1
|
Jankowski CSR, Weichhart T. CD38 and the mitochondrial calcium uniporter contribute to age-related hematopoietic stem cell dysfunction. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00048. [PMID: 39386342 PMCID: PMC11462411 DOI: 10.1097/in9.0000000000000048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Hematopoietic stem cells (HSCs) are the multipotent progenitors of all immune cells. During aging, their regenerative capacity decreases for reasons that are not well understood. Recently, Song et al investigated the roles of two metabolic proteins in age-related HSC dysfunction: CD38 (a membrane-bound NADase) and the mitochondrial calcium uniporter that transports calcium into the mitochondrial matrix. They found that the interplay between these proteins is deranged in aged HSCs, contributing to their diminished renewal capacity. These findings implicate compromised nicotinamide adenine dinucleotide metabolism as underlying HSC dysfunction in aging.
Collapse
Affiliation(s)
- Connor S. R. Jankowski
- Department of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Department of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Díaz-Basilio F, Vergara-Mendoza M, Romero-Rodríguez J, Hernández-Rizo S, Escobedo-Calvario A, Fuentes-Romero LL, Pérez-Patrigeon S, Murakami-Ogasawara A, Gomez-Palacio M, Reyes-Terán G, Jiang W, Vázquez-Pérez JA, Marín-Hernández Á, Romero-Rodríguez DP, Gutiérrez-Ruiz MC, Viveros-Rogel M, Espinosa E. The ecto-enzyme CD38 modulates CD4T cell immunometabolic responses and participates in HIV pathogenesis. J Leukoc Biol 2024; 116:440-455. [PMID: 38466822 DOI: 10.1093/jleuko/qiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Despite abundant evidence correlating T cell CD38 expression and HIV infection pathogenesis, its role as a CD4T cell immunometabolic regulator remains unclear. We find that CD38's extracellular glycohydrolase activity restricts metabolic reprogramming after T cell receptor (TCR)-engaging stimulation in Jurkat T CD4 cells, together with functional responses, while reducing intracellular nicotinamide adenine dinucleotide and nicotinamide mononucleotide concentrations. Selective elimination of CD38's ectoenzyme function licenses them to decrease the oxygen consumption rate/extracellular acidification rate ratio upon TCR signaling and to increase cycling, proliferation, survival, and CD40L induction. Pharmacological inhibition of ecto-CD38 catalytic activity in TM cells from chronic HIV-infected patients rescued TCR-triggered responses, including differentiation and effector functions, while reverting abnormally increased basal glycolysis, cycling, and spontaneous proinflammatory cytokine production. Additionally, ecto-CD38 blockage normalized basal and TCR-induced mitochondrial morphofunctionality, while increasing respiratory capacity in cells from HIV+ patients and healthy individuals. Ectoenzyme CD38's immunometabolic restriction of TCR-involving stimulation is relevant to CD4T cell biology and to the deleterious effects of CD38 overexpression in HIV disease.
Collapse
Affiliation(s)
- Fernando Díaz-Basilio
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
- PECEM Graduate Program, Faculty of Medicine, National Autonomous University of Mexico, Circuito Escolar, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
| | - Moisés Vergara-Mendoza
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Jessica Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Sharik Hernández-Rizo
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Luis-León Fuentes-Romero
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María Gomez-Palacio
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Ashley Ave. BSB- 214C, Charleston, SC 29425, United States
| | - Joel-Armando Vázquez-Pérez
- Laboratory for Emergent Diseases and COPD, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Dámaris-Priscila Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María-Concepción Gutiérrez-Ruiz
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
3
|
Zheleznyak A, Tang R, Duncan K, Manion B, Liang K, Xu B, Vanover A, Ghai A, Prior J, Lees S, Achilefu S, Kelly K, Shokeen M. Development of New CD38 Targeted Peptides for Cancer Imaging. Mol Imaging Biol 2024; 26:738-752. [PMID: 38480650 PMCID: PMC11282151 DOI: 10.1007/s11307-024-01901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024]
Abstract
PURPOSE Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges. PROCEDURES Using phage display peptide libraries and pioneering algorithms, we identified novel CD38 specific peptides. Imaging bioconjugates were synthesized using solid phase peptide chemistry, and systematically analyzed in vitro and in vivo in relevant MM systems. RESULTS The CD38-targeted bioconjugates were radiolabeled with copper-64 (64Cu) with100% radiochemical purity and an average specific activity of 3.3 - 6.6 MBq/nmol. The analog NODAGA-PEG4-SL022-GGS (SL022: Thr-His-Tyr-Pro-Ile-Val-Ile) had a Kd of 7.55 ± 0.291 nM and was chosen as the lead candidate. 64Cu-NODAGA-PEG4-SL022-GGS demonstrated high binding affinity to CD38 expressing human myeloma MM.1S-CBR-GFP-WT cells, which was blocked by the non-radiolabeled version of the peptide analog and anti-CD38 clinical antibodies, daratumumab and isatuximab, by 58%, 73%, and 78%, respectively. The CD38 positive MM.1S-CBR-GFP-WT cells had > 68% enhanced cellular binding when compared to MM.1S-CBR-GFP-KO cells devoid of CD38. Furthermore, our new CD38-targeted radiopharmaceutical allowed visualization of tumors located in marrow rich bones, remaining there for up to 4 h. Clearance from non-target organs occurred within 60 min. Quantitative PET data from a murine disseminated tumor model showed significantly higher accumulation in the bones of tumor-bearing animals compared to tumor-naïve animals (SUVmax 2.06 ± 0.4 versus 1.24 ± 0.4, P = 0.02). Independently, tumor uptake of the target compound was significantly higher (P = 0.003) compared to the scrambled peptide, 64Cu-NODAGA-PEG4-SL041-GGS (SL041: Thr-Tyr-His-Ile-Pro-Ile-Val). The subcutaneous MM model demonstrated significantly higher accumulation in tumors compared to muscle at 1 and 4 h after tracer administration (SUVmax 0.8 ± 0.2 and 0.14 ± 0.04, P = 0.04 at 1 h; SUVmax 0.89 ± 0.01 and 0.09 ± 0.01, P = 0.0002 at 4 h). CONCLUSIONS The novel CD38-targeted, radiolabeled bioconjugates were specific and allowed visualization of MM, providing a starting point for the clinical translation of such tracers for the detection of MM.
Collapse
Affiliation(s)
- Alexander Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Tang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kathleen Duncan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brad Manion
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexian Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander Vanover
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anchal Ghai
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Julie Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephen Lees
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Samuel Achilefu
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kimberly Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024:S0300-9084(24)00165-2. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
5
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman Z, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and Genetic Determinants of Glycolysis: Phosphofructokinase Isoforms Boost Energy Status of Stored Red Blood Cells and Transfusion Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557250. [PMID: 38260479 PMCID: PMC10802247 DOI: 10.1101/2023.09.11.557250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in the blood bank. Here we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify an association between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs), hexokinase 1, ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine levels - and the genetic traits linked to them - were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes. eTOC and Highlights Highlights Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;Modeled PFKP effects relate to preventing loss of the total AXP pool in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.
Collapse
|
6
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Huang Y, Shao M, Teng X, Si X, Wu L, Jiang P, Liu L, Cai B, Wang X, Han Y, Feng Y, Liu K, Zhang Z, Cui J, Zhang M, Hu Y, Qian P, Huang H. Inhibition of CD38 enzymatic activity enhances CAR-T cell immune-therapeutic efficacy by repressing glycolytic metabolism. Cell Rep Med 2024; 5:101400. [PMID: 38307031 PMCID: PMC10897548 DOI: 10.1016/j.xcrm.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Chimeric antigen receptor (CAR)-T therapy has shown superior efficacy against hematopoietic malignancies. However, many patients failed to achieve sustainable tumor control partially due to CAR-T cell exhaustion and limited persistence. In this study, by performing single-cell multi-omics data analysis on patient-derived CAR-T cells, we identify CD38 as a potential hallmark of exhausted CAR-T cells, which is positively correlated with exhaustion-related transcription factors and further confirmed with in vitro exhaustion models. Moreover, inhibiting CD38 activity reverses tonic signaling- or tumor antigen-induced exhaustion independent of single-chain variable fragment design or costimulatory domain, resulting in improved CAR-T cell cytotoxicity and antitumor response. Mechanistically, CD38 inhibition synergizes the downregulation of CD38-cADPR -Ca2+ signaling and activation of the CD38-NAD+-SIRT1 axis to suppress glycolysis. Collectively, our findings shed light on the role of CD38 in CAR-T cell exhaustion and suggest potential clinical applications of CD38 inhibition in enhancing the efficacy and persistence of CAR-T cell therapy.
Collapse
Affiliation(s)
- Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Longyuan Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Penglei Jiang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Lianxuan Liu
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Bohan Cai
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xiujian Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Youqin Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Kai Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Zhaoru Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Gokuladhas S, Fadason T, Farrow S, Cooper A, O'Sullivan JM. Discovering genetic mechanisms underlying the co-occurrence of Parkinson's disease and non-motor traits. NPJ Parkinsons Dis 2024; 10:27. [PMID: 38263313 PMCID: PMC10805842 DOI: 10.1038/s41531-024-00638-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Understanding the biological mechanisms that underlie the non-motor symptoms of Parkinson's disease (PD) requires comprehensive frameworks that unravel the complex interplay of genetic risk factors. Here, we used a disease-agnostic brain cortex gene regulatory network integrated with Mendelian Randomization analyses that identified 19 genes whose changes in expression were causally linked to PD. We further used the network to identify genes that are regulated by PD-associated genome-wide association study (GWAS) SNPs. Extended protein interaction networks derived from PD-risk genes and PD-associated SNPs identified convergent impacts on biological pathways and phenotypes, connecting PD with established co-occurring traits, including non-motor symptoms. These findings hold promise for therapeutic development. In conclusion, while distinct sets of genes likely influence PD risk and outcomes, the existence of genes in common and intersecting pathways associated with other traits suggests that they may contribute to both increased PD risk and symptom heterogeneity observed in people with Parkinson's.
Collapse
Affiliation(s)
- Sreemol Gokuladhas
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
| | - Tayaza Fadason
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - Sophie Farrow
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - Antony Cooper
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
9
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
10
|
Bisht K, Fukao T, Chiron M, Richardson P, Atanackovic D, Chini E, Chng WJ, Van De Velde H, Malavasi F. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Cancer Med 2023; 12:20332-20352. [PMID: 37840445 PMCID: PMC10652336 DOI: 10.1002/cam4.6619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND CD38 has been established as an important therapeutic target for multiple myeloma (MM), for which two CD38 antibodies are currently approved-daratumumab and isatuximab. CD38 is an ectoenzyme that degrades NAD and its precursors and is involved in the production of adenosine and other metabolites. AIM Among the various mechanisms by which CD38 antibodies can induce MM cell death is immunomodulation, including multiple pathways for CD38-mediated T-cell activation. Patients who respond to anti-CD38 targeting treatment experience more marked changes in T-cell expansion, activity, and clonality than nonresponders. IMPLICATIONS Resistance mechanisms that undermine the immunomodulatory effects of CD38-targeting therapies can be tumor intrinsic, such as the downregulation of CD38 surface expression and expression of complement inhibitor proteins, and immune microenvironment-related, such as changes to the natural killer (NK) cell numbers and function in the bone marrow niche. There are numerous strategies to overcome this resistance, which include identifying and targeting other therapeutic targets involved in, for example, adenosine production, the activation of NK cells or monocytes through immunomodulatory drugs and their combination with elotuzumab, or with bispecific T-cell engagers.
Collapse
Affiliation(s)
| | - Taro Fukao
- Sanofi OncologyCambridgeMassachusettsUSA
| | | | - Paul Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Djordje Atanackovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterBaltimoreMarylandUSA
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Wee Joo Chng
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | | | - Fabio Malavasi
- Department of Medical SciencesUniversity of TurinTorinoItaly
- Fondazione Ricerca MolinetteTorinoItaly
| |
Collapse
|
11
|
Verhoeven D, Grinwis L, Marsman C, Jansen MH, Van Leeuwen EM, Kuijpers TW. B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses. Life Sci Alliance 2023; 6:e202302214. [PMID: 37419630 PMCID: PMC10331639 DOI: 10.26508/lsa.202302214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.
Collapse
Affiliation(s)
- Dorit Verhoeven
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lucas Grinwis
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Casper Marsman
- Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Department of Immunopathology, Amsterdam, The Netherlands
| | - Machiel H Jansen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ester Mm Van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI. The autophagy-NAD axis in longevity and disease. Trends Cell Biol 2023; 33:788-802. [PMID: 36878731 DOI: 10.1016/j.tcb.2023.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Autophagy is an intracellular degradation pathway that recycles subcellular components to maintain metabolic homeostasis. NAD is an essential metabolite that participates in energy metabolism and serves as a substrate for a series of NAD+-consuming enzymes (NADases), including PARPs and SIRTs. Declining levels of autophagic activity and NAD represent features of cellular ageing, and consequently enhancing either significantly extends health/lifespan in animals and normalises metabolic activity in cells. Mechanistically, it has been shown that NADases can directly regulate autophagy and mitochondrial quality control. Conversely, autophagy has been shown to preserve NAD levels by modulating cellular stress. In this review we highlight the mechanisms underlying this bidirectional relationship between NAD and autophagy, and the potential therapeutic targets it provides for combatting age-related disease and promoting longevity.
Collapse
Affiliation(s)
- Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
13
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Galione A, Muallem S. Preface. Endolysosomal calcium signalling. Cell Calcium 2023; 110:102696. [PMID: 36680894 DOI: 10.1016/j.ceca.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
16
|
Chen X, Wu W, Wang Y, Zhang B, Zhou H, Xiang J, Li X, Yu H, Bai X, Xie W, Lian M, Wang M, Wang J. Development of prognostic indicator based on NAD+ metabolism related genes in glioma. Front Surg 2023; 10:1071259. [PMID: 36778644 PMCID: PMC9909700 DOI: 10.3389/fsurg.2023.1071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Background Studies have shown that Nicotinamide adenine dinucleotide (NAD+) metabolism can promote the occurrence and development of glioma. However, the specific effects and mechanisms of NAD+ metabolism in glioma are unclear and there were no systematic researches about NAD+ metabolism related genes to predict the survival of patients with glioma. Methods The research was performed based on expression data of glioma cases in the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Firstly, TCGA-glioma cases were classified into different subtypes based on 49 NAD+ metabolism-related genes (NMRGs) by consensus clustering. NAD+ metabolism-related differentially expressed genes (NMR-DEGs) were gotten by intersecting the 49 NMRGs and differentially expressed genes (DEGs) between normal and glioma samples. Then a risk model was built by Cox analysis and the least shrinkage and selection operator (LASSO) regression analysis. The validity of the model was verified by survival curves and receiver operating characteristic (ROC) curves. In addition, independent prognostic analysis of the risk model was performed by Cox analysis. Then, we also identified different immune cells, HLA family genes and immune checkpoints between high and low risk groups. Finally, the functions of model genes at single-cell level were also explored. Results Consensus clustering classified glioma patients into two subtypes, and the overall survival (OS) of the two subtypes differed. A total of 11 NAD+ metabolism-related differentially expressed genes (NMR-DEGs) were screened by overlapping 5,995 differentially expressed genes (DEGs) and 49 NAD+ metabolism-related genes (NMRGs). Next, four model genes, PARP9, BST1, NMNAT2, and CD38, were obtained by Cox regression and least absolute shrinkage and selection operator (Lasso) regression analyses and to construct a risk model. The OS of high-risk group was lower. And the area under curves (AUCs) of Receiver operating characteristic (ROC) curves were >0.7 at 1, 3, and 5 years. Cox analysis showed that age, grade G3, grade G4, IDH status, ATRX status, BCR status, and risk Scores were reliable independent prognostic factors. In addition, three different immune cells, Mast cells activated, NK cells activated and B cells naive, 24 different HLA family genes, such as HLA-DPA1 and HLA-H, and 8 different immune checkpoints, such as ICOS, LAG3, and CD274, were found between the high and low risk groups. The model genes were significantly relevant with proliferation, cell differentiation, and apoptosis. Conclusion The four genes, PARP9, BST1, NMNAT2, and CD38, might be important molecular biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Beichen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haoyu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Minxue Lian
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Correspondence: Maode Wang Jia Wang
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Correspondence: Maode Wang Jia Wang
| |
Collapse
|
17
|
Abstract
The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lora L Martucci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
18
|
Targeting CD38 in Neoplasms and Non-Cancer Diseases. Cancers (Basel) 2022; 14:cancers14174169. [PMID: 36077708 PMCID: PMC9454480 DOI: 10.3390/cancers14174169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary CD38 remains an interesting target for anticancer therapy. Its relatively high abundance in neoplasms and crucial impact on NAD+/cADPR metabolism and the activity of T cells allows for changing the immune response in autoimmune diseases, neoplasms, and finally the induction of cell death. Antibody-dependent cell cytotoxicity is responsible for cell death induced by targeting the tumor with anti-CD38 antibodies, such as daratumumab. A wide range of laboratory experiments and clinical trials show an especially promising role of anti-CD38 therapy against multiple myeloma, NK cell lymphomas, and CD19- B-cell malignancies. More studies are required to include more diseases in the therapeutic protocols involving the modulation of CD38 activity. Abstract CD38 is a myeloid antigen present both on the cell membrane and in the intracellular compartment of the cell. Its occurrence is often enhanced in cancer cells, thus making it a potential target in anticancer therapy. Daratumumab and isatuximab already received FDA approval, and novel agents such as MOR202, TAK079 and TNB-738 undergo clinical trials. Also, novel therapeutics such as SAR442085 aim to outrank the older antibodies against CD38. Multiple myeloma and immunoglobulin light-chain amyloidosis may be effectively treated with anti-CD38 immunotherapy. Its role in other hematological malignancies is also important concerning both diagnostic process and potential treatment in the future. Aside from the hematological malignancies, CD38 remains a potential target in gastrointestinal, neurological and pulmonary system disorders. Due to the strong interaction of CD38 with TCR and CD16 on T cells, it may also serve as the biomarker in transplant rejection in renal transplant patients. Besides, CD38 finds its role outside oncology in systemic lupus erythematosus and collagen-induced arthritis. CD38 plays an important role in viral infections, including AIDS and COVID-19. Most of the undergoing clinical trials focus on the use of anti-CD38 antibodies in the therapy of multiple myeloma, CD19- B-cell malignancies, and NK cell lymphomas. This review focuses on targeting CD38 in cancer and non-cancerous diseases using antibodies, cell-based therapies and CD38 inhibitors. We also provide a summary of current clinical trials targeting CD38.
Collapse
|
19
|
Paracrine ADP Ribosyl Cyclase-Mediated Regulation of Biological Processes. Cells 2022; 11:cells11172637. [PMID: 36078044 PMCID: PMC9454491 DOI: 10.3390/cells11172637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.
Collapse
|
20
|
Quintana GR, Mac Cionnaith CE, Pfaus JG. Behavioral, Neural, and Molecular Mechanisms of Conditioned Mate Preference: The Role of Opioids and First Experiences of Sexual Reward. Int J Mol Sci 2022; 23:8928. [PMID: 36012194 PMCID: PMC9409009 DOI: 10.3390/ijms23168928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Although mechanisms of mate preference are thought to be relatively hard-wired, experience with appetitive and consummatory sexual reward has been shown to condition preferences for partner related cues and even objects that predict sexual reward. Here, we reviewed evidence from laboratory species and humans on sexually conditioned place, partner, and ejaculatory preferences in males and females, as well as the neurochemical, molecular, and epigenetic mechanisms putatively responsible. From a comprehensive review of the available data, we concluded that opioid transmission at μ opioid receptors forms the basis of sexual pleasure and reward, which then sensitizes dopamine, oxytocin, and vasopressin systems responsible for attention, arousal, and bonding, leading to cortical activation that creates awareness of attraction and desire. First experiences with sexual reward states follow a pattern of sexual imprinting, during which partner- and/or object-related cues become crystallized by conditioning into idiosyncratic "types" that are found sexually attractive and arousing. These mechanisms tie reward and reproduction together, blending proximate and ultimate causality in the maintenance of variability within a species.
Collapse
Affiliation(s)
- Gonzalo R. Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, Arica 1000007, Chile
| | - Conall E. Mac Cionnaith
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B1R6, Canada
| | - James G. Pfaus
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, 182 00 Prague, Czech Republic
- Division of Sexual Neuroscience, Center for Sexual Health and Intervention, Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| |
Collapse
|
21
|
Camponeschi A, Kläsener K, Sundell T, Lundqvist C, Manna PT, Ayoubzadeh N, Sundqvist M, Thorarinsdottir K, Gatto M, Visentini M, Önnheim K, Aranburu A, Forsman H, Ekwall O, Fogelstrand L, Gjertsson I, Reth M, Mårtensson IL. Human CD38 regulates B cell antigen receptor dynamic organization in normal and malignant B cells. J Exp Med 2022; 219:213348. [PMID: 35819358 PMCID: PMC9280193 DOI: 10.1084/jem.20220201] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 01/14/2023] Open
Abstract
CD38 is a multifunctional protein expressed on the surface of B cells in healthy individuals but also in B cell malignancies. Previous studies have suggested a connection between CD38 and components of the IgM class B cell antigen receptor (IgM-BCR) and its coreceptor complex. Here, we provide evidence that CD38 is closely associated with CD19 in resting B cells and with the IgM-BCR upon engagement. We show that targeting CD38 with an antibody, or removing this molecule with CRISPR/Cas9, inhibits the association of CD19 with the IgM-BCR, impairing BCR signaling in normal and malignant B cells. Together, our data suggest that CD38 is a new member of the BCR coreceptor complex, where it exerts a modulatory effect on B cell activation upon antigen recognition by regulating CD19. Our study also reveals a new mechanism where α-CD38 antibodies could be a valuable option in therapeutic approaches to B cell malignancies driven by aberrant BCR signaling.
Collapse
Affiliation(s)
- Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathrin Kläsener
- Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany,Signalling Research Centres Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Timothy Sundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paul T. Manna
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Negar Ayoubzadeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mariele Gatto
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Unit of Rheumatology, Department of Medicine, University of Padova, Padua, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Karin Önnheim
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Reth
- Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany,Signalling Research Centres Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|