1
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
2
|
Lin Y, Zhao Y, Chen M, Li Z, Liu Q, Chen J, Ding Y, Ding C, Ding Y, Qi C, Zheng L, Li J, Zhang R, Zhou J, Wang L, Zhang QQ. CYD0281, a Bcl-2 BH4 domain antagonist, inhibits tumor angiogenesis and breast cancer tumor growth. BMC Cancer 2023; 23:479. [PMID: 37237269 DOI: 10.1186/s12885-023-10974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND B-cell lymphoma 2 (Bcl-2) family proteins are key regulators of apoptosis, which possess four conserved Bcl-2 homologies (BH) domains. Among the BH domains, the BH3 domain is considered as a potent 'death domain' while the BH4 domain is required for anti-apoptotic activity. Bcl-2 can be converted to a pro-apoptotic molecule through the removal or mutation of the BH4 domain. Bcl-2 is considered as an inducer of angiogenesis, which can promote tumor vascular network formation and further afford nutrients and oxygen to promote tumor progression. However, whether disrupting the function of the BH4 domain to convert Bcl-2 into a pro-apoptotic molecule could make Bcl-2 possess the potential for anti-angiogenic therapy remains to be defined. METHODS CYD0281 was designed and synthesized according to the lead structure of BDA-366, and its function on inducing a conformational change of Bcl-2 was further evaluated via immunoprecipitation (IP) and immunofluorescence (IF) assays. Moreover, the function of CYD0281 on apoptosis of endothelial cells was analyzed via cell viability, flow cytometry, and western blotting assays. Additionally, the role of CYD0281 on angiogenesis in vitro was determined via endothelial cell migration and tube formation assays and rat aortic ring assay. Chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, breast cancer cell xenograft tumor on CAM and in mouse models as well as the Matrigel plug angiogenesis assay were used to explore the effects of CYD0281 on angiogenesis in vivo. RESULTS We identified a novel potent small-molecule Bcl-2-BH4 domain antagonist, CYD0281, which exhibited significant anti-angiogenic effects both in vitro and in vivo, and further inhibited breast cancer tumor growth. CYD0281 was found to induce conformational changes in Bcl-2 through the exposure of the BH3 domain and convert Bcl-2 from an anti-apoptotic molecule into a cell death inducer, thereby resulting in the apoptosis of vascular endothelial cells. CONCLUSIONS This study has revealed CYD0281 as a novel Bcl-2-BH4 antagonist that induces conformational changes of Bcl-2 to convert to a pro-apoptotic molecule. Our findings indicate that CYD0281 plays a crucial role in anti-angiogenesis and may be further developed as a potential anti-tumor drug candidate for breast cancer. This work also provides a potential anti-angiogenic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Yihua Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiling Zhao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zishuo Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiao Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Moon DO. Calcium's Role in Orchestrating Cancer Apoptosis: Mitochondrial-Centric Perspective. Int J Mol Sci 2023; 24:ijms24108982. [PMID: 37240331 DOI: 10.3390/ijms24108982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is an essential intracellular messenger that plays a vital role in controlling a broad range of cellular processes, including apoptosis. This review offers an in-depth analysis of calcium's multifaceted role in apoptosis regulation, focusing on the associated signaling pathways and molecular mechanisms. We will explore calcium's impact on apoptosis through its effects on different cellular compartments, such as the mitochondria and endoplasmic reticulum (ER), and discuss the connection between calcium homeostasis and ER stress. Additionally, we will highlight the interplay between calcium and various proteins, including calpains, calmodulin, and Bcl-2 family members, and the role of calcium in regulating caspase activation and pro-apoptotic factor release. By investigating the complex relationship between calcium and apoptosis, this review aims to deepen our comprehension of the fundamental processes, and pinpointing possible treatment options for illnesses associated with imbalanced cell death is crucial.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
de Ridder I, Kerkhofs M, Lemos FO, Loncke J, Bultynck G, Parys JB. The ER-mitochondria interface, where Ca 2+ and cell death meet. Cell Calcium 2023; 112:102743. [PMID: 37126911 DOI: 10.1016/j.ceca.2023.102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.
Collapse
Affiliation(s)
- Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Fernanda O Lemos
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| |
Collapse
|
5
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
6
|
Pan L, Feng F, Wu J, Fan S, Han J, Wang S, Yang L, Liu W, Wang C, Xu K. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res 2022; 181:106270. [PMID: 35605812 DOI: 10.1016/j.phrs.2022.106270] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells drive tumor initiation, progression, and recurrence, which compromise the effectiveness of anti-tumor drugs. Here, we report that demethylzeylasteral (DML), a triterpene anti-tumor compound, suppressed tumorigenesis of liver cancer stem cells (LCSCs) by interfering with lactylation of a metabolic stress-related histone. Using RNA sequencing (RNA-seq) and gas chromatography-mass spectrometric (GC-MS) analysis, we showed that the glycolysis metabolic pathway contributed to the anti-tumor effects of DML, and then focused on lactate downstream regulation as the molecular target. Mechanistically, DML opposed the progress of hepatocellular carcinoma (HCC), which was efficiently facilitated by the increase in H3 histone lactylation. Two histone modification sites: H3K9la and H3K56la, which were found to promote tumorigenesis, were inhibited by DML. In addition, we used a nude mouse tumor xenograft model to confirm that the anti-liver cancer effects of DML are mediated by regulating H3 lactylation in vivo. Our findings demonstrate that DML suppresses the tumorigenicity induced by LCSCs by inhibiting H3 histone lactylation, thus implicating DML as a potential candidate for the supplementary treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lianhong Pan
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Fan Feng
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shibing Fan
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Juanjuan Han
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shunxi Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Wanqian Liu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
7
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Rosa N, Ivanova H, Wagner LE, Kale J, La Rovere R, Welkenhuyzen K, Louros N, Karamanou S, Shabardina V, Lemmens I, Vandermarliere E, Hamada K, Ando H, Rousseau F, Schymkowitz J, Tavernier J, Mikoshiba K, Economou A, Andrews DW, Parys JB, Yule DI, Bultynck G. Bcl-xL acts as an inhibitor of IP 3R channels, thereby antagonizing Ca 2+-driven apoptosis. Cell Death Differ 2021; 29:788-805. [PMID: 34750538 PMCID: PMC8990011 DOI: 10.1038/s41418-021-00894-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2's IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL's inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL's anti-apoptotic function.
Collapse
Affiliation(s)
- Nicolas Rosa
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Larry E Wagner
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| | - Justin Kale
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Rita La Rovere
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Kirsten Welkenhuyzen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O/N-1bis Box 802, Herestraat 49, 3000, Leuven, Belgium.,KU Leuven, Switch Laboratory, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-1bis Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Campus Gasthuisberg P.O, Box 1037, Herestraat 49, 3000, Leuven, Belgium
| | - Victoria Shabardina
- Institut of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Irma Lemmens
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, and Center for Medical Biotechnology, VIB, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | | - Kozo Hamada
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O/N-1bis Box 802, Herestraat 49, 3000, Leuven, Belgium.,KU Leuven, Switch Laboratory, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-1bis Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O/N-1bis Box 802, Herestraat 49, 3000, Leuven, Belgium.,KU Leuven, Switch Laboratory, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-1bis Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, and Center for Medical Biotechnology, VIB, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.,Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, 274-8510, Chiba, Japan
| | - Anastassios Economou
- KU Leuven, Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Campus Gasthuisberg P.O, Box 1037, Herestraat 49, 3000, Leuven, Belgium
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 Box 802, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Li Y, Yu X, Wang Y, Zheng X, Chu Q. Kaempferol-3- O-rutinoside, a flavone derived from Tetrastigma hemsleyanum, suppresses lung adenocarcinoma via the calcium signaling pathway. Food Funct 2021; 12:8351-8365. [PMID: 34338262 DOI: 10.1039/d1fo00581b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung cancer has been threatening human health worldwide for a long time. However, the clinic therapies remain unsatisfactory. In this study, the anti-adenocarcinoma lung cancer A549 cell line abilities of Tetrastigma hemsleyanum tuber flavonoids (THTF) were evaluated in vivo, and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was conducted to detect the protein alterations in THTF-treated solid tumors. The differentially expressed proteins were related to the cytoskeleton and mostly accumulated in the calcium signaling pathway. The in vitro study illustrated that 80 μg mL-1 THTF significantly suppressed cellular viability to approximately 75% of the control. Further results suggested that kaempferol-3-O-rutinoside (K3R), the major component of THTF, effectively triggered cytoskeleton collapse, mitochondrial dysfunction and consequent calcium overload to achieve apoptosis, which remained consistent with proteomic results. This study uncovers a new mechanism for THTF anti-tumor ability, and suggests THTF and K3R as promising anti-cancer agents, providing new ideas and possible strategies for future anti-lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xin Yu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yaxuan Wang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Qiang Chu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China. and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
10
|
Zong J, Peng H, Qing X, Fan Z, Xu W, Du X, Shi R, Zhang Y. pH-Responsive Pluronic F127-Lenvatinib-Encapsulated Halogenated Boron-Dipyrromethene Nanoparticles for Combined Photodynamic Therapy and Chemotherapy of Liver Cancer. ACS OMEGA 2021; 6:12331-12342. [PMID: 34056385 PMCID: PMC8154152 DOI: 10.1021/acsomega.1c01346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Combination therapy such as photodynamic therapy (PDT)-enhanced chemotherapy is regarded as a promising strategy for cancer treatment. Boron-dipyrromethene (BODIPY), as close relatives of porphyrins, was widely used in PDT. However, poor water solubility, rapid metabolism by the body and lack of targeting limits its clinical application. Lenvatinib, as the first-line drug for molecular-targeted therapy of liver cancer, restricted its clinical application for its side effects. Herein, to achieve the synergy between PDT and chemotherapy, we synthesized two halogenated BODIPY, BDPBr2 and BDPCl2, which were prepared into self-assembly nanoparticles with lenvatinib, and were encapsulated with Pluronic F127 through the nanoprecipitation method, namely, LBPNPs (LBBr2 NPs and LBCl2 NPs). The fluorescence quantum yields of LBPNPs were 0.73 and 0.71, respectively. The calculated loading rates of lenvatinib for LBBr2 NPs and LBCl2 NPs were 11.8 and 10.2%, respectively. LBPNPs can be hydrolyzed under weakly acidic conditions (pH 5.0) to generate reactive oxygen species (ROS), and the release rate of lenvatinib reached 88.5 and 82.4%. Additionally, LBPNPs can be effectively taken up by Hep3B and Huh7 liver cancer cells, releasing halogenated BODIPY and lenvatinib in the acidic environment of tumor cells to enhance the targeting performance of chemotherapeutics. Compared with free lenvatinib and separate halogenated BODIPY, LBPNPs can inhibit tumor growth more effectively through pH-responsive chemo/photodynamic synergistic therapy and significantly promote the cascade of caspase apoptotic protease. This study shows that LBPNPs can be a promising nanotheranostic agent for synergetic chemo/photodynamic liver cancer therapy.
Collapse
Affiliation(s)
- Jingjing Zong
- Department
of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hao Peng
- Department
of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xin Qing
- Department
of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhe Fan
- Department
of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- The
Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - Wenjing Xu
- Department
of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xuanlong Du
- Department
of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ruihua Shi
- Department
of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao, Nanjing 210009, China
| | - Yewei Zhang
- Department
of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
11
|
Progesterone induces apoptosis by activation of caspase-8 and calcitriol via activation of caspase-9 pathways in ovarian and endometrial cancer cells in vitro. Apoptosis 2021; 26:184-194. [PMID: 33515314 DOI: 10.1007/s10495-021-01657-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Previously we have shown inhibition of endometrial cancer cell growth with progesterone and calcitriol. However, the mechanisms by which the two agents attenuate proliferation have not been well characterized yet. Herein, we investigated how progesterone and calcitriol induce apoptosis in cancer cells. DNA fragmentation was upregulated by progesterone and calcitriol in ovarian and endometrial cancer cells. Time-dependent treatment of ovarian cancer cells, ES-2, and TOV-21G with progesterone enhanced caspase -8 activity after 12 h, whereas OV-90, TOV-112D, HEC-1A, and HEC-59 cells showed increased activity after 24 h. Caspase 9 activity was increased in all cell lines after 24 h treatment with calcitriol. Pretreatment of cancer cells with a caspase-8 inhibitor (z-IETD-fmk) or caspase-9 inhibitor (Z-LEHD-fmk) significantly attenuated progesterone and calcitriol induced caspase-8 and caspase-9 expression, respectively. The expression of FasL, Fas, FAD, and pro-caspase-8, which constitute the death-inducing signaling complex (DISC), was upregulated in progesterone treated cancer cells. Knockdown of FAS or FADD with specific siRNAs significantly blocked progesterone-induced caspase-8. Cleavage of the BID was not affected by caspase-8 activation suggesting the absence of cross-talk between caspase-8 and caspase-9 pathways. Calcitriol treatment decreased mitochondrial membrane potential and increased the release of cancer cytochrome C. These findings indicate that progesterone induces apoptosis through activation of caspase-8 and calcitriol through caspase-9 activation in cancer cells. A combination of progesterone-calcitriol activates both extrinsic and intrinsic apoptotic pathways in cancer cells.
Collapse
|
12
|
Delivery of apigenin-loaded magnetic Fe 2O 3/Fe 3O 4@mSiO 2 nanocomposites to A549 cells and their antitumor mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111719. [PMID: 33545870 DOI: 10.1016/j.msec.2020.111719] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022]
Abstract
This study introduces a mesoporous magnetic nano-system for the delivery of apigenin (API). A targeted therapeutic drug delivery system was prepared based on Fe2O3/Fe3O4@mSiO2-HA nanocomposites. Magnetic Fe2O3/Fe3O4 heterogeneous nanoparticles were first prepared via the rapid-combustion process. The effects of solvent type, solvent volume, calcination temperature, and calcination time on the crystal size and magnetism of the Fe2O3/Fe3O4 heterogeneous nanoparticles were investigated. The mesoporous silica shell was deposited on the Fe2O3/Fe3O4 heterogeneous nanoparticles using an improved Stöber method. HA was exploited as the targeting ligand. The specific surface area of the Fe2O3/Fe3O4@mSiO2 nanocomposites was 369.6 m2/g, which is 19 times higher than that of the magnetic Fe2O3/Fe3O4 heterogeneous nanoparticle cores. Drug release properties from the Fe2O3/Fe3O4@mSiO2-HA nanocomposites were studied, and the result showed that API-loaded nano-system had sustained release effect. Prussian blue staining and electrochemical performance variation showed that an external magnetic field facilitated cell uptake of Fe2O3/Fe3O4@mSiO2-HA nanocomposites. MTT assays showed that the cell inhibition effect of API-Fe2O3/Fe3O4@mSiO2-HA was stronger than that of free API at the same drug dose under a magnetic field and Fe2O3/Fe3O4@mSiO2-HA nanocomposites showed good biocompatibility. Fluorescence imaging, flow cytometry, western blot, reactive oxygen species (ROS), Superoxide dismutase (SOD) and malondialdehyde (MDA) kits verified that the enhanced therapeutic action was due to the promotion of apoptosis, lipid peroxidation, and ferroptosis. The magnetic nano-system (Fe2O3/Fe3O4@mSiO2-HA) showed good magnetic targeting and active hyaluronic acid targeting, and has the potential to provide a targeted delivery platform for many antitumor drugs.
Collapse
|
13
|
Naumova N, Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl-2 Proteins. MEMBRANES 2020; 10:E299. [PMID: 33096926 PMCID: PMC7590060 DOI: 10.3390/membranes10100299] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria represent the fundamental system for cellular energy metabolism, by not only supplying energy in the form of ATP, but also by affecting physiology and cell death via the regulation of calcium homeostasis and the activity of Bcl-2 proteins. A lot of research has recently been devoted to understanding the interplay between Bcl-2 proteins, the regulation of these interactions within the cell, and how these interactions lead to the changes in calcium homeostasis. However, the role of Bcl-2 proteins in the mediation of mitochondrial calcium homeostasis, and therefore the induction of cell death pathways, remain underestimated and are still not well understood. In this review, we first summarize our knowledge about calcium transport systems in mitochondria, which, when miss-regulated, can induce necrosis. We continue by reviewing and analyzing the functions of Bcl-2 proteins in apoptosis. Finally, we link these two regulatory mechanisms together, exploring the interactions between the mitochondrial Ca2+ transport systems and Bcl-2 proteins, both capable of inducing cell death, with the potential to determine the cell death pathway-either the apoptotic or the necrotic one.
Collapse
Affiliation(s)
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic;
| |
Collapse
|
14
|
BDA-366, a putative Bcl-2 BH4 domain antagonist, induces apoptosis independently of Bcl-2 in a variety of cancer cell models. Cell Death Dis 2020; 11:769. [PMID: 32943617 PMCID: PMC7498462 DOI: 10.1038/s41419-020-02944-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Several cancer cell types, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL) upregulate antiapoptotic Bcl-2 to cope with oncogenic stress. BH3 mimetics targeting Bcl-2's hydrophobic cleft have been developed, including venetoclax as a promising anticancer precision medicine for treating CLL patients. Recently, BDA-366 was identified as a small molecule BH4-domain antagonist that could kill lung cancer and multiple myeloma cells. BDA-366 was proposed to switch Bcl-2 from an antiapoptotic into a proapoptotic protein, thereby activating Bax and inducing apoptosis. Here, we scrutinized the therapeutic potential and mechanism of action of BDA-366 in CLL and DLBCL. Although BDA-366 displayed selective toxicity against both cell types, the BDA-366-induced cell death did not correlate with Bcl-2-protein levels and also occurred in the absence of Bcl-2. Moreover, although BDA-366 provoked Bax activation, it did neither directly activate Bax nor switch Bcl-2 into a Bax-activating protein in in vitro Bax/liposome assays. Instead, in primary CLL cells and DLBCL cell lines, BDA-366 inhibited the activity of the PI3K/AKT pathway, resulted in Bcl-2 dephosphorylation and reduced Mcl-1-protein levels without affecting the levels of Bcl-2 or Bcl-xL. Hence, our work challenges the current view that BDA-366 is a BH4-domain antagonist of Bcl-2 that turns Bcl-2 into a pro-apoptotic protein. Rather, our results indicate that other mechanisms beyond switching Bcl-2 conformation underlie BDA-366's cell-death properties that may implicate Mcl-1 downregulation and/or Bcl-2 dephosphorylation.
Collapse
|
15
|
Abstract
Small molecule inhibitors targeting BCL2 are explored as anticancer therapeutics. Previously, we have reported identification and characterization of a novel BCL2 inhibitor, Disarib. Disarib induced cancer cell death in a BCL2 dependent manner in different cancer cell lines and mouse tumor models when it was administered intraperitoneally. In the present study, using two syngeneic mouse models, breast adenocarcinoma (EAC) and Dalton’s lymphoma (DLA), we show that oral administration of Disarib resulted in significant tumor regression in a concentration dependent manner. Importantly, tumor developed in both female and male mice were equally sensitive to Disarib. Further, we have investigated the toxicity of Disarib in normal cells. Single dose toxicity analysis of Disarib in male and female mice after oral administration revealed no significant variations compared to control group for parameters such as body weight, food and water consumption and behavioural changes which were analysed for the entire period of study. Haematological and histopathological analyses also did not show any significant difference from the control groups. Thus, our results reveal safe use of Disarib as a small molecule inhibitor and provide the foundation for investigation of other preclinical studies.
Collapse
|
16
|
Ding Y, Zhou Y, Li Z, Zhang H, Yang Y, Qin H, Xu Q, Zhao L. Oroxylin A reversed Fibronectin-induced glioma insensitivity to Temozolomide by suppressing IP 3R1/AKT/β-catenin pathway. Life Sci 2020; 260:118411. [PMID: 32918978 DOI: 10.1016/j.lfs.2020.118411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cell adhesion mediated-drug resistance (CAM-DR) is one of main reasons for. the limitation to chemotherapy, but the underlying mechanism remains unclear in glioma. In this study, we investigated the mechanism of CAM-DR induced by Fibronectin (Fn). Besides, we studied the reversal effect of Oroxylin A, a natural flavonoid extracted from Scutellaria radix, on Temozolomide (TMZ) insensitivity of glioma cells. MAIN METHODS Human Fn protein was used to mimic cell adhesion model and investigate its effect on the insensitivity of glioma cells to TMZ. Moreover, Oroxylin A was studied regarding its reversal effect on TMZ insensitivity of glioma via multiple molecular biological methods such as MTT, cell apoptosis assay, siRNA transfection, western blot, immunofluorescence assay. KEY FINDINGS Fn could decrease the apoptosis-inducing effect of TMZ and led to the CAM-DR in glioma cells. Further studies showed that up-regulations of IP3R1 and intracellular Ca2+ level induced the activation of AKT kinase which increased the phosphorylation of GSK-3β and subsequently caused the entry of β-catenin into the nucleus. Knocking down IP3R1 significantly improved the sensitivity of glioma cells to TMZ. Meanwhile, after treatment with low-toxic concentration of Oroxylin A, the apoptosis induced by TMZ under Fn condition increased dramatically. Furthermore, our results revealed that Oroxylin A markedly inhibited the expression of IP3R1 and the activation of AKT/β-catenin pathway. SIGNIFICANCE Oroxylin A could reverse the insensitivity of TMZ via suppressing IP3R1/AKT/β-catenin pathway and it might be helpful for enhancing the anti-cancer effect of TMZ in glioma.
Collapse
Affiliation(s)
- Youxiang Ding
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - You Zhou
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Zhaohe Li
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Heng Zhang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Yue Yang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Hongkun Qin
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing 210009, China.
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China.
| |
Collapse
|
17
|
Schirmer B, Giehl K, Kubatzky KF. Report of the 23rd Meeting on Signal Transduction 2019-Trends in Cancer and Infection. Int J Mol Sci 2020; 21:ijms21082728. [PMID: 32326408 PMCID: PMC7215334 DOI: 10.3390/ijms21082728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
The annual meeting "Signal Transduction-Receptors, Mediators and Genes" of the Signal Transduction Society (STS) is an interdisciplinary conference open to all scientists sharing the common interest in elucidating the signalling pathways underlying the physiological or pathological processes in health and disease of humans, animals, plants, fungi, prokaryotes and protists. The 23rd meeting on signal transduction was held from 4-6 November 2019 in Weimar, Germany, and focused on "Trends in Cancer and Infection". As usual, keynote presentations by invited scientists introduced the respective workshops and were followed by speakers chosen from the submitted abstracts. Ample time had been reserved for discussion of the presented data during the workshops. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-3875
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Katharina F. Kubatzky
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| |
Collapse
|
18
|
Chen NN, Chao DL, Li XG. Circular RNA has_circ_0000527 participates in proliferation, invasion and migration of retinoblastoma cells via miR-646/BCL-2 axis. Cell Biochem Funct 2020; 38:1036-1046. [PMID: 32266733 DOI: 10.1002/cbf.3535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Retinoblastoma (RB) is one of the most common primary intraocular malignancies in children. Emerging researches have shown that circular RNAs (circRNAs) play critical roles in a variety of cancers. As a novel circRNA, the function of circ_0000527 in RB remains unknown. In this work, expression level of circ_0000527 and miR-646 in RB tissues and cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). RB cell lines (SO-Rb50 and WERI-Rb-1) were used as cell models in functional experiments. CCK-8 assay, TUNEL assay and transwell assay were employed to detect the biological influence of circ_0000527 and miR-646 on cancer cells in vitro. qRT-PCR, luciferase reporter assay, RIP assay and western blot were used for exploring the interactions among circ_0000527, miR-646 and BCL-2. It was demonstrated that expression level of circ_0000527 in RB samples was significantly up-regulated compared to normal tissues, while miR-646 was markedly down-regulated. Overexpression of circ_0000527 promoted the viability, migration and invasion of RB cells, while miR-646 transfection had the opposite effects. Circ_0000527 sponged miR-646 to regulate the expression of BCL-2. In conclusion, circ_0000527 could promote the development of RB by indirectly modulating BCL-2 via absorbing miR-646. SIGNIFICANCE OF THE STUDY: Expression level of circ_0000527 in RB samples was significantly up-regulated compared to normal tissues, while miR-646 was markedly down-regulated. Overexpression of circ_0000527 promoted the viability, migration and invasion of RB cells, while miR-646 transfection had the opposite effects. Circ_0000527 sponged miR-646 to regulate the expression of BCL-2.
Collapse
Affiliation(s)
- Nan-Nan Chen
- Neuroscience Center, Shandong Sunshine Union Hospital Co., Ltd., Weifang, China
| | - Dai-Ling Chao
- Department of Ophthalmology, Heze Municipal Hospital, Heze, China
| | - Xiu-Gui Li
- Department of Ophthalmology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
19
|
Noyer L, Lemonnier L, Mariot P, Gkika D. Partners in Crime: Towards New Ways of Targeting Calcium Channels. Int J Mol Sci 2019; 20:ijms20246344. [PMID: 31888223 PMCID: PMC6940757 DOI: 10.3390/ijms20246344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
The characterization of calcium channel interactome in the last decades opened a new way of perceiving ion channel function and regulation. Partner proteins of ion channels can now be considered as major components of the calcium homeostatic mechanisms, while the reinforcement or disruption of their interaction with the channel units now represents an attractive target in research and therapeutics. In this review we will focus on the targeting of calcium channel partner proteins in order to act on the channel activity, and on its consequences for cell and organism physiology. Given the recent advances in the partner proteins’ identification, characterization, as well as in the resolution of their interaction domain structures, we will develop the latest findings on the interacting proteins of the following channels: voltage-dependent calcium channels, transient receptor potential and ORAI channels, and inositol 1,4,5-trisphosphate receptor.
Collapse
Affiliation(s)
- Lucile Noyer
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Loic Lemonnier
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Pascal Mariot
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Dimitra Gkika
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
- Correspondence: ; Tél.: +33-(0)3-2043-6838
| |
Collapse
|
20
|
Distelhorst CW, Bootman MD. Creating a New Cancer Therapeutic Agent by Targeting the Interaction between Bcl-2 and IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035196. [PMID: 31110129 DOI: 10.1101/cshperspect.a035196] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bcl-2 is a member of a family of proteins that regulate cell survival. Expression of Bcl-2 is aberrantly elevated in many types of cancer. Within cells of the immune system, Bcl-2 has a physiological role in regulating immune responses. However, in cancers arising from cells of the immune system Bcl-2 promotes cell survival and proliferation. This review summarizes discoveries over the past 30 years that have elucidated Bcl-2's role in the normal immune system, including its actions in regulating calcium (Ca2+) signals necessary for the immune response, and for Ca2+-mediated apoptosis at the end of an immune response. How Bcl-2 modulates the release of Ca2+ from intracellular stores via inositol 1,4,5-trisphosphate receptors (IP3R) is discussed, and in particular, the role of Bcl-2/IP3R interactions in promoting the survival of cancer cells by preventing Ca2+-mediated cell death. The development and usage of a peptide, referred to as TAT-Pep8, or more recently, BIRD-2, that induces death of cancer cells by inhibiting Bcl-2's control over IP3R-mediated Ca2+ elevation is discussed. Studies aimed at discovering a small molecule that mimics BIRD-2's anticancer mechanism of action are summarized, along with the prospect of such a compound becoming a novel therapeutic option for cancer.
Collapse
Affiliation(s)
- Clark W Distelhorst
- Departments of Medicine and Pharmacology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
| | - Martin D Bootman
- School of Life, Health, and Chemical Science, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
21
|
Prole DL, Taylor CW. Structure and Function of IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035063. [PMID: 30745293 DOI: 10.1101/cshperspect.a035063] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs), by releasing Ca2+ from the endoplasmic reticulum (ER) of animal cells, allow Ca2+ to be redistributed from the ER to the cytosol or other organelles, and they initiate store-operated Ca2+ entry (SOCE). For all three IP3R subtypes, binding of IP3 primes them to bind Ca2+, which then triggers channel opening. We are now close to understanding the structural basis of IP3R activation. Ca2+-induced Ca2+ release regulated by IP3 allows IP3Rs to regeneratively propagate Ca2+ signals. The smallest of these regenerative events is a Ca2+ puff, which arises from the nearly simultaneous opening of a small cluster of IP3Rs. Ca2+ puffs are the basic building blocks for all IP3-evoked Ca2+ signals, but only some IP3 clusters, namely those parked alongside the ER-plasma membrane junctions where SOCE occurs, are licensed to respond. The location of these licensed IP3Rs may allow them to selectively regulate SOCE.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
22
|
Kerkhofs M, Bultynck G, Vervliet T, Monaco G. Therapeutic implications of novel peptides targeting ER-mitochondria Ca 2+-flux systems. Drug Discov Today 2019; 24:1092-1103. [PMID: 30910738 DOI: 10.1016/j.drudis.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023]
Abstract
Intracellular Ca2+-flux systems located at the ER-mitochondrial axis govern mitochondrial Ca2+ balance and cell fate. Multiple yet incurable pathologies are characterized by insufficient or excessive Ca2+ fluxes toward the mitochondria, in turn leading to aberrant cell life or death dynamics. The discovery and ongoing molecular characterization of the main interorganellar Ca2+ gateways have resulted in a novel class of peptide tools able to regulate relevant protein-protein interactions (PPIs) underlying this signaling scenario. Here, we review peptides, molecularly derived from Ca2+-flux systems or their accessory proteins. We discuss how they alter Ca2+-signaling protein complexes and modulate cell survival in light of their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim Vervliet
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci 2019; 9:27. [PMID: 30931098 PMCID: PMC6425566 DOI: 10.1186/s13578-019-0289-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are energy factories of cells and are important pivots for intracellular interactions with other organelles. They interact with the endoplasmic reticulum, peroxisomes, and nucleus through signal transduction, vesicle transport, and membrane contact sites to regulate energy metabolism, biosynthesis, immune response, and cell turnover. However, when the communication between organelles fails and the mitochondria are dysfunctional, it may induce tumorigenesis. In this review, we elaborate on how mitochondria interact with the endoplasmic reticulum, peroxisomes, and cell nuclei, as well as the relation between organelle communication and tumor development .
Collapse
Affiliation(s)
- MengFang Xia
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - YaZhuo Zhang
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Ke Jin
- 2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China
| | - ZiTong Lu
- 2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China
| | - Zhaoyang Zeng
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Wei Xiong
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
24
|
Doghman-Bouguerra M, Lalli E. ER-mitochondria interactions: Both strength and weakness within cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:650-662. [PMID: 30668969 DOI: 10.1016/j.bbamcr.2019.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022]
Abstract
ER-mitochondria contact sites represent hubs for signaling that control mitochondrial biology related to several aspects of cellular survival, metabolism, cell death sensitivity and metastasis, which all contribute to tumorigenesis. Altered ER-mitochondria contacts can deregulate Ca2+ homeostasis, phospholipid metabolism, mitochondrial morphology and dynamics. MAM represent both a hot spot in cancer onset and progression and an Achilles' heel of cancer cells that can be exploited for therapeutic perspectives. Over the past years, an increasing number of cancer-related proteins, including oncogenes and tumor suppressors, have been localized in MAM and exert their pro- or antiapoptotic functions through the regulation of Ca2+ transfer and signaling between the two organelles. In this review, we highlight the central role of ER-mitochondria contact sites in tumorigenesis and focus on chemotherapeutic drugs or potential targets that act on MAM properties for new therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Université Côte d'Azur, Valbonne 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne 06560, France; EXPOGEN-CANCER CNRS International Associated Laboratory, Valbonne 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne 06560, France.
| | - Enzo Lalli
- Université Côte d'Azur, Valbonne 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne 06560, France; EXPOGEN-CANCER CNRS International Associated Laboratory, Valbonne 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne 06560, France.
| |
Collapse
|
25
|
García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy. Int J Mol Sci 2018; 19:E3950. [PMID: 30544835 PMCID: PMC6321604 DOI: 10.3390/ijms19123950] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract: According to the World Health Organization (WHO), cancer is a leading cause of death worldwide. The identification of novel targets for cancer treatment is an area of intense work that has led Bcl-2 over-expression to be proposed as one of the hallmarks of cancer and Bcl-2 inhibition as a promising strategy for cancer treatment. In this review, we describe the different pathways related to programmed cell death, the role of Bcl-2 family members in apoptosis resistance to anti-cancer treatments, and the potential utility of Bcl-2 inhibitors to overcome resistance to chemo- and immunotherapy.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, REDISSEC, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Elisabet Pérez-Ruiz
- Oncology Department, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Research Unit, REDISSEC, Hospital Costa del Sol, Universidad de Málaga, Autovía A-7 km 187, 29603 Marbella, Málaga, Spain.
| |
Collapse
|
26
|
Jakubowska MA, Kerkhofs M, Martines C, Efremov DG, Gerasimenko JV, Gerasimenko OV, Petersen OH, Bultynck G, Vervliet T, Ferdek PE. ABT-199 (Venetoclax), a BH3-mimetic Bcl-2 inhibitor, does not cause Ca 2+ -signalling dysregulation or toxicity in pancreatic acinar cells. Br J Pharmacol 2018; 176:4402-4415. [PMID: 30266036 PMCID: PMC6887725 DOI: 10.1111/bph.14505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Many cancer cells depend on anti-apoptotic B-cell lymphoma 2 (Bcl-2) proteins for their survival. Bcl-2 antagonism through Bcl-2 homology 3 (BH3) mimetics has emerged as a novel anti-cancer therapy. ABT-199 (Venetoclax), a recently developed BH3 mimetic that selectively inhibits Bcl-2, was introduced into the clinic for treatment of relapsed chronic lymphocytic leukaemia. Early generations of Bcl-2 inhibitors evoked sustained Ca2+ responses in pancreatic acinar cells (PACs) inducing cell death. Therefore, BH3 mimetics could potentially be toxic for the pancreas when used to treat cancer. Although ABT-199 was shown to kill Bcl-2-dependent cancer cells without affecting intracellular Ca2+ signalling, its effects on PACs have not yet been determined. Hence, it is essential and timely to assess whether this recently approved anti-leukaemic drug might potentially have pancreatotoxic effects. EXPERIMENTAL APPROACH Single-cell Ca2+ measurements and cell death analysis were performed on isolated mouse PACs. KEY RESULTS Inhibition of Bcl-2 via ABT-199 did not elicit intracellular Ca2+ signalling on its own or potentiate Ca2+ signalling induced by physiological/pathophysiological stimuli in PACs. Although ABT-199 did not affect cell death in PACs, under conditions that killed ABT-199-sensitive cancer cells, cytosolic Ca2+ extrusion was slightly enhanced in the presence of ABT-199. In contrast, inhibition of Bcl-xL potentiated pathophysiological Ca2+ responses in PACs, without exacerbating cell death. CONCLUSION AND IMPLICATIONS Our results demonstrate that apart from having a modest effect on cytosolic Ca2+ extrusion, ABT-199 does not substantially alter intracellular Ca2+ homeostasis in normal PACs and should be safe for the pancreas during cancer treatment. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Monika A Jakubowska
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK.,International Associated Laboratory (LIA), Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Martijn Kerkhofs
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Claudio Martines
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dimitar G Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Julia V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Ole H Petersen
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Pawel E Ferdek
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK.,Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
27
|
Bittremieux M, La Rovere RM, Schuermans M, Luyten T, Mikoshiba K, Vangheluwe P, Parys JB, Bultynck G. Extracellular and ER-stored Ca 2+ contribute to BIRD-2-induced cell death in diffuse large B-cell lymphoma cells. Cell Death Discov 2018; 4:101. [PMID: 30416758 PMCID: PMC6214954 DOI: 10.1038/s41420-018-0118-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/26/2018] [Indexed: 11/28/2022] Open
Abstract
The anti-apoptotic protein Bcl-2 is upregulated in several cancers, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL). In a subset of these cancer cells, Bcl-2 blocks Ca2+-mediated apoptosis by suppressing the function of inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) located at the endoplasmic reticulum (ER). A peptide tool, called Bcl-2/IP3 receptor disruptor-2 (BIRD-2), was developed to disrupt Bcl-2/IP3R complexes, triggering pro-apoptotic Ca2+ signals and killing Bcl-2-dependent cancer cells. In DLBCL cells, BIRD-2 sensitivity depended on the expression level of IP3R2 channels and constitutive IP3 signaling downstream of the B-cell receptor. However, other cellular pathways probably also contribute to BIRD-2-provoked cell death. Here, we examined whether BIRD-2-induced apoptosis depended on extracellular Ca2+ and more particularly on store-operated Ca2+ entry (SOCE), a Ca2+-influx pathway activated upon ER-store depletion. Excitingly, DPB162-AE, a SOCE inhibitor, suppressed BIRD-2-induced cell death in DLBCL cells. However, DPB162-AE not only inhibits SOCE but also depletes the ER Ca2+ store. Treatment of the cells with YM-58483 and GSK-7975A, two selective SOCE inhibitors, did not protect against BIRD-2-induced apoptosis. Similar data were obtained by knocking down STIM1 using small interfering RNA. Yet, extracellular Ca2+ contributed to BIRD-2 sensitivity in DLBCL, since the extracellular Ca2+ buffer ethylene glycol tetraacetic acid (EGTA) blunted BIRD-2-triggered apoptosis. The protective effects observed with DPB162-AE are likely due to ER Ca2+-store depletion, since a similar protective effect could be obtained using the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. Thus, both the ER Ca2+-store content and extracellular Ca2+, but not SOCE, are critical factors underlying BIRD-2-provoked cell death.
Collapse
Affiliation(s)
- Mart Bittremieux
- 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium
| | - Rita M La Rovere
- 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium
| | - Marleen Schuermans
- 2Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000 Belgium
| | - Tomas Luyten
- 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium
| | - Katsuhiko Mikoshiba
- 3The Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Peter Vangheluwe
- 2Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000 Belgium
| | - Jan B Parys
- 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium
| | - Geert Bultynck
- 1Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven and Leuven Kanker Instituut, Leuven, 3000 Belgium
| |
Collapse
|
28
|
Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea AD, Gandara D, Giorgi C, Jia W, Lan Q, Mak TW, Manley JL, Mikoshiba K, Onuchic JN, Pass HI, Pinton P, Prives C, Rothman N, Sebti SM, Turkson J, Wu X, Yang H, Yu H, Melino G. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ 2018; 25:1885-1904. [PMID: 30323273 PMCID: PMC6219489 DOI: 10.1038/s41418-018-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - El Bachir Affar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, Quebec, H1T 2M4, Canada
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY, 10021, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Chen
- Department of Molecular Biology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alan D' Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David Gandara
- Thoracic Oncology, UC Davis, Sacramento, CA, 96817, USA
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Wei Jia
- Hawaii Cancer Center, Honolulu, HI, USA
| | - Qing Lan
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Harvey I Pass
- Division of General Thoracic Surgery, Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
| | - Nathaniel Rothman
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Said M Sebti
- Drug Discovery Department, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, FL, 33612, USA
| | | | - Xifeng Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Gerry Melino
- MRC Toxicology Unit, Leicester, UK.
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
29
|
Lee CF, Chiang NN, Lu YH, Huang YS, Yang JS, Tsai SC, Lu CC, Chen FA. Benzyl isothiocyanate (BITC) triggers mitochondria-mediated apoptotic machinery in human cisplatin-resistant oral cancer CAR cells. Biomedicine (Taipei) 2018; 8:15. [PMID: 30141402 PMCID: PMC6108226 DOI: 10.1051/bmdcn/2018080315] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023] Open
Abstract
Benzyl isothiocyanate (BITC), a component of dietary food, possesses a powerful anticancer activity. Previous studies have shown that BITC produces a large number of intracellular reactive oxygen species (ROS) and increases intracellular Ca2+ release from endoplasmic reticulum (ER), leading to the activation of the apoptotic mechanism in tumor cells. However, there is not much known regarding the inhibitory effect of BITC on cisplatin-resistant oral cancer cells. The purpose of this study was to examine the anticancer effect and molecular mechanism of BITC on human cisplatin-resistant oral cancer CAR cells. Our results demonstrated that BITC significantly reduced cell viability of CAR cells in a concentration- and time-dependent manner. BITC was found to cause apoptotic cell shrinkage and DNA fragmentation by morphologic observation and TUNEL/DAPI staining. Pretreatment of cells with a specific inhibitor of pan-caspase significantly reduced cell death caused by BITC. Colorimetric assay analyses also showed that the activities of caspase-3 and caspase-9 were elevated in BITC-treated CAR cells. An increase in ROS production and loss of mitochondria membrane potential (ΔΨm) occurred due to BITC exposure and was observed via flow cytometric analysis. Western blotting analyses demonstrated that the protein levels of Bax, Bad, cytochrome c, and cleaved caspase-3 were up-regulated, while those of Bcl-2, Bcl-xL and pro-caspase-9 were down-regulated in CAR cells after BITC challenge. In sum, the mitochondria-dependent pathway might contribute to BITC-induced apoptosis in human cisplatin-resistant oral cancer CAR cells.
Collapse
Affiliation(s)
- Chiu-Fang Lee
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Ni-Na Chiang
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Yao-Hua Lu
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Yu-Syuan Huang
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan - Department of Sport Performance, National Taiwan University of Sport, Taichung 404, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| |
Collapse
|
30
|
Pregnolato M, Damiani G, Pereira A. Patterns of calcium signaling: A link between chronic emotions and cancer. J Integr Neurosci 2018; 16:S43-S63. [PMID: 29154288 DOI: 10.3233/jin-170066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra and inter-cellular calcium signaling is present in all types of cells and body tissues. In the human brain, calcium currents and waves are related to mental activities, including emotions. We present a theoretical interpretation of these phenomena suggesting their involvement in chronic emotional patterns and in the pathology of cancer. Recent developments on biophysics, translational biology and psychoneuroendocrinoimmunology (PNEI) can support explanatory hypotheses about the link between emotional stresses and the origin and development of different types of tumor cells. Chronic stresses may cause perturbations of rhythms of the PNEI system, excessive activation of HPA axis and abnormal activation of calcium signals in somatic tissues, with deleterious effects on different parts of the body. The increasing of calcium signaling inside cells may lead to a deregulation of different pathways and epigenetic systems that promote the production of genomic mutations in a second phase. In particular, the hyperactivation of the transcription nuclear factor kappaB (NF-κB), if is not counterbalanced by the following activation of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2), increases the production of oxidative catabolites, as the advanced glycation end products (AGE), which play a key role in the progression of different types of cancer and other degenerative diseases. Cortisol binding to glucocorticoid receptor (GR) reduces the activity of both NF-κB and Nrf2 inside the cells but inhibits the cellular immunity and the anabolic processes of tissue regeneration. The tissue atrophy and the defective anti-ageing mechanisms promotes the tumoral cells growth and their escape from the immune-surveillance.
Collapse
Affiliation(s)
| | | | - Alfredo Pereira
- Institute of Biosciences, São Paulo State University, Brasil. E-mail:
| |
Collapse
|
31
|
Distelhorst CW. Targeting Bcl-2-IP 3 receptor interaction to treat cancer: A novel approach inspired by nearly a century treating cancer with adrenal corticosteroid hormones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1795-1804. [PMID: 30053503 DOI: 10.1016/j.bbamcr.2018.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
Bcl-2 inhibits cell death by at least two different mechanisms. On the one hand, its BH3 domain binds to pro-apoptotic proteins such as Bim and prevents apoptosis induction. On the other hand, the BH4 domain of Bcl-2 binds to the inositol 1,4,5-trisphosphate receptor (IP3R), preventing Ca2+ signals that mediate cell death. In normal T-cells, Bcl-2 levels increase during the immune response, protecting against cell death, and then decline as apoptosis ensues and the immune response dissipates. But in many cancers Bcl-2 is aberrantly expressed and exploited to prevent cell death by inhibiting IP3R-mediated Ca2+ elevation. This review summarizes what is known about the mechanism of Bcl-2's control over IP3R-mediated Ca2+ release and cell death induction. Early insights into the role of Ca2+ elevation in corticosteroid-mediated cell death serves as a model for how targeting IP3R-mediated Ca2+ elevation can be a highly effective therapeutic approach for different types of cancer. Moreover, the successful development of ABT-199 (Venetoclax), a small molecule targeting the BH3 domain of Bcl-2 but without effects on Ca2+, serves as proof of principle that targeting Bcl-2 can be an effective therapeutic approach. BIRD-2, a synthetic peptide that inhibits Bcl-2-IP3R interaction, induces cell death induction in ABT-199 (Venetoclax)-resistant cancer models, attesting to the value of developing therapeutic agents that selectively target Bcl-2-IP3R interaction, inducing Ca2+-mediated cell death.
Collapse
Affiliation(s)
- Clark W Distelhorst
- Case Western University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, United States of America.
| |
Collapse
|
32
|
Isorhamnetin: A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed Pharmacother 2018; 103:800-811. [PMID: 29684859 DOI: 10.1016/j.biopha.2018.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin, a flavonoid compound extracted from plants' fruit or leaves, like sea buckthorn (Hippophae rhamnoides L.), has many biological functions, including anti-tumor, anti-oxidant and anti-inflammatory effect. The present study is in order to explore the hepatoprotective effect of isorhamnetin on concanavalin A (ConA)-induced acute fulminant hepatitis and the underlying mechanism. Mice were injected with ConA (25 mg/kg) to induce acute fulminant hepatitis, three doses of isorhamnetin (10/30/90 mg/kg) was intraperitoneally administrated about 1 h previously. The serum and liver tissues were harvested at 2, 8, and 24 h after ConA injection. The levels of serum liver enzymes and proinflammatory cytokines were significantly reduced in isorhamnetin administration groups. Besides, isorhamnetin improved pathological damage. Furthermore, isorhamnetin affected P38/PPAR-α pathway, and subsequently regulated the expression of apoptosis and autophagy related proteins. The present study investigated that isorhamnetin inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice.
Collapse
|
33
|
Kerkhofs M, Bittremieux M, Morciano G, Giorgi C, Pinton P, Parys JB, Bultynck G. Emerging molecular mechanisms in chemotherapy: Ca 2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis 2018; 9:334. [PMID: 29491433 PMCID: PMC5832420 DOI: 10.1038/s41419-017-0179-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Inter-organellar communication often takes the form of Ca2+ signals. These Ca2+ signals originate from the endoplasmic reticulum (ER) and regulate different cellular processes like metabolism, fertilization, migration, and cell fate. A prime target for Ca2+ signals are the mitochondria. ER-mitochondrial Ca2+ transfer is possible through the existence of mitochondria-associated ER membranes (MAMs), ER structures that are in the proximity of the mitochondria. This creates a micro-domain in which the Ca2+ concentrations are manifold higher than in the cytosol, allowing for rapid mitochondrial Ca2+ uptake. In the mitochondria, the Ca2+ signal is decoded differentially depending on its spatiotemporal characteristics. While Ca2+ oscillations stimulate metabolism and constitute pro-survival signaling, mitochondrial Ca2+ overload results in apoptosis. Many chemotherapeutics depend on efficient ER-mitochondrial Ca2+ signaling to exert their function. However, several oncogenes and tumor suppressors present in the MAMs can alter Ca2+ signaling in cancer cells, rendering chemotherapeutics ineffective. In this review, we will discuss recent studies that connect ER-mitochondrial Ca2+ transfer, tumor suppressors and oncogenes at the MAMs, and chemotherapy.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Mart Bittremieux
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium.
| |
Collapse
|