1
|
Wang M, Zhang H, Liang J, Huang J, Wu T, Chen N. Calcium signaling hypothesis: A non-negligible pathogenesis in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00026-8. [PMID: 39793962 DOI: 10.1016/j.jare.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca2+) signaling pathway in the progression of AD, indicating a complex interplay between Ca2+ dysregulation and various pathological processes. AIM OF REVIEW This review aims to consolidate the current understanding of the role of Ca2+ signaling dysregulation in AD, thus emphasizing its central role amidst various pathological hypotheses. We aim to evaluate the potential of the Ca2+ signaling hypothesis to unify existing theories of AD pathogenesis and explore its implications for developing innovative therapeutic strategies through targeting Ca2+ dysregulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal concepts. First, the indispensable role of Ca2+ homeostasis in neuronal function and its disruption in AD. Second, the interaction between Ca2+ signaling dysfunction and established AD hypotheses posited that Ca2+ dysregulation is a unifying pathway. Third, the dual role of Ca2+ in neurodegeneration and neuroprotection, highlighting the nuanced effects of Ca2+ levels on AD pathology.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
2
|
Qin X, Jin L, Gong H, Zheng Q. Electro-metabolic coupling in atrial fibrillation: A deeper understanding of the metabolic driver. Biomed Pharmacother 2024; 180:117536. [PMID: 39378681 DOI: 10.1016/j.biopha.2024.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Atrial fibrillation (AF), the most common sustained heart rhythm abnormality, disrupts the normal link between electrical activity and atrial muscle contraction; this disruption is termed "excitation-contraction uncoupling". It weakens atrial contractions and contributes to the development and persistence of AF. In addition to electrical dysfunction, AF is increasingly recognized as a metabolic disorder. Metabolic remodeling may reportedly precede electrophysiological, contractile, and structural changes in AF. Both clinical observations and experimental studies have underscored the critical importance of metabolic homeostasis, and its disturbance is considered a key initial factor in the development of AF. Research in this field has progressed, and a consensus has emerged that metabolic status (energy flux) and electrophysiological signaling (ion flux) are interactively regulated, highlighting the concept of "electro-metabolic coupling." Their uncoupling or decompensation constitutes a common pathological basis of AF. Despite growing recognition of the importance of metabolic balance, the role of electro-metabolic coupling in AF remains unclear. Thus, this review aimed to discuss 1) a comprehensive understanding of electro-metabolic alterations post-AF, 2) the pivotal role of metabolic homeostasis in AF pathogenesis, and 3) the mutual regulation of electro-metabolic signaling, along with potential therapeutic strategies targeting these imbalances.
Collapse
Affiliation(s)
- Xinghua Qin
- Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Lingyan Jin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haoyu Gong
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
3
|
Zhai C, Wang Y, Qi S, Yang M, Wu S. Ca 2+-calpains axis regulates Yki stability and activity in Drosophila. J Genet Genomics 2024; 51:1020-1029. [PMID: 38663479 DOI: 10.1016/j.jgg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Yorkie (Yki) is a key effector of the Hippo pathway that activates the expression of targets by associating with the transcription factor Scalloped. Various upstream signals, such as cell polarity and mechanical cues, control transcriptional programs by regulating Yki activity. Searching for Yki regulatory factors has far-reaching significance for studying the Hippo pathway in development and human diseases. In this study, we identify Calpain-A (CalpA) and Calpain-B (CalpB), two calcium (Ca2+)-dependent modulatory proteases of the calpain family, as critical regulators of Yki in Drosophila that interact with Yki, respectively. Ca2+ induces Yki cleavage in a CalpA/CalpB-dependent manner, and the protease activity of CalpA/CalpB is pivotal for the cleavage. Furthermore, overexpression of CalpA or CalpB in Drosophila partially restores the large wing phenotype caused by Yki overexpression, and F98 of Yki is an important cleavage site by the Ca2+-calpains axis. Our study uncovers a unique mechanism whereby the Ca2+-calpain axis modulates Yki activity through protein cleavage.
Collapse
Affiliation(s)
- Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenao Qi
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muhan Yang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Romero-Martínez BS, Flores-Soto E, Sommer B, Reyes-García J, Arredondo-Zamarripa D, Solís-Chagoyán H, Lemini C, Rivero-Segura NA, Santiago-de-la-Cruz JA, Pérez-Plascencia C, Montaño LM. 17β-estradiol induces hyperresponsiveness in guinea pig airway smooth muscle by inhibiting the plasma membrane Ca 2+-ATPase. Mol Cell Endocrinol 2024; 590:112273. [PMID: 38763427 DOI: 10.1016/j.mce.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17β-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17β-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calz. De Tlalpan 4502, Col. Sección XVI, Alcaldía de Tlalpan, CP 14080, CDMX, México
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - David Arredondo-Zamarripa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma Del Estado de Morelos, CP 62209, Morelos, México
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Nadia A Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México, CP 10200, México
| | | | - Carlos Pérez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA, Av. San Fernando 22, Alcaldía de Tlalpan, CP 14080, CDMX, México; Facultad de Estudios Superiores Iztacala, Av. de Los Barrios S/N Los Reyes Ixtacala Tlalnepantla de Baz, Edo. de México, CP 54090, Tlalnepantla de Baz, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México.
| |
Collapse
|
5
|
Maciulevičius M, Palepšienė R, Vykertas S, Raišutis R, Rafanavičius A, Krilavičius T, Šatkauskas S. The comparison of the dynamics of Ca 2+ and bleomycin intracellular delivery after cell sonoporation and electroporation in vitro. Bioelectrochemistry 2024; 158:108708. [PMID: 38636366 DOI: 10.1016/j.bioelechem.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Ca2+, in combination with SP or EP, induces cell cytotoxicity much faster compared to BLM. The application of BLM in combination with, SP or EP, reaches the level of cell death, induced by similar combination with Ca2+, only after 72 h. The methods of SP and EP were calibrated according to the level of differential cytotoxicity, determined after 6 days (using cell clonogenic assay). The combination of Ca2+ SP induces cell death faster than Ca2+ EP - after Ca2+ SP it increases to a maximum level after 15 min and remains constant for up to 6 days, while the cytotoxic efficiency after Ca2+ EP increases to the level of Ca2+ SP only after 72 h. The combination of BLM SP shows a very similar dynamics to BLM EP - both reach maximal level of cytotoxicity after 48-72 h. Ca2+ and BLM in combination with SP have shown similar levels of cytotoxicity at higher acoustic pressures (≥250 kPa); therefore, Ca2+ SP can be used to induce immediate and maximal level of cytotoxic effect. The faster cytotoxic efficiency of Ca2+ in combination with SP than EP was determined to be due to the involvement of microbubble inertial cavitation.
Collapse
Affiliation(s)
- Martynas Maciulevičius
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania; Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania.
| | - Rūta Palepšienė
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Salvijus Vykertas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Renaldas Raišutis
- Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko st. 59, LT-51423 Kaunas, Lithuania; Department of Electrical Power Systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentų st. 48, LT-51367 Kaunas, Lithuania.
| | - Aras Rafanavičius
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Tomas Krilavičius
- Faculty of Informatics, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| | - Saulius Šatkauskas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania.
| |
Collapse
|
6
|
de Antonellis P, Ferrucci V, Miceli M, Bibbo F, Asadzadeh F, Gorini F, Mattivi A, Boccia A, Russo R, Andolfo I, Lasorsa VA, Cantalupo S, Fusco G, Viscardi M, Brandi S, Cerino P, Monaco V, Choi DR, Cheong JH, Iolascon A, Amente S, Monti M, Fava LL, Capasso M, Kim HY, Zollo M. Targeting ATP2B1 impairs PI3K/Akt/FOXO signaling and reduces SARS-COV-2 infection and replication. EMBO Rep 2024; 25:2974-3007. [PMID: 38816514 PMCID: PMC11239940 DOI: 10.1038/s44319-024-00164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.
Collapse
Affiliation(s)
- Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
| | - Francesca Bibbo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- European School of Molecular Medicine, SEMM, Naples, Italy
| | - Francesca Gorini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Alessia Mattivi
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | | | - Roberta Russo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Immacolata Andolfo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | | | | | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Vittoria Monaco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Dong-Rac Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Stefano Amente
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Hong-Yeoul Kim
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy.
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- European School of Molecular Medicine, SEMM, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'Federico II' University of Naples, 80131, Naples, Italy.
| |
Collapse
|
7
|
Yoshie S, Kuriyama M, Maekawa M, Xu W, Niidome T, Futaki S, Hirose H. ATP2B4 is an essential gene for epidermal growth factor-induced macropinocytosis in A431 cells. Genes Cells 2024; 29:512-520. [PMID: 38597132 DOI: 10.1111/gtc.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Macropinocytosis (MPC) is a large-scale endocytosis pathway that involves actin-dependent membrane ruffle formation and subsequent ruffle closure to generate macropinosomes for the uptake of fluid-phase cargos. MPC is categorized into two types: constitutive and stimuli-induced. Constitutive MPC in macrophages relies on extracellular Ca2+ sensing by a calcium-sensing receptor. However, the link between stimuli-induced MPC and Ca2+ remains unclear. Here, we find that both intracellular and extracellular Ca2+ are required for epidermal growth factor (EGF)-induced MPC in A431 human epidermoid carcinoma cells. Through investigation of mammalian homologs of coelomocyte uptake defective (CUP) genes, we identify ATP2B4, encoding for a Ca2+ pump called the plasma membrane calcium ATPase 4 (PMCA4), as a Ca2+-related regulator of EGF-induced MPC. Knockout (KO) of ATP2B4, as well as depletion of extracellular/intracellular Ca2+, inhibited ruffle closure and macropinosome formation, without affecting ruffle formation. We demonstrate the importance of PMCA4 activity itself, independent of interactions with other proteins via its C-terminus known as a PDZ domain-binding motif. Additionally, we show that ATP2B4-KO reduces EGF-stimulated Ca2+ oscillation during MPC. Our findings suggest that EGF-induced MPC requires ATP2B4-dependent Ca2+ dynamics.
Collapse
Affiliation(s)
- Shunsuke Yoshie
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
8
|
Monesterolo NE, Santander VS, Campetelli AN, Rivelli Antonelli JF, Nigra AD, Balach MM, Muhlberger T, Previtali G, Casale CH. Tubulin Regulates Plasma Membrane Ca 2+-ATPase Activity in a Lipid Environment-dependent Manner. Cell Biochem Biophys 2024; 82:319-328. [PMID: 38133791 DOI: 10.1007/s12013-023-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ca2+ plays a crucial role in cell signaling, cytosolic Ca2+ can change up to 10,000-fold in concentration due to the action of Ca2+-ATPases, including PMCA, SERCA and SCR. The regulation and balance of these enzymes are essential to maintain cytosolic Ca2+ homeostasis. Our laboratory has discovered a novel PMCA regulatory system, involving acetylated tubulin alone or in combination with membrane lipids. This regulation controls cytosolic Ca2+ levels and influences cellular properties such as erythrocyte rheology. This review summarizes the findings on the regulatory mechanism of PMCA activity by acetylated tubulin in combination with lipids. The combination of tubulin cytoskeleton and membrane lipids suggests a novel regulatory system for PMCA, which consequently affects cytosolic Ca2+ content, depending on cytoskeletal and plasma membrane dynamics. Understanding the interaction between acetylated tubulin, lipids and PMCA activity provides new insights into Ca2+ signaling and cell function. Further research may shed light on potential therapeutic targets for diseases related to Ca2+ dysregulation. This discovery contributes to a broader understanding of cellular processes and offers opportunities to develop innovative approaches to treat Ca2+-related disorders. By elucidating the complex regulatory mechanisms of Ca2+ homeostasis, we advance our understanding of cell biology and its implications for human health.
Collapse
Affiliation(s)
- Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Juan F Rivelli Antonelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Melisa M Balach
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Tamara Muhlberger
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Gabriela Previtali
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina.
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina.
| |
Collapse
|
9
|
Vanderroost J, Parpaite T, Avalosse N, Henriet P, Pierreux CE, Lorent JH, Gailly P, Tyteca D. Piezo1 Is Required for Myoblast Migration and Involves Polarized Clustering in Association with Cholesterol and GM1 Ganglioside. Cells 2023; 12:2784. [PMID: 38132106 PMCID: PMC10741634 DOI: 10.3390/cells12242784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
A specific plasma membrane distribution of the mechanosensitive ion channel Piezo1 is required for cell migration, but the mechanism remains elusive. Here, we addressed this question using WT and Piezo1-silenced C2C12 mouse myoblasts and WT and Piezo1-KO human kidney HEK293T cells. We showed that cell migration in a cell-free area and through a porous membrane decreased upon Piezo1 silencing or deletion, but increased upon Piezo1 activation by Yoda1, whereas migration towards a chemoattractant gradient was reduced by Yoda1. Piezo1 organized into clusters, which were preferentially enriched at the front. This polarization was stimulated by Yoda1, accompanied by Ca2+ polarization, and abrogated by partial cholesterol depletion. Piezo1 clusters partially colocalized with cholesterol- and GM1 ganglioside-enriched domains, the proportion of which was increased by Yoda1. Mechanistically, Piezo1 activation induced a differential mobile fraction of GM1 associated with domains and the bulk membrane. Conversely, cholesterol depletion abrogated the differential mobile fraction of Piezo1 associated with clusters and the bulk membrane. In conclusion, we revealed, for the first time, the differential implication of Piezo1 depending on the migration mode and the interplay between GM1/cholesterol-enriched domains at the front during migration in a cell-free area. These domains could provide the optimal biophysical properties for Piezo1 activity and/or spatial dissociation from the PMCA calcium efflux pump.
Collapse
Affiliation(s)
- Juliette Vanderroost
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Thibaud Parpaite
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Noémie Avalosse
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Patrick Henriet
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | | | - Joseph H. Lorent
- Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium;
| | - Philippe Gailly
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Donatienne Tyteca
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| |
Collapse
|
10
|
Zhang X, Xing T, Li J, Zhang L, Gao F. Mitochondrial dysfunction and calcium dyshomeostasis in the pectoralis major muscle of broiler chickens with wooden breast myopathy. Poult Sci 2023; 102:102872. [PMID: 37390551 PMCID: PMC10331480 DOI: 10.1016/j.psj.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023] Open
Abstract
The incidence of wooden breast (WB) meat of commercial broiler chicken has been increasing in recent years. Histological examination found that the occurrence of WB myopathy was accompanied by the pectoralis major (PM) muscle damage. So far, the potential mechanisms are not fully understood. This study aimed to explore the underlying mechanism of the damage of WB-affected PM muscle caused by changes in mitochondrial function, mitochondrial redox status and Ca2+ homeostasis. A total of 80 market-age Arbor Acres male broiler chickens were sampled and categorized into control (CON) and WB groups based on the evaluation of myopathic lesions. PM muscle samples were collected (n = 8 in each group) for histopathological evaluation and biochemical analyses. Ultrastructural examination and histopathological changes suggested the occurrence of PM muscle damage in broiler chickens with WB myopathy. The WB group showed an increased level of reactive oxygen species and enhanced antioxidant capacities in mitochondria of PM muscle. These changes were related to impaired mitochondria morphology and mitochondrial dysfunction. In addition, abnormal expressions of Ca2+ channels led to substantial Ca2+ loss in SR and cytoplasmic Ca2+ overload, as well as Ca2+ accumulation in mitochondria, resulting in Ca2+ dyshomeostasis in PM muscle of broiler chickens with WB myopathy. Combined, these findings indicate that WB myopathy is related to mitochondrial dysfunction, mitochondrial redox status imbalance and Ca2+ dyshomeostasis, leading to WB-affected PM muscle damage.
Collapse
Affiliation(s)
- Xinrui Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaolong Li
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
11
|
Dimitrov AG. Resting membrane state as an interplay of electrogenic transporters with various pumps. Pflugers Arch 2023; 475:1113-1128. [PMID: 37468808 DOI: 10.1007/s00424-023-02838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
In this study, a new idea that electrogenic transporters determine cell resting state is presented. The previous assumption was that pumps, especially the sodium one, determine it. The latter meets difficulties, because it violates the law of conservation of energy; also a significant deficit of pump activity is reported. The amount of energy carried by a single ATP molecule reflects the potential of the inner mitochondrial membrane, which is about -200 mV. If pumps enforce a resting membrane potential that is more than twice smaller, then the majority of energy stored in ATP would be dissipated by each pump turning. However, this problem could be solved if control is transferred from pumps to something else, e.g., electrogenic transporters. Then pumps would transfer the energy to the ionic gradient without losses, while the cell surface membrane potential would be associated with the reversal potential of some electrogenic transporters. A minimal scheme of this type would include a sodium-calcium exchanger as well as sodium and calcium pumps. However, note that calcium channels and pumps are positioned along both intracellular organelles and the surface membrane. Therefore, the above-mentioned scheme would involve them as well as possible intercellular communications. Such schemes where various kinds of pumps are assumed to work in parallel may explain, to a great extent, the slow turning rate of the individual members. Interaction of pumps and transporters positioned at distant biological membranes with various forms of energy transfer between them may thus result in hypoxic/reperfusion injury, different kinds of muscle fatigue, and nerve-glia interactions.
Collapse
Affiliation(s)
- A G Dimitrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113, Sofia, Bulgaria.
| |
Collapse
|
12
|
Oh BC. Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling. Exp Mol Med 2023; 55:1702-1712. [PMID: 37524877 PMCID: PMC10474053 DOI: 10.1038/s12276-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/02/2023] Open
Abstract
Intracellular calcium (Ca2+) and phosphoinositides (PIPs) are crucial for regulating cellular activities such as metabolism and cell survival. Cells maintain precise intracellular Ca2+ and PIP levels via the actions of a complex system of Ca2+ channels, transporters, Ca2+ ATPases, and signaling effectors, including specific lipid kinases, phosphatases, and phospholipases. Recent research has shed light on the complex interplay between Ca2+ and PIP signaling, suggesting that elevated intracellular Ca2+ levels negatively regulate PIP signaling by inhibiting the membrane localization of PIP-binding proteins carrying specific domains, such as the pleckstrin homology (PH) and Ca2+-independent C2 domains. This dysregulation is often associated with cancer and metabolic diseases. PIPs recruit various proteins with PH domains to the plasma membrane in response to growth hormones, which activate signaling pathways regulating metabolism, cell survival, and growth. However, abnormal PIP signaling in cancer cells triggers consistent membrane localization and activation of PIP-binding proteins. In the context of obesity, an excessive intracellular Ca2+ level prevents the membrane localization of the PIP-binding proteins AKT, IRS1, and PLCδ via Ca2+-PIPs, contributing to insulin resistance and other metabolic diseases. Furthermore, an excessive intracellular Ca2+ level can cause functional defects in subcellular organelles such as the endoplasmic reticulum (ER), lysosomes, and mitochondria, causing metabolic diseases. This review explores how intracellular Ca2+ overload negatively regulates the membrane localization of PIP-binding proteins.
Collapse
Affiliation(s)
- Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|
13
|
Stopa KB, Łoziński F, Kusiak AA, Litewka J, Krzysztofik D, Mosiołek S, Morys J, Ferdek PE, Jakubowska MA. Driver Mutations of Pancreatic Cancer Affect Ca 2+ Signaling and ATP Production. FUNCTION 2023; 4:zqad035. [PMID: 37575483 PMCID: PMC10413928 DOI: 10.1093/function/zqad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023] Open
Abstract
Glandular pancreatic epithelia of the acinar or ductal phenotype may seem terminally differentiated, but they are characterized by remarkable cell plasticity. Stress-induced trans-differentiation of these cells has been implicated in the mechanisms of carcinogenesis. Current consensus links pancreatic ductal adenocarcinoma with onco-transformation of ductal epithelia, but under the presence of driver mutations in Kras and Trp53, also with trans-differentiation of pancreatic acini. However, we do not know when, in the course of cancer progression, physiological functions are lost by mutant acinar cells, nor can we assess their capacity for the production of pancreatic juice components. Here, we investigated whether two mutations-KrasG12D and Trp53R172H-present simultaneously in acinar cells of KPC mice (model of oncogenesis) influence cytosolic Ca2+ signals. Since Ca2+ signals control the cellular handling of digestive hydrolases, any changes that affect intracellular signaling events and cell bioenergetics might have an impact on the physiology of the pancreas. Our results showed that physiological doses of acetylcholine evoked less regular Ca2+ oscillations in KPC acinar cells compared to the control, whereas responses to supramaximal concentrations were markedly reduced. Menadione elicited Ca2+ signals of different frequencies in KPC cells compared to control cells. Finally, Ca2+ extrusion rates were significantly inhibited in KPC cells, likely due to the lower basal respiration and ATP production. Cumulatively, these findings suggest that driver mutations affect the signaling capacity of pancreatic acinar cells even before the changes in the epithelial cell morphology become apparent.
Collapse
Affiliation(s)
- Kinga B Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
- Doctoral School of Exact and Biological Sciences, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Filip Łoziński
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Agnieszka A Kusiak
- Doctoral School of Exact and Biological Sciences, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Jacek Litewka
- Doctoral School of Exact and Biological Sciences, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Daria Krzysztofik
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
- Doctoral School of Exact and Biological Sciences, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Sylwester Mosiołek
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Jan Morys
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Paweł E Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika A Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
| |
Collapse
|
14
|
Daba MY, Fan Z, Li Q, Yuan X, Liu B. The Role of Calcium Channels in Prostate Cancer Progression and Potential as a Druggable Target for Prostate Cancer Treatment. Crit Rev Oncol Hematol 2023; 186:104014. [PMID: 37119879 DOI: 10.1016/j.critrevonc.2023.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
Prostate cancer (PCa) is the most diagnosed cancer among men. Discovering novel prognostic biomarkers and potential therapeutic targets are critical. Calcium signaling has been implicated in PCa progression and development of treatment resistance. Altered modification of Ca2+ flows leads to serious pathophysiological processes, such as malignant transformation, tumor proliferation, epithelial to mesenchymal transition, evasion of apoptosis, and treatment resistance. Calcium channels control and contribute to these processes. PCa has shown defective Ca2+ channels, which subsequently promotes tumor metastasis and growth. Store-operated Ca2+ entry channels such as Orai and STIM channels and transient receptor potential channels play a significant role in PCa pathogenesis. Pharmacological modulation of these calcium channels or pumps has been suggested as a practical approach. In this review, we discuss the role of calcium channels in PCa development and progression, and we identify current novel discoveries of drugs that target specific calcium channels for the treatment of PCa.
Collapse
Affiliation(s)
- Motuma Yigezu Daba
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
15
|
James AD, Unthank KP, Jones I, Sajjaboontawee N, Sizer RE, Chawla S, Evans GJO, Brackenbury WJ. Sodium regulates PLC and IP 3 R-mediated calcium signaling in invasive breast cancer cells. Physiol Rep 2023; 11:e15663. [PMID: 37017052 PMCID: PMC10074044 DOI: 10.14814/phy2.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.
Collapse
Affiliation(s)
- Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | | | - Nattanan Sajjaboontawee
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | - Sangeeta Chawla
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Gareth J. O. Evans
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
16
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
17
|
Park KC, Kim JM, Kim SY, Kim SM, Lim JH, Kim MK, Fang S, Kim Y, Mills GB, Noh SH, Cheong JH. PMCA inhibition reverses drug resistance in clinically refractory cancer patient-derived models. BMC Med 2023; 21:38. [PMID: 36726166 PMCID: PMC9893610 DOI: 10.1186/s12916-023-02727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cancer cells have developed molecular strategies to cope with evolutionary stressors in the dynamic tumor microenvironment. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) is a metabolic rheostat that regulates diverse cellular adaptive behaviors, including growth and survival. However, the mechanistic role of PGC1α in regulating cancer cell viability under metabolic and genotoxic stress remains elusive. METHODS We investigated the PGC1α-mediated survival mechanisms in metabolic stress (i.e., glucose deprivation-induced metabolic stress condition)-resistant cancer cells. We established glucose deprivation-induced metabolic stress-resistant cells (selected cells) from parental tumor cells and silenced or overexpressed PGC1α in selected and parental tumor cells. RESULTS Several in vitro and in vivo mouse experiments were conducted to elucidate the contribution of PGC1α to cell viability in metabolic stress conditions. Interestingly, in the mouse xenograft model of patient-derived drug-resistant cancer cells, each group treated with an anti-cancer drug alone showed no drastic effects, whereas a group that was co-administered an anti-cancer drug and a specific PMCA inhibitor (caloxin or candidate 13) showed marked tumor shrinkage. CONCLUSIONS Our results suggest that PGC1α is a key regulator of anti-apoptosis in metabolic and genotoxic stress-resistant cells, inducing PMCA expression and allowing survival in glucose-deprived conditions. We have discovered a novel therapeutic target candidate that could be employed for the treatment of patients with refractory cancers.
Collapse
Affiliation(s)
- Ki Cheong Park
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Yong Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Mo Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Hong Lim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Ki Kim
- Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yonjung Kim
- EONE-DIAGNOMICS Genome Center, New drug R&D Center, 291 Harmony-ro, Yeonsu-gu, Incheon, 22014, Republic of Korea
| | - Gordon B Mills
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sung Hoon Noh
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea. .,YUMC-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Biochemistry & Molecular Biology, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Sustained activation of non-canonical NF-κB signalling drives glycolytic reprogramming in doxorubicin-resistant DLBCL. Leukemia 2023; 37:441-452. [PMID: 36446947 DOI: 10.1038/s41375-022-01769-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
DLBCL is the most common lymphoma with high tumor heterogeneity. Treatment refractoriness and relapse from R-CHOP therapy in patients remain a clinical problem. Activation of the non-canonical NF-κB pathway is associated with R-CHOP resistance. However, downstream targets of non-canonical NF-κB mediating R-CHOP-induced resistance remains uncharacterized. Here, we identify the common mechanisms underlying both intrinsic and acquired resistance that are induced by doxorubicin, the main cytotoxic component of R-CHOP. We performed global transcriptomic analysis of (1) a panel of resistant versus sensitive and (2) isogenic acquired doxorubicin-resistant DLBCL cell lines following short and chronic exposure to doxorubicin respectively. Doxorubicin-induced stress in resistant cells activates a distinct transcriptional signature that is enriched in metabolic reprogramming and oncogenic signalling. Selective and sustained activation of non-canonical NF-κB signalling in these resistant cells exacerbated their survival by augmenting glycolysis. In response to doxorubicin, p52-RelB complexes transcriptionally activated multiple glycolytic regulators with prognostic significance through increased recruitment at their gene promoters. Targeting p52-RelB and their targets in resistant cells increased doxorubicin sensitivity in vitro and in vivo. Collectively, our study uncovered novel molecular drivers of doxorubicin-induced resistance that are regulated by non-canonical NF-κB pathway. We reveal new avenues of therapeutic targeting for R-CHOP-treated refractory/relapsed DLBCL patients.
Collapse
|
19
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
20
|
Ikenaga J, Aratake S, Yoshida K, Yoshida M. A novel role for ATP2B in ascidians: Ascidian-specific mutations in ATP2B contribute to sperm chemotaxis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:430-437. [PMID: 35468255 DOI: 10.1002/jez.b.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Sperm chemotaxis, in which sperms are attracted to conspecific eggs via species-specific attractants, plays an important role in fertilization. This phenomenon has been observed in various animals and species-specific sperm attractants have been reported in some species. However, the mechanisms involved in the reception and recognition of the species-specific attractant by the sperms is poorly studied. Previously, we found that the plasma membrane-type Ca2+ /ATPase (PMCA) is the receptor for the sperm-activating and -attracting factor (SAAF) in the ascidian Ciona intestinalis. To determine the role of PMCA in species-specific sperm chemotaxis, we identified the amino acid sequences of PMCAs derived from six Phlebobranchia species. The testis-specific splice variant of PMCA was found to be present in all the species investigated and the ascidian-specific sequence was detected near the 3'-terminus. Moreover, dN/dS analysis revealed that the extracellular loops 1, 2, and 4 in ascidian PMCA underwent a positive selection. These findings suggest that PMCA recognizes the species-specific structure of SAAF at the extracellular loops 1, 2, and 4, and its testis-specific C-terminal region is involved in the activation and chemotaxis of ascidian sperms.
Collapse
Affiliation(s)
- Jumpei Ikenaga
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Satoe Aratake
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, 225-8503, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
21
|
Song JL, Westover MB, Zhang R. A mechanistic model of calcium homeostasis leading to occurrence and propagation of secondary brain injury. J Neurophysiol 2022; 128:1168-1180. [PMID: 36197012 PMCID: PMC9621713 DOI: 10.1152/jn.00045.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Secondary brain injury (SBI) refers to new or worsening brain insult after primary brain injury (PBI). Neurophysiological experiments show that calcium (Ca2+) is one of the major culprits that contribute to neuronal damage and death following PBI. However, mechanistic details about how alterations of Ca2+ levels contribute to SBI are not well characterized. In this paper, we first build a biophysical model for SBI related to calcium homeostasis (SBI-CH) to study the mechanistic details of PBI-induced disruption of CH, and how these disruptions affect the occurrence of SBI. Then, we construct a coupled SBI-CH model by formulating synaptic interactions to investigate how disruption of CH affects synaptic function and further promotes the propagation of SBI between neurons. Our model shows how the opening of voltage-gated calcium channels (VGCCs), decreasing of plasma membrane calcium pump (PMCA), and reversal of the Na+/Ca2+ exchanger (NCX) during and following PBI, could induce disruption of CH and further promote SBI. We also show that disruption of CH causes synaptic dysfunction, which further induces loss of excitatory-inhibitory balance in the system, and this might promote the propagation of SBI and cause neighboring tissue to be injured. Our findings offer a more comprehensive understanding of the complex interrelationship between CH and SBI.NEW & NOTEWORTHY We build a mechanistic model SBI-CH for calcium homeostasis (CH) to study how alterations of Ca2+ levels following PBI affect the occurrence and propagation of SBI. Specifically, we investigate how the opening of VGCCs, decreasing of PMCA, and reversal of NCX disrupt CH, and further induce the occurrence of SBI. We also present a coupled SBI-CH model to show how disrupted CH causes synaptic dysfunction, and further promotes the propagation of SBI between neurons.
Collapse
Affiliation(s)
- Jiang-Ling Song
- The Medical Big Data Research Center, Northwest University, Xi'an, People's Republic of China
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rui Zhang
- The Medical Big Data Research Center, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
22
|
Caner A, Onal MG. Inhibition of Plasma Membrane Calcium Pump Influences Intracellular Calcium Signaling Pathways in Breast Cancer. Cell Biochem Biophys 2022; 80:747-753. [PMID: 36064997 DOI: 10.1007/s12013-022-01090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
The plasma membrane calcium pump (PMCA) is an important transporter that maintains intracellular calcium concentration ([Ca2+]i). It allows the calcium (Ca2+) from inside the cell to go out of the cell through the plasma membrane. For this, it cooperates with the proteins in the cell. The aim of this study is to demonstrate the effect of PMCA on intracellular calcium signaling in breast cancer cells. In this study, PMCA was inhibited by orthovanadate (OV), and changes in Calmodulin (CaM), Calcineurin (CaN) and cMyc proteins were demonstrated. Intracellular calcium accumulation was measured when PMCA was inhibited in MDA-MB-231 cells. At the same time, it was observed that the cell movement decreased with time. Over time, CaN and CaM were slightly suppressed, and cMyc protein was not expressed. As a result, when PMCA protein is targeted correctly in breast cancer cells, it has an indirect effect on cancer-promoting proteins.
Collapse
Affiliation(s)
- Armagan Caner
- Faculty of Medicine, Department of Biophysics, Erciyes University, Kayseri, Turkey. .,Genom and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Muge Gulcihan Onal
- Genom and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
23
|
Ren D, Liu R, Yan X, Zhang Q, Zeng X, Yuan X. Intensive stretch-activated CRT-PMCA1 feedback loop promoted apoptosis of myoblasts through Ca 2+ overloading. Apoptosis 2022; 27:929-945. [PMID: 35976579 DOI: 10.1007/s10495-022-01759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stretch exerted pro-apoptotic effect on myoblasts, the mechanism of which is currently unknown. Intracellular Ca2+ accumulation has been implicated in stretch-induced apoptosis. calreticulin (CRT) and plasma membrane Ca2+ transporting ATPase 1 (PMCA1) are two critical components of Ca2+ signaling system participating in intracellular Ca2+ homeostasis. In this study, we explored the contribution of CRT and PMCA1 in mediating stretch-induced Ca2+ accumulation and apoptosis of myoblasts. Stretching stimuli elevated level of CRT while inhibited activity of PMCA1. Moreover, there were bidirectional regulations between CRT and PMCA1, which formed the positive feedback loop leading to continuous increment of CRT level and repression of PMCA1 activity, in stretched myoblasts. Specifically, increased CRT level inhibited PMCA1 activity via suppressing Calmodulin (CaM), while reduced PMCA1 activity promoted CRT expression through activating p38MAPK pathway. Thus, the CRT-CaM-PMCA1 and PMCA1-p38MAPK-CRT pathways constituted a close cycle comprising CRT, PMCA1, CaM and p38MAPK. Inhibition of both CaM and p38MAPK affected the other three factors in stretched myoblasts. Circulation of the vicious cycle resulted in escalated Ca2+ overloading in myoblasts under continuous stretching stimuli. CRT knock-down, PMCA1 overexpression, and p38MAPK inhibition all attenuated the raised intracellular Ca2+ level and ameliorated myoblast apoptosis in the stretching environment. Conversely, CRT overexpression, PMCA1 knock-down, and CaM inhibition all aggravated stretch-induced Ca2+ overloading and myoblast apoptosis. A positive feedback loop between CRT and PMCA1 was activated in stretched myoblasts, which contributed to intracellular Ca2+ accumulation and resultant myoblast apoptosis.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Boutin JA, Bedut S, Jullian M, Galibert M, Frankiewicz L, Gloanec P, Ferry G, Puget K, Leprince J. Caloxin-derived peptides for the inhibition of plasma membrane calcium ATPases. Peptides 2022; 154:170813. [PMID: 35605801 DOI: 10.1016/j.peptides.2022.170813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Plasma membrane calcium ATPases (PMCAs) are a family of transmembrane proteins responsible for the extrusion of cytosolic Ca2+ to the extracellular milieu. They are important players of the calcium homeostasis possibly implicated in some important diseases. The reference inhibitors of PMCA extruding activity are on one hand ortho-vanadate (IC50 in the 30 mM range), and on the other a series of 12- to 20-mer peptides named caloxins (IC50 in the 100 µM scale). As for all integral membrane proteins, biochemistry and pharmacology are difficult to study on isolated and/or purified proteins. Using a series of reference blockers, we assessed a pharmacological window with which we could study the functionality of PMCAs in living cells. Using this system, we screened for alternative versions of caloxins, aiming at shortening the peptide backbone, introducing non-natural amino acids, and overall trying to get a glimpse at the structure-activity relationship between those new peptides and the protein in a cellular context. We describe a short series of equipotent 5-residue long analogues with IC50 in the low µM range.
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Servier, Croissy-sur-Seine, France; INSERM U1239, University of Rouen Normandy, Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen, France.
| | | | | | | | | | | | - Gilles Ferry
- Institut de Recherches Servier, Croissy-sur-Seine, France
| | | | - Jérôme Leprince
- INSERM U1239, University of Rouen Normandy, Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen, France; INSERM US51, University of Rouen Normandy, Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| |
Collapse
|
25
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|
26
|
Farooq A, Hernandez L, Swain SM, Shahid RA, Romac JMJ, Vigna SR, Liddle RA. Initiation and severity of experimental pancreatitis are modified by phosphate. Am J Physiol Gastrointest Liver Physiol 2022; 322:G561-G570. [PMID: 35293263 PMCID: PMC9054345 DOI: 10.1152/ajpgi.00022.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/31/2023]
Abstract
Proper mitochondrial function and adequate cellular ATP are necessary for normal pancreatic protein synthesis and sorting, maintenance of intracellular organelles and enzyme secretion. Inorganic phosphate is required for generating ATP and its limited availability may lead to reduced ATP production causing impaired Ca2+ handling, defective autophagy, zymogen activation, and necrosis, which are all features of acute pancreatitis. We hypothesized that reduced dietary phosphate leads to hypophosphatemia and exacerbates pancreatitis severity of multiple causes. We observed that mice fed a low-phosphate diet before the induction of pancreatitis by either repeated caerulein administration or pancreatic duct injection as a model of pressure-induced pancreatitis developed hypophosphatemia and exhibited more severe pancreatitis than normophosphatemic mice. Pancreatitis severity was significantly reduced in mice treated with phosphate. In vitro modeling of secretagogue- and pressure-induced pancreatic injury was evaluated in isolated pancreatic acini using cholecystokinin and the mechanoreceptor Piezo1 agonist, Yoda1, under low and normal phosphate conditions. Isolated pancreatic acini were more sensitive to cholecystokinin- and Yoda1-induced acinar cell damage and mitochondrial dysfunction under low-phosphate conditions and improved following phosphate supplementation. Importantly, even mice on a normal phosphate diet exhibited less severe pancreatitis when treated with supplemental phosphate. Thus, hypophosphatemia sensitizes animals to pancreatitis and phosphate supplementation reduces pancreatitis severity. These appear to be direct effects of phosphate on acinar cells through restoration of mitochondrial function. We propose that phosphate administration may be useful in the treatment of acute pancreatitis.NEW & NOTEWORTHY Impaired ATP synthesis disrupts acinar cell homeostasis and is an early step in pancreatitis. We report that reduced phosphate availability impairs mitochondrial function and worsens pancreatic injury. Phosphate supplementation improves mitochondrial function and protects against experimental pancreatitis, raising the possibility that phosphate supplementation may be useful in treating pancreatitis.
Collapse
Affiliation(s)
- Ahmad Farooq
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Sandip M Swain
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rafiq A Shahid
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Steven R Vigna
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rodger A Liddle
- Department of Medicine, Duke University, Durham, North Carolina
- Veterans Affairs Health Care System, Durham, North Carolina
| |
Collapse
|
27
|
Lai HT, Canoy RJ, Campanella M, Vassetzky Y, Brenner C. Ca2+ Transportome and the Interorganelle Communication in Hepatocellular Carcinoma. Cells 2022; 11:cells11050815. [PMID: 35269437 PMCID: PMC8909868 DOI: 10.3390/cells11050815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer with a poor prognosis for survival given the complications it bears on the patient. Though damages to the liver are acknowledged prodromic factors, the precise molecular aetiology remains ill-defined. However, many genes coding for proteins involved in calcium (Ca2+) homeostasis emerge as either mutated or deregulated. Ca2+ is a versatile signalling messenger that regulates functions that prime and drive oncogenesis, favouring metabolic reprogramming and gene expression. Ca2+ is present in cell compartments, between which it is trafficked through a network of transporters and exchangers, known as the Ca2+ transportome. The latter regulates and controls Ca2+ dynamics and tonicity. In HCC, the deregulation of the Ca2+ transportome contributes to tumorigenesis, the formation of metastasizing cells, and evasion of cell death. In this review, we reflect on these aspects by summarizing the current knowledge of the Ca2+ transportome and overviewing its composition in the plasma membrane, endoplasmic reticulum, and the mitochondria.
Collapse
Affiliation(s)
- Hong-Toan Lai
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
| | - Reynand Jay Canoy
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila 1000, Philippines
| | - Michelangelo Campanella
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London NW1 0TU, UK
- Consortium for Mitochondrial Research, University College London, London WC1 0TU, UK
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yegor Vassetzky
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Correspondence:
| |
Collapse
|
28
|
Deng L, Chen J, Chen B, Wang T, Yang L, Liao J, Yi J, Chen Y, Wang J, Linneman J, Niu Y, Gou D. LncPTSR Triggers Vascular Remodeling in Pulmonary Hypertension by Regulating [Ca2+]i in Pulmonary Arterial Smooth Muscle Cells. Am J Respir Cell Mol Biol 2022; 66:524-538. [PMID: 35148256 DOI: 10.1165/rcmb.2020-0480oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by vascular remodeling and sustained increase in right ventricular systolic pressure (RVSP). The molecular mechanisms behind PH development remain unclear. Here, a long non-coding RNA (lncRNA) attenuated by platelet-derived growth factor BB (PDGF-BB) was identified and its functional roles were investigated in vitro and in vivo. Using RNA-seq data and rapid amplification of cDNA ends, a lncRNA neighboring the locus of plasma membrane calcium transporting ATPase 4 (PMCA4) was identified and named lncPTSR. It is a highly-conserved nuclear lncRNA, and was downregulated in pulmonary arterial smooth muscle cells (PASMCs) with PDGF-BB stimulation or hypoxia induction. Gene interruption/overexpression assays revealed that lncPTSR negatively regulates rat PASMCs proliferation, apoptosis, and migration. LncPTSR interruption in Sprague Dawley (SD) rats using adenovirus associated virus type 9 (AAV9)-mediated short-hairpin RNA (shRNA) resulted in a significant increase in RVSP and vascular remodeling in normoxic condition. LncPTSR knockdown also suppressed PMCA4 expression and attenuated the intracellular Ca2+ efflux of PASMCs in vitro and in vivo. Further studies suggest a complex cross-talk between lncPTSR and mitogen-activated protein kinase (MAPK) pathway: inhibition of mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) abolishes the PDGF-BB-mediated lncPTSR downregulation, and lncPTSR plays a feedback regulation for MAPK signaling molecules. The present study suggests that lncPTSR participates in pulmonary artery (PA) remodeling via modulating the expression of PMCA4 and intracellular Ca2+ homeostasis downstream of PDGF-BB driven MEK/ERK signaling. These results suggest lncPTSR may be a promising therapeutic target in PH treatment.
Collapse
Affiliation(s)
- Liyu Deng
- Shenzhen University, 47890, Shenzhen, China;
| | | | - Bin Chen
- Shenzhen University, 47890, Shenzhen, China
| | - Ting Wang
- Shenzhen University, 47890, Shenzhen, China
| | - Lei Yang
- Shenzhen University, 47890, Shenzhen, China
| | - Jing Liao
- Guangzhou Medical University, 26468, Guangzhou, China
| | - Junbo Yi
- Shenzhen University, 47890, Shenzhen, China
| | - Yuqin Chen
- Guangzhou Medical University, 26468, Guangzhou, China
| | - Jian Wang
- University of California San Diego, 8784, La Jolla, California, United States
| | - John Linneman
- Washington University School of Medicine in Saint Louis, 12275, St Louis, Missouri, United States
| | - Yanqin Niu
- Shenzhen University, 47890, Shenzhen, China
| | - Deming Gou
- Shenzhen University, 47890, Shenzhen, China
| |
Collapse
|
29
|
Qiu K, Wang Y, Xu D, He L, Zhang X, Yan E, Wang L, Yin J. Ryanodine receptor RyR1-mediated elevation of Ca 2+ concentration is required for the late stage of myogenic differentiation and fusion. J Anim Sci Biotechnol 2022; 13:9. [PMID: 35144690 PMCID: PMC8832842 DOI: 10.1186/s40104-021-00668-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Cytosolic Ca2+ plays vital roles in myogenesis and muscle development. As a major Ca2+ release channel of endoplasmic reticulum (ER), ryanodine receptor 1 (RyR1) key mutations are main causes of severe congenital myopathies. The role of RyR1 in myogenic differentiation has attracted intense research interest but remains unclear. Results In the present study, both RyR1-knockdown myoblasts and CRISPR/Cas9-based RyR1-knockout myoblasts were employed to explore the role of RyR1 in myogenic differentiation, myotube formation as well as the potential mechanism of RyR1-related myopathies. We observed that RyR1 expression was dramatically increased during the late stage of myogenic differentiation, accompanied by significantly elevated cytoplasmic Ca2+ concentration. Inhibition of RyR1 by siRNA-mediated knockdown or chemical inhibitor, dantrolene, significantly reduced cytosolic Ca2+ and blocked multinucleated myotube formation. The elevation of cytoplasmic Ca2+ concentration can effectively relieve myogenic differentiation stagnation by RyR1 inhibition, demonstrating that RyR1 modulates myogenic differentiation via regulation of Ca2+ release channel. However, RyR1-knockout-induced Ca2+ leakage led to the severe ER stress and excessive unfolded protein response, and drove myoblasts into apoptosis. Conclusions Therefore, we concluded that Ca2+ release mediated by dramatic increase in RyR1 expression is required for the late stage of myogenic differentiation and fusion. This study contributes to a novel understanding of the role of RyR1 in myogenic differentiation and related congenital myopathies, and provides a potential target for regulation of muscle characteristics and meat quality. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00668-x.
Collapse
Affiliation(s)
- Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs & National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Gao T, Zhang Y, Shi J, Mohamed SR, Xu J, Liu X. The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum. Front Microbiol 2021; 12:762844. [PMID: 34867894 PMCID: PMC8634675 DOI: 10.3389/fmicb.2021.762844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.
Collapse
Affiliation(s)
- Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yao Zhang
- School of Food Science And Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Sherif Ramzy Mohamed
- Department of Food Toxicology and Contaminant, National Research Centre of Egypt, Giza, Egypt
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca 2+ signaling: A new arsenal against cancer. Drug Discov Today 2021; 27:923-934. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells is a major concern in medical oncology, resulting in the failure of chemotherapy. Ca2+ plays a pivotal role in inducing multidrug resistance in cancer cells. Calcium signaling is a critical regulator of many cancer hallmarks, such as angiogenesis, invasiveness, and migration. In this review, we describe the involvement of Ca2+ signaling and associated proteins in cancer progression and in the development of multidrug resistance in cancer cells. We also highlight the possibilities and challenges of targeting the Ca2+ channels, transporters, and pumps involved in Ca2+ signaling in cancer cells through structure-based drug design. This work will open a new therapeutic window to be used against cancer in upcoming years.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
32
|
The Effect of Cyclosporine A on Proteins Controlling Intracellular Calcium Concentration in Breast Cancer Cells. J Membr Biol 2021; 255:33-39. [PMID: 34580765 DOI: 10.1007/s00232-021-00201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug commonly used to prevent autoimmune diseases. At the same time, CsA is a calcineurin (CaN) inhibitor. It affects the intracellular calcium signaling pathway. The effect of CsA on breast cancer cells, MDA-MB-231, plasma membrane calcium pump 1 (PMCA1), calmodulin (CaM), calcineurin (CaN), and cMyc, which are proteins that affect calcium signaling, were investigated. CsA inhibited the proliferation of MDA-MB-231 cells but did not affect the migration of the cells. After 24 h of incubation, CsA suppressed the PMCA1 protein, which pumps intracellular calcium out of the cell. At the same time, calcium started to accumulate inside the cell and CaM protein was expressed, while PMCA1 was suppressed. The CaN protein was suppressed 72 h after the administration of CsA, but the cMyc protein was expressed. Interestingly, 24 h incubation when the PMCA1 protein is down-regulated after the duration of time, the cMyc protein is also down-regulated. Although the indirect effect of CaN and cMyc is known, this relationship between PMCA1 and cMyc was not known. As a result, it has been shown that CsA affects the PMCA pump by disrupting the intracellular calcium pathway in breast cancer cells.
Collapse
|
33
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
34
|
Ca 2+ roles in electroporation-induced changes of cancer cell physiology: From membrane repair to cell death. Bioelectrochemistry 2021; 142:107927. [PMID: 34425390 DOI: 10.1016/j.bioelechem.2021.107927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The combination of Ca2+ ions and electroporation has gained attention as potential alternative to electrochemotherapy. Ca2+ is an important component of the cell membrane repair system and its presence directly influences the dynamics of the pore cycle after electroporation which can be exploited for cancer therapies. Here, the influence of Ca2+ concentration is investigated on small molecule electrotransfer and release of Calcein from 4T1, MX-1, B16F10, U87 cancer cells after cell exposure to microsecond electric pulses. Moreover, we investigated simultaneous molecule electrotransfer and intracellular calcium ion influx when media was supplemented with different Ca2+ concentrations. Results show that increased concentrations of calcium ions reduce the electrotransfer of small molecules to different lines of cancer cells as well as the release of Calcein. These effects are related with an enhanced membrane repair mechanism. Overall, we show that the efficiency of molecular electrotransfer can be controlled by regulating Ca2+ concentration in the electroporation medium. For the first time, the cause of cancer cell death in vitro from 1 mM CaCl2 concentrations is related to the irreversible loss of Ca2+ homeostasis after cell electroporation. Our findings provide fundamental insight on the mechanisms of Ca2+ electroporation that might lead to improved therapeutic outcomes.
Collapse
|
35
|
Kimura M, Mochizuki H, Satou R, Iwasaki M, Kokubu E, Kono K, Nomura S, Sakurai T, Kuroda H, Shibukawa Y. Plasma Membrane Ca 2+-ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization. Biomolecules 2021; 11:biom11071010. [PMID: 34356633 PMCID: PMC8301758 DOI: 10.3390/biom11071010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+–Ca2+ exchanger (NCX) and plasma membrane Ca2+–ATPase (PMCA) to maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of mRNA-encoding PMCA subtypes, pharmacological properties, and other cellular functions remain unclear. Thus, we investigated PMCA mRNA levels and their contribution to mineralization under physiological conditions. We also examined the role of PMCA in the Ca2+ extrusion pathway during hypotonic and alkaline stimulation-induced increases in intracellular free Ca2+ concentration ([Ca2+]i). We performed RT-PCR and mineralization assays in human odontoblasts. [Ca2+]i was measured using fura-2 fluorescence measurements in odontoblasts isolated from newborn Wistar rat incisor teeth and human odontoblasts. We detected mRNA encoding PMCA1–4 in human odontoblasts. The application of hypotonic or alkaline solutions transiently increased [Ca2+]i in odontoblasts in both rat and human odontoblasts. The Ca2+ extrusion efficiency during the hypotonic or alkaline solution-induced [Ca2+]i increase was decreased by PMCA inhibitors in both cell types. Alizarin red and von Kossa staining showed that PMCA inhibition suppressed mineralization. In addition, alkaline stimulation (not hypotonic stimulation) to human odontoblasts upregulated the mRNA levels of dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). The PMCA inhibitor did not affect DMP-1 or DSPP mRNA levels at pH 7.4–8.8 and under isotonic and hypotonic conditions, respectively. We also observed PMCA1 immunoreactivity using immunofluorescence analysis. These findings indicate that PMCA participates in maintaining [Ca2+]i homeostasis in odontoblasts by Ca2+ extrusion following [Ca2+]i elevation. In addition, PMCA participates in dentinogenesis by transporting Ca2+ to the mineralizing front (which is independent of non-collagenous dentin matrix protein secretion) under physiological and pathological conditions following mechanical stimulation by hydrodynamic force inside dentinal tubules, or direct alkaline stimulation by the application of high-pH dental materials.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Hiroyuki Mochizuki
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Ryouichi Satou
- Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; (R.S.); (M.I.)
| | - Miyu Iwasaki
- Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; (R.S.); (M.I.)
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan;
| | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Takeshi Sakurai
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
- Department of Dental Anesthesiology, Kanagawa Dental University, 1-23, Ogawacho, Kanagawa, Yokosuka-shi 238-8570, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
- Correspondence:
| |
Collapse
|
36
|
CRISPR/Cas9-mediated tryptophan hydroxylase 1 knockout decreases calcium transportation in goat mammary epithelial cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Liu J, Wang L, Chen W, Li J, Shan T. CRTC3 Regulates the Lipid Metabolism and Adipogenic Differentiation of Porcine Intramuscular and Subcutaneous Adipocytes by Activating the Calcium Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7243-7255. [PMID: 34142819 DOI: 10.1021/acs.jafc.1c02021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fat deposition, especially the intramuscular (IM) fat deposition, is directly associated with meat quality. The cyclic adenosine monophosphate (cAMP)-responsive element binding-protein (CREB)-regulated transcription coactivator 3 (CRTC3) plays an important role in energy metabolism and various biological processes. The expression of porcine CRTC3 in skeletal muscle is positively associated with intramuscular fat deposition and possesses the capacity to control the intramuscular (IM) adipocyte morphology. However, the metabolic effects and transcriptional mechanism of CRTC3 in porcine intramuscular (IM) adipocytes as well as the regulatory mechanism of CRTC3 on porcine adipocyte differentiation have not been studied. Here, we utilized metabolomics and RNA sequencing (RNA-seq) to determine the metabolic and transcriptome profiles of CRTC3-overexpressing IM adipocytes. Moreover, the effect and regulation mechanism of CRTC3 on porcine IM and subcutaneous (SC) adipocyte differentiation were also studied. Our results showed that CRTC3 overexpression dramatically altered the metabolites in IM adipocytes. Glycerophospholipid (GP) metabolism and related genes were significantly changed in CRTC3-overexpressing IM adipocytes. Moreover, we demonstrated that CRTC3 overexpression promotes adipogenic differentiation by upregulating the Ca2+-cAMP signaling pathway in IM and SC adipocytes. We showed alterations in metabolites and in the expression of genes involved in lipid metabolism in CRTC3-overexpressing adipocytes and demonstrated the regulatory mechanism of CRTC3 on the adipogenic differentiation of porcine adipocytes. These results provide new insights into the regulatory roles of CRTC3 in porcine adipocytes, which could be an important target to regulate fat deposition in animals.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| |
Collapse
|
38
|
Shang S, Wu X, Zhang Q, Zhao J, Hu E, Wang L, Lu X. 0.1 THz exposure affects primary hippocampus neuron gene expression via alternating transcription factor binding. BIOMEDICAL OPTICS EXPRESS 2021; 12:3729-3742. [PMID: 34221691 PMCID: PMC8221933 DOI: 10.1364/boe.426928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 05/15/2023]
Abstract
In recent years, many studies have been conducted to investigate the influence of terahertz (THz) radiation on the gene expression in various cell types, but the underling molecular mechanism has not yet been fully revealed. In this study, we explored the effects of 0.1 THz radiation on the gene expression in primary neuron cells through RNA-seq analysis. 111 up-regulated and 54 down-regulated genes were identified. Several biomolecule binding related categories such as "long-chain fatty acid binding", "tropomyosin binding", "BMP receptor binding", as well as "GTPase binding" and "phospholipid binding" were enriched by GO analysis. Moreover, the GSEA analysis indicated that genes encoding protein biosynthetic machinery ribosome were up-regulated by 0.1 THz irradiation. In addition, we demonstrated that the binding efficiency of a transcription factor (TF) AP-1 with its transcription factor binding site (TFBS) in DNA was reduced by THz irradiation, which suggested that THz irradiation might affect the interaction between TFs with DNA and consequently regulate the gene expression. Our results provide new insights into the biological effects of terahertz irradiation.
Collapse
|
39
|
Pham C, Hérault K, Oheim M, Maldera S, Vialou V, Cauli B, Li D. Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca 2+ alteration and multiphasic transmitter release. Acta Neuropathol Commun 2021; 9:44. [PMID: 33726852 PMCID: PMC7968286 DOI: 10.1186/s40478-021-01146-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Excessive amounts of amyloid β (Aβ) peptide have been suggested to dysregulate synaptic transmission in Alzheimer's disease (AD). As a major type of glial cell in the mammalian brain, astrocytes regulate neuronal function and undergo activity alterations upon Aβ exposure. Yet the mechanistic steps underlying astrocytic responses to Aβ peptide remain to be elucidated. Here by fluorescence imaging of signaling pathways, we dissected astrocytic responses to Aβ25-35 peptide, a neurotoxic Aβ fragment present in AD patients. In native health astrocytes, Aβ25-35 evoked Ca2+ elevations via purinergic receptors, being also dependent on the opening of connexin (CX) hemichannels. Aβ25-35, however, induced a Ca2+ diminution in Aβ-preconditioned astrocytes as a result of the potentiation of the plasma membrane Ca2+ ATPase (PMCA). The PMCA and CX protein expression was observed with immunostaining in the brain tissue of hAPPJ20 AD mouse model. We also observed both Ca2+-independent and Ca2+-dependent glutamate release upon astrocytic Aβ exposure, with the former mediated by CX hemichannel and the latter by both anion channels and lysosome exocytosis. Our results suggest that Aβ peptide causes state-dependent responses in astrocytes, in association with a multiphasic release of signaling molecules. This study therefore helps to understand astrocyte engagement in AD-related amyloidopathy.
Collapse
|
40
|
Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. eLife 2021; 10:e64821. [PMID: 33555254 PMCID: PMC7870136 DOI: 10.7554/elife.64821] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.
Collapse
Affiliation(s)
| | - Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
41
|
Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int J Mol Sci 2020; 21:ijms21218323. [PMID: 33171939 PMCID: PMC7664196 DOI: 10.3390/ijms21218323] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) is a major second messenger in cells and is essential for the fate and survival of all higher organisms. Different Ca2+ channels, pumps, or exchangers regulate variations in the duration and levels of intracellular Ca2+, which may be transient or sustained. These changes are then decoded by an elaborate toolkit of Ca2+-sensors, which translate Ca2+ signal to intracellular operational cell machinery, thereby regulating numerous Ca2+-dependent physiological processes. Alterations to Ca2+ homoeostasis and signaling are often deleterious and are associated with certain pathological states, including cancer. Altered Ca2+ transmission has been implicated in a variety of processes fundamental for the uncontrolled proliferation and invasiveness of tumor cells and other processes important for cancer progression, such as the development of resistance to cancer therapies. Here, we review what is known about Ca2+ signaling and how this fundamental second messenger regulates life and death decisions in the context of cancer, with particular attention directed to cell proliferation, apoptosis, and autophagy. We also explore the intersections of Ca2+ and the therapeutic targeting of cancer cells, summarizing the therapeutic opportunities for Ca2+ signal modulators to improve the effectiveness of current anticancer therapies.
Collapse
|
42
|
Clarke R, Hossain K, Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183382. [DOI: 10.1016/j.bbamem.2020.183382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
43
|
Birkeland ES, Koch LM, Dechant R. Another Consequence of the Warburg Effect? Metabolic Regulation of Na +/H + Exchangers May Link Aerobic Glycolysis to Cell Growth. Front Oncol 2020; 10:1561. [PMID: 32974190 PMCID: PMC7462004 DOI: 10.3389/fonc.2020.01561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
To adjust cell growth and proliferation to changing environmental conditions or developmental requirements, cells have evolved a remarkable network of signaling cascades that integrates cues from cellular metabolism, growth factor availability and a large variety of stresses. In these networks, cellular information flow is mostly mediated by posttranslational modifications, most notably phosphorylation, or signaling molecules such as GTPases. Yet, a large body of evidence also implicates cytosolic pH (pHc) as a highly conserved cellular signal driving cell growth and proliferation, suggesting that pH-dependent protonation of specific proteins also regulates cellular signaling. In mammalian cells, pHc is regulated by growth factor derived signals and responds to metabolic cues in response to glucose stimulation. Importantly, high pHc has also been identified as a hall mark of cancer, but mechanisms of pH regulation in cancer are only poorly understood. Here, we discuss potential mechanisms of pH regulation with emphasis on metabolic signals regulating pHc by Na+/H+-exchangers. We hypothesize that elevated NHE activity and pHc in cancer are a direct consequence of the metabolic adaptations in tumor cells including enhanced aerobic glycolysis, generally referred to as the Warburg effect. This hypothesis not only provides an explanation for the growth advantage conferred by a switch to aerobic glycolysis beyond providing precursors for accumulation of biomass, but also suggests that treatments targeting pH regulation as a potential anti-cancer therapy may effectively target the result of altered tumor cell metabolism.
Collapse
Affiliation(s)
- Eivind Salmorin Birkeland
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland.,Life Science Zurich, Ph.D. Program for Molecular Life Sciences, Zurich, Switzerland
| | - Lisa Maria Koch
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland.,Life Science Zurich, Ph.D. Program for Molecular Life Sciences, Zurich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
44
|
Snoeck HW. Calcium regulation of stem cells. EMBO Rep 2020; 21:e50028. [PMID: 32419314 DOI: 10.15252/embr.202050028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Pluripotent and post-natal, tissue-specific stem cells share functional features such as the capacity to differentiate into multiple lineages and to self-renew, and are endowed with specific cell maintenance mechanism as well as transcriptional and epigenetic signatures that determine stem cell identity and distinguish them from their progeny. Calcium is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Specific roles of calcium in stem cell niches and stem cell maintenance mechanisms are only beginning to be explored, however. In this review, I discuss stem cell-specific regulation and roles of calcium, focusing on its potential involvement in the intertwined metabolic and epigenetic regulation of stem cells.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center of Human Development, Columbia University Irving Medical Center, New York, NY, USA.,Division of Pulmonary Medicine, Allergy and Critical Care, Columbia University Irving Medical Center, New York, NY, USA.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
45
|
Ahuja M, Chung WY, Lin WY, McNally BA, Muallem S. Ca 2+ Signaling in Exocrine Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035279. [PMID: 31636079 DOI: 10.1101/cshperspect.a035279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) and cyclic AMP (cAMP) signaling cross talk and synergize to stimulate the cardinal functions of exocrine cells, regulated exocytosis, and fluid and electrolyte secretion. This physiological process requires the organization of the two signaling pathways into complexes at defined cellular domains and close placement. Such domains are formed by membrane contact sites (MCS). This review discusses the basic properties of Ca2+ signaling in exocrine cells, the role of MCS in the organization of cell signaling and in cross talk and synergism between the Ca2+ and cAMP signaling pathways and, finally, the mechanism by which the Ca2+ and cAMP pathways synergize to stimulate epithelial fluid and electrolyte secretion.
Collapse
Affiliation(s)
- Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Wei-Yin Lin
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Beth A McNally
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Transport of Glucose by the Plasma Membrane Affects the Removal and Concentration of Ca 2+ at Rest in Neurons - Implications of a Condition Prior to Alzheimer's Disease? Neuroscience 2020; 431:52-63. [PMID: 32058068 DOI: 10.1016/j.neuroscience.2020.01.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is classically characterized by two major markers: extracellular development of senile plaques and intracellular formation of neurofibrillary tangles. Nonetheless, neuronal glucose hypometabolism and Ca2+ deregulation have been separately implied in the genesis and progress of the neurodegenerative process. In this sense, the goal of this study was to investigate if modifications in the glucose transport would influence the cellular viability and would be involved with the activity of Ca2+ removal from the neuron. The total levels of plasma membrane Ca2+-ATPase (PMCA) and glucose transporters (GLUT1 and 3), as well as glucose entry and intracellular Ca2+ dynamics were quantified in neurons maintained at different glucose concentrations or submitted to GLUT3 mRNA interference. The results showed that reduced extracellular glucose impaired neuronal viability from day 8, but didn't change the total protein levels of GLUT1, GLUT3 and PMCA before the onset of the cell death. Conversely, the rate of glucose transport and Ca2+ concentration was already altered since the 4th day of external glucose reduction. Interestingly, reduction of GLUT3 on plasma membrane led to lower glucose transport and intracellular Ca2+ accumulation. It was observed that the reduction of glucose transport directed the neuron to decrease the removal and increase of intracellular Ca2+ at rest. Therefore, we concluded that reduced glucose transport impairs neuronal viability and compromise the activity of Ca2+ removal from the neuron. Thus, it is expected that changes in glucose transport may lead to a more susceptible condition or trigger a neurodegenerative condition resulting in accumulation of intracellular Ca2+.
Collapse
|
47
|
Ellingson PJ, Korogod SM, Kahl TM, Kulagina IB, Makedonsky IA, Cymbalyuk GS. Role of the Plasma Membrane Ca2+-ATPase Pump in the Regulation of Rhythm Generation by an Interstitial Cell of Cajal: A Computational Study. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09825-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Plasma Membrane Ca 2+ ATPase Isoform 4 (PMCA4) Has an Important Role in Numerous Hallmarks of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010218. [PMID: 31963119 PMCID: PMC7016988 DOI: 10.3390/cancers12010218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is largely resistant to standard treatments leading to poor patient survival. The expression of plasma membrane calcium ATPase-4 (PMCA4) is reported to modulate key cancer hallmarks including cell migration, growth, and apoptotic resistance. Data-mining revealed that PMCA4 was over-expressed in pancreatic ductal adenocarcinoma (PDAC) tumors which correlated with poor patient survival. Western blot and RT-qPCR revealed that MIA PaCa-2 cells almost exclusively express PMCA4 making these a suitable cellular model of PDAC with poor patient survival. Knockdown of PMCA4 in MIA PaCa-2 cells (using siRNA) reduced cytosolic Ca2+ ([Ca2+]i) clearance, cell migration, and sensitized cells to apoptosis, without affecting cell growth. Knocking down PMCA4 had minimal effects on numerous metabolic parameters (as assessed using the Seahorse XF analyzer). In summary, this study provides the first evidence that PMCA4 is over-expressed in PDAC and plays a role in cell migration and apoptotic resistance in MIA PaCa-2 cells. This suggests that PMCA4 may offer an attractive novel therapeutic target in PDAC.
Collapse
|
49
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
James AD, Richardson DA, Oh IW, Sritangos P, Attard T, Barrett L, Bruce JIE. Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2). Br J Cancer 2020; 122:266-278. [PMID: 31819190 PMCID: PMC7052184 DOI: 10.1038/s41416-019-0675-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has poor survival and treatment options. PDAC cells shift their metabolism towards glycolysis, which fuels the plasma membrane calcium pump (PMCA), thereby preventing Ca2+-dependent cell death. The ATP-generating pyruvate kinase-M2 (PKM2) is oncogenic and overexpressed in PDAC. This study investigated the PKM2-derived ATP supply to the PMCA as a potential therapeutic locus. METHODS PDAC cell growth, migration and death were assessed by using sulforhodamine-B/tetrazolium-based assays, gap closure assay and poly-ADP ribose polymerase (PARP1) cleavage, respectively. Cellular ATP and metabolism were assessed using luciferase/fluorescent-based assays and the Seahorse XFe96 analyzer, respectively. Cell surface biotinylation identified membrane-associated proteins. Fura-2 imaging was used to assess cytosolic Ca2+ overload and in situ Ca2+ clearance. PKM2 knockdown was achieved using siRNA. RESULTS The PKM2 inhibitor (shikonin) reduced PDAC cell proliferation, cell migration and induced cell death. This was due to inhibition of glycolysis, ATP depletion, inhibition of PMCA and cytotoxic Ca2+ overload. PKM2 associates with plasma membrane proteins providing a privileged ATP supply to the PMCA. PKM2 knockdown reduced PMCA activity and reduced the sensitivity of shikonin-induced cell death. CONCLUSIONS Cutting off the PKM2-derived ATP supply to the PMCA represents a novel therapeutic strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Andrew D James
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
- Division of Cancer Sciences, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Daniel A Richardson
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - In-Whan Oh
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Pishyaporn Sritangos
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Thomas Attard
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Lisa Barrett
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Jason I E Bruce
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK.
| |
Collapse
|