1
|
Lin P, Shi J, Liu L, Wang J, Yang Z, Sun X, Hong M, Zhang Y. Spatial confinement growth of high-performance persistent luminescence nanoparticles for image-guided sonodynamic therapy. Acta Biomater 2024:S1742-7061(24)00721-9. [PMID: 39644942 DOI: 10.1016/j.actbio.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have significant potential in diagnostic and therapeutic applications owing to their unique persistent luminescence (PersL). However, obtaining high-performance NIR PLNPs remains challenging because of the limitations of current synthesis methods. Herein, we introduce a spatial confinement growth strategy for synthesizing high-performance NIR PLNPs using hollow mesoporous silica (hmSiO2). By calcining precursor ions in the hollow cavity, the yolk size of NIR PLNPs was regulated, yielding well-dispersed Zn1.3Ga1.4Sn0.3O4: Cr0.005, Y0.003@hmSiO2 (ZS) with a yolk-shell structure. Compared to the conventional template method, ZS synthesized via the spatial confinement growth strategy exhibited a 7.7-fold increase in PersL intensity and a threefold increase in specific surface area. As a proof of concept, ZS@PpIX@CaP-AMD (ZPSC-AMD) nanoparticles, with potential for sonodynamic therapy (SDT), were synthesized by loading the sonosensitizer protoporphyrin IX (PpIX) into ZS, coating it with a calcium phosphate (CaP) shell, and modifying it with a tumor-targeting molecule plerixafor (AMD-3100). The tumor enrichment behavior of ZPSC-AMD was monitored by sensitive NIR PersL to guide SDT. Simultaneously, ZPSC-AMD enabled the precise monitoring of tumor accumulation, thereby guiding effective SDT. In addition, Ca2+ released from CaP degradation increased the level of reactive oxygen species during SDT, promoting tumor cell apoptosis. This study outlines a reliable design and synthesis approach for high-performance NIR PLNPs and promotes their development in biomedical applications. STATEMENT OF SIGNIFICANCE: The potential of near infrared (NIR) persistent luminescence nanoparticles (PLNPs) in bio applications is hindered by limitations in the synthesis method. In this article, we proposed a spatial confinement growth strategy of high-performance NIR PLNPs. The obtained PLNPs with yolk-shell structure showed a 7.7-fold increase in PersL intensity and a 3-fold increase in specific surface area, compared with the commonly used template method. Due to the advantages, sonodynamic therapeutic nanoparticles were constructed based on the above PLNPs, where persistent luminescence was used for ultrasensitive imaging to determine the optimal timing in sonodynamic therapy. In addition, the multifunctional calcium phosphate shell elevated the intracellular reactive oxygen species level to promote tumor cell apoptosis.
Collapse
Affiliation(s)
- Peng Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Jinyuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Zhengxia Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xia Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
2
|
Kouba S, Demaurex N. S-acylation of Ca 2+ transport proteins in cancer. Chronic Dis Transl Med 2024; 10:263-280. [PMID: 39429488 PMCID: PMC11483607 DOI: 10.1002/cdt3.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 10/22/2024] Open
Abstract
Alterations in cellular calcium (Ca2+) signals have been causally associated with the development and progression of human cancers. Cellular Ca2+ signals are generated by channels, pumps, and exchangers that move Ca2+ ions across membranes and are decoded by effector proteins in the cytosol or in organelles. S-acylation, the reversible addition of 16-carbon fatty acids to proteins, modulates the activity of Ca2+ transporters by altering their affinity for lipids, and enzymes mediating this reversible post-translational modification have also been linked to several types of cancers. Here, we compile studies reporting an association between Ca2+ transporters or S-acylation enzymes with specific cancers, as well as studies reporting or predicting the S-acylation of Ca2+ transporters. We then discuss the potential role of S-acylation in the oncogenic potential of a subset of Ca2+ transport proteins involved in cancer.
Collapse
Affiliation(s)
- Sana Kouba
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
Jadaun P, Harshithkumar R, Seniya C, Gaikwad SY, Bhoite SP, Chandane-Tak M, Borse S, Chavan-Gautam P, Tillu G, Mukherjee A. Mitochondrial resilience and antioxidant defence against HIV-1: unveiling the power of Asparagus racemosus extracts and Shatavarin IV. Front Microbiol 2024; 15:1475457. [PMID: 39507335 PMCID: PMC11537936 DOI: 10.3389/fmicb.2024.1475457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Asparagus racemosus (AR), an Ayurvedic botanical, possesses various biological characteristics, yet its impact on HIV-1 replication remains to be elucidated. This study aimed to investigate the inhibitory effects of AR root extracts and its principal bioactive molecule, Shatavarin IV (Shatavarin), on HIV-1 replication and their role in mitigating mitochondrial dysfunction during HIV-1 infection, utilizing both in vitro and in silico methodologies. The cytotoxicity of the extracts was evaluated using MTT and ATPlite assays. In vitro anti-HIV-1 activity was assessed in TZM-bl cells against X4 and R5 subtypes, and confirmed in peripheral blood mononuclear cells using HIV-1 p24 antigen capture ELISA and viral copy number assessment. Mechanistic insights were obtained through enzymatic assays targeting HIV-1 Integrase, Protease and Reverse Transcriptase. Shatavarin's activity was also validated via viral copy number and p24 antigen capture assays, along with molecular interaction studies against key HIV-1 replication enzymes. HIV-1 induced mitochondrial dysfunction was evaluated by detecting mitochondrial reactive oxygen species (ROS), calcium accumulation, mitochondrial potential, and caspase activity within the infected cells. Non-cytotoxic concentrations of both aqueous and hydroalcoholic extracts derived from Asparagus racemosus roots displayed dose-dependent inhibition of HIV-1 replication. Notably, the hydroalcoholic extract exhibited superior Reverse Transcriptase activity, complemented by moderate activity observed in the Protease assay. Molecular interaction studies revealed that Shatavarin IV, the key bioactive constituent of AR, formed hydrogen bonds within the active binding pocket site residues crucial for HIV replication enzyme catalysis, suggesting its potential in attenuating HIV-1 infection. Mitochondrial dysfunction induced by HIV-1 infection, marked by increased oxidative stress, mitochondrial calcium overload, loss of mitochondrial membrane potential, and elevated caspase activity, was effectively mitigated by treatment with AR extracts and Shatavarin IV. These findings underscore the potential of AR extracts and Shatavarin IV as antiviral agents, while enhancing mitochondrial function during HIV-1 infection. In conclusion, Asparagus racemosus extracts, particularly Shatavarin IV, demonstrate promising inhibitory effects against HIV-1 replication while concurrently ameliorating mitochondrial dysfunction induced by the virus. These findings suggest the therapeutic potential of AR extracts and Shatavarin in combating HIV-1 infection and improving mitochondrial health.
Collapse
Affiliation(s)
- Pratiksha Jadaun
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - R. Harshithkumar
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Chandrabhan Seniya
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Bhopal, India
| | - Shraddha Y. Gaikwad
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | | | - Madhuri Chandane-Tak
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Swapnil Borse
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Anupam Mukherjee
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| |
Collapse
|
4
|
Faust D, Wenz C, Holm S, Harms G, Greffrath W, Dietrich C. Cell-cell contacts prevent t-BuOOH-triggered ferroptosis and cellular damage in vitro by regulation of intracellular calcium. Arch Toxicol 2024; 98:2953-2969. [PMID: 38814333 PMCID: PMC11324706 DOI: 10.1007/s00204-024-03792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Tert-butyl hydroperoxide (t-BuOOH) is an organic hydroperoxide widely used as a model compound to induce oxidative stress. It leads to a plethora of cellular damage, including lipid peroxidation, DNA double-strand breaks (DNA DSBs), and breakdown of the mitochondrial membrane potential (MMP). We could show in several cell lines that t-BuOOH induces ferroptosis, triggered by iron-dependent lipid peroxidation. We have further revealed that not only t-BuOOH-mediated ferroptosis, but also DNA DSBs and loss of MMP are prevented by cell-cell contacts. The underlying mechanisms are not known. Here, we show in murine fibroblasts and a human colon carcinoma cell line that t-BuOOH (50 or 100 µM, resp.) causes an increase in intracellular Ca2+, and that this increase is key to lipid peroxidation and ferroptosis, DNA DSB formation and dissipation of the MMP. We further demonstrate that cell-cell contacts prevent t-BuOOH-mediated raise in intracellular Ca2+. Hence, we provide novel insights into the mechanism of t-BuOOH-triggered cellular damage including ferroptosis and propose a model in which cell-cell contacts control intracellular Ca2+ levels to prevent lipid peroxidation, DNA DSB-formation and loss of MMP. Since Ca2+ is a central player of toxicity in response to oxidative stress and is involved in various cell death pathways, our observations suggest a broad protective function of cell-cell contacts against a variety of exogenous toxicants.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Christine Wenz
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
- Department of General and Visceral Surgery, Albklinik Münsingen of the District Hospital Association Reutlingen, Lautertalstraße 47, 72525, Münsingen, Germany
| | - Stefanie Holm
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167, Mannheim, Germany
| | - Cornelia Dietrich
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Li Y, Cui H, Xu WX, Fu HY, Li JZ, Fan RF. Selenium represses microRNA-202-5p/MICU1 aixs to attenuate mercuric chloride-induced kidney ferroptosis. Poult Sci 2024; 103:103891. [PMID: 38878746 PMCID: PMC11227010 DOI: 10.1016/j.psj.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
Mercuric chloride (HgCl2) is a nephrotoxic contaminant that is widely present in the environment. Selenium (Se) can effectively antagonize the biological toxicity caused by heavy metals. Here, in vivo and in vitro models of Se antagonism to HgCl2-induced nephrotoxicity in chickens were established, with the aim of exploring the specific mechanism. Morphological observation and kidney function analysis showed that Se alleviated HgCl2-induced kidney tissue injury and cytotoxicity. The results showed that ferroptosis was the primary mechanism for the toxicity of HgCl2, as indicated by iron overload and lipid peroxidation. On the one hand, Se significantly prevented HgCl2-induced iron overload. On the other hand, Se alleviated the intracellular reactive oxygen species (ROS) levels caused by HgCl2. Subsequently, we focused on the sources of ROS during HgCl2-induced ferroptosis. Mechanically, Se reduced ROS overproduction induced by HgCl2 through mitochondrial calcium uniporter (MCU)/mitochondrial calcium uptake 1 (MICU1)-mediated mitochondrial calcium ion (Ca2+) overload. Furthermore, a dual luciferase reporter assay demonstrated that MICU1 was the direct target of miR-202-5p. Overall, Se represses miR-202-5p/MICU1 axis to attenuate HgCl2-induced kidney ferroptosis.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
6
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Ao Q, Hu H, Huang Y. Ferroptosis and endoplasmic reticulum stress in rheumatoid arthritis. Front Immunol 2024; 15:1438803. [PMID: 39076977 PMCID: PMC11284608 DOI: 10.3389/fimmu.2024.1438803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death distinct from apoptosis and necrosis. Its mechanisms mainly involve disordered iron metabolism, lipid peroxide deposition, and an imbalance of the antioxidant system. The endoplasmic reticulum is an organelle responsible for protein folding, lipid metabolism, and Ca2+ regulation in cells. It can be induced to undergo endoplasmic reticulum stress in response to inflammation, oxidative stress, and hypoxia, thereby regulating intracellular environmental homeostasis through unfolded protein responses. It has been reported that ferroptosis and endoplasmic reticulum stress (ERS) have an interaction pathway and jointly regulate cell survival and death. Both have also been reported separately in rheumatoid arthritis (RA) mechanism studies. However, studies on the correlation between ferroptosis and ERS in RA have not been reported so far. Therefore, this paper reviews the current status of studies and the potential correlation between ferroptosis and ERS in RA, aiming to provide a research reference for developing treatments for RA.
Collapse
Affiliation(s)
- Qin Ao
- Guizhou Universisity of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical Universisity, Guiyang, China
| | - Huan Hu
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying Huang
- Guizhou Universisity of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical Universisity, Guiyang, China
| |
Collapse
|
8
|
Bravo A, Sánchez R, Zambrano F, Uribe P. Exogenous Oxidative Stress in Human Spermatozoa Induces Opening of the Mitochondrial Permeability Transition Pore: Effect on Mitochondrial Function, Sperm Motility and Induction of Cell Death. Antioxidants (Basel) 2024; 13:739. [PMID: 38929178 PMCID: PMC11201210 DOI: 10.3390/antiox13060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress (OS) and disrupted antioxidant defense mechanisms play a pivotal role in the etiology of male infertility. The alterations in reactive oxygen species (ROS) production and calcium (Ca2+) homeostasis are the main activators for the mitochondrial permeability transition pore (mPTP) opening. The mPTP opening is one of the main mechanisms involved in mitochondrial dysfunction in spermatozoa. This alteration in mitochondrial function adversely affects energy supply, sperm motility, and fertilizing capacity and contributes to the development of male infertility. In human spermatozoa, the mPTP opening has been associated with ionomycin-induced endogenous oxidative stress and peroxynitrite-induced nitrosative stress; however, the effect of exogenous oxidative stress on mPTP opening in sperm has not been evaluated. The aim of this study was to determine the effect of exogenous oxidative stress induced by hydrogen peroxide (H2O2) on mPTP opening, mitochondrial function, motility, and cell death markers in human spermatozoa. Human spermatozoa were incubated with 3 mmol/L of H2O2 for 60 min, and intracellular Ca2+ concentration, mPTP opening, mitochondrial membrane potential (ΔΨm), ATP levels, mitochondrial reactive oxygen species (mROS) production, phosphatidylserine (PS) externalization, DNA fragmentation, viability, and sperm motility were evaluated. H2O2-induced exogenous oxidative stress caused increased intracellular Ca2+, leading to subsequent mPTP opening and alteration of mitochondrial function, characterized by ΔΨm dissipation, decreased ATP levels, increased mROS production, and the subsequent alteration of sperm motility. Furthermore, H2O2-induced opening of mPTP was associated with the expression of apoptotic cell death markers including PS externalization and DNA fragmentation. These results highlight the role of exogenous oxidative stress in causing mitochondrial dysfunction, deterioration of sperm motility, and an increase in apoptotic cell death markers, including PS externalization and DNA fragmentation, through the mPTP opening. This study yielded new knowledge regarding the effects of this type of stress on mitochondrial function and specifically on mPTP opening, factors that can contribute to the development of male infertility, considering that the role of mPTP in mitochondrial dysfunction in human sperm is not completely elucidated. Therefore, these findings are relevant to understanding male infertility and may provide an in vitro model for further research aimed at improving human sperm quality.
Collapse
Affiliation(s)
- Anita Bravo
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
| | - Raúl Sánchez
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Fabiola Zambrano
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Pamela Uribe
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| |
Collapse
|
9
|
Wang Z, Wang X, Dai X, Xu T, Qian X, Chang M, Chen Y. 2D Catalytic Nanozyme Enables Cascade Enzyodynamic Effect-Boosted and Ca 2+ Overload-Induced Synergistic Ferroptosis/Apoptosis in Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312316. [PMID: 38501540 DOI: 10.1002/adma.202312316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The introduction of glucose oxidase, exhibiting characteristics of glucose consumption and H2O2 production, represents an emerging antineoplastic therapeutic approach that disrupts nutrient supply and promotes efficient generation of reactive oxygen species (ROS). However, the instability of natural enzymes and their low therapeutic efficacy significantly impede their broader application. In this context, 2D Ca2Mn8O16 nanosheets (CMO NSs) designed and engineered to serve as a high-performance nanozyme, enhancing the enzyodynamic effect for a ferroptosis-apoptosis synergistic tumor therapy, are presented. In addition to mimicking activities of glutathione peroxidase, catalase, oxidase, and peroxidase, the engineered CMO NSs exhibit glucose oxidase-mimicking activities. This feature contributes to their antitumor performance through cascade catalytic reactions, involving the disruption of glucose supply, self-supply of H2O2, and subsequent efficient ROS generation. The exogenous Ca2+ released from CMO NSs, along with the endogenous Ca2+ enrichment induced by ROS from the peroxidase- and oxidase-mimicking activities of CMO NSs, collectively mediate Ca2+ overload, leading to apoptosis. Importantly, the ferroptosis process is triggered synchronously through ROS output and glutathione consumption. The application of exogenous ultrasound stimulation further enhances the efficiency of ferroptosis-apoptosis synergistic tumor treatment. This work underscores the crucial role of enzyodynamic performance in ferroptosis-apoptosis synergistic therapy against tumors.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianming Xu
- Department of Orthopedics, 905th Hospital of PLA Navy, Naval Medical University, Shanghai, 200050, P. R. China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225009, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, 325088, P. R. China
| |
Collapse
|
10
|
Chang M, Zhang L, Zhang T, Duan Y, Feng W, Yang S, Chen Y, Wang Z. Ultrasound-augmented enzyodynamic-Ca 2+ overload synergetic tumor nanotherapy. Biomaterials 2024; 307:122513. [PMID: 38432005 DOI: 10.1016/j.biomaterials.2024.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
The excessive intracellular Ca2+ can induce oxidative stress, mitochondrial damage and cell apoptosis, which has been extensively explored for tumor therapy. However, the low Ca2+ accumulation originated from Ca2+-based nanosystems substantially weakens the therapeutic effect. Herein, a functional plant polyphenol-appended enzyodynamic nanozyme system CaFe2O4@BSA-curcumin (abbreviation as CFO-CUR) has been rationally designed and engineered to achieve magnified Ca2+ accumulation process, deleterious reactive oxygen species (ROS) production, as well as mitochondrial dysfunction through enzyodynamic-Ca2+ overload synergistic effect. The exogenous Ca2+ released by CaFe2O4 nanozymes under the weakly acidic tumor microenvironment and Ca2+ efflux inhibition by curcumin boost mitochondria-dominant antineoplastic efficiency. The presence of Fe components with multivalent characteristic depletes endogenous glutathione and outputs the incremental ROS due to the oxidase-, peroxidase-, glutathione peroxidase-mimicking activities. The ROS burst-triggered regulation of Ca2+ channels and pumps strengthens the intracellular Ca2+ accumulation. Especially, the exogenous ultrasound stimulation further amplifies mitochondrial damage. Both in vitro and in vivo experimental results affirm the ultrasound-augmented enzyodynamic-Ca2+ overload synergetic tumor inhibition outcomes. This study highlights the role of ultrasound coupled with functional nanozyme in the homeostasis imbalance and function disorder of mitochondria for highly efficient tumor treatment.
Collapse
Affiliation(s)
- Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, PR China
| | - Tingting Zhang
- Department of Ultrasound, The 985th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Taiyuan, 030001, PR China; Department of Diving and Hyperbarie Medicine, Naval Medical Center (Naval Medical University), Shanghai, 200433, PR China.
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Shaoling Yang
- Department of Ultrasound Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
11
|
Sheng X, Wang MM, Zhang GD, Su Y, Fang HB, Yu ZH, Su Z. Dual inhibition of oxidative phosphorylation and glycolysis to enhance cancer therapy. Bioorg Chem 2024; 147:107325. [PMID: 38583247 DOI: 10.1016/j.bioorg.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.
Collapse
Affiliation(s)
- Xi Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guan-Dong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
12
|
John AJ, Ghose ET, Gao H, Luck M, Jeong D, Kalari KR, Wang L. ReCorDE: a framework for identifying drug classes targeting shared vulnerabilities with applications to synergistic drug discovery. Front Oncol 2024; 14:1343091. [PMID: 38884087 PMCID: PMC11176476 DOI: 10.3389/fonc.2024.1343091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/18/2024] [Indexed: 06/18/2024] Open
Abstract
Cancer is typically treated with combinatorial therapy, and such combinations may be synergistic. However, discovery of these combinations has proven difficult as brute force combinatorial screening approaches are both logistically complex and resource-intensive. Therefore, computational approaches to augment synergistic drug discovery are of interest, but current approaches are limited by their dependencies on combinatorial drug screening training data or molecular profiling data. These dataset dependencies can limit the number and diversity of drugs for which these approaches can make inferences. Herein, we describe a novel computational framework, ReCorDE (Recurrent Correlation of Drugs with Enrichment), that uses publicly-available cell line-derived monotherapy cytotoxicity datasets to identify drug classes targeting shared vulnerabilities across multiple cancer lineages; and we show how these inferences can be used to augment synergistic drug combination discovery. Additionally, we demonstrate in preclinical models that a drug class combination predicted by ReCorDE to target shared vulnerabilities (PARP inhibitors and Aurora kinase inhibitors) exhibits class-class synergy across lineages. ReCorDE functions independently of combinatorial drug screening and molecular profiling data, using only extensive monotherapy cytotoxicity datasets as its input. This allows ReCorDE to make robust inferences for a large, diverse array of drugs. In conclusion, we have described a novel framework for the identification of drug classes targeting shared vulnerabilities using monotherapy cytotoxicity datasets, and we showed how these inferences can be used to aid discovery of novel synergistic drug combinations.
Collapse
Affiliation(s)
- August J John
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Emily T Ghose
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Meagan Luck
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Dabin Jeong
- Biochemistry Department, Lawrence University, Appleton, WI, United States
| | - Krishna R Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Li M, Lu Z, Fang C, Zheng B, Fu Y, Li X. Cobalt-based hybrid nanoparticles loaded with curcumin for ligand-enhanced synergistic nanocatalytic therapy/chemotherapy combined with calcium overload. J Mater Chem B 2024; 12:4642-4654. [PMID: 38592460 DOI: 10.1039/d4tb00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The therapeutic efficacy of Fenton or Fenton-like nanocatalysts is usually restricted by the inappropriate pH value and limited concentration of hydrogen peroxide (H2O2) at the tumor site. Herein, calcium carbonate (CaCO3)-mineralized cobalt silicate hydroxide hollow nanocatalysts (CSO@CaCO3, CC) were synthesized and loaded with curcumin (CCC). This hybrid system can simultaneously realize nanocatalytic therapy, chemotherapy and calcium overload. With the stabilization of liposomes, CCC is able to reach the tumor site smoothly. The CaCO3 shell first degrades in an acidic tumor environment, releasing Cur and Ca2+, and the pH value of the tumor is increased simultaneously. Then the exposed CSO catalyzes the Fenton-like reaction to convert H2O2 into ˙OH and enhances the cytotoxicity of curcumin (Cur) by catalytically oxidizing it to a ˙Cur radical. Curcumin not only induces the chemotherapy effect but also serves as a nucleophilic ligand and an electron donor in the catalytic system, enhancing the Fenton-like activity of CCC by electron transfer. In addition, calcium overload also amplifies the efficacy of ROS-based therapy. In vitro and in vivo results show that CCC exhibited an excellent synergistic tumor inhibition effect without any clear side effect. This work proposes a novel concept of nanocatalytic therapy/chemotherapy synergistic mechanism by the ligand-induced enhancement of Fenton-like catalytic activity, and inspires the construction of combined therapeutic nanoplatforms and multifunctional nanocarriers for drug and ion delivery in the future.
Collapse
Affiliation(s)
- Mengyang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Zijie Lu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Chao Fang
- iBioMat PharmTek (Hangzhou) Co., Ltd., Hangzhou 311121, P. R. China
| | - Bingzhu Zheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- iBioMat PharmTek (Hangzhou) Co., Ltd., Hangzhou 311121, P. R. China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China
| |
Collapse
|
14
|
Li Y, Wang J, Zhu T, Zhan Y, Tang X, Xi J, Zhu X, Zhang Y, Liu J. A ROS storm generating nanocomposite for enhanced chemodynamic therapy through H 2O 2 self-supply, GSH depletion and calcium overload. NANOSCALE 2024; 16:8479-8494. [PMID: 38590261 DOI: 10.1039/d3nr06422k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Catalytic generation of toxic hydroxyl radicals (˙OH) from hydrogen peroxide (H2O2) is an effective strategy for tumor treatment in chemodynamic therapy (CDT). However, the intrinsic features of the microenvironment in solid tumors, characterized by limited H2O2 and overexpressed glutathione (GSH), severely impede the accumulation of intracellular ˙OH, posing significant challenges. To circumvent these critical issues, in this work, a CaO2-based multifunctional nanocomposite with a surface coating of Cu2+ and L-buthionine sulfoximine (BSO) (named CaO2@Cu-BSO) is designed for enhanced CDT. Taking advantage of the weakly acidic environment of the tumor, the nanocomposite gradually disintegrates, and the exposed CaO2 nanoparticles subsequently decompose to produce H2O2, alleviating the insufficient supply of endogenous H2O2 in the tumor microenvironment (TME). Furthermore, Cu2+ detached from the surface of CaO2 is reduced by H2O2 and GSH to Cu+ and ROS. Then, Cu+ catalyzes H2O2 to generate highly cytotoxic ˙OH and Cu2+, forming a cyclic catalysis effect for effective CDT. Meanwhile, GSH is depleted by Cu2+ ions to eliminate possible ˙OH scavenging. In addition, the decomposition of CaO2 by TME releases a large amount of free Ca2+, resulting in the accumulation and overload of Ca2+ and mitochondrial damage in tumor cells, further improving CDT efficacy and accelerating tumor apoptosis. Besides, BSO, a molecular inhibitor, decreases GSH production by blocking γ-glutamyl cysteine synthetase. Together, this strategy allows for enhanced CDT efficiency via a ROS storm generation strategy in tumor therapy. The experimental results confirm and demonstrate the satisfactory tumor inhibition effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Tao Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Ying Zhan
- School of Life Science, Shanghai University, Shanghai, China, 200444
| | - Xiaoli Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Jianying Xi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| |
Collapse
|
15
|
Chiou JT, Chang LS. Synergistic cytotoxicity of decitabine and YM155 in leukemia cells through upregulation of SLC35F2 and suppression of MCL1 and survivin expression. Apoptosis 2024; 29:503-520. [PMID: 38066391 DOI: 10.1007/s10495-023-01918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of β-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
16
|
Gründer S, Vanek J, Pissas KP. Acid-sensing ion channels and downstream signalling in cancer cells: is there a mechanistic link? Pflugers Arch 2024; 476:659-672. [PMID: 38175291 PMCID: PMC11006730 DOI: 10.1007/s00424-023-02902-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jakob Vanek
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | |
Collapse
|
17
|
Sams MP, Iansavitchous J, Astridge M, Rysan H, Xu LS, Rodrigues de Oliveira B, DeKoter RP. N-Acetylcysteine Alters Disease Progression and Increases Janus Kinase Mutation Frequency in a Mouse Model of Precursor B-Cell Acute Lymphoblastic Leukemia. J Pharmacol Exp Ther 2024; 389:40-50. [PMID: 38336380 DOI: 10.1124/jpet.123.002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.
Collapse
Affiliation(s)
- Mia P Sams
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - James Iansavitchous
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Madeline Astridge
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Heidi Rysan
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Li S Xu
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Bruno Rodrigues de Oliveira
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Rodney P DeKoter
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| |
Collapse
|
18
|
Manikanta K, Paul M, Sandesha VD, Mahalingam SS, Ramesh TN, Harishkumar K, Koundinya SS, Naveen S, Kemparaju K, Girish KS. Oxidative Stress-Induced Platelet Apoptosis/Activation: Alleviation by Purified Curcumin via ASK1-JNK/p-38 Pathway. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:417-430. [PMID: 38648762 DOI: 10.1134/s0006297924030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.
Collapse
Affiliation(s)
- Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
| | - Manoj Paul
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
| | | | - Shanmuga S Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thimmasandra Narayan Ramesh
- Department of Studies and Research in Chemistry, University College of Science, Tumkur University, Tumakuru, 572103, India
| | | | - Shashank S Koundinya
- All India Institute of Medical Science, Sri Aurobindo Marg, Ansari Nagar, East, New Delhi, 110029, India
| | - Shivanna Naveen
- Applied Nutrition Discipline, Defense Food Research Laboratory, Mysuru, 570011, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India.
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, 572103, India.
| |
Collapse
|
19
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
20
|
Jedidi S, Rtibi K, Selmi H, Aloui F, Sebai H. Salvia officinalis flowers extract ameliorates liver and kidney injuries induced by simultaneous intoxication with ethanol/castor oil. Physiol Rep 2023; 11:e15854. [PMID: 37960994 PMCID: PMC10643985 DOI: 10.14814/phy2.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The current study investigated the possible mechanisms of aqueous extract Salvia officinalis flowers (SF-AE) and its protective effects against hepatorenal toxicities produced by simultaneous acute administration of ethanol (EtOH)/castor oil (CO). Healthy male rats (N = 50) were separated into five equal groups: control, Ethanol (EtOH) + Castor oil (CO), doses of increasing orders of SF-AE (50, 100, and 200 mg/kg, b.w., p.o.) during 15 days. Liver and kidney injuries were induced by EtOH (4 g/kg, b.w., p.o.) combined with CO (5 mL/kg, b.w., p.o.). Compared to the control group, SF-AE pretreatment protected against simultaneous administration of EtOH and CO-caused serious histological alterations in liver and kidney tissues. SF-AE also reversed liver and kidney biochemical parameters and lipid profile alterations. More importantly, SF-AE significantly reduced the malondialdehyde (MDA) level and counteracted the depletion of both enzymatic and non-enzymatic antioxidants. SF-AE also prevents against inflammation induced by EtOH combined with CO, expressed by the rise of inflammation biomarkers (C-reactive protein: CRP and alkaline phosphatase: ALP). Additionally, combined EtOH intoxication and CO poisoning exerted an increase in H2 O2 , free iron and calcium levels. Impressively, SF-AE treatment regulated levels of these studied intracellular mediators in a dose-dependent manner. In conclusion, SF-AE can potentially improve liver and kidney injuries associated with biochemical parameter deregulations, possibly by controlling oxidative stress and inflammation.
Collapse
Affiliation(s)
- Saber Jedidi
- Laboratory of Functional Physiology and Valorization of Bio‐ResourcesUniversity of Jendouba, Higher Institute of Biotechnology of BéjaBéjaTunisia
- Laboratory of Sylvo‐Pastoral ResourcesInstitution of Agricultural Research and Higher Education (IRESA), University of Jendouba, Sylvo‐Pastoral Institute of TabarkaTabarkaTunisia
| | - Kais Rtibi
- Laboratory of Functional Physiology and Valorization of Bio‐ResourcesUniversity of Jendouba, Higher Institute of Biotechnology of BéjaBéjaTunisia
| | - Houcine Selmi
- Laboratory of Sylvo‐Pastoral ResourcesInstitution of Agricultural Research and Higher Education (IRESA), University of Jendouba, Sylvo‐Pastoral Institute of TabarkaTabarkaTunisia
| | - Foued Aloui
- Laboratory of Sylvo‐Pastoral ResourcesInstitution of Agricultural Research and Higher Education (IRESA), University of Jendouba, Sylvo‐Pastoral Institute of TabarkaTabarkaTunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio‐ResourcesUniversity of Jendouba, Higher Institute of Biotechnology of BéjaBéjaTunisia
| |
Collapse
|
21
|
Deng F, Fu M, Zhao C, Lei J, Xu T, Ji B, Ding H, Zhang Y, Chen J, Qiu J, Gao Q. Calcium signals and potential therapy targets in ovarian cancer (Review). Int J Oncol 2023; 63:125. [PMID: 37711071 PMCID: PMC10552713 DOI: 10.3892/ijo.2023.5573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Ovarian cancer (OC) is a deadly disease. The poor prognosis and high lethality of OC are attributed to its high degrees of aggressiveness, resistance to chemotherapy and recurrence rates. Calcium ion (Ca2+) signaling has received attention in recent years, as it appears to form an essential part of various aspects of cancer pathophysiology and is a potential therapeutic target for OC treatment. Disruption of normal Ca2+ signaling pathways can induce changes in cell cycle progression, apoptosis, proliferation and migration and invasion, leading to the development of the malignant phenotype of tumors. In the present review, the main roles of ion channel/receptor/pump‑triggered Ca2+ signaling pathways located at the plasma membrane and organelle Ca2+ transport in OC are summarized. In addition, the potential of Ca2+ signaling as a novel target for the development of effective treatment strategies for OC was discussed. Furthering the understanding into the role of Ca2+ signaling in OC is expected to facilitated the identification of novel therapeutic targets and improved clinical outcomes for patients.
Collapse
Affiliation(s)
- Fengying Deng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Mengyu Fu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chenxuan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yueming Zhang
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Jie Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
22
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca 2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis 2023; 9:137. [PMID: 37741841 PMCID: PMC10518018 DOI: 10.1038/s41531-023-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Huang W, Wu Y, Luo N, Shuai X, Guo J, Wang C, Yang F, Liu L, Liu S, Cheng Z. Identification of TRPM2 as a prognostic factor correlated with immune infiltration in ovarian cancer. J Ovarian Res 2023; 16:169. [PMID: 37608401 PMCID: PMC10463424 DOI: 10.1186/s13048-023-01225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/24/2023] [Indexed: 08/24/2023] Open
Abstract
INTRODUCTION Ovarian cancer (OC) is one of the most common gynecologic malignant cancers with the current survival rate remaining low. TRPM2 has been reported as a survival predictor in various cancers but not in OC. The aim of this study is to explore the role and its underlying mechanism of TRPM2 in OC. METHODS The transcriptome data and clinical data were obtained from TCGA, GTEx, and GEO (GSE17260). DriverDBv3 and PrognoScan were used to analyze survival correlations. GSEA analysis was performed to uncover the underlying mechanism. The correlations between TRPM2 and immune score, immune cell infiltration were analyzed by TIMER2.0. RESULTS TRPM2 was highly expressed in OC and high TRPM2 expression was related to the poor prognosis based on the Kaplan-Meier curves, univariate and multivariate analysis. The enrichment analysis suggested that TRPM2 was involved in immune-related pathways. Positive correlations were also observed between TRPM2 expression and immune score and immune cells covering B cells, T cells, macrophage, neutrophil, and myeloid dendritic cells. We also found that TRPM2 was positively related to immune checkpoints including ICOSLG, CD40, CD86, etc. TRPM2 expression had a positive correlation with M2 macrophage, but not with M1 macrophage. Besides, TRPM2 showed a strong positive correlation with pyroptosis-related genes including NLRP3, NLRC4, NOD2, NOD1, IL1B, GSDMD. CONCLUSION Our study demonstrated that TRPM2 is a poor prognostic prediction factor in ovarian cancer and is correlated to the immune microenvironment and pyroptosis. TRPM2 may act as a new immunotherapy target, which promoted the survival rate of OC patients.
Collapse
Affiliation(s)
- Wei Huang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Xueqian Shuai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Fanchun Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China.
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
24
|
Zhang L, Chen X, Yao S, Zheng L, Yang X, Wang Y, Li X, Wu E, Tuo B. Intracellular chloride channel 1 and tumor. Am J Cancer Res 2023; 13:3300-3314. [PMID: 37693147 PMCID: PMC10492100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/08/2023] [Indexed: 09/12/2023] Open
Abstract
As the major intracellular anion, chloride plays an important role in maintaining intracellular and extracellular ion homeostasis, osmotic pressure, and cell volume. Intracellular chloride channel 1, which has the physiological role of forming membrane proteins in the lipid bilayer and playing ion channels, is a hot research topic in recent years. It has been found that CLIC1 does not only act as an ion channel but also participates in cell cycle regulation, apoptosis, and intracellular oxidation; thus, it participates in the proliferation, invasion, and migration of various tumor cells in various systems throughout the body. At the same time, CLIC1 is highly expressed in tumor cells and is associated with malignancy and a poor prognosis. This paper reviews the pathological mechanisms of CLIC1 in systemic diseases, which is important for the early diagnosis, treatment, and prognosis of systemic diseases associated with CLIC1 expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi, Guizhou, China
| |
Collapse
|
25
|
Nelson VK, Nuli MV, Mastanaiah J, Saleem T. S. M, Birudala G, Jamous YF, Alshargi O, Kotha KK, Sudhan HH, Mani RR, Muthumanickam A, Niranjan D, Jain NK, Agrawal A, Jadon AS, Mayasa V, Jha NK, Kolesarova A, Slama P, Roychoudhury S. Reactive oxygen species mediated apoptotic death of colon cancer cells: therapeutic potential of plant derived alkaloids. Front Endocrinol (Lausanne) 2023; 14:1201198. [PMID: 37560308 PMCID: PMC10408138 DOI: 10.3389/fendo.2023.1201198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most deaths causing diseases worldwide. Several risk factors including hormones like insulin and insulin like growth factors (e.g., IGF-1) have been considered responsible for growth and progression of colon cancer. Though there is a huge advancement in the available screening as well as treatment techniques for CRC. There is no significant decrease in the mortality of cancer patients. Moreover, the current treatment approaches for CRC are associated with serious challenges like drug resistance and cancer re-growth. Given the severity of the disease, there is an urgent need for novel therapeutic agents with ideal characteristics. Several pieces of evidence suggested that natural products, specifically medicinal plants, and derived phytochemicals may serve as potential sources for novel drug discovery for various diseases including cancer. On the other hand, cancer cells like colon cancer require a high basal level of reactive oxygen species (ROS) to maintain its own cellular functions. However, excess production of intracellular ROS leads to cancer cell death via disturbing cellular redox homeostasis. Therefore, medicinal plants and derived phytocompounds that can enhance the intracellular ROS and induce apoptotic cell death in cancer cells via modulating various molecular targets including IGF-1 could be potential therapeutic agents. Alkaloids form a major class of such phytoconstituents that can play a key role in cancer prevention. Moreover, several preclinical and clinical studies have also evidenced that these compounds show potent anti-colon cancer effects and exhibit negligible toxicity towards the normal cells. Hence, the present evidence-based study aimed to provide an update on various alkaloids that have been reported to induce ROS-mediated apoptosis in colon cancer cells via targeting various cellular components including hormones and growth factors, which play a role in metastasis, angiogenesis, proliferation, and invasion. This study also provides an individual account on each such alkaloid that underwent clinical trials either alone or in combination with other clinical drugs. In addition, various classes of phytochemicals that induce ROS-mediated cell death in different kinds of cancers including colon cancer are discussed.
Collapse
Affiliation(s)
- Vinod K. Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Juturu Mastanaiah
- Department of Pharmacology, Balaji College of Pharmacy, Anantapur, India
| | | | - Geetha Birudala
- Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Yahya F. Jamous
- Vaccines and Bioprocessing Centre, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Omar Alshargi
- College of Pharmacy, Riyadh ELM University, Riyadh, Saudi Arabia
| | - Kranthi Kumar Kotha
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | | | | | | | | | | | | | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Adriana Kolesarova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
26
|
Plasterer C, Semenikhina M, Tsaih SW, Flister MJ, Palygin O. NNAT is a novel mediator of oxidative stress that suppresses ER + breast cancer. Mol Med 2023; 29:87. [PMID: 37400769 PMCID: PMC10318825 DOI: 10.1186/s10020-023-00673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Neuronatin (NNAT) was recently identified as a novel mediator of estrogen receptor-positive (ER+) breast cancer cell proliferation and migration, which correlated with decreased tumorigenic potential and prolonged patient survival. However, despite these observations, the molecular and pathophysiological role(s) of NNAT in ER + breast cancer remains unclear. Based on high protein homology with phospholamban, we hypothesized that NNAT mediates the homeostasis of intracellular calcium [Ca2+]i levels and endoplasmic reticulum (EndoR) function, which is frequently disrupted in ER + breast cancer and other malignancies. METHODS To evaluate the role of NNAT on [Ca2+]i homeostasis, we used a combination of bioinformatics, gene expression and promoter activity assays, CRISPR gene manipulation, pharmacological tools and confocal imaging to characterize the association between ROS, NNAT and calcium signaling. RESULTS Our data indicate that NNAT localizes predominantly to EndoR and lysosome, and genetic manipulation of NNAT levels demonstrated that NNAT modulates [Ca2+]i influx and maintains Ca2+ homeostasis. Pharmacological inhibition of calcium channels revealed that NNAT regulates [Ca2+]i levels in breast cancer cells through the interaction with ORAI but not the TRPC signaling cascade. Furthermore, NNAT is transcriptionally regulated by NRF1, PPARα, and PPARγ and is strongly upregulated by oxidative stress via the ROS and PPAR signaling cascades. CONCLUSION Collectively, these data suggest that NNAT expression is mediated by oxidative stress and acts as a regulator of Ca2+ homeostasis to impact ER + breast cancer proliferation, thus providing a molecular link between the longstanding observation that is accumulating ROS and altered Ca2+ signaling are key oncogenic drivers of cancer.
Collapse
Affiliation(s)
- Cody Plasterer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
27
|
Notaro A, Lauricella M, Di Liberto D, Emanuele S, Giuliano M, Attanzio A, Tesoriere L, Carlisi D, Allegra M, De Blasio A, Calvaruso G, D'Anneo A. A Deadly Liaison between Oxidative Injury and p53 Drives Methyl-Gallate-Induced Autophagy and Apoptosis in HCT116 Colon Cancer Cells. Antioxidants (Basel) 2023; 12:1292. [PMID: 37372022 DOI: 10.3390/antiox12061292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Methyl gallate (MG), which is a gallotannin widely found in plants, is a polyphenol used in traditional Chinese phytotherapy to alleviate several cancer symptoms. Our studies provided evidence that MG is capable of reducing the viability of HCT116 colon cancer cells, while it was found to be ineffective on differentiated Caco-2 cells, which is a model of polarized colon cells. In the first phase of treatment, MG promoted both early ROS generation and endoplasmic reticulum (ER) stress, sustained by elevated PERK, Grp78 and CHOP expression levels, as well as an upregulation in intracellular calcium content. Such events were accompanied by an autophagic process (16-24 h), where prolonging the time (48 h) of MG exposure led to cellular homeostasis collapse and apoptotic cell death with DNA fragmentation and p53 and γH2Ax activation. Our data demonstrated that a crucial role in the MG-induced mechanism is played by p53. Its level, which increased precociously (4 h) in MG-treated cells, was tightly intertwined with oxidative injury. Indeed, the addition of N-acetylcysteine (NAC), which is a ROS scavenger, counteracted the p53 increase, as well as the MG effect on cell viability. Moreover, MG promoted p53 accumulation into the nucleus and its inhibition by pifithrin-α (PFT-α), which is a negative modulator of p53 transcriptional activity, enhanced autophagy, increased the LC3-II level and inhibited apoptotic cell death. These findings provide new clues to the potential action of MG as a possible anti-tumor phytomolecule for colon cancer treatment.
Collapse
Affiliation(s)
- Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Alessandro Attanzio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Luisa Tesoriere
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mario Allegra
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D'Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
28
|
Bantsimba-Malanda C, Ahidouch A, Rodat-Despoix L, Ouadid-Ahidouch H. Calcium signal modulation in breast cancer aggressiveness. Cell Calcium 2023; 113:102760. [PMID: 37247443 DOI: 10.1016/j.ceca.2023.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. The aggressive subtypes including triple negative types (TNBCs) show a resistance to chemotherapy, impaired immune system, and a worse prognosis. From a histological point of view, TNBCs are deficient in oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2+) expression. Many studies reported an alteration in the expression of calcium channels, calcium binding proteins and pumps in BC that promote proliferation, survival, resistance to chemotherapy, and metastasis. Moreover, Ca2+ signal remodeling and calcium transporters expression have been associated to TNBCs and HER2+ BC subtypes. This review provides insight into the underlying alteration of the expression of calcium-permeable channels, pumps, and calcium dependent proteins and how this alteration plays an important role in promoting metastasis, metabolic switching, inflammation, and escape to chemotherapy treatment and immune surveillance in aggressive BC including TNBCs models and highly metastatic BC tumors.
Collapse
Affiliation(s)
- Claudie Bantsimba-Malanda
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France; Department of Biology, Faculty of Sciences, University Ibn Zohr, Agadir 80000, Morocco
| | - Lise Rodat-Despoix
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France.
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France.
| |
Collapse
|
29
|
Moon DO. Calcium's Role in Orchestrating Cancer Apoptosis: Mitochondrial-Centric Perspective. Int J Mol Sci 2023; 24:ijms24108982. [PMID: 37240331 DOI: 10.3390/ijms24108982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is an essential intracellular messenger that plays a vital role in controlling a broad range of cellular processes, including apoptosis. This review offers an in-depth analysis of calcium's multifaceted role in apoptosis regulation, focusing on the associated signaling pathways and molecular mechanisms. We will explore calcium's impact on apoptosis through its effects on different cellular compartments, such as the mitochondria and endoplasmic reticulum (ER), and discuss the connection between calcium homeostasis and ER stress. Additionally, we will highlight the interplay between calcium and various proteins, including calpains, calmodulin, and Bcl-2 family members, and the role of calcium in regulating caspase activation and pro-apoptotic factor release. By investigating the complex relationship between calcium and apoptosis, this review aims to deepen our comprehension of the fundamental processes, and pinpointing possible treatment options for illnesses associated with imbalanced cell death is crucial.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
30
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha Synuclein Modulates Mitochondrial Ca 2+ Uptake from ER During Cell Stimulation and Under Stress Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537965. [PMID: 37163091 PMCID: PMC10168219 DOI: 10.1101/2023.04.23.537965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress. 1 We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca 2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca 2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca 2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David A. Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
31
|
Algariri ES, Mydin RBS, Moses EJ, Okekpa SI, Rahim NAA, Yusoff NM. Knockdown of Stromal Interaction Molecule 1 ( STIM1) Suppresses Acute Myeloblastic Leukemia-M5 Cell Line Survival Through Inhibition of Reactive Oxygen Species Activities. Turk J Haematol 2023; 40:11-17. [PMID: 36404683 PMCID: PMC9979743 DOI: 10.4274/tjh.galenos.2022.2022.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective This study aimed to investigate the role of the stromal interaction molecule 1 (STIM1) gene in the survival of the acute myeloblastic leukemia (AML)-M5 cell line (THP-1). Materials and Methods The STIM1 effect was assessed via dicersubstrate siRNA-mediated STIM1 knockdown. The effect of STIM1 knockdown on the expression of AKT and MAPK pathway-related genes and reactive oxygen species (ROS) generation-related genes was tested using real-time polymerase chain reaction. Cellular functions, including ROS generation, cell proliferation, and colony formation, were also evaluated following STIM1 knockdown. Results The findings revealed that STIM1 knockdown reduced intracellular ROS levels via downregulation of NOX2 and PKC. These findings were associated with the downregulation of AKT, KRAS, MAPK, and CMYC. BCL2 was also downregulated, while BAX was upregulated following STIM1 knockdown. Furthermore, STIM1 knockdown reduced THP-1 cell proliferation and colony formation. Conclusion This study has demonstrated the role of STIM1 in promoting AML cell proliferation and survival through enhanced ROS generation and regulation of AKT/MAPK-related pathways. These findings may help establish STIM1 as a potential therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Eman Salem Algariri
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Department of Biomedical Science, Pulau Pinang, Malaysia,Hadhramout University, Faculty of Medicine and Health Sciences, Department of Basic Medical Sciences, Hadhramout, Yemen
| | - Rabiatul Basria S.M.N. Mydin
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Department of Biomedical Science, Pulau Pinang, Malaysia,* Address for Correspondence: Universiti Sains Malaysia, Advanced Medical and Dental Institute, Department of Biomedical Science, Pulau Pinang, Malaysia E-mail:
| | - Emmanuel Jairaj Moses
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Department of Biomedical Science, Pulau Pinang, Malaysia
| | - Simon Imakwu Okekpa
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Department of Biomedical Science, Pulau Pinang, Malaysia,Ebonyi State University, Faculty of Health Sciences, Department of Medical Laboratory Science, Ebonyi, Nigeria
| | - Nur Arzuar Abdul Rahim
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Department of Clinical Medicine, Pulau Pinang, Malaysia
| | - Narzah Mohd Yusoff
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Department of Clinical Medicine, Pulau Pinang, Malaysia
| |
Collapse
|
32
|
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants (Basel) 2023; 12:353. [PMID: 36829912 PMCID: PMC9952851 DOI: 10.3390/antiox12020353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.
Collapse
Affiliation(s)
- Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
33
|
Lee W, Song G, Bae H. Glucotropaeolin Promotes Apoptosis by Calcium Dysregulation and Attenuates Cell Migration with FOXM1 Suppression in Pancreatic Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020257. [PMID: 36829815 PMCID: PMC9952507 DOI: 10.3390/antiox12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has naturally aggressive characteristics including postoperative recurrence, resistance to conventional treatment, and metastasis. Surgical resection with chemotherapeutic agents has been conducted as the major treatment for PDAC. However, surgical treatment is ineffective in the case of advanced cancer, and conventional adjuvant chemotherapy, including gemcitabine and 5-fluorouracil, show low effectiveness due to the high drug resistance of PDAC to this type of treatment. Therefore, the development of innovative therapeutic drugs is crucial to solving the present limitation of conventional drugs. Glucotropaeolin (GT) is a glucosinolate that can be isolated from the Brassicaceae family. GT has exhibited a growth-inhibitory effect against liver and colon cancer cells; however, there is no study regarding the anticancer effect of GT on PDAC. In our study, we determined the antiproliferative effect of GT in PANC-1 and MIA PaCa-2, representative of PDAC. We revealed the intracellular mechanisms underlying the anticancer effect of GT with respect to cell viability, reactive oxygen species (ROS) accumulation, alteration of mitochondrial membrane potential (MMP), calcium dysregulation, cell migration, and the induction of apoptosis. Moreover, GT regulated the signaling pathways related to anticancer in PDAC cells. Finally, the silencing of the forkhead box protein M, a key factor regulating PDAC progression, contributes to the anticancer property of GT in terms of the induction of apoptosis and cell migration. Therefore, GT may be a potential therapeutic drug against PDAC.
Collapse
Affiliation(s)
- Woonghee Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| |
Collapse
|
34
|
Guo D, Dai X, Liu K, Liu Y, Wu J, Wang K, Jiang S, Sun F, Wang L, Guo B, Yang D, Huang L. A Self-Reinforcing Nanoplatform for Highly Effective Synergistic Targeted Combinatary Calcium-Overload and Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2202424. [PMID: 36640265 DOI: 10.1002/adhm.202202424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Indexed: 01/15/2023]
Abstract
While calcium-overload-mediated therapy (COMT) is a promising but largely untapped therapeutic strategy, combinatory therapy greatly boosts treatment outcomes with integrated merits of different therapies. Herein, a BPQD@CaO2 -PEG-GPC3Ab nanoplatform is formulated by integrating calcium peroxide (CaO2 ) and black phosphorus quantum dot (BPQD, photosensitizer) with active-targeting glypican-3 antibody (GPC3Ab), for combinatory photodynamic therapy (PDT) and COMT in response to acidic pH and near-infrared (NIR) light, wherein CaO2 serves as the reservoir of calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ). Navigated by GPC3Ab to tumor cells at acidic pH, the nanoparticle disassembles to CaO2 and BPQD; CaO2 produces COMT Ca2+ and H2 O2 , while H2 O2 makes oxygen (O2 ) to promote PDT; under NIR irradiation BPQD facilitates not only the conversion of O2 to singlet oxygen (1 O2 ) for PDT, but also moderate hyperthermia to accelerate NP dissociation to CaO2 and BPQD, and conversions of CaO2 to Ca2+ and H2 O2 , and H2 O2 to O2 , to enhance both COMT and PDT. After supplementary ionomycin treatment to induce intracellular Ca2+ bursts, the multimodal therapeutics strikingly induce hepatocellular carcinoma apoptosis, likely through the activation of the calpains and caspases 12, 9, and 3, up-regulation of Bax and down-regulation of Bcl-2 proteins. This nanoplatform enables a mutually-amplifying and self-reinforcing synergistic therapy.
Collapse
Affiliation(s)
- Dongdong Guo
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyong Dai
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kewei Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yuhong Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiamin Wu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Shengwei Jiang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Fen Sun
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Lijun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dongye Yang
- Division of Gastroenterology and Hepatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Laiqiang Huang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
35
|
Liang L, Li Y, Ying B, Huang X, Liao S, Yang J, Liao G. Mutation-associated transcripts reconstruct the prognostic features of oral tongue squamous cell carcinoma. Int J Oral Sci 2023; 15:1. [PMID: 36593250 PMCID: PMC9807648 DOI: 10.1038/s41368-022-00210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 01/04/2023] Open
Abstract
Tongue squamous cell carcinoma is highly malignant and has a poor prognosis. In this study, we aimed to combine whole-genome sequencing, whole-genome methylation, and whole-transcriptome analyses to understand the molecular mechanisms of tongue squamous cell carcinoma better. Oral tongue squamous cell carcinoma and adjacent normal tissues from five patients with tongue squamous cell carcinoma were included as five paired samples. After multi-omics sequencing, differentially methylated intervals, methylated loop sites, methylated promoters, and transcripts were screened for variation in all paired samples. Correlations were analyzed to determine biological processes in tongue squamous cell carcinoma. We found five mutated methylation promoters that were significantly associated with mRNA and lncRNA expression levels. Functional annotation of these transcripts revealed their involvement in triggering the mitogen-activated protein kinase cascade, which is associated with cancer progression and the development of drug resistance during treatment. The prognostic signature models constructed based on WDR81 and HNRNPH1 and combined clinical phenotype-gene prognostic signature models showed high predictive efficacy and can be applied to predict patient prognostic risk in clinical settings. We identified biological processes in tongue squamous cell carcinoma that are initiated by mutations in the methylation promoter and are associated with the expression levels of specific mRNAs and lncRNAs. Collectively, changes in transcript levels affect the prognosis of tongue squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Libo Liang
- grid.13291.380000 0001 0807 1581General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyan Huang
- grid.13291.380000 0001 0807 1581West China School/Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shenling Liao
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajin Yang
- grid.13291.380000 0001 0807 1581West China School/Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Information Management, Department of Stomatology Informatics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Yadav P, Beura SK, Panigrahi AR, Bhardwaj T, Giri R, Singh SK. Platelet-derived microvesicles activate human platelets via intracellular calcium mediated reactive oxygen species release. Blood Cells Mol Dis 2023; 98:102701. [DOI: 10.1016/j.bcmd.2022.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
|
37
|
Shi XY, Yue XL, Xu YS, Jiang M, Li RJ. Aldehyde dehydrogenase 2 and NOD-like receptor thermal protein domain associated protein 3 inflammasome in atherosclerotic cardiovascular diseases: A systematic review of the current evidence. Front Cardiovasc Med 2023; 10:1062502. [PMID: 36910525 PMCID: PMC9996072 DOI: 10.3389/fcvm.2023.1062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammation and dyslipidemia underlie the pathological basis of atherosclerosis (AS). Clinical studies have confirmed that there is still residual risk of atherosclerotic cardiovascular diseases (ASCVD) even after intense reduction of LDL. Some of this residual risk can be explained by inflammation as anti-inflammatory therapy is effective in improving outcomes in subjects treated with LDL-lowering agents. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation is closely related to early-stage inflammation in AS. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme of toxic aldehyde metabolism located in mitochondria and works in the metabolism of toxic aldehydes such as 4-HNE and MDA. Despite studies confirming that ALDH2 can negatively regulate NLRP3 inflammasome and delay the development of atherosclerosis, the mechanisms involved are still poorly understood. Reactive Oxygen Species (ROS) is a common downstream pathway activated for NLRP3 inflammasome. ALDH2 can reduce the multiple sources of ROS, such as oxidative stress, inflammation, and mitochondrial damage, thereby reducing the activation of NLRP3 inflammasome. Further, according to the downstream of ALDH2 and the upstream of NLRP3, the molecules and related mechanisms of ALDH2 on NLRP3 inflammasome are comprehensively expounded as possible. The potential mechanism may provide potential inroads for treating ASCVD.
Collapse
Affiliation(s)
- Xue-Yun Shi
- Qilu Medical College, Shandong University, Jinan, China
| | - Xiao-Lin Yue
- Qilu Medical College, Shandong University, Jinan, China
| | - You-Shun Xu
- Qilu Medical College, Shandong University, Jinan, China
| | - Mei Jiang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| | - Rui-Jian Li
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
38
|
Wei W, Lu H, Dai W, Zheng X, Dong H. Multiplexed Organelles Portrait Barcodes for Subcellular MicroRNA Array Detection in Living Cells. ACS NANO 2022; 16:20329-20339. [PMID: 36410732 DOI: 10.1021/acsnano.2c06252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiplexed profiling of microRNAs' subcellular expression and distribution is essential to understand their spatiotemporal function information, but it remains a crucial challenge. Herein, we report an encoding approach that leverages combinational fluorescent dye barcodes, organelle targeting elements, and an independent quantification signal, termed Multiplexed Organelles Portrait Barcodes (MOPB), for high-throughput profiling of miRNAs from organelles. The MOPB barcodes consist of heterochromatic fluorescent dye-loaded shell-core mesoporous silica nanoparticles modified with organelle targeting peptides and molecular beacon detection probes. Using mitochondria and endoplasmic reticulum as models, we encoded four Cy3/AMCA ER-MOPB and four Cy5/AMCA Mito-MOPB by varying the Cy3 and Cy5 intensity for distinguishing eight organelles' miRNAs. Significantly, the MOPB strategy successfully and accurately profiled eight subcellular organelle miRNAs' alterations in the drug-induced Ca2+ homeostasis breakdown. The approach should allow more widespread application of subcellular miRNAs and multiplexed subcellular protein biomarkers' monitoring for drug discovery, cellular metabolism, signaling transduction, and gene expression regulation readout.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Xiaonan Zheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
| |
Collapse
|
39
|
Chen YM, Liu PY, Tang KT, Liu HJ, Liao TL. TWEAK-Fn14 Axis Induces Calcium-Associated Autophagy and Cell Death To Control Mycobacterial Survival in Macrophages. Microbiol Spectr 2022; 10:e0317222. [PMID: 36321903 PMCID: PMC9769850 DOI: 10.1128/spectrum.03172-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Autophagy is a natural defense mechanism that protects the host against pathogens. We previously demonstrated that mycobacterial infection upregulated tumor necrosis factor-like weak inducer of apoptosis (TWEAK) to promote autophagy and mycobacterial autophagosome maturation through activation of AMP-activated protein kinase (AMPK). Fibroblast growth factor-inducible 14 (Fn14) is the receptor of TWEAK. But the role of Fn14 in mycobacterial infection remains elusive. Herein, we observed increased expression of Fn14 in peripheral blood mononuclear cells of active tuberculosis (TB) patients. Downregulation of cellular Fn14 enhanced mycobacterial survival in macrophages. Conversely, Fn14 overexpression inhibited mycobacterial growth, suggesting that Fn14 can inhibit mycobacterial infection. The in vitro results revealed that TWEAK-promoted mycobacterial phagosome maturation is Fn14-dependent. We demonstrated that TWEAK-Fn14 signaling promotes oxidative stress to enhance the expression of stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. Elevated calcium influx stimulated the activation of CaMCCK2 (calcium/calmodulin-dependent protein kinase kinase 2) and its downstream effector AMPK, thus inducing autophagy in early infection. Persistently TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. Genetic Fn14 deficiency or TWEAK blockers decreased oxidative stress-induced calcium influx, thus suppressing autophagy and cell death in mycobacteria-infected macrophages, and resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. Our results offer a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection. IMPORTANCE Tuberculosis remains a major cause of morbidity and mortality worldwide. We previously demonstrated a relationship between TWEAK and activation of the autophagic machinery, which promotes anti-mycobacterial immunity. The TWEAK-Fn14 axis is multi-functional and involved in the pathogenesis of many diseases, thus blockade of TWEAK-Fn14 axis has been considered as a potential therapeutic target. Here, we demonstrated that the TWEAK-Fn14 axis plays a novel role in anti-mycobacterial infection by regulating calcium-associated autophagy. Persistently, TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. TWEAK blocker or Fn14 deficiency could suppress oxidative stress and calcium-associated autophagy, resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. This study offers a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Po-Yu Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
40
|
Samadianzakaria A, Abdolmaleki Z, Faedmaleki F. The effect of valproic acid and furosemide on the regulation of the inflammasome complex (NLRP1 and NLRP3 mRNA) in the brain of epileptic animal model. Brain Res Bull 2022; 191:20-29. [DOI: 10.1016/j.brainresbull.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
41
|
A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms231911746. [PMID: 36233051 PMCID: PMC9569933 DOI: 10.3390/ijms231911746] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.
Collapse
|
42
|
Dong C, Dai X, Wang X, Lu Q, Chen L, Song X, Ding L, Huang H, Feng W, Chen Y, Chang M. A Calcium Fluoride Nanozyme for Ultrasound-Amplified and Ca 2+ -Overload-Enhanced Catalytic Tumor Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205680. [PMID: 36106691 DOI: 10.1002/adma.202205680] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The anticancer mechanism of nanozymes is dominantly associated with the capacity for generation of reactive oxygen species (ROS) caused by the valence change of metal elements. However, very little research is focused on and has achieved the exploration and development of enzyme-mimicking activities of valence-invariable metal compounds. Herein, a distinct valence-invariable calcium fluoride (CaF2 ) nanozyme with ultrasound (US)-enhanced peroxidase (POD)-mimicking activity is rationally designed and engineered for efficient calcium (Ca2+ )-overload-enhanced catalytic tumor nanotherapy, which is the first paradigm of Ca-based nanozymes for catalytic cancer treatment. The release of exogenous Ca2+ ions from CaF2 nanocrystals and deleterious ROS generation derived from US-amplified POD-mimicking properties facilitate intracellular Ca2+ accumulation and achieve Ca2+ -overload-induced mitochondrial dysfunction through introducing exogenous Ca2+ ions and regulating calcium-pumping channels of neoplastic cells. Especially, US as an exogenous energy input is capable of substantially amplifying POD-mimicking catalytic activities of CaF2 nanozyme, ultimately achieving efficient anti-neoplastic outcome on both 4T1 breast tumor and H22 hepatic carcinoma animal models. Such a discovery of enzyme-like activity of valence-invariable metal compounds can broaden the cognition scope of nanozymes and effectively serves the field of catalytic and chemoreactive nanomedicine.
Collapse
Affiliation(s)
- Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xi Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Qing Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinran Song
- Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, P. R. China
| | - Li Ding
- Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, P. R. China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| |
Collapse
|
43
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Stejerean‐Todoran I, Zimmermann K, Gibhardt CS, Vultur A, Ickes C, Shannan B, Bonilla del Rio Z, Wölling A, Cappello S, Sung H, Shumanska M, Zhang X, Nanadikar M, Latif MU, Wittek A, Lange F, Waters A, Brafford P, Wilting J, Urlaub H, Katschinski DM, Rehling P, Lenz C, Jakobs S, Ellenrieder V, Roesch A, Schön MP, Herlyn M, Stanisz H, Bogeski I. MCU
controls melanoma progression through a redox‐controlled phenotype switch. EMBO Rep 2022; 23:e54746. [PMID: 36156348 PMCID: PMC9638851 DOI: 10.15252/embr.202254746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 01/16/2023] Open
Abstract
Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor‐resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD‐induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.
Collapse
Affiliation(s)
- Ioana Stejerean‐Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | | | - Christine S Gibhardt
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Adina Vultur
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
- The Wistar Institute Melanoma Research Center Philadelphia PA USA
| | - Christian Ickes
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Batool Shannan
- The Wistar Institute Melanoma Research Center Philadelphia PA USA
- Department of Dermatology, University Hospital Essen, West German Cancer Center University Duisburg‐Essen and the German Cancer Consortium (DKTK)
| | - Zuriñe Bonilla del Rio
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Anna Wölling
- Department of Dermatology, Venereology and Allergology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Sabrina Cappello
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Hsu‐Min Sung
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Magdalena Shumanska
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Xin Zhang
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Maithily Nanadikar
- Department of Cardiovascular Physiology, University Medical Center Göttingen Georg‐August‐University Göttingen Germany
| | - Muhammad U Latif
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology University Medical Center Göttingen Gottingen Germany
| | - Anna Wittek
- Department of NanoBiophotonics Max Planck Institute for Multidisciplinary Sciences Göttingen Germany
- Clinic of Neurology University Medical Center Göttingen Göttingen Germany
| | - Felix Lange
- Department of NanoBiophotonics Max Planck Institute for Multidisciplinary Sciences Göttingen Germany
- Clinic of Neurology University Medical Center Göttingen Göttingen Germany
| | - Andrea Waters
- The Wistar Institute Melanoma Research Center Philadelphia PA USA
| | | | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group Max Planck Institute for Multidisciplinary Sciences Göttingen Germany
- Bioanalytics, Institute of Clinical Chemistry University Medical Center Göttingen Germany
| | - Dörthe M Katschinski
- Department of Cardiovascular Physiology, University Medical Center Göttingen Georg‐August‐University Göttingen Germany
| | - Peter Rehling
- Department of Cellular Biochemistry University Medical Center Göttingen, GZMB Göttingen Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group Max Planck Institute for Multidisciplinary Sciences Göttingen Germany
- Bioanalytics, Institute of Clinical Chemistry University Medical Center Göttingen Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics Max Planck Institute for Multidisciplinary Sciences Göttingen Germany
- Clinic of Neurology University Medical Center Göttingen Göttingen Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology University Medical Center Göttingen Gottingen Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, West German Cancer Center University Duisburg‐Essen and the German Cancer Consortium (DKTK)
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Meenhard Herlyn
- The Wistar Institute Melanoma Research Center Philadelphia PA USA
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Medical Center Georg‐August‐University Göttingen Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Georg‐August‐University Göttingen Germany
| |
Collapse
|
45
|
Kouba S, Hague F, Ahidouch A, Ouadid-Ahidouch H. Crosstalk between Ca2+ Signaling and Cancer Stemness: The Link to Cisplatin Resistance. Int J Mol Sci 2022; 23:ijms231810687. [PMID: 36142596 PMCID: PMC9503744 DOI: 10.3390/ijms231810687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
In the fight against cancer, therapeutic strategies using cisplatin are severely limited by the appearance of a resistant phenotype. While cisplatin is usually efficient at the beginning of the treatment, several patients endure resistance to this agent and face relapse. One of the reasons for this resistant phenotype is the emergence of a cell subpopulation known as cancer stem cells (CSCs). Due to their quiescent phenotype and self-renewal abilities, these cells have recently been recognized as a crucial field of investigation in cancer and treatment resistance. Changes in intracellular calcium (Ca2+) through Ca2+ channel activity are essential for many cellular processes such as proliferation, migration, differentiation, and survival in various cell types. It is now proved that altered Ca2+ signaling is a hallmark of cancer, and several Ca2+ channels have been linked to CSC functions and therapy resistance. Moreover, cisplatin was shown to interfere with Ca2+ homeostasis; thus, it is considered likely that cisplatin-induced aberrant Ca2+ signaling is linked to CSCs biology and, therefore, therapy failure. The molecular signature defining the resistant phenotype varies between tumors, and the number of resistance mechanisms activated in response to a range of pressures dictates the global degree of cisplatin resistance. However, if we can understand the molecular mechanisms linking Ca2+ to cisplatin-induced resistance and CSC behaviors, alternative and novel therapeutic strategies could be considered. In this review, we examine how cisplatin interferes with Ca2+ homeostasis in tumor cells. We also summarize how cisplatin induces CSC markers in cancer. Finally, we highlight the role of Ca2+ in cancer stemness and focus on how they are involved in cisplatin-induced resistance through the increase of cancer stem cell populations and via specific pathways.
Collapse
Affiliation(s)
- Sana Kouba
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Ahmed Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
- Département de Biologie, Faculté des Sciences, Université Ibn Zohr, Agadir 81016, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
- Correspondence:
| |
Collapse
|
46
|
NavaneethaKrishnan S, Law V, Lee J, Rosales JL, Lee KY. Cdk5 regulates IP3R1-mediated Ca 2+ dynamics and Ca 2+-mediated cell proliferation. Cell Mol Life Sci 2022; 79:495. [PMID: 36001172 PMCID: PMC9402492 DOI: 10.1007/s00018-022-04515-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022]
Abstract
Loss of cyclin-dependent kinase 5 (Cdk5) in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) increases ER–mitochondria tethering and ER Ca2+ transfer to the mitochondria, subsequently increasing mitochondrial Ca2+ concentration ([Ca2+]mt). This suggests a role for Cdk5 in regulating intracellular Ca2+ dynamics, but how Cdk5 is involved in this process remains to be explored. Using ex vivo primary mouse embryonic fibroblasts (MEFs) isolated from Cdk5−/− mouse embryos, we show here that loss of Cdk5 causes an increase in cytosolic Ca2+concentration ([Ca2+]cyt), which is not due to reduced internal Ca2+ store capacity or increased Ca2+ influx from the extracellular milieu. Instead, by stimulation with ATP that mediates release of Ca2+ from internal stores, we determined that the rise in [Ca2+]cyt in Cdk5−/− MEFs is due to increased inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from internal stores. Cdk5 interacts with the IP3R1 Ca2+ channel and phosphorylates it at Ser421. Such phosphorylation controls IP3R1-mediated Ca2+ release as loss of Cdk5, and thus, loss of IP3R1 Ser421 phosphorylation triggers an increase in IP3R1-mediated Ca2+ release in Cdk5−/− MEFs, resulting in elevated [Ca2+]cyt. Elevated [Ca2+]cyt in these cells further induces the production of reactive oxygen species (ROS), which upregulates the levels of Nrf2 and its targets, Prx1 and Prx2. Cdk5−/− MEFs, which have elevated [Ca2+]cyt, proliferate at a faster rate compared to wt, and Cdk5−/− embryos have increased body weight and size compared to their wt littermates. Taken together, we show that altered IP3R1-mediated Ca2+ dynamics due to Cdk5 loss correspond to accelerated cell proliferation that correlates with increased body weight and size in Cdk5−/− embryos.
Collapse
Affiliation(s)
- Saranya NavaneethaKrishnan
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vincent Law
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jungkwon Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jesusa L Rosales
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
47
|
Jeong KY, Sim JJ, Park M, Kim HM. Accumulation of poly (adenosine diphosphate-ribose) by sustained supply of calcium inducing mitochondrial stress in pancreatic cancer cells. World J Gastroenterol 2022; 28:3422-3434. [PMID: 36158271 PMCID: PMC9346456 DOI: 10.3748/wjg.v28.i27.3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The biochemical phenomenon defined as poly adenosine diphosphate (ADP)-ribosylation (PARylation) is essential for the progression of pancreatic cancer. However, the excessive accumulation of poly ADP-ribose (PAR) induces apoptosis-inducing factor (AIF) release from mitochondria and energy deprivation resulting in the caspase-independent death of cancer cells.
AIM To investigate whether sustained calcium supply could induce an anticancer effect on pancreatic cancer by PAR accumulation.
METHODS Two pancreatic cancer cell lines, AsPC-1 and CFPAC-1 were used for the study. Calcium influx and mitochondrial reactive oxygen species (ROS) were observed by fluorescence staining. Changes in enzyme levels, as well as PAR accumulation and energy metabolism, were measured using assay kits. AIF-dependent cell death was investigated followed by confirming in vivo anticancer effects by sustained calcium administration.
RESULTS Mitochondrial ROS levels were elevated with increasing calcium influx into pancreatic cancer cells. Then, excess PAR accumulation, decreased PAR glycohydrolase and ADP-ribosyl hydrolase 3 levels, and energy deprivation were observed. In vitro and in vivo antitumor effects were confirmed to accompany elevated AIF levels.
CONCLUSION This study visualized the potential anticancer effects of excessive PAR accumulation by sustained calcium supply on pancreatic cancer, however elucidating a clear mode of action remains a challenge, and it should be accompanied by further studies to assess its potential for clinical application.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Jae Jun Sim
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Hwan Mook Kim
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
48
|
Li N, Gao Y, Li B, Gao D, Geng H, Li S, Xing C. Remote Manipulation of ROS-Sensitive Calcium Channel Using Near-Infrared-Responsive Conjugated Oligomer Nanoparticles for Enhanced Tumor Therapy In Vivo. NANO LETTERS 2022; 22:5427-5433. [PMID: 35759348 DOI: 10.1021/acs.nanolett.2c01472] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of reactive oxygen species (ROS)-sensitive calcium (Ca2+) channels is of great significance in the treatment of tumors. Here, a simple ROS generation system is developed to activate ROS-sensitive ion channels for enhancing calcium-cascade-mediated tumor cell death under near-infrared (NIR) light irradiation. Upon irradiation with an 808 nm laser, a low-lethality amount of ROS facilitates plasmid transient potential receptor melastatin-2 (pTRPM2) gene release via cleavage of the Se-Se bonds, which contributed to enhancing the expression of TRPM2 in tumor cells. Meanwhile, ROS could potently activate TRPM2 for Ca2+ influx to inhibit early autophagy and to further induce intracellular ROS production, which ultimately led to cell death in TRPM2 expressing tumor cells. Both in vitro and in vivo data show that nanoparticles have an excellent therapeutic effect on cancer upon NIR light. This work presents a simple modality based on NIR light to remotely control the ROS-sensitive ion channel for cancer therapy.
Collapse
Affiliation(s)
- Ning Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, PR China
| | - Boying Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Dong Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, PR China
| | - Hao Geng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, PR China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
49
|
Marques A, Belchior A, Silva F, Marques F, Campello MPC, Pinheiro T, Santos P, Santos L, Matos APA, Paulo A. Dose Rate Effects on the Selective Radiosensitization of Prostate Cells by GRPR-Targeted Gold Nanoparticles. Int J Mol Sci 2022; 23:ijms23095279. [PMID: 35563666 PMCID: PMC9105611 DOI: 10.3390/ijms23095279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
For a while, gold nanoparticles (AuNPs) have been recognized as potential radiosensitizers in cancer radiation therapy, mainly due to their physical properties, making them appealing for medical applications. Nevertheless, the performance of AuNPs as radiosensitizers still raises important questions that need further investigation. Searching for selective prostate (PCa) radiosensitizing agents, we studied the radiosensitization capability of the target-specific AuNP-BBN in cancer versus non-cancerous prostate cells, including the evaluation of dose rate effects in comparison with non-targeted counterparts (AuNP-TDOTA). PCa cells were found to exhibit increased AuNP uptake when compared to non-tumoral ones, leading to a significant loss of cellular proliferation ability and complex DNA damage, evidenced by the occurrence of multiple micronucleus per binucleated cell, in the case of PC3 cells irradiated with 2 Gy of γ-rays, after incubation with AuNP-BBN. Remarkably, the treatment of the PC3 cells with AuNP-BBN led to a much stronger influence of the dose rate on the cellular survival upon γ-photon irradiation, as well as on their genomic instability. Overall, AuNP-BBN emerged in this study as a very promising nanotool for the efficient and selective radiosensitization of human prostate cancer PC3 cells, therefore deserving further preclinical evaluation in adequate animal models for prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Ana Marques
- Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
- Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Pedro Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Luis Santos
- Laboratório de Metrologia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - António P. A. Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| |
Collapse
|
50
|
Guéguinou M, Ibrahim S, Bourgeais J, Robert A, Pathak T, Zhang X, Crottès D, Dupuy J, Ternant D, Monbet V, Guibon R, Flores-Romero H, Lefèvre A, Lerondel S, Le Pape A, Dumas JF, Frank PG, Girault A, Chautard R, Guéraud F, García-Sáez AJ, Ouaissi M, Emond P, Sire O, Hérault O, Fromont-Hankard G, Vandier C, Tougeron D, Trebak M, Raoul W, Lecomte T. Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer. Cell Mol Life Sci 2022; 79:284. [PMID: 35526196 PMCID: PMC11072810 DOI: 10.1007/s00018-022-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.
Collapse
Affiliation(s)
- Maxime Guéguinou
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
| | | | | | - Alison Robert
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Trayambak Pathak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - David Crottès
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Jacques Dupuy
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, Tours, France
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Valérie Monbet
- IRMAR Mathematics Research Institute of Rennes, UMR-CNRS 6625, Rennes, France
| | - Roseline Guibon
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Hector Flores-Romero
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Antoine Lefèvre
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | | | | | - Jean-François Dumas
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Philippe G Frank
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Alban Girault
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, Amiens, France
| | | | - Françoise Guéraud
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ana J García-Sáez
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Mehdi Ouaissi
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | - Olivier Sire
- IRDL Institut de Recherche Dupuy de Lôme, UMR-CNRS, 06027, Vannes, France
| | | | - Gaëlle Fromont-Hankard
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Christophe Vandier
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - David Tougeron
- Hepato-Gastroenterology Department, Poitiers University Hospital and Faculty of Medicine of Poitiers, 86000, Poitiers, France
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - William Raoul
- EA 7501 GICC, Université de Tours, Tours, France
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Thierry Lecomte
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
- Department of Hepato-Gastroenterology and Digestive Oncology, CHRU de Tours, Tours, France.
| |
Collapse
|