1
|
Drumm BT, Gupta N, Mircea A, Griffin CS. Cells and ionic conductances contributing to spontaneous activity in bladder and urethral smooth muscle. J Physiol 2024. [PMID: 39323077 DOI: 10.1113/jp284744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Smooth muscle organs of the lower urinary tract comprise the bladder detrusor and urethral wall, which have a reciprocal contractile relationship during urine storage and micturition. As the bladder fills with urine, detrusor smooth muscle cells (DSMCs) remain relaxed to accommodate increases in intravesical pressure while urethral smooth muscle cells (USMCs) sustain tone to occlude the urethral orifice, preventing leakage. While neither organ displays coordinated regular contractions as occurs in small intestine, lymphatics or renal pelvis, they do exhibit patterns of rhythmicity at cellular and tissue levels. In rabbit and guinea-pig urethra, electrical slow waves are recorded from USMCs. This activity is linked to cells expressing vimentin, c-kit and Ca2+-activated Cl- channels, like interstitial cells of Cajal in the gastrointestinal tract. In mouse, USMCs are rhythmically active (firing propagating Ca2+ waves linked to contraction), and this cellular rhythmicity is asynchronous across tissues and summates to form tone. Experiments in mice have failed to demonstrate a voltage-dependent mechanism for regulating this rhythmicity or contractions in vitro, suggesting that urethral tone results from an intrinsic ability of USMCs to 'pace' their own Ca2+ mobilization pathways required for contraction. DSMCs exhibit spontaneous transient contractions, increases in intracellular Ca2+ and action potentials. Consistent across numerous species, including humans, this activity relies on voltage-dependent Ca2+ influx in DSMCs. While interstitial cells are present in the bladder, they do not 'pace' the organ in an excitatory manner. Instead, specialized cells (PDGFRα+ interstitial cells) may 'negatively pace' DSMCs to prevent bladder overexcitability.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alexandru Mircea
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
2
|
Zhuang Z, Meng Y, Xue Y, Wang Y, Cheng X, Jing J. Adaptation of STIM1 structure-function relationships for optogenetic control of calcium signaling. J Biol Chem 2024; 300:107636. [PMID: 39122007 PMCID: PMC11402311 DOI: 10.1016/j.jbc.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.
Collapse
Affiliation(s)
- Zirui Zhuang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yu Xue
- School of Life Science, Tianjin University, Tianjin, China
| | - Yan Wang
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Fröhlich M, Söllner J, Derler I. Insights into the dynamics of the Ca2+ release-activated Ca2+ channel pore-forming complex Orai1. Biochem Soc Trans 2024; 52:747-760. [PMID: 38526208 DOI: 10.1042/bst20230815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.
Collapse
Affiliation(s)
- Maximilian Fröhlich
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Julia Söllner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
4
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
5
|
Ren H, Cheng Y, Wen G, Wang J, Zhou M. Emerging optogenetics technologies in biomedical applications. SMART MEDICINE 2023; 2:e20230026. [PMID: 39188295 PMCID: PMC11235740 DOI: 10.1002/smmd.20230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/17/2023] [Indexed: 08/28/2024]
Abstract
Optogenetics is a cutting-edge technology that merges light control and genetics to achieve targeted control of tissue cells. Compared to traditional methods, optogenetics offers several advantages in terms of time and space precision, accuracy, and reduced damage to the research object. Currently, optogenetics is primarily used in pathway research, drug screening, gene expression regulation, and the stimulation of molecule release to treat various diseases. The selection of light-sensitive proteins is the most crucial aspect of optogenetic technology; structural changes occur or downstream channels are activated to achieve signal transmission or factor release, allowing efficient and controllable disease treatment. In this review, we examine the extensive research conducted in the field of biomedicine concerning optogenetics, including the selection of light-sensitive proteins, the study of carriers and delivery devices, and the application of disease treatment. Additionally, we offer critical insights and future implications of optogenetics in the realm of clinical medicine.
Collapse
Affiliation(s)
- Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Yi Cheng
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Gaolin Wen
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Zhou
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
6
|
Kook YH, Lee H, Lee J, Jeong Y, Rho J, Heo WD, Lee S. AAV-compatible optogenetic tools for activating endogenous calcium channels in vivo. Mol Brain 2023; 16:73. [PMID: 37848907 PMCID: PMC10583393 DOI: 10.1186/s13041-023-01061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.
Collapse
Affiliation(s)
- Yeon Hee Kook
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Department of Bioscience and Biotechnology, Graduate School, Chungnam National University, Daejeon, 34134, Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeonji Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaerang Rho
- Department of Bioscience and Biotechnology, Graduate School, Chungnam National University, Daejeon, 34134, Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
7
|
Clark MG, Ma S, Mahapatra S, Mohn KJ, Zhang C. Chemical-imaging-guided optical manipulation of biomolecules. Front Chem 2023; 11:1198670. [PMID: 37214479 PMCID: PMC10196011 DOI: 10.3389/fchem.2023.1198670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Chemical imaging via advanced optical microscopy technologies has revealed remarkable details of biomolecules in living specimens. However, the ways to control chemical processes in biological samples remain preliminary. The lack of appropriate methods to spatially regulate chemical reactions in live cells in real-time prevents investigation of site-specific molecular behaviors and biological functions. Chemical- and site-specific control of biomolecules requires the detection of chemicals with high specificity and spatially precise modulation of chemical reactions. Laser-scanning optical microscopes offer great platforms for high-speed chemical detection. A closed-loop feedback control system, when paired with a laser scanning microscope, allows real-time precision opto-control (RPOC) of chemical processes for dynamic molecular targets in live cells. In this perspective, we briefly review recent advancements in chemical imaging based on laser scanning microscopy, summarize methods developed for precise optical manipulation, and highlight a recently developed RPOC technology. Furthermore, we discuss future directions of precision opto-control of biomolecules.
Collapse
Affiliation(s)
| | - Seohee Ma
- Department of Chemistry, West Lafayette, IN, United States
| | | | | | - Chi Zhang
- Department of Chemistry, West Lafayette, IN, United States
- Purdue Center for Cancer Research, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Li J, Shang Z, Chen JH, Gu W, Yao L, Yang X, Sun X, Wang L, Wang T, Liu S, Li J, Hou T, Xing D, Gill DL, Li J, Wang SQ, Hou L, Zhou Y, Tang AH, Zhang X, Wang Y. Engineering of NEMO as calcium indicators with large dynamics and high sensitivity. Nat Methods 2023:10.1038/s41592-023-01852-9. [PMID: 37081094 DOI: 10.1038/s41592-023-01852-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
Collapse
Affiliation(s)
- Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia-Hui Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjia Gu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Yang
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Xiaowen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tianlu Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Siyao Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jiajing Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Lijuan Hou
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
9
|
Lee J, Campillo B, Hamidian S, Liu Z, Shorey M, St-Pierre F. Automating the High-Throughput Screening of Protein-Based Optical Indicators and Actuators. Biochemistry 2023; 62:169-177. [PMID: 36315460 PMCID: PMC9852035 DOI: 10.1021/acs.biochem.2c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the last 25 years, protein engineers have developed an impressive collection of optical tools to interface with biological systems: indicators to eavesdrop on cellular activity and actuators to poke and prod native processes. To reach the performance level required for their downstream applications, protein-based tools are usually sculpted by iterative rounds of mutagenesis. In each round, libraries of variants are made and evaluated, and the most promising hits are then retrieved, sequenced, and further characterized. Early efforts to engineer protein-based optical tools were largely manual, suffering from low throughput, human error, and tedium. Here, we describe approaches to automating the screening of libraries generated as colonies on agar, multiwell plates, and pooled populations of single-cell variants. We also briefly discuss emerging approaches for screening, including cell-free systems and machine learning.
Collapse
Affiliation(s)
- Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beatriz Campillo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shaminta Hamidian
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Matthew Shorey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Yamanaka T, Ueki T, Mase M, Inoue K. Arbitrary Ca 2+ regulation for endothelial nitric oxide, NFAT and NF-κB activities by an optogenetic approach. Front Pharmacol 2023; 13:1076116. [PMID: 36703743 PMCID: PMC9871596 DOI: 10.3389/fphar.2022.1076116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Modern western dietary habits and low physical activity cause metabolic abnormalities and abnormally elevated levels of metabolites such as low-density lipoprotein, which can lead to immune cell activation, and inflammatory reactions, and atherosclerosis. Appropriate stimulation of vascular endothelial cells can confer protective responses against inflammatory reactions and atherosclerotic conditions. This study aims to determine whether a designed optogenetic approach is capable of affecting functional changes in vascular endothelial cells and to evaluate its potential for therapeutic regulation of vascular inflammatory responses in vitro. We employed a genetically engineered, blue light-activated Ca2+ channel switch molecule that utilizes an endogenous store-operated calcium entry system and induces intracellular Ca2+ influx through blue light irradiation and observed an increase in intracellular Ca2+ in vascular endothelial cells. Ca2+-dependent activation of the nuclear factor of activated T cells and nitric oxide production were also detected. Microarray analysis of Ca2+-induced changes in vascular endothelial cells explored several genes involved in cellular contractility and inflammatory responses. Indeed, there was an increase in the gene expression of molecules related to anti-inflammatory and vasorelaxant effects. Thus, a combination of human blue light-activated Ca2+ channel switch 2 (hBACCS2) and blue light possibly attenuates TNFα-induced inflammatory NF-κB activity. We propose that extrinsic cellular Ca2+ regulation could be a novel approach against vascular inflammation.
Collapse
Affiliation(s)
- Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Koichi Inoue,
| |
Collapse
|
11
|
Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022; 38:1253-1270. [PMID: 35738948 PMCID: PMC10484296 DOI: 10.1016/j.tig.2022.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
Collapse
Affiliation(s)
- Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Karasev MM, Baloban M, Verkhusha VV, Shcherbakova DM. Nuclear Localization Signals for Optimization of Genetically Encoded Tools in Neurons. Front Cell Dev Biol 2022; 10:931237. [PMID: 35927988 PMCID: PMC9344056 DOI: 10.3389/fcell.2022.931237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear transport in neurons differs from that in non-neuronal cells. Here we developed a non-opsin optogenetic tool (OT) for the nuclear export of a protein of interest induced by near-infrared (NIR) light. In darkness, nuclear import reverses the OT action. We used this tool for comparative analysis of nuclear transport dynamics mediated by nuclear localization signals (NLSs) with different importin specificities. We found that widely used KPNA2-binding NLSs, such as Myc and SV40, are suboptimal in neurons. We identified uncommon NLSs mediating fast nuclear import and demonstrated that the performance of the OT for nuclear export can be adjusted by varying NLSs. Using these NLSs, we optimized the NIR OT for light-controlled gene expression for lower background and higher contrast in neurons. The selected NLSs binding importins abundant in neurons could improve performance of genetically encoded tools in these cells, including OTs and gene-editing tools.
Collapse
Affiliation(s)
- Maksim M. Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikhail Baloban
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V. Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daria M. Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
13
|
Li N, Gao Y, Li B, Gao D, Geng H, Li S, Xing C. Remote Manipulation of ROS-Sensitive Calcium Channel Using Near-Infrared-Responsive Conjugated Oligomer Nanoparticles for Enhanced Tumor Therapy In Vivo. NANO LETTERS 2022; 22:5427-5433. [PMID: 35759348 DOI: 10.1021/acs.nanolett.2c01472] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of reactive oxygen species (ROS)-sensitive calcium (Ca2+) channels is of great significance in the treatment of tumors. Here, a simple ROS generation system is developed to activate ROS-sensitive ion channels for enhancing calcium-cascade-mediated tumor cell death under near-infrared (NIR) light irradiation. Upon irradiation with an 808 nm laser, a low-lethality amount of ROS facilitates plasmid transient potential receptor melastatin-2 (pTRPM2) gene release via cleavage of the Se-Se bonds, which contributed to enhancing the expression of TRPM2 in tumor cells. Meanwhile, ROS could potently activate TRPM2 for Ca2+ influx to inhibit early autophagy and to further induce intracellular ROS production, which ultimately led to cell death in TRPM2 expressing tumor cells. Both in vitro and in vivo data show that nanoparticles have an excellent therapeutic effect on cancer upon NIR light. This work presents a simple modality based on NIR light to remotely control the ROS-sensitive ion channel for cancer therapy.
Collapse
Affiliation(s)
- Ning Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, PR China
| | - Boying Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Dong Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, PR China
| | - Hao Geng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, PR China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
14
|
Jazbec V, Jerala R, Benčina M. Proteolytically Activated CRAC Effectors through Designed Intramolecular Inhibition. ACS Synth Biol 2022; 11:2756-2765. [PMID: 35802180 PMCID: PMC9396659 DOI: 10.1021/acssynbio.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Highly regulated intracellular calcium entry affects
numerous cellular
physiological events. External regulation of intracellular calcium
signaling presents a great opportunity for the artificial regulation
of cellular activity. Calcium entry can be mediated by STIM proteins
interacting with Orai calcium channels; therefore, the STIM1–Orai1
pair has become a tool for artificially modulating calcium entry.
We report on an innovative genetically engineered protease-activated
Orai activator called PACE. CAD self-dimerization and activation were
inhibited with a coiled-coil forming peptide pair linked to CAD via
a protease cleavage site. PACE generated sustained calcium entry after
its activation with a reconstituted split protease. We also generated
PACE, whose transcriptional activation of NFAT was triggered by PPV
or TEV protease. Using PACE, we successfully activated the native
NFAT signaling pathway and the production of cytokines in a T-cell
line. PACE represents a useful tool for generating sustained calcium
entry to initiate calcium-dependent protein translation. PACE provides
a promising template for the construction of links between various
protease activation pathways and calcium signaling.
Collapse
Affiliation(s)
- Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Tan P, Hong T, Cai X, Li W, Huang Y, He L, Zhou Y. Optical control of protein delivery and partitioning in the nucleolus. Nucleic Acids Res 2022; 50:e69. [PMID: 35325178 PMCID: PMC9262612 DOI: 10.1093/nar/gkac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
The nucleolus is a subnuclear membraneless compartment intimately involved in ribosomal RNA synthesis, ribosome biogenesis and stress response. Multiple optogenetic devices have been developed to manipulate nuclear protein import and export, but molecular tools tailored for remote control over selective targeting or partitioning of cargo proteins into subnuclear compartments capable of phase separation are still limited. Here, we report a set of single-component photoinducible nucleolus-targeting tools, designated pNUTs, to enable rapid and reversible nucleoplasm-to-nucleolus shuttling, with the half-lives ranging from milliseconds to minutes. pNUTs allow both global protein infiltration into nucleoli and local delivery of cargoes into the outermost layer of the nucleolus, the granular component. When coupled with the amyotrophic lateral sclerosis (ALS)-associated C9ORF72 proline/arginine-rich dipeptide repeats, pNUTs allow us to photomanipulate poly-proline-arginine nucleolar localization, perturb nucleolar protein nucleophosmin 1 and suppress nascent protein synthesis. pNUTs thus expand the optogenetic toolbox by permitting light-controllable interrogation of nucleolar functions and precise induction of ALS-associated toxicity in cellular models.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tingting Hong
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Xiaoli Cai
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
16
|
Gidon A, Aru J, Larkum ME. Does brain activity cause consciousness? A thought experiment. PLoS Biol 2022; 20:e3001651. [PMID: 35687582 PMCID: PMC9187086 DOI: 10.1371/journal.pbio.3001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rapid advances in neuroscience have provided remarkable breakthroughs in understanding the brain on many fronts. Although promising, the role of these advancements in solving the problem of consciousness is still unclear. Based on technologies conceivably within the grasp of modern neuroscience, we discuss a thought experiment in which neural activity, in the form of action potentials, is initially recorded from all the neurons in a participant's brain during a conscious experience and then played back into the same neurons. We consider whether this artificial replay can reconstitute a conscious experience. The possible outcomes of this experiment unravel hidden costs and pitfalls in understanding consciousness from the neurosciences' perspective and challenge the conventional wisdom that causally links action potentials and consciousness.
Collapse
Affiliation(s)
- Albert Gidon
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Matthew Evan Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
18
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
19
|
Grüneboom A, Aust O, Cibir Z, Weber F, Hermann DM, Gunzer M. Imaging innate immunity. Immunol Rev 2021; 306:293-303. [PMID: 34837251 DOI: 10.1111/imr.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.
Collapse
Affiliation(s)
- Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Oliver Aust
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.,Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Córdova C, Lozano C, Rodríguez B, Marchant I, Zúñiga R, Ochova P, Olivero P, González-Arriagada WA. Optogenetic control of cancer cell survival in ChR2-transfected HeLa cells. Int J Exp Pathol 2021; 102:242-248. [PMID: 34791724 DOI: 10.1111/iep.12426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Optogenetics is a molecular biological technique involving transfection of cells with photosensitive proteins and the subsequent study of their biological effects. The aim of this study was to evaluate the effect of blue light on the survival of HeLa cells, transfected with channelrhodopsin-2 (ChR2). HeLa wild-type cells were transfected with a plasmid that contained the gene for ChR2. Transfection and channel function were evaluated by real-time polymerase chain reaction (RT-PCR), fluorescence imaging using green fluorescent protein (GFP) and flow cytometry for intracellular calcium changes using a Fura Red probe. We developed a platform for optogenetic stimulation for use within the cell culture incubator. Different stimulation procedures using blue light (467 nm) were applied for up to 24 h. Cell survival was determined by flow cytometry using propidium iodide and rhodamine probes. Change in cell survival showed a statistically significant (p < 0.05) inverse association with the frequency and time of application of the light stimulus. This change seemed to be associated with the ChR2 cis-trans-isomerization cycle. Cell death was associated with high concentrations of calcium in the cytoplasm and stimulation intervals less than the period of isomerization. It is possible to transfect HeLa cells with ChR2 and control their survival under blue light stimulation. We suggest that this practice should be considered in the future development of optogenetic systems in biological or biomedical research.
Collapse
Affiliation(s)
- Claudio Córdova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlo Lozano
- Servicio de Anatomía Patológica, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Belén Rodríguez
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Ivanny Marchant
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Zúñiga
- Servicio de Anatomía Patológica, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Paola Ochova
- Servicio de Anatomía Patológica, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Pablo Olivero
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Wilfredo Alejandro González-Arriagada
- Oral and Maxillofacial Pathology, Facultad de Odontología, Universidad de Los Andes, Las Condes, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de Los Andes, Las Condes, Chile
| |
Collapse
|
21
|
He L, Huang Z, Huang K, Chen R, Nguyen NT, Wang R, Cai X, Huang Z, Siwko S, Walker JR, Han G, Zhou Y, Jing J. Optogenetic Control of Non-Apoptotic Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100424. [PMID: 34540558 PMCID: PMC8438606 DOI: 10.1002/advs.202100424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/20/2023]
Abstract
Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zixian Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Kai Huang
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Rui Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Nhung T. Nguyen
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Rui Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Xiaoli Cai
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zhiquan Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Stefan Siwko
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | | | - Gang Han
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Yubin Zhou
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyDepartment of Translational Medical SciencesCollege of MedicineTexas A&M UniversityHoustonTX77030USA
| | - Ji Jing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| |
Collapse
|
22
|
Lee YT, Chen R, Zhou Y, He L. Optogenetic control of calcium influx in mammalian cells. Methods Enzymol 2021; 654:255-270. [PMID: 34120716 DOI: 10.1016/bs.mie.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Optogenetics combines optics and genetics to enable non-invasive interrogation of cell physiology at an unprecedented high spatiotemporal resolution. Here, we introduce Opto-CRAC as a set of genetically-encoded calcium actuators (GECAs) engineered from the calcium release-activated calcium (CRAC) channel, which has been tailored for optical control of calcium entry and calcium-dependent physiological responses in non-excitable cells and tissues. We describe a detailed protocol for applying Opto-CRAC as an optogenetic tool to achieve photo-tunable control over intracellular calcium signals and calcium-dependent gene expression in mammalian cells.
Collapse
Affiliation(s)
- Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Rui Chen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.
| |
Collapse
|
23
|
He L, Wang L, Zeng H, Tan P, Ma G, Zheng S, Li Y, Sun L, Dou F, Siwko S, Huang Y, Wang Y, Zhou Y. Engineering of a bona fide light-operated calcium channel. Nat Commun 2021; 12:164. [PMID: 33431868 PMCID: PMC7801460 DOI: 10.1038/s41467-020-20425-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
The current optogenetic toolkit lacks a robust single-component Ca2+-selective ion channel tailored for remote control of Ca2+ signaling in mammals. Existing tools are either derived from engineered channelrhodopsin variants without strict Ca2+ selectivity or based on the stromal interaction molecule 1 (STIM1) that might crosstalk with other targets. Here, we describe the design of a light-operated Ca2+ channel (designated LOCa) by inserting a plant-derived photosensory module into the intracellular loop of an engineered ORAI1 channel. LOCa displays biophysical features reminiscent of the ORAI1 channel, which enables precise optical control over Ca2+ signals and hallmark Ca2+-dependent physiological responses. Furthermore, we demonstrate the use of LOCa to modulate aberrant hematopoietic stem cell self-renewal, transcriptional programming, cell suicide, as well as neurodegeneration in a Drosophila model of amyloidosis. Existing optogenetic methods to induce calcium mobilisation lack selectivity and specificity. Here, the authors design and engineer a single-component light-operated calcium channel to provide optical control over calcium signals and calcium-dependent physiological responses: LOCa.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongxiang Zeng
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yaxin Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
24
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
Sharma V, Rana R, Baksi R, Borse SP, Nivsarkar M. Light-controlled calcium signalling in prostate cancer and benign prostatic hyperplasia. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Identifying ways to reduce the burden of prostate cancer (Pca) or benign prostatic hyperplasia (BPH) is a top research priority. It is a typical entanglement seen in men which is portrayed by trouble in micturition. It stands as a significant problem in our society. Different molecular biomarker has high potential to treat Pca or BPH but also causes serious side effects during treatment.
Main text
The role of calcium signalling in the alteration of different biomarkers of Pca or BPH is important. Therefore, the photoswitch drugs may hold the potential to rebalance the altered calcium signaling cascade and the biomarker levels. Thereby play a significant role in the management of Pca and BPH. Online literature searches such as PubMed, Web of Science, Scopus, and Google Scholar were carried out. The search terms used for this review were photo-pharmacology, photo-switch drug, photodynamic therapy, calcium signalling, etc. Present treatment of Pca or BPH shows absence of selectivity and explicitness which may additionally result in side effects. The new condition of the calcium flagging may offer promising outcomes in restoring the present issues related with prostate malignancy and BPH treatment.
Conclusion
The light-switching calcium channel blockers aim to solve this issue by incorporating photo-switchable calcium channel blockers that may control the signalling pathway related to proliferation and metastasis in prostate cancer without any side effects.
Graphical abstract
Schematic diagram explaining the proposed role of photo-switch therapy in curbing the side effects of active drugs in Pca (prostate cancer) and BPH (benign prostatic hyperplasia). a) Delivery of medication by ordinary strategies and irreversible phototherapy causes side effects during treatment. Utilization of photo-switch drug to control the dynamic and inert condition of the medication can cause the medication impacts as we required in prostate cancer and BPH. b) Support of harmony between the calcium signaling is essential to guarantee ordinary physiology. Increment or abatement in the dimensions of calcium signaling can result in changed physiology. c) Major factors involved in the pathogenesis of BPH; downregulation of vitamin D receptor (VDR) and histone deacetylase (HDAC) can prevent BPH. Similarly, downregulation of α-1 adrenoceptor can reduce muscle contraction, while overexpression of β-3 adrenoceptor in BPH can promote further muscle relaxation in BPH treatment therapy. Inhibition of overexpressed biomarkers in BPH TRPM2-1: transient receptor potential cation channel subfamily M member 1; TRPM2-2: transient receptor potential cation channel subfamily M member 2; Androgens; CXCL5: C-X-C motif chemokine ligand 5; TGFβ-1: transforming growth factor β-1; TXA2; thromboxane-2; NMDA: N-methyl-d-aspartate can be the potential target in BPH therapy.
Collapse
|
26
|
Verbič A, Praznik A, Jerala R. A guide to the design of synthetic gene networks in mammalian cells. FEBS J 2020; 288:5265-5288. [PMID: 33289352 DOI: 10.1111/febs.15652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Synthetic biology aims to harness natural and synthetic biological parts and engineering them in new combinations and systems, producing novel therapies, diagnostics, bioproduction systems, and providing information on the mechanism of function of biological systems. Engineering cell function requires the rewiring or de novo construction of cell information processing networks. Using natural and synthetic signal processing elements, researchers have demonstrated a wide array of signal sensing, processing and propagation modules, using transcription, translation, or post-translational modification to program new function. The toolbox for synthetic network design is ever-advancing and has still ample room to grow. Here, we review the diversity of synthetic gene networks, types of building modules, techniques of regulation, and their applications.
Collapse
Affiliation(s)
- Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Arne Praznik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
27
|
Hongdusit A, Liechty ET, Fox JM. Optogenetic interrogation and control of cell signaling. Curr Opin Biotechnol 2020; 66:195-206. [PMID: 33053496 DOI: 10.1016/j.copbio.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023]
Abstract
Signaling networks control the flow of information through biological systems and coordinate the chemical processes that constitute cellular life. Optogenetic actuators - genetically encoded proteins that undergo light-induced changes in activity or conformation - are useful tools for probing signaling networks over time and space. They have permitted detailed dissections of cellular proliferation, differentiation, motility, and death, and enabled the assembly of synthetic systems with applications in areas as diverse as photography, chemical synthesis, and medicine. In this review, we provide a brief introduction to optogenetic systems and describe their application to molecular-level analyses of cell signaling. Our discussion highlights important research achievements and speculates on future opportunities to exploit optogenetic systems in the study and assembly of complex biochemical networks.
Collapse
Affiliation(s)
- Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA.
| |
Collapse
|
28
|
Abstract
Store-operated calcium entry (SOCE) through Orai ion channels is an intracellular signaling pathway that is initiated by ligand-induced depletion of calcium from the endoplasmic reticulum (ER) store. The molecular link between SOCE and ER store depletion is thereby provided by a distinct class of single pass ER transmembrane proteins known as stromal interaction molecules (STIM). STIM proteins are equipped with a precise N-terminal calcium sensing domain that enables them to react to changes of the ER luminal calcium concentration. Additionally, a C-terminal coiled-coil domain permits relaying of signals to Orai ion channels via direct physical interaction. In this review, we provide a brief introduction to STIM proteins with a focus on structure and function and give an overview of recent developments in the field of STIM research.
Collapse
Affiliation(s)
- Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| |
Collapse
|
29
|
Meško M, Lebar T, Dekleva P, Jerala R, Benčina M. Engineering and Rewiring of a Calcium-Dependent Signaling Pathway. ACS Synth Biol 2020; 9:2055-2065. [PMID: 32643923 PMCID: PMC7467823 DOI: 10.1021/acssynbio.0c00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
An important feature of synthetic
biological circuits is their
response to physicochemical signals, which enables the external control
of cellular processes. Calcium-dependent regulation is an attractive
approach for achieving such control, as diverse stimuli induce calcium
influx by activating membrane channel receptors. Most calcium-dependent
gene circuits use the endogenous nuclear factor of activated T-cells
(NFAT) signaling pathway. Here, we employed engineered NFAT transcription
factors to induce the potent and robust activation of exogenous gene
expression in HEK293T cells. Furthermore, we designed a calcium-dependent
transcription factor that does not interfere with NFAT-regulated promoters
and potently activates transcription in several mammalian cell types.
Additionally, we demonstrate that coupling the circuit to a calcium-selective
ion channel resulted in capsaicin- and temperature-controlled gene
expression. This engineered calcium-dependent signaling pathway enables
tightly controlled regulation of gene expression through different
stimuli in mammalian cells and is versatile, adaptable, and useful
for a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Maja Meško
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Petra Dekleva
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Yu Y, Yang X, Reghu S, Kaul SC, Wadhwa R, Miyako E. Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nat Commun 2020; 11:4117. [PMID: 32807785 PMCID: PMC7431860 DOI: 10.1038/s41467-020-17768-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Strategies for eradicating cancer stem cells (CSCs) are urgently required because CSCs are resistant to anticancer drugs and cause treatment failure, relapse and metastasis. Here, we show that photoactive functional nanocarbon complexes exhibit unique characteristics, such as homogeneous particle morphology, high water dispersibility, powerful photothermal conversion, rapid photoresponsivity and excellent photothermal stability. In addition, the present biologically permeable second near-infrared (NIR-II) light-induced nanocomplexes photo-thermally trigger calcium influx into target cells overexpressing the transient receptor potential vanilloid family type 2 (TRPV2). This combination of nanomaterial design and genetic engineering effectively eliminates cancer cells and suppresses stemness of cancer cells in vitro and in vivo. Finally, in molecular analyses of mechanisms, we show that inhibition of cancer stemness involves calcium-mediated dysregulation of the Wnt/β-catenin signalling pathway. The present technological concept may lead to innovative therapies to address the global issue of refractory cancers. Cancer stem cells (CSCs) are known to induce chemotherapy resistance, and cause tumour relapse and metastasis. Here, the authors develop photoactive nanocarbon complexes with second near-infrared photothermal ability to target cancer cells overexpressing the receptor TRPV2 and show it to suppress CSCs through dysregulation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yue Yu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda, 563-8577, Japan
| | - Xi Yang
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sheethal Reghu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
31
|
Nguyen NT, Ma G, Zhou Y, Jing J. Optogenetic approaches to control Ca 2+-modulated physiological processes. CURRENT OPINION IN PHYSIOLOGY 2020; 17:187-196. [PMID: 33184610 DOI: 10.1016/j.cophys.2020.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As a versatile intracellular second messenger, calcium ion (Ca2+) regulates a plethora of physiological processes. To achieve precise control over Ca2+ signals in living cells and organisms, a set of optogenetic tools have recently been crafted by engineering photosensitive domains into intracellular signaling proteins, G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), and Ca2+ channels. We highlight herein the optogenetic engineering strategies, kinetic properties, advantages and limitations of these genetically-encoded Ca2+ channel actuators (GECAs) and modulators. In parallel, we present exemplary applications in both excitable and non-excitable cells and tissues. Furthermore, we briefly discuss potential solutions for wireless optogenetics to accelerate the in vivo applications of GECAs under physiological conditions, with an emphasis on integrating near-infrared (NIR) light-excitable upconversion nanoparticles (UCNPs) and bioluminescence with optogenetics.
Collapse
Affiliation(s)
- Nhung T Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
32
|
Ma G, Zhou Y. A STIMulating journey into optogenetic engineering. Cell Calcium 2020; 88:102197. [PMID: 32402855 PMCID: PMC7609480 DOI: 10.1016/j.ceca.2020.102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 01/27/2023]
Abstract
Genetically-encoded calcium actuators (GECAs) stemmed from STIM1 have enabled optical activation of endogenous ORAI1 channels in both excitable and non-excitable tissues. These GECAs offer new non-invasive means to probe the structure-function relations of calcium channels and wirelessly control the behavior of awake mice.
Collapse
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Yang X, Ma G, Zheng S, Qin X, Li X, Du L, Wang Y, Zhou Y, Li M. Optical Control of CRAC Channels Using Photoswitchable Azopyrazoles. J Am Chem Soc 2020; 142:9460-9470. [DOI: 10.1021/jacs.0c02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
34
|
Bohineust A, Garcia Z, Corre B, Lemaître F, Bousso P. Optogenetic manipulation of calcium signals in single T cells in vivo. Nat Commun 2020; 11:1143. [PMID: 32123168 PMCID: PMC7051981 DOI: 10.1038/s41467-020-14810-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
By offering the possibility to manipulate cellular functions with spatiotemporal control, optogenetics represents an attractive tool for dissecting immune responses. However, applying these approaches to single cells in vivo remains particularly challenging for immune cells that are typically located in scattering tissues. Here, we introduce an improved calcium actuator with sensitivity allowing for two-photon photoactivation. Furthermore, we identify an actuator/reporter combination that permits the simultaneous manipulation and visualization of calcium signals in individual T cells in vivo. With this strategy, we document the consequences of defined patterns of calcium signals on T cell migration, adhesion, and chemokine release. Manipulation of individual immune cells in vivo should open new avenues for establishing the functional contribution of single immune cells engaged in complex reactions. The ability to manipulate and monitor calcium signaling in cells in vivo would provide insights into signaling in an endogenous context. Here the authors develop a two-photon-responsive calcium actuator and reporter combination to monitor the effect of calcium actuation on T cell migration, adhesion and chemokine release in vivo.
Collapse
Affiliation(s)
- Armelle Bohineust
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Béatrice Corre
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France.
| |
Collapse
|
35
|
Ma G, He L, Liu S, Xie J, Huang Z, Jing J, Lee YT, Wang R, Luo H, Han W, Huang Y, Zhou Y. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat Commun 2020; 11:1039. [PMID: 32098964 PMCID: PMC7042325 DOI: 10.1038/s41467-020-14841-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically encoded photoswitches have enabled spatial and temporal control of cellular events to achieve tailored functions in living cells, but their applications to probe the structure-function relations of signaling proteins are still underexplored. We illustrate herein the incorporation of various blue light-responsive photoreceptors into modular domains of the stromal interaction molecule 1 (STIM1) to manipulate protein activity and faithfully recapitulate STIM1-mediated signaling events. Capitalizing on these optogenetic tools, we identify the molecular determinants required to mediate protein oligomerization, intramolecular conformational switch, and protein-target interactions. In parallel, we have applied these synthetic devices to enable light-inducible gating of calcium channels, conformational switch, dynamic protein-microtubule interactions and assembly of membrane contact sites in a reversible manner. Our optogenetic engineering approach can be broadly applied to aid the mechanistic dissection of cell signaling, as well as non-invasive interrogation of physiological processes with high precision. Optogenetic tools have been used to control cellular behaviours but their use to probe structure-function relations of signalling proteins are underexplored. Here the authors engineer optogenetic modules into STIM1 to dissect molecular details of STIM1-mediated signalling and control various cellular events.
Collapse
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Shuzhong Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiansheng Xie
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zixian Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Rui Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Hesheng Luo
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weidong Han
- Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Mansouri M, Lichtenstein S, Strittmatter T, Buchmann P, Fussenegger M. Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells. Methods Mol Biol 2020; 2173:189-199. [PMID: 32651919 DOI: 10.1007/978-1-0716-0755-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian cells can be engineered to incorporate light-responsive elements that reliably sense stimulation by light and activate endogenous pathways, such as the cAMP or Ca2+ pathway, to control gene expression. Light-inducible gene expression systems offer high spatiotemporal resolution, and are also traceless, reversible, tunable, and inexpensive. Melanopsin, a well-known representative of the animal opsins, is a G-protein-coupled receptor that triggers a Gαq-dependent signaling cascade upon activation with blue light (≈470 nm). Here, we describe how to rewire melanopsin activation by blue light to transgene expression in mammalian cells, with detailed instructions for constructing a 96-LED array platform with multiple tunable parameters for illumination of the engineered cells in multiwell plates.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Samson Lichtenstein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
37
|
Surana S, Villarroel‐Campos D, Lazo OM, Moretto E, Tosolini AP, Rhymes ER, Richter S, Sleigh JN, Schiavo G. The evolution of the axonal transport toolkit. Traffic 2019; 21:13-33. [DOI: 10.1111/tra.12710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - David Villarroel‐Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Edoardo Moretto
- UK Dementia Research InstituteUniversity College London London UK
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Sandy Richter
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
- Discoveries Centre for Regenerative and Precision MedicineUniversity College London London UK
| |
Collapse
|
38
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
39
|
Zhao B, Wang Y, Tan X, Zheng X, Wang F, Ke K, Zhang C, Liao N, Dang Y, Shi Y, Zheng Y, Gao Y, Li Q, Liu X, Liu J. An Optogenetic Controllable T Cell System for Hepatocellular Carcinoma Immunotherapy. Theranostics 2019; 9:1837-1850. [PMID: 31037142 PMCID: PMC6485282 DOI: 10.7150/thno.27051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: T-cell based immunotherapy increasingly shows broad application prospects in cancer treatment, but its performance in solid tumors is far from our expectation, partly due to the re-inhibition of infiltrated T cells by immunosuppressive tumor microenvironment. Here we presented an artificial synthetic optogenetic circuit to control the immune responses of engineered T cells on demand for promoting and enhancing the therapeutic efficiency of cancer immunotherapy. Methods: We designed and synthesized blue-light inducible artificial immune signaling circuit and transgene expression system. The blue light triggered transgene expression was investigated by luciferase activity assay, qPCR and ELISA. The in vitro cytotoxicity and proliferation assays were carried out on engineered T cells. The in vivo anti-tumor activity of engineered T cells was investigated on xenograft model of human hepatocellular carcinoma. Results: Blue light stimulation could spatiotemporally control gene expression of specific cytokines (IL2, IL15, and TNF-α) in both engineered 293T cells and human primary T cells. This optogenetic engineering strategy significantly enhanced the expansion ability and cytolytic activity of primary T cells upon light irradiation, and the light activated T cells showed high-efficiency of elimination against xenograft of hepatocellular carcinoma cells. Conclusions: The current study represented an engineered remotely control T cell system for solid tumor treatment, and provided a potential strategy to partially overcome the intrinsic shortages of current immune cell therapy.
Collapse
Affiliation(s)
- Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xionghong Tan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yuan Dang
- Department of Comparative, Fuzhou General Hospital, Xiamen University Medical College, 156 Road Xi'erhuanbei, Fuzhou 350025, Fujian, P.R. China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yunzhen Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Qin Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
40
|
Mansouri M, Strittmatter T, Fussenegger M. Light-Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800952. [PMID: 30643713 PMCID: PMC6325585 DOI: 10.1002/advs.201800952] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Indexed: 05/12/2023]
Abstract
The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology-inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light-controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non-neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light-sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light-controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
- Faculty of ScienceUniversity of BaselMattenstrasse 26CH‐4058BaselSwitzerland
| |
Collapse
|
41
|
Roux-Osovitz MM, Foltz KR, Oulhen N, Wessel G. Trapping, tagging and tracking: Tools for the study of proteins during early development of the sea urchin. Methods Cell Biol 2019; 151:283-304. [PMID: 30948012 PMCID: PMC7549693 DOI: 10.1016/bs.mcb.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2024]
Abstract
The exquisite synchronicity of sea urchin development provides a reliable model for studying maternal proteins in the haploid egg as well as those involved in egg activation, fertilization and early development. Sea urchin eggs are released by the millions, enabling the quantitative evaluation of maternally stored and newly synthesized proteins over a range of time (seconds to hours post fertilization). During this window of development exist many hallmark and unique biochemical interactions that can be investigated for the purpose of characterizing profiles of kinases and other signaling proteins, manipulated using pharmacology to test sufficiency and necessity, for identification of post translational modifications, and for capturing protein-protein interactions. Coupled with the fact that sea urchin eggs and embryos are transparent, this synchronicity also results in large populations of cells that can be evaluated for newly synthesized protein localization and identification through use of the Click-iT technology. We provide basic protocols for these approaches and direct readers to the appropriate literature for variations and examples.
Collapse
Affiliation(s)
| | - Kathy R Foltz
- Department of Molecular, Cellular and Developmental Biology and Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, United States
| | - Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Gary Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
42
|
Nguyen NT, Ma G, Lin E, D'Souza B, Jing J, He L, Huang Y, Zhou Y. CRAC channel-based optogenetics. Cell Calcium 2018; 75:79-88. [PMID: 30199756 DOI: 10.1016/j.ceca.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023]
Abstract
Store-operated Ca²+ entry (SOCE) constitutes a major Ca2+ influx pathway in mammals to regulate a myriad of physiological processes, including muscle contraction, synaptic transmission, gene expression, and metabolism. In non-excitable cells, the Ca²+ release-activated Ca²+ (CRAC) channel, composed of ORAI and stromal interaction molecules (STIM), constitutes a prototypical example of SOCE to mediate Ca2+ entry at specialized membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and the plasma membrane (PM). The key steps of SOCE activation include the oligomerization of the luminal domain of the ER-resident Ca2+ sensor STIM1 upon Ca²+ store depletion, subsequent signal propagation toward the cytoplasmic domain to trigger a conformational switch and overcome the intramolecular autoinhibition, and ultimate exposure of the minimal ORAI-activating domain to directly engage and gate ORAI channels in the plasma membrane. This exquisitely coordinated cellular event is also facilitated by the C-terminal polybasic domain of STIM1, which physically associates with negatively charged phosphoinositides embedded in the inner leaflet of the PM to enable efficient translocation of STIM1 into ER-PM MCSs. Here, we present recent progress in recapitulating STIM1-mediated SOCE activation by engineering CRAC channels with optogenetic approaches. These STIM1-based optogenetic tools make it possible to not only mechanistically recapture the key molecular steps of SOCE activation, but also remotely and reversibly control Ca²+-dependent cellular processes, inter-organellar tethering at MCSs, and transcriptional reprogramming when combined with CRISPR/Cas9-based genome-editing tools.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Eena Lin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Brendan D'Souza
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX 76504, USA.
| |
Collapse
|
43
|
Ma G, Liu J, Nguyen NT, Zhou Y, Wang Y. Let there be light: a bright future for Ca 2+ signaling. Sci Bull (Beijing) 2018; 63:1029-1031. [PMID: 36755452 DOI: 10.1016/j.scib.2018.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Jindou Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Nhung T Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
44
|
Duan L, Hope JM, Guo S, Ong Q, François A, Kaplan L, Scherrer G, Cui B. Optical Activation of TrkA Signaling. ACS Synth Biol 2018; 7:1685-1693. [PMID: 29975841 DOI: 10.1021/acssynbio.8b00126] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nerve growth factor/tropomyosin receptor kinase A (NGF/TrkA) signaling plays a key role in neuronal development, function, survival, and growth. The pathway is implicated in neurodegenerative disorders including Alzheimer's disease, chronic pain, inflammation, and cancer. NGF binds the extracellular domain of TrkA, leading to the activation of the receptor's intracellular kinase domain. As TrkA signaling is highly dynamic, mechanistic studies would benefit from a tool with high spatial and temporal resolution. Here we present the design and evaluation of four strategies for light-inducible activation of TrkA in the absence of NGF. Our strategies involve the light-sensitive protein Arabidopsis cryptochrome 2 and its binding partner CIB1. We demonstrate successful recapitulation of native NGF/TrkA functions by optical induction of plasma membrane recruitment and homo-interaction of the intracellular domain of TrkA. This approach activates PI3K/AKT and Raf/ERK signaling pathways, promotes neurite growth in PC12 cells, and supports survival of dorsal root ganglion neurons in the absence of NGF. This ability to activate TrkA using light bestows high spatial and temporal resolution for investigating NGF/TrkA signaling.
Collapse
Affiliation(s)
- Liting Duan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jen M. Hope
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Shunling Guo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Palo Alto, California 94304, United States
| | - Luke Kaplan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Palo Alto, California 94304, United States
- Robertson Investigator, New York Stem Cell Foundation, New York, New York 10019, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
45
|
Arroyo-Olarte RD, Thurow L, Kozjak-Pavlovic V, Gupta N. Illuminating pathogen-host intimacy through optogenetics. PLoS Pathog 2018; 14:e1007046. [PMID: 30001435 PMCID: PMC6042787 DOI: 10.1371/journal.ppat.1007046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The birth and subsequent evolution of optogenetics has resulted in an unprecedented advancement in our understanding of the brain. Its outstanding success does usher wider applications; however, the tool remains still largely relegated to neuroscience. Here, we introduce selected aspects of optogenetics with potential applications in infection biology that will not only answer long-standing questions about intracellular pathogens (parasites, bacteria, viruses) but also broaden the dimension of current research in entwined models. In this essay, we illustrate how a judicious integration of optogenetics with routine methods can illuminate the host–pathogen interactions in a way that has not been feasible otherwise.
Collapse
Affiliation(s)
- Ruben Dario Arroyo-Olarte
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Laura Thurow
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- * E-mail:
| |
Collapse
|
46
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Optogenetic Control of Voltage-Gated Calcium Channels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Ma G, Zheng S, Ke Y, Zhou L, He L, Huang Y, Wang Y, Zhou Y. Molecular Determinants for STIM1 Activation During Store- Operated Ca2+ Entry. Curr Mol Med 2018; 17:60-69. [PMID: 28231751 DOI: 10.2174/1566524017666170220103731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND STIM/ORAI-mediated store-operated Ca2+ entry (SOCE) mediates a myriad of Ca2+-dependent cellular activities in mammals. Genetic defects in STIM1/ORAI1 lead to devastating severe combined immunodeficiency; whereas gain-offunction mutations in STIM1/ORAI1 are intimately associated with tubular aggregate myopathy. At molecular level, a decrease in the Ca2+ concentrations within the lumen of endoplasmic reticulum (ER) initiates multimerization of the STIM1 luminal domain to switch on the STIM1 cytoplasmic domain to engage and gate ORAI channels, thereby leading to the ultimate Ca2+ influx from the extracellular space into the cytosol. Despite tremendous progress made in dissecting functional STIM1-ORAI1 coupling, the activation mechanism of SOCE remains to be fully characterized. OBJECTIVE AND METHODS Building upon a robust fluorescence resonance energy transfer assay designed to monitor STIM1 intramolecular autoinhibition, we aimed to systematically dissect the molecular determinants required for the activation and oligomerization of STIM1. RESULTS Here we showed that truncation of the STIM1 luminal domain predisposes STIM1 to adopt a more active conformation. Replacement of the single transmembrane (TM) domain of STIM1 by a more rigid dimerized TM domain of glycophorin A abolished STIM1 activation. But this adverse effect could be partially reversed by disrupting the TM dimerization interface. Moreover, our study revealed regions that are important for the optimal assembly of hetero-oligomers composed of full-length STIM1 with its minimal STIM1-ORAI activating region, SOAR. CONCLUSIONS Our study clarifies the roles of major STIM1 functional domains in maintaining a quiescent configuration of STIM1 to prevent preactivation of SOCE.
Collapse
Affiliation(s)
- G Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - S Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875. China
| | - Y Ke
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - L Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875. China
| | - L He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - Y Huang
- Center for Epigenetic and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - Y Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030. United States
| | - Y Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030. United States
| |
Collapse
|
49
|
Ma G, Liu J, Ke Y, Liu X, Li M, Wang F, Han G, Huang Y, Wang Y, Zhou Y. Optogenetic Control of Voltage-Gated Calcium Channels. Angew Chem Int Ed Engl 2018; 57:7019-7022. [PMID: 29569306 PMCID: PMC6032918 DOI: 10.1002/anie.201713080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 11/11/2022]
Abstract
Voltage‐gated Ca2+ (CaV) channels mediate Ca2+ entry into excitable cells to regulate a myriad of cellular events following membrane depolarization. We report the engineering of RGK GTPases, a class of genetically encoded CaV channel modulators, to enable photo‐tunable modulation of CaV channel activity in excitable mammalian cells. This optogenetic tool (designated optoRGK) tailored for CaV channels could find broad applications in interrogating a wide range of CaV‐mediated physiological processes.
Collapse
Affiliation(s)
- Guolin Ma
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Jindou Liu
- Beijing Key Laboratory of Gene Resource and Molecular, Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuepeng Ke
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Xin Liu
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Fen Wang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular, Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, 2121 W Holcombe Blvd, Houston, TX, 77030, USA.,Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX, 76504, USA
| |
Collapse
|
50
|
Nguyen NT, He L, Martinez-Moczygemba M, Huang Y, Zhou Y. Rewiring Calcium Signaling for Precise Transcriptional Reprogramming. ACS Synth Biol 2018; 7:814-821. [PMID: 29489336 DOI: 10.1021/acssynbio.7b00467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tools capable of modulating gene expression in living organisms are very useful for interrogating the gene regulatory network and controlling biological processes. The catalytically inactive CRISPR/Cas9 (dCas9), when fused with repressive or activating effectors, functions as a versatile platform to reprogram gene transcription at targeted genomic loci. However, without temporal control, the application of these reprogramming tools will likely cause off-target effects and lack strict reversibility. To overcome this limitation, we report herein the development of a chemical or light-inducible transcriptional reprogramming device that combines photoswitchable genetically encoded calcium actuators with dCas9 to control gene expression. By fusing an engineered Ca2+-responsive NFAT fragment with dCas9 and transcriptional coactivators, we harness the power of light to achieve photoinducible transcriptional reprogramming in mammalian cells. This synthetic system (designated CaRROT) can also be used to document calcium-dependent activity in mammals after exposure to ligands or chemicals that would elicit calcium response inside cells.
Collapse
|