1
|
Chaudhary V, Mishra B, Ah Kioon MD, Du Y, Ivashkiv LB, Crow MK, Barrat FJ. Mechanosensing regulates pDC activation in the skin through NRF2 activation. J Exp Med 2025; 222:e20240852. [PMID: 39670996 PMCID: PMC11639951 DOI: 10.1084/jem.20240852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Plasmacytoid DCs (pDCs) infiltrate the skin, chronically produce type I interferon (IFN-I), and promote skin lesions and fibrosis in autoimmune patients. However, what controls their activation in the skin is unknown. Here, we report that increased stiffness inhibits the production of IFN-I by pDCs. Mechanistically, mechanosensing activates stress pathways including NRF2, which induces the pentose phosphate pathway and reduces pyruvate levels, a product necessary for pDC responses. Modulating NRF2 activity in vivo controlled the pDC response, leading to resolution or chronic induction of IFN-I in the skin. In systemic sclerosis (SSc) patients, although NRF2 was induced in skin-infiltrating pDCs, as compared with blood pDCs, the IFN response was maintained. We observed that CXCL4, a profibrotic chemokine elevated in fibrotic skin, was able to overcome stiffness-mediated IFN-I inhibition, allowing chronic IFN-I responses by pDCs in the skin. Hence, these data identify a novel regulatory mechanism exerted by the skin microenvironment and identify points of dysregulation of this mechanism in patients with skin inflammation and fibrosis.
Collapse
Affiliation(s)
- Vidyanath Chaudhary
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Bikash Mishra
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Yong Du
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary K. Crow
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY, USA
| | - Franck J. Barrat
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
2
|
Wang R, Zhang Y, Yu Z, Wang C, Zhu F, Lai Y, Chen J, Tian W. Alginate-based functionalized, remote, light-responsive hydrogel transducer for synergistic mild photo thermoelectric stimulation for tumor therapy. Int J Biol Macromol 2024; 282:136955. [PMID: 39481699 DOI: 10.1016/j.ijbiomac.2024.136955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Photothermal therapy (PTT) is an effective cancer treatment that circumvents the resistance caused by chemotherapy drugs. Conventional PTT has a relatively high temperature, which is better able to kill tumor tissues, but it is also more damaging to normal tissues. Mild PTT avoids these high temperatures, but its corresponding killing ability becomes lower and enhances the heat resistance of cancer cells, causing tumor self-protection and reducing the therapeutic effect of PTT. Here, we reported a new, remotely stimulable, mild-temperature PTT combined with electrical stimulation-induced ionic interference therapy. We introduced MXenes into alginate based thermoresponsive PVA/P(NIPAm-co-SA) hydrogel (PPS) to formulate mechanically reliable hydrogel electrolyte-based supercapacitors as an ion homeostasis perturbator. The artificially controlled duration of near-infrared radiation modulates the PTT cycle temperature, which is controllably maintained at a little under 45 °C to reduce Hsp90 overexpression. Light-induced phase transitions in the hydrogel produce voltages that resemble low-intensity, alternating electric fields. Moreover, chronic piezoelectric stimulation can inhibit cancer cell proliferation by upregulating the expression of genes encoding Kir3.2 inwardly rectifying potassium channels, by interfering with Ca2+ homeostasis, and by affecting mitotic spindle organization during mitosis. In vivo and in vitro antitumor studies on the 4T1 model suggest that this functionalized, remote, light-responsive transducer is an effective and promising tool for the treatment of tumors.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Fuxing Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Yifan Lai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Jingwei Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
3
|
Cheng HS, Chong YK, Lim EKY, Lee XY, Pang QY, Novera W, Marvalim C, Lee JXT, Ang BT, Tang C, Tan NS. Dual p38MAPK and MEK inhibition disrupts adaptive chemoresistance in mesenchymal glioblastoma to temozolomide. Neuro Oncol 2024; 26:1247-1261. [PMID: 38366847 PMCID: PMC11226874 DOI: 10.1093/neuonc/noae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Precision treatment of glioblastoma is increasingly focused on molecular subtyping, with the mesenchymal subtype particularly resistant to temozolomide. Here, we aim to develop a targeted therapy for temozolomide resensitization in the mesenchymal subtype. METHODS We integrated kinomic profiles and kinase inhibitor screens from patient-derived proneural and mesenchymal glioma-propagating cells and public clinical datasets to identify key protein kinases implicated in temozolomide resistance. RNAseq, apoptosis assays, and comet assays were used to examine the role of p38MAPK signaling and adaptive chemoresistance in mesenchymal cells. The efficacy of dual p38MAPK and MEK/ERK inhibition using ralimetinib (selective orally active p38MAPK inhibitor; phase I/II for glioblastoma) and binimetinib (approved MEK1/2 inhibitor for melanoma; phase II for high-grade glioma) in primary and recurrent mesenchymal tumors was evaluated using an intracranial patient-derived tumor xenograft model, focusing on survival analysis. RESULTS Our transcriptomic-kinomic integrative analysis revealed p38MAPK as the prime target whose gene signature enables patient stratification based on their molecular subtypes and provides prognostic value. Repurposed p38MAPK inhibitors synergize favorably with temozolomide to promote intracellular retention of temozolomide and exacerbate DNA damage. Mesenchymal cells exhibit adaptive chemoresistance to p38MAPK inhibition through a pH-/calcium-mediated MEK/ERK pathway. Dual p38MAPK and MEK inhibition effectively maintain temozolomide sensitivity in primary and recurrent intracranial mesenchymal glioblastoma xenografts. CONCLUSIONS Temozolomide resistance in mesenchymal glioblastoma is associated with p38MAPK activation. Adaptive chemoresistance in p38MAPK-resistant cells is mediated by MEK/ERK signaling. Adjuvant therapy with dual p38MAPK and MEK inhibition prolongs temozolomide sensitivity, which can be developed into a precision therapy for the mesenchymal subtype.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yuk Kien Chong
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Eldeen Kai Yi Lim
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Xin Yi Lee
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Wisna Novera
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Beng Ti Ang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Rainu SK, Singh N. Dual-Sensitive Fluorescent Nanoprobes for Simultaneously Monitoring In Situ Changes in pH and Matrix Metalloproteinase Expression in Stiffness-Tunable Three-Dimensional In Vitro Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12175-12187. [PMID: 38420964 DOI: 10.1021/acsami.3c16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A tumor microenvironment often presents altered physicochemical characteristics of the extracellular matrix (ECM) including changes in matrix composition, stiffness, protein expression, pH, temperature, or the presence of certain stromal and immune cells. Of these, overexpression of matrix metalloproteinases (MMPs) and extracellular acidosis are the two major hallmarks of cancer that can be exploited for tumor detection. The change in matrix stiffness and the release of certain cytokines (TNF-α) in the tumor microenvironment play major roles in inducing MMP-9 expression in cancerous cells. This study highlights the role of mechanical cues in upregulating MMP-9 expression in cancerous cells using stiffness-tunable matrix compositions and dual-sensitive fluorescent nanoprobes. Ionically cross-linked 3D alginate/gelatin (AG) scaffolds with three stiffnesses were chosen to reflect the ECM stiffnesses corresponding to healthy and pathological tissues. Moreover, a dual-sensitive nanoprobe, an MMP-sensitive peptide conjugated to carbon nanoparticles with intrinsic pH fluorescence properties, was utilized for in situ monitoring of the two cancer hallmarks in the 3D scaffolds. This platform was further utilized for designing a 3D core-shell platform for spatially mapping tumor margins and for visualizing TNF-α-induced MMP-9 expression in cancerous cells.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
5
|
Liang T, Feng Z, Zhang X, Li T, Yang T, Yu L. Research progress of calcium carbonate nanomaterials in cancer therapy: challenge and opportunity. Front Bioeng Biotechnol 2023; 11:1266888. [PMID: 37811375 PMCID: PMC10551635 DOI: 10.3389/fbioe.2023.1266888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer has keeping the main threat to the health of human being. Its overall survival rate has shown rare substantial progress in spite of the improving diagnostic and treatment techniques for cancer in recent years. Indeed, such classic strategies for malignant tumor as surgery, radiation and chemotherapy have been developed and bring more hope to the patients, but still been accompanied by certain limitations, which include the challenge of managing large wound sizes, systemic toxic side effects, and harmful to the healthy tissues caused by imprecise alignment with tumors in radiotherapy. Furthermore, immunotherapy exhibits a limited therapeutic effect in advanced tumors which is reported only up to 25%-30%. The combination of nanomaterials and cancer treatment offers new hope for cancer patients, demonstrating strong potential in the field of medical research. Among the extensively utilized nanomaterials, calcium carbonate nanomaterials (CCNM) exhibit a broad spectrum of biomedical applications due to their abundant availability, cost-effectiveness, and exceptional safety profile. CCNM have the potential to elevate intracellular Ca2+ levels in tumor cells, trigger the mitochondrial damage and ultimately lead to tumor cell death. Moreover, compared with other types of nanomaterials, CCNM exhibit remarkable advantages as delivery systems owing to their high loading capacity, biocompatibility and biodegradability. The purpose of this review is to provide an overview of CCNM synthesis, focusing on summarizing its diverse roles in cancer treatment and the benefits and challenges associated with CCNM in cancer therapy. Hoping to present the significance of CCNM as for the clinical application, and summarize information for the design of CCNM and other types of nanomaterials in the future.
Collapse
Affiliation(s)
- Tiantian Liang
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Zongqi Feng
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tianfang Li
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tingyu Yang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
6
|
Activation of goblet cell Piezo1 alleviates mucus barrier damage in mice exposed to WAS by inhibiting H3K9me3 modification. Cell Biosci 2023; 13:7. [PMID: 36631841 PMCID: PMC9835388 DOI: 10.1186/s13578-023-00952-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Our recent studies found that intestinal mechanical signals can regulate mucus synthesis and secretion of intestinal goblet cells through piezo type mechanosensitive ion channel component 1 (Piezo1), but the detailed molecular mechanisms remain to be investigated. Previous studies using a water avoidance stress (WAS) model reported decreased intestinal mucus accompanied by abnormal intestinal motility. It has also been reported that the expression of mucin2 was negatively correlated with histone H3 lysine 9 trimethylation (H3K9me3), a key regulator of histone methylation, and that mechanical stimulation can affect methylation. In this study, we aimed to determine whether and how Piezo1 expressed on goblet cells regulates mucus barrier function through methylation modification. METHODS A murine WAS model was established and treated with Yoda1 (Piezo1 agonist), and specific Piezo1 flox-mucin2 Cre mice were also tested. The mucus layer thickness and mucus secretion rate of mouse colonic mucosa were detected by a homemade horizontal Ussing chamber, intestinal peristaltic contraction was detected by the ink propulsion test and organ bath, goblet cells and mucus layer morphology were assessed by HE and Alcian blue staining, mucus permeability was detected by FISH, and the expression levels of Piezo1, H3K9me3 and related molecules were measured by Western blots and immunofluorescence. LS174T cells were cultured on a shaker board in vitro to simulate mechanical stimulation. Piezo1 and H3K9me3 were inhibited, and changes in mucin2 and methylation-related pathways were detected by ELISAs and Western blots. ChIP-PCR assays were used to detect the binding of H3K9me3 and mucin2 promoters under mechanical stimulation. RESULTS Compared with those of the controls, the mucus layer thickness and mucus secretion rate of the mice exposed to WAS were significantly decreased, the mucus permeability increased, the number of goblet cells decreased, and the intestinal contraction and peristalsis were also downregulated and disordered. Intraperitoneal injection of Yoda1 improved mucus barrier function and intestinal contraction. In the colonic mucosa of mice exposed to WAS, Piezo1 was decreased, and histone H3 lysine 9 trimethylation (H3K9me3) and methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39h1) were increased, but activating Piezo1 alleviated these effects of WAS. Piezo1 flox-mucin2 Cre mice showed decreased mucus expression and increased methylation compared to wild-type mice. Cell experiments showed that mechanical stimulation induced the activation of Piezo1, decreased H3K9me3 and SUV39h1, and upregulated mucin2 expression. Inhibition of Piezo1 or H3K9me3 blocked the promoting effect of mechanical stimulation on LS174T mucin2 expression. The binding of H3K9me3 to the mucin2 promoter decreased significantly under mechanical stimulation, but this could be blocked by the Piezo1 inhibitor GsMTx4. CONCLUSION Piezo1 mediates mechanical stimulation to inhibit SUV39h1, thereby reducing H3K9me3 production and its binding to the mucin2 promoter, ultimately promoting mucin2 expression in goblet cells. This study further confirmed that piezo1 on goblet cells could regulate mucus barrier function through methylation.
Collapse
|
7
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
8
|
Zhang L, Qi J, Zhang X, Zhao X, An P, Luo Y, Luo J. The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells. Int J Mol Sci 2022; 23:ijms23126667. [PMID: 35743109 PMCID: PMC9223557 DOI: 10.3390/ijms23126667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xiya Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| |
Collapse
|
9
|
Chi Y, Sun P, Gao Y, Zhang J, Wang L. Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles. BIOSENSORS 2022; 12:100. [PMID: 35200360 PMCID: PMC8870137 DOI: 10.3390/bios12020100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
As an essential substance for cell life activities, ions play an important role in controlling cell osmotic pressure balance, intracellular acid-base balance, signal transmission, biocatalysis and so on. The imbalance of ion homeostasis in cells will seriously affect the activities of cells, cause irreversible damage to cells or induce cell death. Therefore, artificially interfering with the ion homeostasis in tumor cells has become a new means to inhibit the proliferation of tumor cells. This treatment is called ion interference therapy (IIT). Although some molecular carriers of ions have been developed for intracellular ion delivery, inorganic nanoparticles are widely used in ion interference therapy because of their higher ion delivery ability and higher biocompatibility compared with molecular carriers. This article reviewed the recent development of IIT based on inorganic nanoparticles and summarized the advantages and disadvantages of this treatment and the challenges of future development, hoping to provide a reference for future research.
Collapse
Affiliation(s)
- Yongjie Chi
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Sun
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Gao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jing Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lianyan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (P.S.); (Y.G.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
11
|
Li Y, Yu X, Deng L, Zhou S, Wang Y, Zheng X, Chu Q. Neochlorogenic acid anchors MCU-based calcium overload for cancer therapy. Food Funct 2021; 12:11387-11398. [PMID: 34672304 DOI: 10.1039/d1fo01393a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is a major threat to human health worldwide, yet the clinical therapies remain unsatisfactory. In this study, we found that a Tetrastigma hemsleyanum leaves flavone (TLF) intervention could achieve tumor inhibition. Besides, neochlorogenic acid (NA), which had the highest absorbance peak in the HPLC profile of TLF, showed superior anti-proliferation ability over TLF, and could effectively trigger apoptosis, restrain migration, and facilitate cytoskeleton collapse, suggesting its key role in TLF's anticancer property. Molecular docking analysis suggested that NA was capable of binding with mitochondrial Ca2+ uniporter (MCU), and further experiments confirmed that NA upregulated the MCU level to permit excess calcium ion influx, leading to mitochondrial calcium imbalance, dysfunction, structure alteration, and ROS elevation. Moreover, tumor-bearing mice were applied to further confirm the excellent tumor inhibition ability of NA under Ca2+-abundant conditions. Therefore, this study uncovered that NA could effectively trigger robust MCU-mediated calcium overload cancer therapy, which could be utilized in novel strategies for future cancer treatment.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lingchi Deng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Su Zhou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yaxuan Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
12
|
Zhou G, Zha XM. GPR68 Contributes to Persistent Acidosis-Induced Activation of AGC Kinases and Tyrosine Phosphorylation in Organotypic Hippocampal Slices. Front Neurosci 2021; 15:692217. [PMID: 34113235 PMCID: PMC8185064 DOI: 10.3389/fnins.2021.692217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022] Open
Abstract
Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68−/− slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
13
|
Zhou G, Wang T, Zha XM. RNA-Seq analysis of knocking out the neuroprotective proton-sensitive GPR68 on basal and acute ischemia-induced transcriptome changes and signaling in mouse brain. FASEB J 2021; 35:e21461. [PMID: 33724568 PMCID: PMC7970445 DOI: 10.1096/fj.202002511r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Tao Wang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
14
|
Roles of interstitial fluid pH and weak organic acids in development and amelioration of insulin resistance. Biochem Soc Trans 2021; 49:715-726. [PMID: 33769491 DOI: 10.1042/bst20200667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common lifestyle-related diseases (metabolic disorders) due to hyperphagia and/or hypokinesia. Hyperglycemia is the most well-known symptom occurring in T2DM patients. Insulin resistance is also one of the most important symptoms, however, it is still unclear how insulin resistance develops in T2DM. Detailed understanding of the pathogenesis primarily causing insulin resistance is essential for developing new therapies for T2DM. Insulin receptors are located at the plasma membrane of the insulin-targeted cells such as myocytes, adipocytes, etc., and insulin binds to the extracellular site of its receptor facing the interstitial fluid. Thus, changes in interstitial fluid microenvironments, specially pH, affect the insulin-binding affinity to its receptor. The most well-known clinical condition regarding pH is systemic acidosis (arterial blood pH < 7.35) frequently observed in severe T2DM associated with insulin resistance. Because the insulin-binding site of its receptor faces the interstitial fluid, we should recognize the interstitial fluid pH value, one of the most important factors influencing the insulin-binding affinity. It is notable that the interstitial fluid pH is unstable compared with the arterial blood pH even under conditions that the arterial blood pH stays within the normal range, 7.35-7.45. This review article introduces molecular mechanisms on unstable interstitial fluid pH value influencing the insulin action via changes in insulin-binding affinity and ameliorating actions of weak organic acids on insulin resistance via their characteristics as bases after absorption into the body even with sour taste at the tongue.
Collapse
|
15
|
Rowe JB, Kapolka NJ, Taghon GJ, Morgan WM, Isom DG. The evolution and mechanism of GPCR proton sensing. J Biol Chem 2021; 296:100167. [PMID: 33478938 PMCID: PMC7948426 DOI: 10.1074/jbc.ra120.016352] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Of the 800 G protein-coupled receptors (GPCRs) in humans, only three (GPR4, GPR65, and GPR68) regulate signaling in acidified microenvironments by sensing protons (H+). How these receptors have uniquely obtained this ability is unknown. Here, we show these receptors evolved the capability to sense H+ signals by acquiring buried acidic residues. Using our informatics platform pHinder, we identified a triad of buried acidic residues shared by all three receptors, a feature distinct from all other human GPCRs. Phylogenetic analysis shows the triad emerged in GPR65, the immediate ancestor of GPR4 and GPR68. To understand the evolutionary and mechanistic importance of these triad residues, we developed deep variant profiling, a yeast-based technology that utilizes high-throughput CRISPR to build and profile large libraries of GPCR variants. Using deep variant profiling and GPCR assays in HEK293 cells, we assessed the pH-sensing contributions of each triad residue in all three receptors. As predicted by our calculations, most triad mutations had profound effects consistent with direct regulation of receptor pH sensing. In addition, we found that an allosteric modulator of many class A GPCRs, Na+, synergistically regulated pH sensing by maintaining the pKa values of triad residues within the physiologically relevant pH range. As such, we show that all three receptors function as coincidence detectors of H+ and Na+. Taken together, these findings elucidate the molecular evolution and long-sought mechanism of GPR4, GPR65, and GPR68 pH sensing and provide pH-insensitive variants that should be valuable for assessing the therapeutic potential and (patho)physiological importance of GPCR pH sensing.
Collapse
Affiliation(s)
- Jacob B Rowe
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicholas J Kapolka
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Geoffrey J Taghon
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - William M Morgan
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel G Isom
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA; The Department of Tumor Biology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida, USA; The Institute for Data Science Computing, University of Miami, Coral Gables, Florida, USA.
| |
Collapse
|
16
|
Sadatomi D, Kono T, Mogami S, Fujitsuka N. Weak acids induce PGE 2 production in human oesophageal cells: novel mechanisms underlying GERD symptoms. Sci Rep 2020; 10:20775. [PMID: 33247192 PMCID: PMC7695745 DOI: 10.1038/s41598-020-77495-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
The role of weak acids with pH values in the range of 4–7 has been implicated in the symptoms of gastroesophageal reflux disease (GERD). Prostaglandin E2 (PGE2) is associated with heartburn symptom in GERD patients; however, the precise productive mechanisms remain unclear. In this study, we revealed that exposure to weak acids increases PGE2 production with a peak at pH 4–5, slightly in human normal oesophageal cells (Het-1A), and robustly in oesophageal squamous carcinoma cells (KYSE-270). Release of PGE2 from the oesophageal mucosa was augmented by weak acid treatment in rat. Chenodeoxycholic acid (CDCA), a bile acid, upregulated cyclooxygenase-2 (COX-2) expression in Het-1A and KYSE-270 and induced PGE2 production in KYSE-270 cells. Weak acid-induced PGE2 production was significantly inhibited by cytosolic phospholipase A2 (cPLA2), ERK, and transient receptor potential cation channel subfamily V member 4 (TRPV4), a pH-sensing ion channel, inhibitors. Hangeshashinto, a potent inhibitor of COX-2, strongly decreased weak acid- and CDCA-induced PGE2 levels in KYSE-270. These results indicated that weak acids induce PGE2 production via TRPV4/ERK/cPLA2 in oesophageal epithelial cells, suggesting a role in GERD symptoms like heartburn. Interventions targeting pH values up to 5 may be necessary for the treatment of GERD.
Collapse
Affiliation(s)
- Daichi Sadatomi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Toru Kono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Hokkaido, Japan.
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| |
Collapse
|
17
|
Proton-sensing G protein-coupled receptors: detectors of tumor acidosis and candidate drug targets. Future Med Chem 2020; 12:523-532. [PMID: 32116003 DOI: 10.4155/fmc-2019-0357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cells in tumor microenvironments (TMEs) use several mechanisms to sense their low pH (<7.0), including via proton-sensing G protein-coupled receptors (psGPCRs): GPR4, GPR65/TDAG8, GPR68/OGR1 and GPR132/G2A. Numerous cancers have increased expression of psGPCRs. The psGPCRs may contribute to features of the malignant phenotype via actions on specific cell-types in the TME and thereby promote tumor survival and growth. Here, we review data regarding psGPCR expression in tumors and cancer cells, impact of psGPCRs on survival in solid tumors and a bioinformatics approach to infer psGPCR expression in cell types in the TME. New tools are needed to help define contributions of psGPCRs in tumor biology and to identify potentially novel therapeutic agents for a variety of cancers.
Collapse
|
18
|
Calcium-Permeable Channels in Tumor Vascularization: Peculiar Sensors of Microenvironmental Chemical and Physical Cues. Rev Physiol Biochem Pharmacol 2020; 182:111-137. [DOI: 10.1007/112_2020_32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Affiliation(s)
- Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire - EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology and Penn State Cancer Institute (Mechanisms of Carcinogenesis), Penn State University College of Medicine, H166, 500 University Drive, Hershey, PA, 17033, USA.
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI, 96813, USA; University of Hawaii Cancer Center and John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Christophe Vandier
- Nutrition-Growth and Cancer-INSERM UMR 1069, Université de Tours, F-37000, Tours, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire - EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France
| |
Collapse
|