1
|
Valverde-Mendez D, Sunol AM, Bratton BP, Delarue M, Hofmann JL, Sheehan JP, Gitai Z, Holt LJ, Shaevitz JW, Zia RN. Macromolecular interactions and geometrical confinement determine the 3D diffusion of ribosome-sized particles in live Escherichia coli cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587083. [PMID: 38585850 PMCID: PMC10996671 DOI: 10.1101/2024.03.27.587083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The crowded bacterial cytoplasm is comprised of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial Genetically Encoded Multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-2160 to +1800 e) in live Escherichia coli cells. To probe intermolecular details at spatial and temporal resolutions beyond experimental limits, we also developed a colloidal whole-cell model that explicitly represents the size and charge of cytoplasmic macromolecules and the porous structure of the bacterial nucleoid. Combining these techniques, we show that bGEMs spatially segregate by size, with small 20-nm particles enriched inside the nucleoid, and larger and/or positively charged particles excluded from this region. Localization is driven by entropic and electrostatic forces arising from cytoplasmic polydispersity, nucleoid structure, geometrical confinement, and interactions with other biomolecules including ribosomes and DNA. We observe that at the timescales of traditional single molecule tracking experiments, motion appears sub-diffusive for all particle sizes and charges. However, using computer simulations with higher temporal resolution, we find that the apparent anomalous exponents are governed by the region of the cell in which bGEMs are located. Molecular motion does not display anomalous diffusion on short time scales and the apparent sub-diffusion arises from geometrical confinement within the nucleoid and by the cell boundary.
Collapse
Affiliation(s)
- Diana Valverde-Mendez
- Department of Physics, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Alp M. Sunol
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| | - Benjamin P. Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Department of Pathology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Inflammation and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Morgan Delarue
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jennifer L. Hofmann
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| | - Joseph P. Sheehan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Liam J. Holt
- Institute for Systems Genetics, New York University School of Medicine, 435 E 30th St, NY 10016, USA
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Roseanna N. Zia
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| |
Collapse
|
2
|
Madsen JJ, Yu W. Dynamic Nature of Staphylococcus aureus Type I Signal Peptidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576923. [PMID: 38328037 PMCID: PMC10849702 DOI: 10.1101/2024.01.23.576923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular dynamics simulations are used to interrogate the dynamic nature of Staphylococcus aureus Type I signal peptidases, SpsA and SpsB, including the impact of the P29S mutation of SpsB. Fluctuations and plasticity- rigidity characteristics vary among the proteins, particularly in the extracellular domain. Intriguingly, the P29S mutation, which influences susceptibility to arylomycin antibiotics, affect the mechanically coupled motions in SpsB. The integrity of the active site is crucial for catalytic competency, and variations in sampled structural conformations among the proteins are consistent with diverse peptidase capabilities. We also explored the intricate interactions between the proteins and the model S. aureus membrane. It was observed that certain membrane-inserted residues in the loop around residue 50 (50s) and C-terminal loops, beyond the transmembrane domain, give rise to direct interactions with lipids in the bilayer membrane. Our findings are discussed in the context of functional knowledge about these signal peptidases, offering additional understanding of dynamic aspects relevant to some cellular processes with potential implications for drug targeting strategies.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States of America
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States of America
| | - Wenqi Yu
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33612, United States of America
| |
Collapse
|
3
|
Lv S, Wang C, Xue K, Wang J, Xiao M, Sun Z, Han L, Shi L, Zhu C. Activated alkyne-enabled turn-on click bioconjugation with cascade signal amplification for ultrafast and high-throughput antibiotic screening. Proc Natl Acad Sci U S A 2023; 120:e2302367120. [PMID: 37364107 PMCID: PMC10318996 DOI: 10.1073/pnas.2302367120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Antimicrobial susceptibility testing plays a pivotal role in the discovery of new antibiotics. However, the development of simple, sensitive, and rapid assessment approaches remains challenging. Herein, we report an activated alkyne-based cascade signal amplification strategy for ultrafast and high-throughput antibiotic screening. First of all, a novel water-soluble aggregation-induced emission (AIE) luminogen is synthesized, which contains an activated alkyne group to enable fluorescence turn-on and metal-free click bioconjugation under physiological conditions. Taking advantage of the in-house established method for bacterial lysis, a number of clickable biological substances (i.e., bacterial solutes and debris) are released from the bacterial bodies, which remarkably increases the quantity of analytes. By means of the activated alkyne-mediated turn-on click bioconjugation, the system fluorescence signal is significantly amplified due to the increased labeling sites as well as the AIE effect. Such a cascade signal amplification strategy efficiently improves the detection sensitivity and thus enables ultrafast antimicrobial susceptibility assessment. By integration with a microplate reader, this approach is further applied to high-throughput antibiotic screening.
Collapse
Affiliation(s)
- Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong266109, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
4
|
Lai MJ, Huang YW, Chen HC, Tsao LI, Chang Chien CF, Singh B, Liu BR. Effect of Size and Concentration of Copper Nanoparticles on the Antimicrobial Activity in Escherichia coli through Multiple Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213715. [PMID: 36364491 PMCID: PMC9656174 DOI: 10.3390/nano12213715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2023]
Abstract
Metal and metal oxide nanoparticles, including copper nanoparticles (CuNPs), display antimicrobial activities and are regarded as promising microorganism inhibitors. Here, we explored the antimicrobial activity of CuNPs in Escherichia coli (E. coli) using two particle sizes (20 and 60 nm) and five concentrations (1, 5, 10, 50 and 100 μg/mL). The result showed a concentration-dependent trend of bactericidal activities for both size groups, with 20 nm particles more effective than 60 nm particles at low concentrations. The membrane disruption caused by CuNPs was confirmed by electron microscopy, PI staining and protein leaking analysis. However, the results of reactive oxygen species generation and genomic DNA damage revealed that the size and concentration of CuNPs were factors affecting the induction of multiple bactericidal mechanisms simultaneously on different scales. Further results of annexin V-PI staining supported this hypothesis by showing the shifting composition of the early-, late- and non-apoptotic dead cells across the CuNP groups. Many CuNP treatment groups were rescued when four mammalian modulators-wortmannin, necrosulfonamide, Z-VAD-FMK, and SBI-0206965-were applied separately. The results suggest the possible existence of bacterial programmed cell death pathways in E. coli which could be triggered by CuNP treatments.
Collapse
Affiliation(s)
- Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Hsuan-Chun Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Li-I Tsao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Chih-Fang Chang Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Bhaskar Singh
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
5
|
Guo H, Xu N, Prell M, Königs H, Hermanns-Sachweh B, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS): harnessing recombinant protein toxicity for rapid and unbiased interrogation of protein function. FEBS Lett 2021; 595:1422-1437. [PMID: 33704777 DOI: 10.1002/1873-3468.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
In two proof-of-concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA-interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss-of-function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | | | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
6
|
Morphology engineering: a new strategy to construct microbial cell factories. World J Microbiol Biotechnol 2020; 36:127. [PMID: 32712725 DOI: 10.1007/s11274-020-02903-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Currently, synthetic biology approaches have been developed for constructing microbial cell factories capable of efficient synthesis of high value-added products. Most studies have focused on the construction of novel biosynthetic pathways and their regulatory processes. Morphology engineering has recently been proposed as a novel strategy for constructing efficient microbial cell factories, which aims at controlling cell shape and cell division pattern by manipulating the cell morphology-related genes. Morphology engineering strategies have been exploited for improving bacterial growth rate, enlarging cell volume and simplifying downstream separation. This mini-review summarizes cell morphology-related proteins and their function, current advances in manipulation tools and strategies of morphology engineering, and practical applications of morphology engineering for enhanced production of intracellular product polyhydroxyalkanoate and extracellular products. Furthermore, current limitations and the future development direction using morphology engineering are proposed.
Collapse
|
7
|
The evolution of spherical cell shape; progress and perspective. Biochem Soc Trans 2020; 47:1621-1634. [PMID: 31829405 PMCID: PMC6925525 DOI: 10.1042/bst20180634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Bacterial cell shape is a key trait governing the extracellular and intracellular factors of bacterial life. Rod-like cell shape appears to be original which implies that the cell wall, division, and rod-like shape came together in ancient bacteria and that the myriad of shapes observed in extant bacteria have evolved from this ancestral shape. In order to understand its evolution, we must first understand how this trait is actively maintained through the construction and maintenance of the peptidoglycan cell wall. The proteins that are primarily responsible for cell shape are therefore the elements of the bacterial cytoskeleton, principally FtsZ, MreB, and the penicillin-binding proteins. MreB is particularly relevant in the transition between rod-like and spherical cell shape as it is often (but not always) lost early in the process. Here we will highlight what is known of this particular transition in cell shape and how it affects fitness before giving a brief perspective on what will be required in order to progress the field of cell shape evolution from a purely mechanistic discipline to one that has the perspective to both propose and to test reasonable hypotheses regarding the ecological drivers of cell shape change.
Collapse
|
8
|
Özbaykal G, Wollrab E, Simon F, Vigouroux A, Cordier B, Aristov A, Chaze T, Matondo M, van Teeffelen S. The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli. eLife 2020; 9:50629. [PMID: 32077853 PMCID: PMC7089770 DOI: 10.7554/elife.50629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial shape is physically determined by the peptidoglycan cell wall. The cell-wall-synthesis machinery responsible for rod shape in Escherichia coli is the processive 'Rod complex'. Previously, cytoplasmic MreB filaments were thought to govern formation and localization of Rod complexes based on local cell-envelope curvature. Using single-particle tracking of the transpeptidase and Rod-complex component PBP2, we found that PBP2 binds to a substrate different from MreB. Depletion and localization experiments of other putative Rod-complex components provide evidence that none of those provide the sole rate-limiting substrate for PBP2 binding. Consistently, we found only weak correlations between MreB and envelope curvature in the cylindrical part of cells. Residual correlations do not require curvature-based Rod-complex initiation but can be attributed to persistent rotational motion. We therefore speculate that the local cell-wall architecture provides the cue for Rod-complex initiation, either through direct binding by PBP2 or through an unknown intermediate.
Collapse
Affiliation(s)
- Gizem Özbaykal
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Eva Wollrab
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Francois Simon
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Antoine Vigouroux
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France.,Synthetic Biology Lab, Institut Pasteur, Paris, France.,Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Baptiste Cordier
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Andrey Aristov
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
9
|
Xie SS, Qiu XY, Zhu LY, Zhu CS, Liu CY, Wu XM, Zhu L, Zhang DY. Assembly of TALE-based DNA scaffold for the enhancement of exogenous multi-enzymatic pathway. J Biotechnol 2019; 296:69-74. [DOI: 10.1016/j.jbiotec.2019.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
10
|
Affiliation(s)
- W. Nowicki
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
11
|
Zhao F, Gong T, Liu X, Fan X, Huang R, Ma T, Wang S, Gao W, Yang C. Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 2019; 103:1713-1724. [DOI: 10.1007/s00253-018-9546-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
12
|
Qiu XY, Xie SS, Min L, Wu XM, Zhu LY, Zhu L. Spatial organization of enzymes to enhance synthetic pathways in microbial chassis: a systematic review. Microb Cell Fact 2018; 17:120. [PMID: 30064437 PMCID: PMC6066912 DOI: 10.1186/s12934-018-0965-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023] Open
Abstract
For years, microbes have been widely applied as chassis in the construction of synthetic metabolic pathways. However, the lack of in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. In recent years, multiple methods have been applied to the construction of small metabolic clusters by spatial organization of heterologous metabolic enzymes. These methods mainly focused on using engineered molecules to bring the enzymes into close proximity via different interaction mechanisms among proteins and nucleotides and have been applied in various heterologous pathways with different degrees of success while facing numerous challenges. In this paper, we mainly reviewed some of those notable advances in designing and creating approaches to achieve spatial organization using different intermolecular interactions. Current challenges and future aspects in the further application of such approaches are also discussed in this paper.
Collapse
Affiliation(s)
- Xin-Yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Si-Si Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Xiao-Min Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Lv-Yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China.
| |
Collapse
|
13
|
Wang X, Zheng P, Ma T, Song T. Small Universal Bacteria and Plasmid Computing Systems. Molecules 2018; 23:E1307. [PMID: 29844281 PMCID: PMC6099791 DOI: 10.3390/molecules23061307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022] Open
Abstract
Bacterial computing is a known candidate in natural computing, the aim being to construct "bacterial computers" for solving complex problems. In this paper, a new kind of bacterial computing system, named the bacteria and plasmid computing system (BP system), is proposed. We investigate the computational power of BP systems with finite numbers of bacteria and plasmids. Specifically, it is obtained in a constructive way that a BP system with 2 bacteria and 34 plasmids is Turing universal. The results provide a theoretical cornerstone to construct powerful bacterial computers and demonstrate a concept of paradigms using a "reasonable" number of bacteria and plasmids for such devices.
Collapse
Affiliation(s)
- Xun Wang
- College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580, China.
| | - Pan Zheng
- Department of Accounting and Information Systems, University of Canterbury, Christchurch 8041, New Zealand.
| | - Tongmao Ma
- College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580, China.
| | - Tao Song
- College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580, China.
- Departamento de Inteligencia Artificial, Universidad Politcnica de Madrid (UPM), Campus de Montegancedo, 28660 Boadilla del Monte, Spain.
| |
Collapse
|
14
|
Xiao-Ran J, Jin Y, Xiangbin C, Guo-Qiang C. Halomonas and Pathway Engineering for Bioplastics Production. Methods Enzymol 2018; 608:309-328. [PMID: 30173767 DOI: 10.1016/bs.mie.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional microbial chassis, including Escherichia coli, Bacillus subtilis, Ralstonia eutropha, and Pseudomonas putida, are grown under neutral pH and mild osmotic pressure for production of chemicals and materials. They tend to be contaminated easily by many microorganisms. To address this issue, next-generation industrial biotechnology employing halophilic Halomonas spp. has been developed for production of bioplastics polyhydroxyalkanoates (PHAs) and other chemicals. Halomonas spp. that can be grown contamination free under open and unsterile condition at alkali pH and high NaCl have been engineered to produce several PHA polymers in elongated or enlarged cells. New pathways can also be constructed both in plasmids and on chromosomes for Halomonas spp. Synthetic biology approaches and parts have been developed for Halomonas spp., allowing better control of their growth and product formation as well as morphology adjustment. Halomonas spp. and their synthetic biology will play an increasingly important role for industrial production of large volume chemicals.
Collapse
Affiliation(s)
- Jiang Xiao-Ran
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yin Jin
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chen Xiangbin
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chen Guo-Qiang
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; Manchester Institute of Biotechnology, Centre for Synthetic Biology, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
15
|
Jiang XR, Yao ZH, Chen GQ. Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 2017; 44:30-37. [PMID: 28918285 DOI: 10.1016/j.ymben.2017.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/27/2023]
Abstract
Bacterial morphology is decided by cytoskeleton protein MreB and cell division protein FtsZ encoded by essential genes mreB and ftsZ, respectively. Inactivating mreB and ftsZ lead to increasing cell sizes and cell lengths, respectively, yet seriously reduce cell growth ability. Here we develop a temperature-responsible plasmid expression system for compensated expression of relevant gene(s) in mreB or ftsZ disrupted recombinants H. campaniensis LS21, allowing mreB or ftsZ disrupted recombinants to grow normally at 30°C in a bioreactor for 12h so that a certain cell density can be reached, followed by 36h cell size expansions or cell shape elongations at elevated 37°C at which the mreB and ftsZ encoded plasmid pTKmf failed to replicate in the recombinants and thus lost themselves. Finally, 80% PHB yield increase was achieved via controllable morphology manipulated H. campaniensis LS21. It is concluded that controllable expanding cell volumes (widths or lengths) provides more spaces for accumulating more inclusion body polyhydroxybutyrate (PHB) and the resulting cell gravity precipitation benefits the final separation of cells and product during downstream.
Collapse
Affiliation(s)
- Xiao-Ran Jiang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Hao Yao
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China; MOE Key Laboratory for Industrial Biocatalysis, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Kumar A, Balbach J. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Sci Rep 2017; 7:42141. [PMID: 28176839 PMCID: PMC5296862 DOI: 10.1038/srep42141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Molecular chaperones are essential molecules for cell growth, whereby they maintain protein homeostasis. Because of their central cellular function, bacterial chaperones might be potential candidates for drug targets. Antimicrobial resistance is currently one of the greatest threats to human health, with gram-negative bacteria being of major concern. We found that a Cu2+ complex readily crosses the bacterial cell wall and inhibits SlyD, which is a molecular chaperone, cis/trans peptidyl prolyl isomerise (PPIase) and involved in various other metabolic pathways. The Cu2+ complex binds to the active sites of SlyD, which suppresses its PPIase and chaperone activities. Significant cell growth retardation could be observed for pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). We anticipate that rational development of drugs targeting molecular chaperones might help in future control of pathogenic bacterial growth, in an era of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
- Centre for Structure und Dynamics of Proteins (MZP), Martin Luther University Halle, Wittenberg, Germany
| |
Collapse
|
17
|
Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, Martin NR, Nguyen JP, Persat A, Desmarais SM, VanNieuwenhze MS, Huang KC, Zhu J, Shaevitz JW, Gitai Z. A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. Cell 2017; 168:172-185.e15. [PMID: 28086090 DOI: 10.1016/j.cell.2016.12.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/05/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022]
Abstract
Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amit Duvshani
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Miguel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ying Sheng
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China
| | - Nicholas R Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey P Nguyen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexandre Persat
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Snijder J, Kononova O, Barbu IM, Uetrecht C, Rurup WF, Burnley RJ, Koay MST, Cornelissen JJLM, Roos WH, Barsegov V, Wuite GJL, Heck AJR. Assembly and Mechanical Properties of the Cargo-Free and Cargo-Loaded Bacterial Nanocompartment Encapsulin. Biomacromolecules 2016; 17:2522-9. [DOI: 10.1021/acs.biomac.6b00469] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
| | - Olga Kononova
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Moscow Institute
of Physics
and Technology, Moscow Region, Russia 141700
| | - Ioana M. Barbu
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Charlotte Uetrecht
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - W. Frederik Rurup
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Rebecca J. Burnley
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Melissa S. T. Koay
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter H. Roos
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
- Moleculaire
Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Valeri Barsegov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Moscow Institute
of Physics
and Technology, Moscow Region, Russia 141700
| | - Gijs J. L. Wuite
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
19
|
Jiang XR, Chen GQ. Morphology engineering of bacteria for bio-production. Biotechnol Adv 2016; 34:435-440. [DOI: 10.1016/j.biotechadv.2015.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
20
|
Zhu LY, Qiu XY, Zhu LY, Wu XM, Zhang Y, Zhu QH, Fan DY, Zhu CS, Zhang DY. Spatial organization of heterologous metabolic system in vivo based on TALE. Sci Rep 2016; 6:26065. [PMID: 27184291 PMCID: PMC4869064 DOI: 10.1038/srep26065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis. The binding abilities of the TALEs to the artificial DNA scaffold were measured through ChIP-PCR. The effect of the system was determined through a split GFP study and validated through the heterologous production of indole-3-acetic acid (IAA) by incorporating TALE-fused IAA biosynthetic enzymes in E. coli. To the best of our knowledge, we are the first to use the TALE system as a scaffold for the spatial organization of bacterial metabolism. This technique might be used to establish multi-enzymatic reaction programs in a prokaryotic chassis for various applications.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Xin-Yuan Qiu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Ling-Yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Xiao-Min Wu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Yuan Zhang
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Qian-Hui Zhu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Dong-Yu Fan
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Chu-Shu Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Dong-Yi Zhang
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| |
Collapse
|
21
|
|
22
|
Chen Y, Yu W, Wang J, Luo K. Polymer segregation under confinement: Influences of macromolecular crowding and the interaction between the polymer and crowders. J Chem Phys 2015; 143:134904. [DOI: 10.1063/1.4932370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yuhao Chen
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Jiajun Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| |
Collapse
|
23
|
Milrot E, Mutsafi Y, Fridmann-Sirkis Y, Shimoni E, Rechav K, Gurnon JR, Van Etten JL, Minsky A. Virus-host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus. Cell Microbiol 2015; 18:3-16. [PMID: 26248343 DOI: 10.1111/cmi.12486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022]
Abstract
The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.
Collapse
Affiliation(s)
- Elad Milrot
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Fridmann-Sirkis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - James R Gurnon
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - Abraham Minsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
24
|
The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proc Natl Acad Sci U S A 2015; 106:13347-52. [PMID: 19654094 DOI: 10.1073/pnas.0906465106] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.
Collapse
|
25
|
Eun YJ, Kapoor M, Hussain S, Garner EC. Bacterial Filament Systems: Toward Understanding Their Emergent Behavior and Cellular Functions. J Biol Chem 2015; 290:17181-9. [PMID: 25957405 DOI: 10.1074/jbc.r115.637876] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria use homologs of eukaryotic cytoskeletal filaments to conduct many different tasks, controlling cell shape, division, and DNA segregation. These filaments, combined with factors that regulate their polymerization, create emergent self-organizing machines. Here, we summarize the current understanding of the assembly of these polymers and their spatial regulation by accessory factors, framing them in the context of being dynamical systems. We highlight how comparing the in vivo dynamics of the filaments with those measured in vitro has provided insight into the regulation, emergent behavior, and cellular functions of these polymeric systems.
Collapse
Affiliation(s)
- Ye-Jin Eun
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mrinal Kapoor
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Saman Hussain
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Ethan C Garner
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
26
|
Abstract
The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells.
Collapse
|
27
|
Abstract
Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular “nanotraps,” which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Importance Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks. Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks.
Collapse
|
28
|
Khattak WA, Ullah MW, Ul-Islam M, Khan S, Kim M, Kim Y, Park JK. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective. Appl Microbiol Biotechnol 2014; 98:9561-78. [PMID: 25359472 DOI: 10.1007/s00253-014-6154-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Most biomanufacturing systems developed for the production of biocommodities are based on whole-cell systems. However, with the advent of innovative technologies, the focus has shifted from whole-cell towards cell-free enzyme system. Since more than a century, researchers are using the cell-free extract containing the required enzymes and their respective cofactors in order to study the fundamental aspects of biological systems, particularly fermentation. Although yeast cell-free enzyme system is known since long ago, it is rarely been studied and characterized in detail. In this review, we hope to describe the major pitfalls encountered by whole-cell system and introduce possible solutions to them using cell-free enzyme systems. We have discussed the glycolytic and fermentative pathways and their regulation at both transcription and translational levels. Moreover, several strategies employed for development of cell-free enzyme system have been described with their potential merits and shortcomings associated with these developmental approaches. We also described in detail the various developmental approaches of synthetic cell-free enzyme system such as compartmentalization, metabolic channeling, protein fusion, and co-immobilization strategies. Additionally, we portrayed the novel cell-free enzyme technologies based on encapsulation and immobilization techniques and their development and commercialization. Through this review, we have presented the basics of cell-free enzyme system, the strategies involved in development and operation, and the advantages over conventional processes. Finally, we have addressed some potential directions for the future development and industrialization of cell-free enzyme system.
Collapse
Affiliation(s)
- Waleed Ahmad Khattak
- Department of Chemical Engineering, Kyungpook National University, Daegu, 7020-701, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Stryjewska A, Kiepura K, Librowski T, Lochyński S. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy. Pharmacol Rep 2014; 65:1086-101. [PMID: 24399705 DOI: 10.1016/s1734-1140(13)71467-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/13/2013] [Indexed: 12/01/2022]
Abstract
Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.
Collapse
Affiliation(s)
- Agnieszka Stryjewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, PL 50-370 Wrocław, Poland. ;
| | | | | | | |
Collapse
|
30
|
Minina E, Arnold A. Induction of entropic segregation: the first step is the hardest. SOFT MATTER 2014; 10:5836-5841. [PMID: 24974935 DOI: 10.1039/c4sm00286e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In confinement, overlapping polymers experience entropic segregating forces that tend to demix them. This plays a role during cell replication, where it facilitates the segregation of daughter chromosomes. It has been argued that these forces are strong enough to explain chromosome segregation in elongated bacteria such as E. coli without the need for additional active mechanisms [S. Jun and B. Mulder, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12388]. However, entropic segregation can only set in after the initial symmetry has been broken. We demonstrate that the timescale for this induction phase is exponentially growing in the chain length, while the actual segregation time scales only quadratically in the chain length. Thus the induction quickly becomes the dominating, slow process, and makes entropic segregation much less efficient than previously thought. The slow induction might also explain the long delay in chromosome segregation observed in experiments on E. coli.
Collapse
Affiliation(s)
- Elena Minina
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | | |
Collapse
|
31
|
Billings G, Ouzounov N, Ursell T, Desmarais SM, Shaevitz J, Gitai Z, Huang KC. De novo morphogenesis in L-forms via geometric control of cell growth. Mol Microbiol 2014; 93:883-96. [PMID: 24995493 DOI: 10.1111/mmi.12703] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/06/2023]
Abstract
In virtually all bacteria, the cell wall is crucial for mechanical integrity and for determining cell shape. Escherichia coli's rod-like shape is maintained via the spatiotemporal patterning of cell-wall synthesis by the actin homologue MreB. Here, we transiently inhibited cell-wall synthesis in E. coli to generate cell-wall-deficient, spherical L-forms, and found that they robustly reverted to a rod-like shape within several generations after inhibition cessation. The chemical composition of the cell wall remained essentially unchanged during this process, as indicated by liquid chromatography. Throughout reversion, MreB localized to inwardly curved regions of the cell, and fluorescent cell wall labelling revealed that MreB targets synthesis to those regions. When exposed to the MreB inhibitor A22, reverting cells regrew a cell wall but failed to recover a rod-like shape. Our results suggest that MreB provides the geometric measure that allows E. coli to actively establish and regulate its morphology.
Collapse
Affiliation(s)
- Gabriel Billings
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu Z, Xing D, Su QP, Zhu Y, Zhang J, Kong X, Xue B, Wang S, Sun H, Tao Y, Sun Y. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space. Nat Commun 2014; 5:4443. [PMID: 25030837 PMCID: PMC4109008 DOI: 10.1038/ncomms5443] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/18/2014] [Indexed: 01/30/2023] Open
Abstract
Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. Protein–protein interactions are ubiquitous in cells and these contacts are crucial for a wide number of cellular processes. Here, the authors present a technique for the super-resolution imaging and tracking of protein–protein interactions in cells.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Xing
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China [2] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Qian Peter Su
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yun Zhu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiamei Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Xinyu Kong
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China [2] Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Boxin Xue
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Sheng Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Sun
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China [2] Biology and Biotechnology, Life Sciences and Bioengineering Center, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 02280, USA
| | - Yile Tao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Jin M, Chen Y, Xu C, Zhang X. The effect of inhibition of host MreB on the infection of thermophilic phage GVE2 in high temperature environment. Sci Rep 2014; 4:4823. [PMID: 24769758 PMCID: PMC4001104 DOI: 10.1038/srep04823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/03/2014] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, the manipulation of the host actin cytoskeleton is a necessary strategy for viral pathogens to invade host cells. Increasing evidence indicates that the actin homolog MreB of bacteria plays key roles in cell shape formation, cell polarity, cell wall biosynthesis, and chromosome segregation. However, the role of bacterial MreB in the bacteriophage infection is not extensively investigated. To address this issue, in this study, the MreB of thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal field was characterized by inhibiting the MreB polymerization and subsequently evaluating the bacteriophage GVE2 infection. The results showed that the host MreB played important roles in the bacteriophage infection at high temperature. After the host cells were treated with small molecule drug A22 or MP265, the specific inhibitors of MreB polymerization, the adsorption of GVE2 and the replication of GVE2 genome were significantly repressed. The confocal microscopy data revealed that MreB facilitated the GVE2 infection by inducing the polar distribution of virions during the phage infection. Our study contributed novel information to understand the molecular events of the host in response to bacteriophage challenge and extended our knowledge about the host-virus interaction in deep-sea vent ecosystems.
Collapse
Affiliation(s)
- Min Jin
- 1] Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China [2]
| | - Yanjiang Chen
- 1] Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China [2]
| | - Chenxi Xu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| |
Collapse
|
34
|
Colavin A, Hsin J, Huang KC. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB. Proc Natl Acad Sci U S A 2014; 111:3585-90. [PMID: 24550504 PMCID: PMC3948266 DOI: 10.1073/pnas.1317061111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.
Collapse
Affiliation(s)
- Alexandre Colavin
- Department of Bioengineering and
- Biophysics Program, Stanford University, Stanford, CA 94305; and
| | - Jen Hsin
- Department of Bioengineering and
| | - Kerwyn Casey Huang
- Department of Bioengineering and
- Biophysics Program, Stanford University, Stanford, CA 94305; and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
35
|
de Faria AF, de Moraes ACM, Alves OL. Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Wartel M, Ducret A, Thutupalli S, Czerwinski F, Le Gall AV, Mauriello EMF, Bergam P, Brun YV, Shaevitz J, Mignot T. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLoS Biol 2013; 11:e1001728. [PMID: 24339744 PMCID: PMC3858216 DOI: 10.1371/journal.pbio.1001728] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/23/2013] [Indexed: 01/16/2023] Open
Abstract
The Myxococcus Agl-Nfs machinery, a type of bacterial transport system, is modular and is seen to also rotate a carbohydrate polymer directionally at the spore surface to assist spore coat assembly. Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories. Many living cells use processive cytoskeletal motors to transport proteins and subcellular organelles to specific subcellular sites. In bacteria, this type of transport has yet to be identified and it is generally thought that random protein collisions underlie most biochemical processes. In recent years, our view of the bacterial cell was changed by the discovery of subcellular compartmentalization and a cytoskeleton, suggesting that processive motors might also operate in prokaryotes. We previously characterized a mechanism of intracellular transport that drives cell motility across solid surfaces in the gram-negative bacterium Myxococcus xanthus. Since the transport apparatus was also found in bacterial species that do not move on surfaces, we postulated that intracellular transport underlies other cellular processes in bacteria. Indeed, we show here that the Myxococcus motility motor can be adapted to transport sporulation-specific proteins around the nascent spore surface. Because the transported proteins are linked to the main spore coat, this motion assists the assembly of a protective spore coat. In conclusion, the Myxococcus motility/sporulation transport machinery defines an emerging class of versatile transport systems, suggesting that processive transport has been overlooked and may well orchestrate many processes in bacteria.
Collapse
Affiliation(s)
- Morgane Wartel
- Laboratoire de Chimie Bactérienne, CNRS UMR 7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Adrien Ducret
- Laboratoire de Chimie Bactérienne, CNRS UMR 7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Shashi Thutupalli
- Department of Physics and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Fabian Czerwinski
- Department of Physics and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Anne-Valérie Le Gall
- Laboratoire de Chimie Bactérienne, CNRS UMR 7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emilia M. F. Mauriello
- Laboratoire de Chimie Bactérienne, CNRS UMR 7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Ptissam Bergam
- Plateforme de Microscopie, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yves V. Brun
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Joshua Shaevitz
- Department of Physics and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS UMR 7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
37
|
Hughes HV, Lisher JP, Hardy GG, Kysela DT, Arnold RJ, Giedroc DP, Brun YV. Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein. Mol Microbiol 2013; 90:1162-77. [PMID: 24118129 DOI: 10.1111/mmi.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 11/29/2022]
Abstract
Organelles with specialized form and function occur in diverse bacteria. Within the Alphaproteobacteria, several species extrude thin cellular appendages known as stalks, which function in nutrient uptake, buoyancy and reproduction. Consistent with their specialization, stalks maintain a unique molecular composition compared with the cell body, but how this is achieved remains to be fully elucidated. Here we dissect the mechanism of localization of StpX, a stalk-specific protein in Caulobacter crescentus. Using a forward genetics approach, we identify a penicillin-binding-protein, PbpC, which is required for the localization of StpX in the stalk. We show that PbpC acts at the stalked cell pole to anchor StpX to rigid components of the outer membrane of the elongating stalk, concurrent with stalk synthesis. Stalk-localized StpX in turn functions in cellular responses to copper and zinc, suggesting that the stalk may contribute to metal homeostasis in Caulobacter. Together, these results identify a novel role for a penicillin-binding-protein in compartmentalizing a bacterial organelle it itself helps create, raising the possibility that cell wall-synthetic enzymes may broadly serve not only to synthesize the diverse shapes of bacteria, but also to functionalize them at the molecular level.
Collapse
Affiliation(s)
- H Velocity Hughes
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Chiu SW, Roberts MAJ, Leake MC, Armitage JP. Positioning of chemosensory proteins and FtsZ through the Rhodobacter sphaeroides cell cycle. Mol Microbiol 2013; 90:322-37. [PMID: 23944351 DOI: 10.1111/mmi.12366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 12/28/2022]
Abstract
Bacterial chemotaxis depends on signalling through large protein complexes. Each cell must inherit a complex on division, suggesting some co-ordination with cell division. In Escherichia coli the membrane-spanning chemosensory complexes are polar and new static complexes form at pre-cytokinetic sites, ensuring positioning at the new pole after division and suggesting a role for the bacterial cytoskeleton. Rhodobacter sphaeroides has both membrane-associated and cytoplasmic, chromosome-associated chemosensory complexes. We followed the relative positions of the two chemosensory complexes, FtsZ and MreB in aerobic and in photoheterotrophic R. sphaeroides cells using fluorescence microscopy. FtsZ forms polar spots after cytokinesis, which redistribute to the midcell forming nodes from which FtsZ extends circumferentially to form the Z-ring. Membrane-associated chemosensory proteins form a number of dynamic unit-clusters with mature clusters containing about 1000 CheW(3) proteins. Individual clusters diffuse randomly within the membrane, accumulating at new poles after division but not colocalizing with either FtsZ or MreB. The cytoplasmic complex colocalizes with FtsZ at midcells in new-born cells. Before cytokinesis one complex moves to a daughter cell, followed by the second moving to the other cell. These data indicate that two homologous complexes use different mechanisms to ensure partitioning, and neither complex utilizes FtsZ or MreB for positioning.
Collapse
Affiliation(s)
- Sheng-Wen Chiu
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
40
|
Delgado L, Carrión O, Martínez G, López-Iglesias C, Mercadé E. The stack: a new bacterial structure analyzed in the Antarctic bacterium Pseudomonas deceptionensis M1(T) by transmission electron microscopy and tomography. PLoS One 2013; 8:e73297. [PMID: 24039905 PMCID: PMC3767748 DOI: 10.1371/journal.pone.0073297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
In recent years, improvements in transmission electron microscopy (TEM) techniques and the use of tomography have provided a more accurate view of the complexity of the ultrastructure of prokaryotic cells. Cryoimmobilization of specimens by rapid cooling followed by freeze substitution (FS) and sectioning, freeze fracture (FF) and observation of replica, or cryoelectron microscopy of vitreous sections (CEMOVIS) now allow visualization of biological samples close to their native state, enabling us to refine our knowledge of already known bacterial structures and to discover new ones. Application of these techniques to the new Antarctic cold-adapted bacterium Pseudomonasdeceptionensis M1T has demonstrated the existence of a previously undescribed cytoplasmic structure that does not correspond to known bacterial inclusion bodies or membranous formations. This structure, which we term a “stack”, was mainly visualized in slow growing cultures of P. deceptionensis M1T and can be described as a set of stacked membranous discs usually arranged perpendicularly to the cell membrane, but not continuous with it, and found in variable number in different locations within the cell. Regardless of their position, stacks were mostly observed very close to DNA fibers. Stacks are not exclusive to P. deceptionensis M1T and were also visualized in slow-growing cultures of other bacteria. This new structure deserves further study using cryoelectron tomography to refine its configuration and to establish whether its function could be related to chromosome dynamics.
Collapse
Affiliation(s)
- Lidia Delgado
- Crio-Microscòpia Electrònica. Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
- Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Ornella Carrión
- Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Gema Martínez
- Crio-Microscòpia Electrònica. Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Carmen López-Iglesias
- Crio-Microscòpia Electrònica. Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
- * E-mail: ; (CLL)
| | - Elena Mercadé
- Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- * E-mail: ; (CLL)
| |
Collapse
|
41
|
Stryjewska A, Kiepura K, Librowski T, Lochyński S. Biotechnology and genetic engineering in the new drug development. Part III. Biocatalysis, metabolic engineering and molecular modelling. Pharmacol Rep 2013; 65:1102-11. [DOI: 10.1016/s1734-1140(13)71468-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/13/2013] [Indexed: 02/03/2023]
|
42
|
Feig M, Sugita Y. Reaching new levels of realism in modeling biological macromolecules in cellular environments. J Mol Graph Model 2013; 45:144-56. [PMID: 24036504 DOI: 10.1016/j.jmgm.2013.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
An increasing number of studies are aimed at modeling cellular environments in a comprehensive and realistic fashion. A major challenge in these efforts is how to bridge spatial and temporal scales over many orders of magnitude. Furthermore, there are additional challenges in integrating different aspects ranging from questions about biomolecular stability in crowded environments to the description of reactive processes on cellular scales. In this review, recent studies with models of biomolecules in cellular environments at different levels of detail are discussed in terms of their strengths and weaknesses. In particular, atomistic models, implicit representations of cellular environments, coarse-grained and spheroidal models of biomolecules, as well as the inclusion of reactive processes via reaction-diffusion models are described. Furthermore, strategies for integrating the different models into a comprehensive description of cellular environments are discussed.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry & Molecular Biology and Department of Chemistry, Michigan State University, 603 Wilson Road, BCH 218, East Lansing, MI 48824, United States; RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|
43
|
Cell shape can mediate the spatial organization of the bacterial cytoskeleton. Biophys J 2013; 104:541-52. [PMID: 23442905 DOI: 10.1016/j.bpj.2012.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 01/08/2023] Open
Abstract
The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Because spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g., circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.
Collapse
|
44
|
Held M, Quin MB, Schmidt-Dannert C. Eut bacterial microcompartments: insights into their function, structure, and bioengineering applications. J Mol Microbiol Biotechnol 2013; 23:308-20. [PMID: 23920494 DOI: 10.1159/000351343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacterial microcompartments (BMCs) are protein-based polyhedral organelles which serve to encapsulate and organize enzymes involved in key metabolic pathways. The sequestration of these pathways not only improves the overall reaction efficiency; it can also harbor toxic or volatile pathway intermediates, which would otherwise be detrimental to the cell. Genomic and phylogenetic analyses reveal the presence of these unique organelles in a diverse range of bacterial species, highlighting their evolutionary importance and the essential role that they play in bacterial cell survival. Functional and structural analyses of BMCs involved in ethanolamine utilization are developing our understanding of the self-assembly and encapsulation mechanisms employed by these protein supercomplexes. This knowledge will open up exciting new avenues of research with a range of potential engineering and biotechnological applications.
Collapse
Affiliation(s)
- Mark Held
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minn., USA
| | | | | |
Collapse
|
45
|
Kysela DT, Brown PJB, Huang KC, Brun YV. Biological consequences and advantages of asymmetric bacterial growth. Annu Rev Microbiol 2013; 67:417-35. [PMID: 23808335 DOI: 10.1146/annurev-micro-092412-155622] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.
Collapse
Affiliation(s)
- David T Kysela
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | | | | | | |
Collapse
|
46
|
Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun 2013; 4:3003. [DOI: 10.1038/ncomms3003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 11/08/2022] Open
|
47
|
Jorda J, Lopez D, Wheatley NM, Yeates TO. Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci 2013. [PMID: 23188745 DOI: 10.1002/pro.2196] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial microcompartment (MCP) organelles are cytosolic, polyhedral structures consisting of a thin protein shell and a series of encapsulated, sequentially acting enzymes. To date, different microcompartments carrying out three distinct types of metabolic processes have been characterized experimentally in various bacteria. In the present work, we use comparative genomics to explore the existence of yet uncharacterized microcompartments encapsulating a broader set of metabolic pathways. A clustering approach was used to group together enzymes that show a strong tendency to be encoded in chromosomal proximity to each other while also being near genes for microcompartment shell proteins. The results uncover new types of putative microcompartments, including one that appears to encapsulate B(12) -independent, glycyl radical-based degradation of 1,2-propanediol, and another potentially involved in amino alcohol metabolism in mycobacteria. Preliminary experiments show that an unusual shell protein encoded within the glycyl radical-based microcompartment binds an iron-sulfur cluster, hinting at complex mechanisms in this uncharacterized system. In addition, an examination of the computed microcompartment clusters suggests the existence of specific functional variations within certain types of MCPs, including the alpha carboxysome and the glycyl radical-based microcompartment. The findings lead to a deeper understanding of bacterial microcompartments and the pathways they sequester.
Collapse
Affiliation(s)
- Julien Jorda
- UCLA-DOE Institute for Genomics and Proteomics, 611 Charles Young Dr East, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
48
|
Cell-free Biosystems in the Production of Electricity and Bioenergy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:125-52. [PMID: 23748347 DOI: 10.1007/10_2013_201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
: Increasing needs of green energy and concerns of climate change are motivating intensive R&D efforts toward the low-cost production of electricity and bioenergy, such as hydrogen, alcohols, and jet fuel, from renewable sugars. Cell-free biosystems for biomanufacturing (CFB2) have been suggested as an emerging platform to replace mainstream microbial fermentation for the cost-effective production of some biocommodities. As compared to whole-cell factories, cell-free biosystems comprised of synthetic enzymatic pathways have numerous advantages, such as high product yield, fast reaction rate, broad reaction condition, easy process control and regulation, tolerance of toxic compound/product, and an unmatched capability of performing unnatural reactions. However, issues pertaining to high costs and low stabilities of enzymes and cofactors as well as compromised optimal conditions for different source enzymes need to be solved before cell-free biosystems are scaled up for biomanufacturing. Here, we review the current status of cell-free technology, update recent advances, and focus on its applications in the production of electricity and bioenergy.
Collapse
|
49
|
Abstract
Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.
Collapse
|
50
|
Spatial ordering of chromosomes enhances the fidelity of chromosome partitioning in cyanobacteria. Proc Natl Acad Sci U S A 2012; 109:13638-43. [PMID: 22869746 DOI: 10.1073/pnas.1211144109] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many cyanobacteria have been shown to harbor multiple chromosome copies per cell, yet little is known about the organization, replication, and segregation of these chromosomes. Here, we visualize individual chromosomes in the cyanobacterium Synechococcus elongatus via time-lapse fluorescence microscopy. We find that chromosomes are equally spaced along the long axis of the cell and are interspersed with another regularly spaced subcellular compartment, the carboxysome. This remarkable organization of the cytoplasm along with accurate midcell septum placement allows for near-optimal segregation of chromosomes to daughter cells. Disruption of either chromosome ordering or midcell septum placement significantly increases the chromosome partitioning error. We find that chromosome replication is both asynchronous and independent of the position of the chromosome in the cell and that spatial organization is preserved after replication. Our findings on chromosome organization, replication, and segregation in S. elongatus provide a basis for understanding chromosome dynamics in bacteria with multiple chromosomes.
Collapse
|