of Ser/Thr-specific PPs in the molecular signalling pathways of chondrogenesis. PPs are clearly equally important as protein kinases to counterbalance the effect of reversible protein phosphorylation. Of the main Ser/Thr PPs, some of the functions of PP1, PP2A and PP2B have been characterised in the context of chondrogenesis. While PP1 and PP2A appear to negatively regulate chondrogenic differentiation and maintenance of chondrocyte phenotype, calcineurin is an important stimulatory mediator during chondrogenesis but becomes inhibitory in mature chondrocytes. Furthermore, PPs are implicated to be mediators during the pathogenesis of osteoarthritis that makes them potential therapeutic targets to be exploited in the close future. Among the many yet unexplored targets of PPs, modulation of plasma membrane ion channel function and participation in mechanotransduction pathways are emerging novel aspects of signalling during chondrogenesis that should be further elucidated. Besides the regulation of cellular ion homeostasis, other potentially significant novel roles for PPs during the regulation of in vitro chondrogenesis are discussed.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH, United Kingdom.
| | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Pál Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| |
Collapse
|
48
|
Purinergic signalling is required for calcium oscillations in migratory chondrogenic progenitor cells. Pflugers Arch 2014; 467:429-42. [PMID: 24841338 DOI: 10.1007/s00424-014-1529-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/26/2014] [Accepted: 05/05/2014] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is the most common form of chronic musculoskeletal disorders. A migratory stem cell population termed chondrogenic progenitor cells (CPC) with in vitro chondrogenic potential was previously isolated from OA cartilage. Since intracellular Ca(2+) signalling is an important regulator of chondrogenesis, we aimed to provide a detailed understanding of the Ca(2+) homeostasis of CPCs. In this work, CPCs immortalised by lentiviral administration of the human telomerase reverse transcriptase (hTERT) and grown in monolayer cultures were studied. Expressions of all three IP3Rs were confirmed, but no RyR subtypes were detected. Ca(2+) oscillations observed in CPCs were predominantly dependent on Ca(2+) release and store replenishment via store-operated Ca(2+) entry; CPCs express both STIM1 and Orai1 proteins. Expressions of adenosine receptor mRNAs were verified, and adenosine elicited Ca(2+) transients. Various P2 receptor subtypes were identified; P2Y1 can bind ADP; P2Y4 is targeted by UTP; and ATP may evoke Ca(2+) transients via detected P2X subtypes, as well as P2Y1 and P2Y2. Enzymatic breakdown of extracellular nucleotides by apyrase completely abrogated Ca(2+) oscillations, suggesting that an autocrine/paracrine purinergic mechanism may drive Ca(2+) oscillations in these cells. As CPCs possess a broad spectrum of functional molecular elements of Ca(2+) signalling, Ca(2+)-dependent regulatory mechanisms can be supposed to influence their differentiation potential.
Collapse
|
49
|
Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A 2014; 111:E1990-8. [PMID: 24778262 DOI: 10.1073/pnas.1323112111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca(2+) transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca(2+) channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca(2+) channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2(-/-)) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca(2+) channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca(2+) influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2(-/-) tracheas. Mechanistically, Ca(2+) influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca(2+) influx via the Cav3.2 T-type Ca(2+) channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis.
Collapse
|
50
|
Matta C, Mobasheri A. Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling. Cell Signal 2014; 26:979-1000. [PMID: 24440668 DOI: 10.1016/j.cellsig.2014.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/14/2023]
Abstract
During chondrogenesis, complex intracellular signalling pathways regulate an intricate series of events including condensation of chondroprogenitor cells and nodule formation followed by chondrogenic differentiation. Reversible phosphorylation of key target proteins is of particular importance during this process. Among protein kinases known to be involved in these pathways, protein kinase C (PKC) subtypes play pivotal roles. However, the precise function of PKC isoenzymes during chondrogenesis and in mature articular chondrocytes is still largely unclear. In this review, we provide a historical overview of how the concept of PKC-mediated chondrogenesis has evolved, starting from the first discoveries of PKC isoform expression and activity. Signalling components upstream and downstream of PKC, leading to the stimulation of chondrogenic differentiation, are also discussed. Although it is evident that we are only at the beginning to understand what roles are assigned to PKC subtypes during chondrogenesis and how they are regulated, there are many yet unexplored aspects in this area. There is evidence that calcium signalling is a central regulator in differentiating chondroprogenitors; still, clear links between intracellular calcium signalling and prototypical calcium-dependent PKC subtypes such as PKCalpha have not been established. Exploiting putative connections and shedding more light on how exactly PKC signalling pathways influence cartilage formation should open new perspectives for a better understanding of healthy as well as pathological differentiation processes of chondrocytes, and may also lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Ali Mobasheri
- D-BOARD European Consortium for Biomarker Discovery, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Medicine, Faculty of Medicine and Health Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|