1
|
Morgado-Gamero WB, Hernandez L, Medina J, De Moya I, Gallego-Cartagena E, Parody A, Agudelo-Castañeda D. Antibiotic-resistant bacteria aerosol in a Caribbean coastal city: Pre- and post- COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178158. [PMID: 39721525 DOI: 10.1016/j.scitotenv.2024.178158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
This study assessed the prevalence and spatial distribution of viable ultrafine and fine antibiotic-resistant bacteria aerosols (ARB) in the Metropolitan Area of Barranquilla, Colombia, pre- and post-lockdown (September 2019 to December 2020). Samples were systematically collected from urban, suburban, and rural sites using a six-stage viable cascade impactor. We employed logistic regression and Bayesian Neural Network Classifiers to analyze meteorological variables' influence on antibiotic resistance persistence. The lockdown led to a significant decrease (76 %) in overall bacterial aerosol concentrations, likely due to reduced human activity. The most significant reduction (82 %) was observed at Peace Square. Bacillus cereus was the most prevalent species, showing high concentrations at all sampling sites. Other species, like Leifsonia aquatica and Staphylococcus lentus, were linked to wastewater effluents and agricultural activities. Despite the overall decrease in bacterial aerosols, antibiotic-resistant bacteria remained high, particularly in highly impacted urban areas like the Barranquilla Riverwalk. Bacillus cereus exhibited resistance to multiple antibiotics, including commonly used ones like Ampicillin and Penicillin G. Resistance to newer antibiotics like Vancomycin was rare. Peace Square, a high-traffic urban area, showed elevated resistance rates in the deeper respiratory regions compared to other locations. Our findings indicate that while overall concentration levels decreased, the threat of antibiotic resistance in bacterial bioaerosols persists, emphasizing the need for continuous monitoring and targeted public health interventions in urban areas.
Collapse
Affiliation(s)
- Wendy B Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura Hernandez
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Faculty of Basic Sciences, Universidad del Atlantico, Puerto Colombia, Colombia
| | - Jhorma Medina
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | - Iuleder De Moya
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | | | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia.
| |
Collapse
|
2
|
Klvanova E, Videnska P, Barton V, Bohm J, Splichalova P, Koksova V, Urik M, Lanickova B, Prokes R, Budinska E, Klanova J, Borilova Linhartova P. Resistome in the indoor dust samples from workplaces and households: a pilot study. Front Cell Infect Microbiol 2024; 14:1484100. [PMID: 39691696 PMCID: PMC11649746 DOI: 10.3389/fcimb.2024.1484100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 12/19/2024] Open
Abstract
The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals.
Collapse
Affiliation(s)
- Eva Klvanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Barton
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bohm
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | | | | | - Milan Urik
- Department of Pediatric Otorhinolaryngology, University Hospital Brno, Brno, Czechia
- Department of Pediatric Otorhinolaryngology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Barbara Lanickova
- Department of Neonatology, University Hospital Brno, Brno, Czechia
- Department of Gynecology and Obstetrics, University Hospital Brno, Brno, Czechia
- Department of Gynecology and Obstetrics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Roman Prokes
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Atmospheric Matter Fluxes and Long-range Transport, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | | |
Collapse
|
3
|
Yang Q, Zhang M, Tu Z, Sun Y, Zhao B, Cheng Z, Chen L, Zhong Z, Ye Y, Xia Y. Department-specific patterns of bacterial communities and antibiotic resistance in hospital indoor environments. Appl Microbiol Biotechnol 2024; 108:487. [PMID: 39412549 PMCID: PMC11485044 DOI: 10.1007/s00253-024-13326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The hospital indoor environment has a crucial impact on the microbial exposures that humans encounter. Resistance to antibiotics is a mechanism used by bacteria to develop resilience in indoor environments, and the widespread use of antibiotics has led to changes in the ecological function of resistance genes and their acquisition by pathogens. By integrating the 16S rRNA Illumina sequencing and high-throughput-quantitative PCR approaches with water and air dust samples across seven departments in Peking University Shenzhen Hospital, China, this study yields intriguing findings regarding the department-specific variations, correlations and source tracing of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) within the hospital indoor environment. A notable observation was the pivotal role played by seasonal variations in shaping the bacterial composition across the entire hospital indoor environment. Another department-specific finding was the correlation between ARGs and MGEs abundance, which was evident in the overall hospital indoor environment, but not found in the blood test room, ophthalmology, and gynecology departments. Notably, as an important source of bacteria and ARGs/MGEs for the blood test room, the gynecology department also presented a close link between bacterial communities and the presence of ARGs/MGEs. Additionally, the results reiterate the importance of surveillance and monitoring of antibiotic resistance, specifically in Legionella spp. in man-made water systems, and highlight the significance of understanding genetic elements like Tp614 involved in gene transfer and recombination, and their impact on antimicrobial treatment efficacy. KEY POINTS: • The department-specific variations, correlations and source tracing of bacteria, ARGs, and MGEs were uncovered in the hospital's indoor environment. • Although each department exhibited consistent seasonal impacts on bacterial compositions, the co-occurrence between the presence of ARGs and MGEs was exclusively evident in the emergency, surgery, pneumology and otolaryngology departments. • The gynecology department emerged as a crucial source of bacteria, ARGs and MGEs within the hospital. Additionally, it was found to exhibit a significant correlation between bacterial communities and the presence of ARGs and MGEs.
Collapse
Affiliation(s)
- Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihao Tu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenfeng Zhong
- Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian, Shenzhen, 518036, Guangdong, China
| | - Yuhui Ye
- Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian, Shenzhen, 518036, Guangdong, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Habibi N, Uddin S, Behbehani M, Mustafa AS, Al-Fouzan W, Al-Sarawi HA, Safar H, Alatar F, Al Sawan RMZ. Aerosol-Mediated Spread of Antibiotic Resistance Genes: Biomonitoring Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:983. [PMID: 39200594 PMCID: PMC11353316 DOI: 10.3390/ijerph21080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | - Wadha Al-Fouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | | | - Hussain Safar
- OMICS-RU, Health Science Centre, Kuwait University, Jabriya 13060, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait
| | - Rima M. Z. Al Sawan
- Neonatology Department, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
| |
Collapse
|
5
|
Zuo Z, Pan Y, Huang X, Yuan T, Liu C, Cai X, Xu Z. Seasonal distribution of human-to-human pathogens in airborne PM 2.5 and their potential high-risk ARGs. Front Microbiol 2024; 15:1422637. [PMID: 39027113 PMCID: PMC11254772 DOI: 10.3389/fmicb.2024.1422637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Airborne microorganisms, an emerging global health threat, have attracted extensive studies. However, few attentions have been paid to the seasonal distribution of airborne pathogens, in particular their associations with antibiotic resistance genes (ARGs). To this end, two-week daily PM2.5 samples were consecutively collected from Nanchang in four seasons, and the human-to-human pathogens were screened based on high-throughput sequencing. The results showed that there were 20 pathogenic taxa in PM2.5 in Nanchang, and the highest relative abundance of pathogens was observed in winter (5.84%), followed by summer (3.51%), autumn (2.66%), and spring (1.80%). Although more than half of pathogenic taxa were shared by the four seasons, the analysis of similarities showed that pathogenic community was shaped by season (r = 0.16, p < 0.01). Co-occurrence network analysis disclosed significant interactions among pathogens in each season. Moreover, some dominant pathogens such as Plesiomonas shigelloides, Bacteroides fragilis, and Escherichia-Shigella were hub pathogens. In addition, PICRUSt2 predicted that there were 35 high-risk ARG subtypes in PM2.5, and the pathogens had strongly positive correlations with these ARGs. Even some pathogens like Plesiomonas shigelloides, Bacteroides fragilis, Aeromonas, Citrobacter, may be multi-drug resistant pathogens, including beta-lactam, aminoglycosides, chloramphenicol and multi-drug resistances, etc. Both air pollutants and meteorological conditions contributed to the seasonal variation of airborne pathogenic bacteria (r = 0.15, p < 0.01), especially CO, O3, PM2.5, temperature and relative humidity. This study furthers our understanding of airborne pathogens and highlights their associations with ARGs.
Collapse
Affiliation(s)
- Zhiwei Zuo
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Yuanyuan Pan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xueyun Huang
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Tao Yuan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Cheng Liu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xihong Cai
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Zhongji Xu
- Jiangxi Center for Patriotic Health and Health Promotion, Nanchang, China
| |
Collapse
|
6
|
Zhang J, Zhao L, Wang W, Zhang Q, Wang XT, Xing DF, Ren NQ, Lee DJ, Chen C. Large language model for horizontal transfer of resistance gene: From resistance gene prevalence detection to plasmid conjugation rate evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172466. [PMID: 38626826 DOI: 10.1016/j.scitotenv.2024.172466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.
Collapse
Affiliation(s)
- Jiabin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
7
|
Lei L, Chen N, Chen Z, Zhao Y, Lin H, Li X, Hu W, Zhang H, Shi J, Luo Y. Dissemination of antibiotic resistance genes from aboveground sources to groundwater in livestock farms. WATER RESEARCH 2024; 256:121584. [PMID: 38598950 DOI: 10.1016/j.watres.2024.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are prevalent in various environments on livestock farms, including livestock waste, soil, and groundwater. Contamination of groundwater by ARB and ARGs in livestock farms is a growing concern as it may have potentially huge risks to human health. However, the source of groundwater-borne ARB and ARGs in animal farms remains largely unknown. In this study, different types of samples including groundwater and its potential contamination sources from aboveground (pig feces, wastewater, and soil) from both working and abandoned swine feedlots in southern China were collected and subjected to metagenomic sequencing and ARB isolation. The source tracking based on metagenomic analysis revealed that 56-95 % of ARGs in groundwater was attributable to aboveground sources. Using metagenomic assembly, we found that 45 ARGs predominantly conferring resistance to aminoglycosides, sulfonamides, and tetracyclines could be transferred from the aboveground sources to groundwater, mostly through plasmid-mediated horizontal gene transfer. Furthermore, the full-length nucleotide sequences of sul1, tetA, and TEM-1 detected in ARB isolates exhibited the close evolutionary relationships between aboveground sources and groundwater. Some isolated strains of antibiotic-resistant Pseudomonas spp. from aboveground sources and groundwater had the high similarity (average nucleotide identity > 99 %). Notably, the groundwater-borne ARGs were identified as mainly carried by bacterial pathogens, potentially posing risks to human and animal health. Overall, this study underscores the dissemination of ARGs from aboveground sources to groundwater in animal farms and associated risks.
Collapse
Affiliation(s)
- Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Nan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yirong Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hanhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
8
|
Zhang Y, Xue G, Wang F, Zhang J, Xu L, Yu C. The impact of antibiotic exposure on antibiotic resistance gene dynamics in the gut microbiota of inflammatory bowel disease patients. Front Microbiol 2024; 15:1382332. [PMID: 38694799 PMCID: PMC11061493 DOI: 10.3389/fmicb.2024.1382332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Background While antibiotics are commonly used to treat inflammatory bowel disease (IBD), their widespread application can disturb the gut microbiota and foster the emergence and spread of antibiotic resistance. However, the dynamic changes to the human gut microbiota and direction of resistance gene transmission under antibiotic effects have not been clearly elucidated. Methods Based on the Human Microbiome Project, a total of 90 fecal samples were collected from 30 IBD patients before, during and after antibiotic treatment. Through the analysis workflow of metagenomics, we described the dynamic process of changes in bacterial communities and resistance genes pre-treatment, during and post-treatment. We explored potential consistent relationships between gut microbiota and resistance genes, and established gene transmission networks among species before and after antibiotic use. Results Exposure to antibiotics can induce alterations in the composition of the gut microbiota in IBD patients, particularly a reduction in probiotics, which gradually recovers to a new steady state after cessation of antibiotics. Network analyses revealed intra-phylum transfers of resistance genes, predominantly between taxonomically close organisms. Specific resistance genes showed increased prevalence and inter-species mobility after antibiotic cessation. Conclusion This study demonstrates that antibiotics shape the gut resistome through selective enrichment and promotion of horizontal gene transfer. The findings provide insights into ecological processes governing resistance gene dynamics and dissemination upon antibiotic perturbation of the microbiota. Optimizing antibiotic usage may help limit unintended consequences like increased resistance in gut bacteria during IBD management.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Gaogao Xue
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Fan Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Jing Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Shuai X, Zhou Z, Zhu L, Achi C, Lin Z, Liu Z, Yu X, Zhou J, Lin Y, Chen H. Ranking the risk of antibiotic resistance genes by metagenomic and multifactorial analysis in hospital wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133790. [PMID: 38368689 DOI: 10.1016/j.jhazmat.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Antimicrobial resistance poses a serious threat to human health. Hospital wastewater system (HWS) is an important source of antibiotic resistance genes (ARGs). The risk of ARGs in HWS is still an under-researched area. In this study, we collected publicly metagenomic datasets of 71 hospital wastewater samples from 18 hospitals in 13 cities. A total of 9838 contigs were identified to carry 383 unique ARGs across all samples, of which 2946 contigs were plasmid-like sequences. Concurrently, the primary hosts of ARGs within HWS were found to be Escherichia coli and Klebsiella pneumoniae. To further evaluate the risk of each ARG subtype, we proposed a risk assessment framework based on the importance of corresponding antibiotics as defined by the WHO and three other indicators - ARG abundance (A), mobility (M), and host pathogenicity (P). Ninety ARGs were identified as R1 ARGs having high-risk scores, which meant having a high abundance, high mobility, and carried by pathogens in HWS. Furthermore, 25% to 49% of genomes from critically important pathogens accessed from NCBI carried R1 ARGs. A significantly higher number of R1 ARGs was carried by pathogens in the effluents of municipal wastewater treatment plants from NCBI, highlighting the role of R1 ARGS in accelerating health and environmental risks.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
11
|
Liu S, Zhang C, Zhou Y, Zhang F, Duan X, Liu Y, Zhao X, Liu J, Shuai X, Wang J, Cao Z. MRI-visible mesoporous polydopamine nanoparticles with enhanced antioxidant capacity for osteoarthritis therapy. Biomaterials 2023; 295:122030. [PMID: 36758340 DOI: 10.1016/j.biomaterials.2023.122030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Since the progression of osteoarthritis (OA) is closely associated with synovitis and cartilage destruction, the inhibition of inflammatory responses in synovial macrophages and reactive oxygen species (ROS) induced apoptosis in chondrocytes is crucial for OA amelioration. However, most of the current anti-inflammatory and antioxidant drugs are small molecules apt to be eliminated in vivo. Herein, mesoporous polydopamine nanoparticles (DAMM NPs) doped with arginine and manganese (Mn) ions were prepared to load dexamethasone (DEX) for OA intervention. A series of in vitro studies showed that the sustained release of DEX from DAMM NPs suppressed synovial inflammation and simultaneously inhibited toll-like receptor 3 (TLR-3) production in chondrocytes, contributing to prevention of chondrocyte apoptosis through the inflammatory factor-dependent TLR-3/NF-κB signaling pathway via modulation of macrophage-chondrocyte crosstalk. In addition, DAMM NPs exerted a predominant role in removal of ROS generated in chondrocytes. Therefore, the DEX-loaded DAMM NPs significantly attenuated OA development in mice model. Importantly, the T1-T2 magnetic contrast capabilities of DAMM NPs allowed an MRI-trackable delivery, manifesting a distinct feature widely regarded to boost the potential of nanomedicines for clinical applications. Together, our developed antioxidant-enhanced DAMM NPs with MRI-visible signals may serve as a novel multifunctional nanocarriers for prevention of OA progression.
Collapse
Affiliation(s)
- Sitong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Chen Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuanyuan Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Fang Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaohui Duan
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Yang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xibang Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Zhong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
12
|
Wang Y, Li Y, Li H, Zhou J, Wang T. Seasonal dissemination of antibiotic resistome from livestock farms to surrounding soil and air: Bacterial hosts and risks for human exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116638. [PMID: 36335698 DOI: 10.1016/j.jenvman.2022.116638] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Feces in livestock farms is a reservoir of antibiotic resistance genes (ARGs), which can disseminate into surrounding soil and air, bringing risks to human health. In this study, seasonal dissemination of ARGs in a livestock farm and implications for human exposure was explored. The experimental results showed that ARGs abundance basically ranked as feces > soil > air, and significant seasonal dependence was observed. The total ARGs in pig feces was relatively higher in autumn (109.7 copies g-1) and winter (1010.0 copies g-1), and lower in summer (105.0 copies g-1). Similarly, the lowest total ARGs in soil and air were also observed in summer. There were correlations among ARGs, integron intI1, and bacterial community. Total organic carbon was an important factor affecting ARGs distribution in the feces, and pH and moisture content significantly affected soil ARGs. The daily intakes of integron intI1 and ARGs from air were 10°.5 copies h-1 and 102.3 copies h-1 for human exposure, respectively. Pseudomonas was a potential pathogenic host of blaTEM-1 in feces, Pseudomonas and Acinetobacter were potential pathogenic hosts of multiple ARGs in soil, while ARGs in air did not migrate into pathogens.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hu Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
13
|
Budhiraja V, Mušič B, Krzan A. Magnetic Extraction of Weathered Tire Wear Particles and Polyethylene Microplastics. Polymers (Basel) 2022; 14:5189. [PMID: 36501583 PMCID: PMC9740573 DOI: 10.3390/polym14235189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic extraction offers a rapid and low-cost solution to microplastic (MP) separation, in which we magnetize the hydrophobic surface of MPs to separate them from complex environmental matrices using magnets. We synthesized a hydrophobic Fe-silane based nanocomposite (Fe@SiO2/MDOS) to separate MPs from freshwater. Pristine and weathered, polyethylene (PE) and tire wear particles (TWP) of different sizes were used in the study. The weathering of MPs was performed in an accelerated weathering chamber according to ISO 4892-2:2013 standards that mimic natural weathering conditions. The chemical properties and morphology of the Fe@SiO2/MDOS, PE and TWP were confirmed by Fourier transform infrared spectroscopy and Scanning electron microscopy, respectively. The thermal properties of PE and TWP were evaluated by Thermogravimetric analysis. Using 1.00 mg of Fe@SiO2/MDOS nanocomposite, 2.00 mg of pristine and weathered PE were extracted from freshwater; whereas, using the same amount of the nanocomposite, 7.92 mg of pristine TWP and 6.87 mg of weathered TWP were extracted. The retrieval of weathered TWP was 13% less than that of pristine TWP, which can be attributed to the increasing hydrophilicity of weathered TWP. The results reveal that the effectiveness of the magnetic separation technique varies among different polymer types and their sizes; the weathering of MPs also influences the magnetic separation efficiency.
Collapse
Affiliation(s)
- Vaibhav Budhiraja
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia
| | - Andrej Krzan
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Feng T, Han Q, Su W, Yu Q, Yang J, Li H. Microbiota and mobile genetic elements influence antibiotic resistance genes in dust from dense urban public places. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119991. [PMID: 35987288 DOI: 10.1016/j.envpol.2022.119991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Many contaminants were carried by dust, a common environment media that is easy to contact with human beings, and antibiotic resistance genes (ARGs) as an emergency pollutant also harbor in dust and pose serious threats to human health especially those carried by opportunistic pathogens because inactivation of antibiotics caused by ARGs may enhance pathogenicity. Considering there is a gap of investigation of dust ARGs, 16 S rRNA gene sequences and high-throughput quantitative PCR were employed to obtain information of microbial communities and accumulated ARGs in dust from different urban places, including the malls, hospitals, schools and parks, to investigate the distribution and influencing factors of ARGs and discover the potential hosts of ARGs in dust. Here, 9 types of ARGs such as sulfonamide, tetracycline, and beta-lactamase and 71 subtypes of ARGs like sul1, tetM-01, and drfA1 were detected in dust. ARGs had varying distribution in different public places and seasons in dust. The abundances of total ARGs, MLSB and tetracycline genes were higher in spring than summer. The diversity of ARGs was highest in malls, follow by hospitals, schools, and parks. Additionally, multi-drug resistance genes in dust were more abundant in hospitals than in schools and parks. The microbes were distinguished as the most important driving factors for ARGs in dust, followed by the mobile genetic elements (MGEs) and different places, while dust physicochemical parameters only exert a negligible impact. Notably, several opportunistic pathogens like the Streptococcus, Vibrio, and Pseudomonas were inferred as potential hosts of high-risk ARGs such as mecA, tetM-02, and tetO-01 in dust because of strongly positive co-occurrence. These results imply that dust is likely an important reservoir of ARGs. We should realize that ARGs may be harbored in some opportunistic pathogens occur in dust and endanger human health because of dust contacting to human easily.
Collapse
Affiliation(s)
- Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Simultaneous monitoring of SARS-CoV-2 and bacterial profiles from the air of hospital environments with COVID-19-affected patients. AEROBIOLOGIA 2022; 38:391-412. [PMID: 36097443 PMCID: PMC9453715 DOI: 10.1007/s10453-022-09754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been evaluated in this study. Air samplings were performed in different rooms of the ICU ward with and without COVID-19 patients. No sample was found positive to SARS-CoV-2, according to Allplex 2019-nCoV Assay. The airborne bacterial community profiles determined by the 16S rRNA gene metabarcoding approach up to the species level were characterized by richness and biodiversity indices, Spearman correlation coefficients, and Principal Coordinate Analysis. Pathogenic and non-pathogenic bacterial species, also detected in outdoor air samples, were found in all collected indoor samples. Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and others coagulase-negative staphylococci, detected at high relative abundances in all the patients' rooms, were the most abundant pathogenic species. The highest mean relative abundance of S. pettenkoferi and C. tuberculostearicum suggested that they were likely the main pathogens of COVID-19 patients at the ICU ward of this study. The identification of nosocomial pathogens representing potential patients' risks in ICU COVID-19 rooms and the still controversial airborne transmission of the SARS-CoV-2 are the main contributions of this study. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09754-7.
Collapse
Affiliation(s)
- Maria Rita Perrone
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Salvatore Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Giuseppe De Maria
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Paolo Tundo
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Anna Rita Bruno
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Luigi Tagliaferro
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mattia Fragola
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
16
|
Wang Q, Mao C, Lei L, Yan B, Yuan J, Guo Y, Li T, Xiong X, Cao X, Huang J, Han J, Yu K, Zhou B. Antibiotic resistance genes and their links with bacteria and environmental factors in three predominant freshwater aquaculture modes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113832. [PMID: 36068758 DOI: 10.1016/j.ecoenv.2022.113832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Rapid development of aquaculture industry and increasing demand of various inputs (especially antibiotics), are suspected to promote the occurrence and spread of ARGs in aquaculture related environments. However, the occurrences of ARGs under different freshwater aquaculture practices are rarely known. Here, we investigated the seasonal profiles of the main ARGs, intI1 and bacteria in waters from three kinds of predominant freshwater aquaculture practices around the Honghu Lake (China), as well as their co-occurrences and interrelationships with antibiotics, heavy metals and general water quality. The results indicate that quinolone resistance genes (qnrB), tetracycline resistance genes (tetB and tetX) and sulfonamide resistance genes (sul1 and sul2) were the top five predominant ARGs with seasonal variations of abundance. Fish ponds were of the highest absolute abundances of tested ARGs than the other two modes. Crayfish ponds and their adjacent ditches shared similar ARGs profile. Different subtypes of ARGs belonging to the same class of resistance were varied in abundances. Some bacteria were predicted to carry different ARGs, which indicating multi-antibiotic resistances. Moreover, the combined environmental factors (antibiotics, heavy metals and water quality) partially shaped the profiles of ARGs and bacteria composition. Overall, this study provides new comprehensive understanding on the characterization of ARGs contamination in different freshwater aquaculture practices from the perspectives of environmental chemistry, microbiology and ecology. The results would benefit the optimization of aquaculture practices toward environmental integrity and sustainability.
Collapse
Affiliation(s)
- Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Chengzhi Mao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Tianli Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Jie Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China.
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| |
Collapse
|
17
|
Habibi N, Uddin S, Behbehani M, Al Salameen F, Razzack NA, Zakir F, Shajan A, Alam F. Bacterial and fungal communities in indoor aerosols from two Kuwaiti hospitals. Front Microbiol 2022; 13:955913. [PMID: 35966680 PMCID: PMC9366136 DOI: 10.3389/fmicb.2022.955913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The airborne transmission of COVID-19 has drawn immense attention to bioaerosols. The topic is highly relevant in the indoor hospital environment where vulnerable patients are treated and healthcare workers are exposed to various pathogenic and non-pathogenic microbes. Knowledge of the microbial communities in such settings will enable precautionary measures to prevent any hospital-mediated outbreak and better assess occupational exposure of the healthcare workers. This study presents a baseline of the bacterial and fungal population of two major hospitals in Kuwait dealing with COVID patients, and in a non-hospital setting through targeted amplicon sequencing. The predominant bacteria of bioaerosols were Variovorax (9.44%), Parvibaculum (8.27%), Pseudonocardia (8.04%), Taonella (5.74%), Arthrospira (4.58%), Comamonas (3.84%), Methylibium (3.13%), Sphingobium (4.46%), Zoogloea (2.20%), and Sphingopyxis (2.56%). ESKAPEE pathogens, such as Pseudomonas, Acinetobacter, Staphylococcus, Enterococcus, and Escherichia, were also found in lower abundances. The fungi were represented by Wilcoxinia rehmii (64.38%), Aspergillus ruber (9.11%), Penicillium desertorum (3.89%), Leptobacillium leptobactrum (3.20%), Humicola grisea (2.99%), Ganoderma sichuanense (1.42%), Malassezia restricta (0.74%), Heterophoma sylvatica (0.49%), Fusarium proliferatum (0.46%), and Saccharomyces cerevisiae (0.23%). Some common and unique operational taxonomic units (OTUs) of bacteria and fungi were also recorded at each site; this inter-site variability shows that exhaled air can be a source of this variation. The alpha-diversity indices suggested variance in species richness and abundance in hospitals than in non-hospital sites. The community structure of bacteria varied spatially (ANOSIM r 2 = 0.181-0.243; p < 0.05) between the hospital and non-hospital sites, whereas fungi were more or less homogenous. Key taxa specific to the hospitals were Defluvicoccales, fungi, Ganodermataceae, Heterophoma, and H. sylvatica compared to Actinobacteria, Leptobacillium, L. leptobacillium, and Cordycipitaceae at the non-hospital site (LefSe, FDR q ≤ 0.05). The hospital/non-hospital MD index > 1 indicated shifts in the microbial communities of indoor air in hospitals. These findings highlight the need for regular surveillance of indoor hospital environments to prevent future outbreaks.
Collapse
Affiliation(s)
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | | | | | | | | | | | | |
Collapse
|
18
|
Kormos D, Lin K, Pruden A, Marr LC. Critical review of antibiotic resistance genes in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:870-883. [PMID: 35638569 DOI: 10.1039/d2em00091a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We conducted a critical review to establish what is known about the sources, characteristics, and dissemination of ARGs in the atmosphere. We identified 52 papers that reported direct measurements of bacterial ARGs in air samples and met other inclusion criteria. The settings of the studies fell into the following categories: urban, rural, hospital, industrial, wastewater treatment plants (WWTPs), composting and landfill sites, and indoor environments. Certain genes were commonly studied and generally abundant: sul1, intI1, β-lactam ARGs, and tetracycline ARGs. Abundances of total ARGs varied by season and setting, with air in urban areas having higher ARG abundance than rural areas during the summer and vice versa during the winter. There was greater consistency in the types and abundances of ARGs throughout the seasons in urban areas. Human activity within indoor environments was also linked to increased ARG content (abundance, diversity, and concentration) in the air. Several studies found that human exposure to ARGs through inhalation was comparable to exposure through drinking water or ingesting soil. Detection of ARGs in air is a developing field, and differences in sampling and analysis methods reflect the many possible approaches to studying ARGs in air and make direct comparisons between studies difficult. Methodologies need to be standardized to facilitate identification of the dominant ARGs in the air, determine their major sources, and quantify the role of atmospheric transport in dissemination of ARGs in the environment. With such knowledge we can develop better policies and guidelines to limit the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- David Kormos
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Kaisen Lin
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Linsey C Marr
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
19
|
Vassallo A, Kett S, Purchase D, Marvasi M. The Bacterial Urban Resistome: Recent Advances. Antibiotics (Basel) 2022; 11:512. [PMID: 35453263 PMCID: PMC9030810 DOI: 10.3390/antibiotics11040512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens' behaviors all support persistence and transfer of antimicrobial resistances (AMR). Various unique aspects of urban settings that promote spread and resilience of ARGs/ARB are discussed: (i) the role of hospitals and recreational parks as reservoirs; (ii) private and public transportation as carriers of ARGs/ARB; (iii) the role of built environments as a hub for horizontal gene transfer even though they support lower microbial biodiversity than outdoor environments; (iv) the need to employ ecological and evolutionary concepts, such as modeling the fate of a specific ARG/ARB, to gain enhanced health risk assessments. Our understanding and our ability to control the rise of AMR in an urban setting is linked to our knowledge of the network connecting urban reservoirs and the environment.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Steve Kett
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | | |
Collapse
|
20
|
Wu Y, Xing D, Zhang L, Suo H, Zhao X. Application of a novel heterogeneous sulfite activation with copper(i) sulfide (Cu 2S) for efficient iohexol abatement. RSC Adv 2022; 12:8009-8018. [PMID: 35424769 PMCID: PMC8982445 DOI: 10.1039/d2ra00773h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Transition metal ion-activated sulfite autoxidation processes for the production of sulfate radicals (SO4˙-) have been widely investigated to achieve efficient abatement of recalcitrant organic pollutants. However, these homogeneous processes suffered from narrow effective pH range and metal release, thus restricting their practical application. In order to address this problem, we report a simple and efficient approach to iohexol abatement by a combined Cu2S and sulfite process (simplified as Cu2S/sulfite process) based on the superior activation performance of copper and the excellent electron donating capacity of the low-valent sulfur species. Compared with typical copper oxides, Cu2S can significantly accelerate the sulfite autoxidation to generate radicals, leading to 100% iohexol abatement in the Cu2S/sulfite process. The influence of solution pH and dissolved oxygen on iohexol abatement is also investigated. Qualitative and quantitative analysis of reactive radicals is performed by electron paramagnetic resonance (EPR) and radical quenching experiments. Generation of SO4˙- from sulfite activation with Cu2S mainly contributes to the iohexol abatement. X-ray photoelectron spectroscopy (XPS) suggests that copper is the main activation site and the reductive sulfur species can achieve the continuous regeneration of copper. Application potential of the Cu2S/sulfite process is also assessed. This study provides a new method for the treatment of water and wastewater containing organic micropollutants.
Collapse
Affiliation(s)
- Ying Wu
- College of Chemical Engineering, Department of Environmental Science & Engineering, Huaqiao University Xiamen 361021 Fujian China +86-592-6162300 +86-592-6166216
| | - Danying Xing
- College of Chemical Engineering, Department of Environmental Science & Engineering, Huaqiao University Xiamen 361021 Fujian China +86-592-6162300 +86-592-6166216
| | - Linna Zhang
- College of Chemical Engineering, Department of Environmental Science & Engineering, Huaqiao University Xiamen 361021 Fujian China +86-592-6162300 +86-592-6166216
| | - Hualiang Suo
- College of Chemical Engineering, Department of Environmental Science & Engineering, Huaqiao University Xiamen 361021 Fujian China +86-592-6162300 +86-592-6166216
| | - Xiaodan Zhao
- College of Chemical Engineering, Department of Environmental Science & Engineering, Huaqiao University Xiamen 361021 Fujian China +86-592-6162300 +86-592-6166216
| |
Collapse
|
21
|
Chen J, Wu J, Sherrell PC, Chen J, Wang H, Zhang W, Yang J. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103764. [PMID: 34989178 PMCID: PMC8867153 DOI: 10.1002/advs.202103764] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Microplastics are an emergent yet critical issue for the environment because of high degradation resistance and bioaccumulation. Unfortunately, the current technologies to remove, recycle, or degrade microplastics are insufficient for complete elimination. In addition, the fragmentation and degradation of mismanaged plastic wastes in environment have recently been identified as a significant source of microplastics. Thus, the developments of effective microplastics removal methods, as well as, plastics recycling strategies are crucial to build a microplastics-free environment. Herein, this review comprehensively summarizes the current technologies for eliminating microplastics from the environment and highlights two key aspects to achieve this goal: 1) Catalytic degradation of microplastics into environmentally friendly organics (carbon dioxide and water); 2) catalytic recycling and upcycling plastic wastes into monomers, fuels, and valorized chemicals. The mechanisms, catalysts, feasibility, and challenges of these methods are also discussed. Novel catalytic methods such as, photocatalysis, advanced oxidation process, and biotechnology are promising and eco-friendly candidates to transform microplastics and plastic wastes into environmentally benign and valuable products. In the future, more effort is encouraged to develop eco-friendly methods for the catalytic conversion of plastics into valuable products with high efficiency, high product selectivity, and low cost under mild conditions.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jing Wu
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Peter C. Sherrell
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research Institute (IPRI)Australian Institute of Innovative Materials (AIIM)University of WollongongWollongongNew South Wales2522Australia
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Wei‐xian Zhang
- College of Environmental Science and EngineeringState Key Laboratory of Pollution Control and Resources ReuseTongji UniversityShanghai200092P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
22
|
Wu D, Jin L, Xie J, Liu H, Zhao J, Ye D, Li XD. Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks. MICROBIOME 2022; 10:19. [PMID: 35086564 PMCID: PMC8796446 DOI: 10.1186/s40168-021-01197-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM2.5-associated AMR from clinical settings. RESULTS Compared to urban ambient air PM2.5, the hospital samples harbored nearly twice the abundance of antibiotic resistantance genes (ARGs, ~ 0.2 log10(ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community (Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commensals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant blaOXA and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring patterns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM2.5 were closely related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant potentially virulent PARB (2.89 genome copies/m3-air), the hospital samples had significantly higher resistome risk index scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of PM2.5 was ten times greater than from the ingestion of drinking water. CONCLUSIONS The significance of AMR in the studied hospital-emitting PM2.5 was highlighted by the greater abundance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a more holistic understanding to evaluate the importance of airborne AMR from the "One-Health" perspective. Video Abstract.
Collapse
Affiliation(s)
- Dong Wu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241 China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiawen Xie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hang Liu
- University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jue Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dan Ye
- The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 440104 China
| | - Xiang-dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
23
|
Moshynets OV, Baranovskyi TP, Iungin OS, Kysil NP, Metelytsia LO, Pokholenko I, Potochilova VV, Potters G, Rudnieva KL, Rymar SY, Semenyuta IV, Spiers AJ, Tarasyuk OP, Rogalsky SP. eDNA Inactivation and Biofilm Inhibition by the PolymericBiocide Polyhexamethylene Guanidine Hydrochloride (PHMG-Cl). Int J Mol Sci 2022; 23:ijms23020731. [PMID: 35054915 PMCID: PMC8775615 DOI: 10.3390/ijms23020731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA–PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
- Correspondence: (O.V.M.); (S.P.R.)
| | - Taras P. Baranovskyi
- Department of Dermatovenerology, Allergology, Clinical and Laboratory Immunology, Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., 03680 Kiev, Ukraine;
- Kyiv Regional Clinical Hospital, 1 Baggovutivska Street, 04107 Kiev, Ukraine; (V.V.P.); (K.L.R.)
| | - Olga S. Iungin
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka Street, 2, 01011 Kiev, Ukraine
| | - Nadiia P. Kysil
- National Children’s Specialized Hospital “Okhmatdyt”, 28/1 Chornovola Str., 01135 Kiev, Ukraine;
| | - Larysa O. Metelytsia
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
| | - Ianina Pokholenko
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
| | - Viktoria V. Potochilova
- Kyiv Regional Clinical Hospital, 1 Baggovutivska Street, 04107 Kiev, Ukraine; (V.V.P.); (K.L.R.)
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium;
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Kateryna L. Rudnieva
- Kyiv Regional Clinical Hospital, 1 Baggovutivska Street, 04107 Kiev, Ukraine; (V.V.P.); (K.L.R.)
| | - Svitlana Y. Rymar
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kiev, Ukraine; (O.S.I.); (I.P.); (S.Y.R.)
| | - Ivan V. Semenyuta
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Bell Street, Dundee DD1 1HG, UK;
| | - Oksana P. Tarasyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
| | - Sergiy P. Rogalsky
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske Schose, 01135 Kiev, Ukraine; (L.O.M.); (I.V.S.); (O.P.T.)
- Correspondence: (O.V.M.); (S.P.R.)
| |
Collapse
|
24
|
Lee G, Yoo K. A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:799-827. [PMID: 35694630 PMCID: PMC9169023 DOI: 10.1007/s11157-022-09622-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/30/2022] [Indexed: 04/18/2023]
Abstract
Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions.
Collapse
Affiliation(s)
- Gihan Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112 South Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112 South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112 South Korea
| |
Collapse
|
25
|
de Abreu VAC, Perdigão J, Almeida S. Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview. Front Genet 2021; 11:575592. [PMID: 33537056 PMCID: PMC7848172 DOI: 10.3389/fgene.2020.575592] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance is a major global public health problem, which develops when pathogens acquire antimicrobial resistance genes (ARGs), primarily through genetic recombination between commensal and pathogenic microbes. The resistome is a collection of all ARGs. In microorganisms, the primary method of ARG acquisition is horizontal gene transfer (HGT). Thus, understanding and identifying HGTs, can provide insight into the mechanisms of antimicrobial resistance transmission and dissemination. The use of high-throughput sequencing technologies has made the analysis of ARG sequences feasible and accessible. In particular, the metagenomic approach has facilitated the identification of community-based antimicrobial resistance. This approach is useful, as it allows access to the genomic data in an environmental sample without the need to isolate and culture microorganisms prior to analysis. Here, we aimed to reflect on the challenges of analyzing metagenomic data in the three main approaches for studying antimicrobial resistance: (i) analysis of microbial diversity, (ii) functional gene analysis, and (iii) searching the most complete and pertinent resistome databases.
Collapse
Affiliation(s)
- Vinicius A C de Abreu
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, Belém, Brazil
| | - José Perdigão
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, Belém, Brazil
| | - Sintia Almeida
- Central de Genômica e Bioinformática (CeGenBio), Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|