1
|
Chronotherapeutic neuroprotective effect of verapamil against lipopolysaccharide-induced neuroinflammation in mice through modulation of calcium-dependent genes. Mol Med 2022; 28:139. [DOI: 10.1186/s10020-022-00564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Neuroinflammation is a major mechanism in neurodegenerative diseases such as Alzheimer’s disease (AD), which is a major healthcare problem. Notwithstanding of ample researches figured out possible molecular mechanisms underlying the pathophysiology of AD, there is no definitive therapeutics that aid in neuroprotection. Therefore, searching for new agents and potential targets is a critical demand. We aimed to investigate the neuroprotective effect of verapamil (VRP) against lipopolysaccharide (LPS)-induced neuroinflammation in mice and whether the time of VRP administration could affect its efficacy.
Methods
Forty male albino mice were used and were divided into normal control, LPS only, morning VRP, and evening VRP. Y-maze and pole climbing test were performed as behavioral tests. Hematoxylin and eosin together with Bielschowsky silver staining were done to visualize neuroinflammation and phosphorylated tau protein (pTAU); respectively. Additionally, the state of mitochondria, the levels of microglia-activation markers, inflammatory cytokines, intracellular Ca2+, pTAU, and Ca2+-dependent genes involving Ca2+/ calmodulin dependent kinase II (CAMKII) isoforms, protein kinase A (PKA), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF), with the level of VRP in the brain tissue were measured.
Results
LPS successfully induced neuroinflammation and hyperphosphorylation of tau protein, which was indicated by elevated levels of microglia markers, inflammatory cytokines, and intracellular Ca2+ with compromised mitochondria and downregulated CAMKII isoforms, PKA, CREB and BDNF. Pretreatment with VRP showed significant enhancement in the architecture of the brain and in the behavioral tests as indicated by the measured parameters. Moreover, morning VRP exhibited better neuroprotective profile compared to the evening therapy.
Conclusions
VRP highlighted a multilevel of neuroprotection through anti-inflammatory activity, Ca2+ blockage, and regulation of Ca2+-dependent genes. Furthermore, chronotherapy of VRP administration should be consider to achieve best therapeutic efficacy.
Graphical Abstract
Collapse
|
2
|
Bergantin LB. The Interactions among Hypertension, Cancer, and COVID-19: Perspectives from Ca2+/cAMP Signalling. Curr Cancer Drug Targets 2022; 22:351-360. [PMID: 35168520 DOI: 10.2174/1568009622666220215143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hypothesis that hypertension is clinically associated with an enhanced risk for developing cancer has been highlighted. However, the working principles involved in this link are still under intensive discussion. A correlation among inflammation, hypertension, and cancer could accurately describe the clinical link between these diseases. In addition, a dyshomeostasis of Ca2+ has been considered as a topic involved in both cancer and hypertension and inflammation. There is a strong link between Ca2+ signalling, e.g. enhanced Ca2+ signals, and inflammatory outcomes. cAMP also modulates pro- and anti-inflammatory outcomes: pharmaceuticals, which increase intracellular cAMP levels, can decrease the production of proinflammatory mediators and enhance the production of anti-inflammatory outcomes. OBJECTIVE This article has discussed the participation of Ca2+/cAMP signalling in the clinical association among inflammation, hypertension, and an enhanced risk for the development of cancer. In addition, considering coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviews recent reports about the role of Ca2+ channel blockers for restoring Ca2+ signalling disruption due to COVID-19, including the relationship among COVID-19, cancer, and hypertension. CONCLUSION Understanding the association among these diseases could expand current pharmacotherapy, including that involving Ca2+ channel blockers and pharmaceuticals which rise cAMP levels.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology - Universidade Federal de São Paulo - Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology - 55 11 5576-4973, Rua Pedro de Toledo, 669 - Vila Clementino, São Paulo - SP, Brazil
| |
Collapse
|
3
|
Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021; 118:2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.
Collapse
|
4
|
Bergantin LB. A Link Between Brain Insulin Resistance and Cognitive Dysfunctions: Targeting Ca2+/cAMP Signalling. Cent Nerv Syst Agents Med Chem 2021; 20:103-109. [PMID: 31995022 DOI: 10.2174/1871524920666200129121232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND A correlation between cognitive dysfunctions and brain insulin resistance has been established by several clinical and experimental studies. Consistent data support that people diagnosed with brain insulin resistance, resulted from diabetes, have shown an increased risk of presenting cognitive dysfunctions, clinical signs of dementia and depression, then speculating a role of dysregulations related to insulin signalling in these diseases. Furthermore, it is currently discussed that Ca2+ signalling, and its dysregulations, may be a factor which could correlate with brain insulin resistance and cognitive dysfunctions. OBJECTIVE Following this, revealing this interplay between these diseases may provide novel insights into the pathogenesis of such diseases. METHODS Publications covering topics such as Ca2+ signalling, diabetes, depression and dementia (alone or combined) were collected by searching PubMed and EMBASE. RESULTS The controlling of both neurotransmitters/hormones release and neuronal death could be achieved through modulating Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling). CONCLUSION Taking into account our previous reports on Ca2+/cAMP signalling, and considering a limited discussion in the literature on the role of Ca2+/cAMP signalling in the link between cognitive dysfunctions and brain insulin resistance, this article has comprehensively discussed the role of these signalling pathways in this link (between cognitive dysfunctions and brain insulin resistance).
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Bergantin LB. Diabetes and inflammatory diseases: An overview from the perspective of Ca 2+/3'-5'-cyclic adenosine monophosphate signaling. World J Diabetes 2021; 12:767-779. [PMID: 34168726 PMCID: PMC8192245 DOI: 10.4239/wjd.v12.i6.767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
A large amount of evidence has supported a clinical link between diabetes and inflammatory diseases, e.g., cancer, dementia, and hypertension. In addition, it is also suggested that dysregulations related to Ca2+ signaling could link these diseases, in addition to 3'-5'-cyclic adenosine monophosphate (cAMP) signaling pathways. Thus, revealing this interplay between diabetes and inflammatory diseases may provide novel insights into the pathogenesis of these diseases. Publications involving signaling pathways related to Ca2+ and cAMP, inflammation, diabetes, dementia, cancer, and hypertension (alone or combined) were collected by searching PubMed and EMBASE. Both signaling pathways, Ca2+ and cAMP signaling, control the release of neurotransmitters and hormones, in addition to neurodegeneration, and tumor growth. Furthermore, there is a clear relationship between Ca2+ signaling, e.g., increased Ca2+ signals, and inflammatory responses. cAMP also regulates pro- and anti-inflammatory responses. Due to the experience of our group in this field, this article discusses the role of Ca2+ and cAMP signaling in the correlation between diabetes and inflammatory diseases, including its pharmacological implications. As a novelty, this article also includes: (1) A timeline of the major events in Ca2+/cAMP signaling; and (2) As coronavirus disease 2019 (COVID-19) is an emerging and rapidly evolving situation, this article also discusses recent reports on the role of Ca2+ channel blockers for preventing Ca2+ signaling disruption due to COVID-19, including the correlation between COVID-19 and diabetes.
Collapse
|
6
|
Bergantin LB. A Hypothesis for the Relationship between Depression and Cancer: Role of Ca2+/cAMP Signalling. Anticancer Agents Med Chem 2021; 20:777-782. [PMID: 32077833 DOI: 10.2174/1871520620666200220113817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/02/2019] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
Abstract
Limitations on the pharmacotherapy and a high prevalence worldwide are critical issues related to depression and cancer. It has been discussed that a dysregulation of intracellular Ca2+ homeostasis is involved in the pathogenesis of both these diseases. In addition, depression raises the risk of cancer incidence. Consistent data support the concept that depression is an independent risk issue for cancer. However, the cellular mechanisms involved in this link between depression and cancer remain uncertain. Considering our previous reports about Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), I herein discussed the putative contribution of Ca2+/cAMP signalling in this link between depression and cancer. Moreover, it is important to take depression into account during the process of prevention and treatment of cancer.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, Brazil
| |
Collapse
|
7
|
Bergantin LB. The Interactions Between Alzheimer's Disease and Major Depression: Role of Ca 2+ Channel Blockers and Ca 2+/cAMP Signalling. Curr Drug Res Rev 2021; 12:97-102. [PMID: 32065096 DOI: 10.2174/2589977512666200217093356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The interactions between Alzheimer's Disease (AD) and major depression can be translated into clinical data showing that depressive patients have had an enhanced risk for developing AD (later in life). The cellular mechanisms involved in these interactions remain under intensive debate in the literature. In addition, the role of a Ca2+ homeostasis dysregulation in the pathogenesis of neurodegenerative diseases, like AD, and major depression has been under intensive discussion. OBJECTIVE Thus, revealing the interplay between AD and major depression may provide novel insights into the pathogenesis of these diseases. METHODS Publications involving Ca2+ signalling pathways, AD, and major depression (alone or combined) were collected by searching multiple databases to find the maximum number of relevant citations (using a search strategy with high sensitivity for studies of etiology). RESULTS Ca2+ Channel Blockers (CCBs), classically prescribed for hypertensive patients, have been demonstrating neuroprotective effects, such as decreasing the incidence of AD in hypertensive patients, including alleviating major depression symptoms. A mechanism under debate is focused on the restoration of the Ca2+ homeostasis. Indeed, previous studies of our own have correlated Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling) in controlling both the neurotransmitter release and neuronal death. These studies also observed that CCBs can affect Ca2+/cAMP signalling. CONCLUSION This review discussed the plausible role of Ca2+/cAMP signalling in the neuroprotective effects of CCBs, including the participation of Ca2+/cAMP signalling in the interactions between major depression and AD. Considering both AD and major depression have become highly prevalent medical problems in the world, the comprehension of the interactions between these diseases could improve drug development.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo; Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo - SP, Brazil
| |
Collapse
|
8
|
Bergantin LB. The Interplay Between Asthma and Other Diseases: Role of Ca2+/cAMP Signalling. Endocr Metab Immune Disord Drug Targets 2021; 20:321-327. [PMID: 31456527 DOI: 10.2174/1871530319666190828145854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Asthma is correlated with a higher risk of manifesting other diseases, including hypertension, diabetes, obesity, psychiatric and neurological diseases, and cancer. Therefore, revealing this interplay between asthma and these illnesses may provide novel insights into their pathogenesis. RESULTS It is highly debated that dysregulation of Ca2+ homeostasis is involved in the pathogenesis of these maladies. Not surprisingly, calcium (Ca2+) channel blockers (CCBs), classically used as antihypertensive medicines, have been demonstrating off-label effects such as alleviating asthma symptoms, in addition to antidiabetic, antiobesity, anticancer and antineurodegenerative effects. Our studies about Ca2+/cAMP signalling may shed some new light on this field. CONCLUSION Thus, considering that asthma and associated illnesses such as hypertension, diabetes, obesity, cancer and neurodegenerative diseases have become highly prevalent medical problems in the world, the comprehension of this interplay between asthma and other disorders could improve drug therapy.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, Brazil
| |
Collapse
|
9
|
Bergantin LB. Depression Rises the Risk of Hypertension Incidence: Discussing the Link through the Ca2+/cAMP Signalling. Curr Hypertens Rev 2020; 16:73-78. [PMID: 30648516 DOI: 10.2174/1573402115666190116095223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Depression and hypertension are medical problems both with clearly restricted pharmacotherapies, along with a high prevalence around the world. In fact, an intensive discussion in the field is that a dysregulation of the intracellular Ca2+ homeostasis (e.g. excess of intracellular Ca2+) contributes to the pathogenesis of both hypertension and depression. Furthermore, depression rises the risk of hypertension incidence. Indeed, several data support the concept that depression is an independent risk issue for hypertension. CONCLUSION Then, which are the possible cellular mechanisms involved in this link between depression and hypertension? Considering our previous reports about the Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), in this review I have discussed the virtual involvement of the Ca2+/cAMP signalling in this link (between depression and hypertension). Then, it is important to consider depression into account during the process of prevention, and treatment, of hypertension.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology-Escola Paulista de Medicina-Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669-Vila Clementino, Sao Paulo-SP, Postal Code: 04039-032, Brazil
| |
Collapse
|
10
|
Bergantin LB. A link among schizophrenia, diabetes, and asthma: Role of Ca2 +/cAMP signaling. Brain Circ 2020; 6:145-151. [PMID: 33210037 PMCID: PMC7646390 DOI: 10.4103/bc.bc_66_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/29/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023] Open
Abstract
Asthma has been associated with an increased risk for developing schizophrenia. In addition, schizophrenia has been associated with an increased risk for developing type 2 diabetes mellitus, resulting in an elevated cardiovascular risk and in a limited life expectancy. It is well discussed that dysregulations related to Ca2+ signaling could link these diseases, in addition to cAMP signaling pathways. Thus, revealing this interplay among schizophrenia, diabetes, and asthma may provide novel insights into the pathogenesis of these diseases. Publications involving Ca2+ and cAMP signaling pathways, schizophrenia, diabetes, and asthma (alone or combined) were collected by searching PubMed and EMBASE. Both Ca2+ and cAMP signaling pathways (Ca2+/cAMP signaling) control the release of neurotransmitters and hormones, in addition to airway smooth muscle contractility, then dysregulations of these cellular processes may be involved in these diseases. Taking into consideration, the experience of our group in this field, this narrative review debated the involvement of Ca2+/cAMP signaling in this link among schizophrenia, diabetes, and asthma, including its pharmacological implications.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Carnovale C, Dassano A, Mosini G, Mazhar F, D'Addio F, Pozzi M, Radice S, Fiorina P, Clementi E. The β-cell effect of verapamil-based treatment in patients with type 2 diabetes: a systematic review. Acta Diabetol 2020; 57:117-131. [PMID: 31172294 DOI: 10.1007/s00592-019-01370-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022]
Abstract
AIMS The possibility that verapamil has new beneficial effects in diabetic patients in terms of an improvement in glycometabolic control has been put forward recently in several studies. However, to date the issue is still under debate. We conducted the first systematic review examining the impact of verapamil-based treatment on glycometabolic outcomes, in type 2 diabetes (T2D) patients. METHODS We searched the PubMed, MEDLINE, Embase, Cochrane and ClinicalTrials.gov up to 9 October 2018, for all studies evaluating whether verapamil-based treatment is associated with changes in glycated haemoglobin (HbA1c), fasting plasma glucose levels, glucose and C-peptide areas from baseline in humans, without restrictions for study type. RESULTS Plasma glucose levels were lowered significantly by verapamil-based treatment in patients with T2D (mean change - 13 ± 5.29; P = 0.049); HbA1c values were instead not affected by the drug (mean change - 0.10 ± 0.12; P = 0.453). In five studies, groups exposed to verapamil achieved lower value of glycometabolic outcomes: comparison with values recorded in control groups showed a significant difference, in terms of both HbA1c and plasma glucose levels. CONCLUSIONS Despite the fact that plasma glucose levels were lowered significantly by verapamil-based treatment in patients with T2D (the HbA1c values were not affected by the drug), the clinical significance of the glycometabolic response induced by verapamil-based treatment remains unclear due to the high variety of sample size and type of studies presently available. Further experimental and clinical trials are needed to clarify unambiguously the role of verapamil in metabolic control.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Via GB Grassi 74, 20157, Milan, Italy.
| | - Alice Dassano
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, Università di Milano, 20157, Milan, Italy
| | - Giulia Mosini
- Unit Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Via GB Grassi 74, 20157, Milan, Italy
| | - Faizan Mazhar
- Unit Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Via GB Grassi 74, 20157, Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, Università di Milano, 20157, Milan, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Sonia Radice
- Unit Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Via GB Grassi 74, 20157, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, Università di Milano, 20157, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, 20157, Milan, Italy
| | - Emilio Clementi
- Unit Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Via GB Grassi 74, 20157, Milan, Italy
- Scientific Institute IRCCS Eugenio Medea, 23842, Bosisio Parini, Lecco, Italy
| |
Collapse
|
12
|
Bergantin LB. Diabetes and Parkinson's Disease: Debating the Link Through Ca2+/cAMP Signalling. Curr Diabetes Rev 2020; 16:238-241. [PMID: 31291877 DOI: 10.2174/1573399815666190711113644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND A link between diabetes and Parkinson´s disease (PD) has been established by several reports. Consistent data report that people diagnosed with diabetes have demonstrated an enhanced risk of manifesting PD in their lifetime. The working principles involved in this link have been extensively discussed. Over the last decade, diabetes has been reported to be correlated with an increased risk of dementia, suggesting a potential role of diabetes, or insulin signalling dysregulations, in neurodegeneration. In addition, it is nowadays highly debated that dysregulations related to Ca2+ signalling may be an upstream issue which could also link diabetes and PD. Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling) control both the neurotransmitters/hormones release and neuronal death. CONCLUSION Considering our previous reports about Ca2+/cAMP signalling, the putative contribution of Ca2+/cAMP signalling in this link (between diabetes and PD) is discussed in this paper.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669 - Vila Clementino, Sao Paulo - SP, Brazil
| |
Collapse
|
13
|
Bergantin LB. Hypertension, Diabetes and Neurodegenerative Diseases: Is there a Clinical Link through the Ca2+/cAMP Signalling Interaction? Curr Hypertens Rev 2019; 15:32-39. [PMID: 30117399 DOI: 10.2174/1573402114666180817113242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hypertension, diabetes and neurodegenerative diseases are among the most prevalent medical problems around the world, costing millions of dollars to the medical health systems. Indeed, hypertension has been associated with higher risk for decline of cognition, as evidenced in patients with Alzheimer´s disease (AD). Furthermore, there is a clear relationship between hypertension and diabetes, reflecting substantial overlap in their etiology. Calcium (Ca2+) channel blockers (CCBs) have been classically prescribed for treating hypertension because of their mechanism of action due to reducing the influx of Ca2+ into the smooth muscles cells. In addition, many clinical and experimental studies have been demonstrating pleiotropic effects for CCBs. For instance, in hypertensive patients treated with CCBs, it can be observed lower incidence of neurodegenerative diseases such as AD. The virtual mechanism of action could be attributed to a restoration and maintenance of Ca2+ homeostasis, which is dysregulated in the neurodegenerative diseases, including also a reduction of neuronal apoptosis as part of these CCBs pleiotropic effects. Similarly, in hypertensive patients treated with CCBs, it can be observed an improvement of diabetes status such as glycemic control. A possible mechanism of action under debate could be attributed to a restoration of insulin secretion, then achieving glycemic control, and reduction of pancreatic β-cell apoptosis. CONCLUSION Considering the discovery of our group entitled "calcium paradox" due to Ca2+/cAMP signalling interaction, in this review I discussed the virtual involvement of this interaction in the pleiotropic effects of CCBs, including the possible role of the Ca2+/cAMP signalling interaction in the association between hypertension and higher risk for the decline of cognition, and diabetes.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology-Universidade Federal de Sao Paulo-Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology-55 11 5576-4973, Rua Pedro de Toledo, 669-Vila Clementino, Sao Paulo-SP, CEP: 04039-032, Brazil
| |
Collapse
|
14
|
Bergantin LB. Diabetes and cancer: Debating the link through Ca 2+/cAMP signalling. Cancer Lett 2019; 448:128-131. [PMID: 30771427 DOI: 10.1016/j.canlet.2019.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022]
Abstract
The incidence of both cancer and diabetes is dramatically increasing in worldwide population, costing many millions from governments into expenditures related to medical health systems. Diabetes has been clinically linked to an increased risk for developing several types of cancer. The cellular mechanisms involved in this link are still under intensive debate in literature. In addition, a Ca2+ homeostasis dysregulation has been intensively debated as an issue involved in both cancer and diabetes. Calcium (Ca2+) channel blockers (CCBs), prescribed for treating hypertension, have also been showing anti-cancer effects along with reducing diabetes symptoms. A debated mechanism of action could rest in the fact that CCBs may restore Ca2+ homeostasis dysregulations, involved in both diseases. Our studies about Ca2+/cAMP signalling may add some new light in this field. In this review, I have debated the possible involvement of Ca2+/cAMP signalling in the clinical link between diabetes and a higher risk for the development of several types of cancer, including the plausible involvement in both anti-cancer and anti-diabetic effects of CCBs.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, CEP: 04039-032, Brazil.
| |
Collapse
|
15
|
Bergantin LB. Debating the "bidirectional link" between diabetes and depression through the Ca 2+/cAMP signalling: Off-label effects of Ca 2+ channel blockers. Pharmacol Res 2019; 141:298-302. [PMID: 30639385 DOI: 10.1016/j.phrs.2019.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
Abstract
Many reports have been demonstrating off-label effects for calcium (Ca2+) channel blockers (CCBs), for example: patients medicated with CCBs have had an improvement of their diabetes status (control of glycemia), along with an improvement of both depression symptoms and cognitive function. Indeed, diabetes and depression are medical problems both with clearly restricted pharmacotherapies, along with a high prevalence around the world, then costing millions and millions for the medical health systems. Furthermore, the incidence of depression is till three times higher in patients with diabetes. In addition, depression may augment the risk of developing type 2 diabetes till 60%. Then, there is a clear "bidirectional link" between depression and diabetes, reflecting substantial interactions in their etiology. But which are the possible cellular mechanisms for this "bidirectional link" between depression and diabetes, and for the off-label effects of CCBs? Considering our previously cited international articles, which demonstrated the role of the Ca2+/cAMP signalling in regulating both the neurotransmitter release and the neuronal death, in this review I have debated the possible involvement of the Ca2+/cAMP signalling in the off-label effects of CCBs, including the role of the Ca2+/cAMP signalling in the "bidirectional link" between diabetes and depression.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
16
|
Shih CH, Chen CM, Ko WC. Mechanisms of butylidenephthalide for twitch facilitation in electrically stimulated mouse vas deferens. PHARMACEUTICAL BIOLOGY 2018; 56:378-384. [PMID: 30122096 PMCID: PMC6130712 DOI: 10.1080/13880209.2018.1495749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
CONTEXT The rhizome of Ligusticum chuaxiong Hort. (Umbelliferae) has been used by Chinese for several thousand years. Its main constituent, butylidenephthalide (Bdph), was proved to be active in inhibiting rat uterine contractions induced by prostaglandin F2α and was reported to be a nonspecific antispamodic and a blocker of voltage-dependent Ca2+ channels (VDCCs). OBJECTIVES The present study investigates the mechanisms of Bdph for twitch facilitation in ICR mouse vas deferens (MVD). MATERIALS AND METHODS Electrical field stimulation (EFS, supramaximal voltage ranging from 60-90 V, 1 ms, 0.2 Hz) was applied to the isolated MVD in Krebs solution. Interactions between Bdph (50 µM) and calcium antagonist (verapamil, diltiazem or aspaminol) on the EFS-evoked twitch responses were determined. The number of experiments was 3-18. RESULTS Bdph (50 µM)-induced twitch facilitations from 100 to 391.9% were unrelated to activation of postjunctional cholinergic or adrenergic receptors. Verapamil and Bdph unabolished the twitch facilitation each other. Diltiazem unabolished the Bdph-induced twitch facilitation. In contrast, Bdph abolished those induced by diltiazem. Aspaminol at 20 μM abolished the Bdph-induced twitch facilitation. In contrast, Bdph abolished those induced by aspaminol. Tetraethylammonium and 4-aminopyridine, the K+ channel blockers, significantly augmented the Bdph-induced twitch facilitation. DISCUSSION AND CONCLUSIONS Bdph may bind to the different, more and same subtypes of VDCCs from verapamil, than diltiazem, and as aspaminol does on prejunctional membrane, respectively. Besides a blocker of VDCCs, Bdph may be a blocker of K+ channels on prejunctional membrane. Thus, Bdph depolarized the membrane and facilitated the cumulative Ca2+-induced twitch responses.
Collapse
Affiliation(s)
- Chung-Hung Shih
- Department of Internal Medicine, Division of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Chen
- Department of Medicinal Chemistry, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wun-Chang Ko
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Treatments for diabetes mellitus type II: New perspectives regarding the possible role of calcium and cAMP interaction. Eur J Pharmacol 2018; 830:9-16. [PMID: 29679542 DOI: 10.1016/j.ejphar.2018.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is among the top ten causes of death worldwide. It is considered to be one of the major global epidemics of the 21st century, with a significant impact on public health budgets. DM is a metabolic disorder with multiple etiologies. Its pathophysiology is marked by dysfunction of pancreatic β-cells which compromises the synthesis and secretion of insulin along with resistance to insulin action in peripheral tissues (muscle and adipose). Subjects presenting insulin resistance in DM type 2 often also exhibit increased insulin secretion and hyperinsulinemia. Insulin secretion is controlled by several factors such as nutrients, hormones, and neural factors. Exocytosis of insulin granules has, as its main stimulus, increased intracellular calcium ([Ca+2]i) and it is further amplified by cyclic AMP (cAMP). In the event of this hyperfunction, it is very common for β-cells to go into exhaustion leading to failure or death. Several animal studies have demonstrated pleiotropic effects of L-type Ca2+ channel blockers (CCBs). In animal models of obesity and diabetes, treatment with CCBs promoted restoration of insulin secretion, glycemic control, and reduction of pancreatic β-cell apoptosis. In addition, hypertensive individuals treated with CCBs presented a lower incidence of DM when compared with other antihypertensive agents. In this review, we propose that pharmacological manipulation of the Ca2+/cAMP interaction system could lead to important targets for pharmacological improvement of insulin secretion in DM type 2.
Collapse
|
18
|
Bueno Bergantin L. Novel Challenges for the Therapeutics of Depression: Pharmacological Modulation of Interaction between the Intracellular Signaling Pathways Mediated by Ca2+ and cAMP. JOURNAL OF ADDICTION THERAPY AND RESEARCH 2017; 1:001-006. [DOI: 10.29328/journal.jatr.1001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
|
19
|
LB B. The “Calcium Paradox” Due To Ca2+/Camp Interaction: New Insights for the Neuroscience Field. JOURNAL OF NEUROSCIENCE AND NEUROLOGICAL DISORDERS 2017; 1:012-015. [DOI: 10.29328/journal.jnnd.1001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
|
20
|
Bergantin LB, Caricati-Neto A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca(2+)/cAMP intracellular signalling interaction. Eur J Pharmacol 2016; 788:255-260. [PMID: 27349146 DOI: 10.1016/j.ejphar.2016.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/15/2022]
Abstract
In 2013, we discovered that the entitled "calcium paradox" phenomenon, which means a paradoxical sympathetic hyperactivity produced by l-type Ca(2+) channel blockers (CCBs), used in antihypertensive therapy, is due to interaction between the intracellular signalling pathways mediated by Ca(2+) and cAMP (Ca(2+)/cAMP interaction). In 2015, we proposed that the pharmacological manipulation of this interaction could be a new therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases. Besides the paradoxical sympathetic hyperactivity produced by CCBs, several clinical studies have been demonstrating pleiotropic effects of CCBs, including neuroprotective effects. CCBs genuinely exhibit cognitive-enhancing abilities and reduce the risk of dementia, including Alzheimer's, Parkinson´s disease and others. The molecular mechanisms involved in these pleiotropic effects remain under debate. Our recent discovery that the "calcium paradox" phenomenon is due to Ca(2+)/cAMP interaction may provide new insights for the pharmacological treatment of neurological and psychiatric disorders, including enhancement of current therapies mainly by reducing adverse effects, and improving effectiveness of modern medicines. Whether Ca(2+)/cAMP interaction is involved in CCBs pleiotropic effects also deserves special attention. Then, the pharmacological manipulation of the Ca(2+)/cAMP interaction could be a more efficient therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases. Thus, in this review we summarize the current knowledge of this field, making new directions and future perspectives.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology, 55 11 5576-4973, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP CEP 04039-032, Brazil.
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology, 55 11 5576-4973, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP CEP 04039-032, Brazil
| |
Collapse
|
21
|
Caricati-Neto A, García AG, Bergantin LB. Pharmacological implications of the Ca(2+)/cAMP signaling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol Res Perspect 2015; 3:e00181. [PMID: 26516591 PMCID: PMC4618650 DOI: 10.1002/prp2.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
In this review, we discussed pharmacological implications of the Ca2+/cAMP signaling interaction in the antihypertensive and neurological/psychiatric disorders therapies. Since 1975, several clinical studies have reported that acute and chronic administration of L-type voltage-activated Ca2+ channels (VACCs) blockers, such as nifedipine, produces reduction in peripheral vascular resistance and arterial pressure associated with an increase in plasma noradrenaline levels and heart rate, typical of sympathetic hyperactivity. Despite this sympathetic hyperactivity has been initially attributed to adjust reflex of arterial pressure, the cellular and molecular mechanisms involved in this apparent sympathomimetic effect of the L-type VACCs blockers remained unclear for decades. In addition, experimental studies using isolated tissues richly innervated by sympathetic nerves (to exclude the influence of adjusting reflex) showed that neurogenic responses were completely inhibited by L-type VACCs blockers in concentrations above 1 μmol/L, but paradoxically potentiated in concentrations below 1 μmol/L. During almost four decades, these enigmatic phenomena remained unclear. In 2013, we discovered that this paradoxical increase in sympathetic activity produced by L-type VACCs blocker is due to interaction of the Ca2+/cAMP signaling pathways. Then, the pharmacological manipulation of the Ca2+/cAMP interaction produced by combination of the L-type VACCs blockers used in the antihypertensive therapy, and cAMP accumulating compounds used in the antidepressive therapy, could represent a potential cardiovascular risk for hypertensive patients due to increase in sympathetic hyperactivity. In contrast, this pharmacological manipulation could be a new therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, Brazil
| | - Antonio G García
- Instituto Teófilo Hernando de I+D del Medicamento, Universidad Autónoma de Madrid Madrid, Spain
| | - Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, Brazil
| |
Collapse
|
22
|
Sánchez-Recillas A, Navarrete-Vázquez G, Hidalgo-Figueroa S, Rios MY, Ibarra-Barajas M, Estrada-Soto S. Semisynthesis, ex vivo evaluation, and SAR studies of coumarin derivatives as potential antiasthmatic drugs. Eur J Med Chem 2014; 77:400-8. [PMID: 24681028 DOI: 10.1016/j.ejmech.2014.03.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 01/03/2023]
Abstract
Asthma is a chronic inflammatory disorder that causes contraction in the smooth muscle of the airway and blocking of airflow. Reversal the contractile process is a strategy for the search of new drugs that could be used for the treatment of asthma. This work reports the semisynthesis, ex vivo relaxing evaluation and SAR studies of a series of 18 coumarins. The results pointed that the ether derivatives 1-3, 7-9 and 13-15 showed the best activity (Emax = 100%), where compound 2 (42 μM) was the most potent, being 4-times more active than theophylline (positive control). The ether homologation (methyl, ethyl and propyl) in position 7 or positions 6 and 7 of coumarins lead to relaxing effect, meanwhile formation of esters generated less active compounds than ethers. The SAR analysis showed that it is necessary the presence of two small ether groups and the methyl group at position 4 (site 3) encourage biological activity through soft hydrophobic changes in the molecule, without drastically affecting the cLogP.
Collapse
Affiliation(s)
- Amanda Sánchez-Recillas
- Laboratorio de Farmacognosia y Química de Productos Naturales, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Gabriel Navarrete-Vázquez
- Laboratorio de Química Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Sergio Hidalgo-Figueroa
- Laboratorio de Química Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - María Yolanda Rios
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Maximiliano Ibarra-Barajas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090 Tlalnepantla, Estado de México, Mexico
| | - Samuel Estrada-Soto
- Laboratorio de Farmacognosia y Química de Productos Naturales, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| |
Collapse
|