1
|
Dufour VL, Aguirre GD. Canine models of inherited retinal diseases: from neglect to well-recognized translational value. Mamm Genome 2024:10.1007/s00335-024-10091-y. [PMID: 39739008 DOI: 10.1007/s00335-024-10091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Large animal models of inherited retinal diseases, particularly dogs, have been extensively used over the past decades to study disease natural history and evaluate therapeutic interventions. Our group of investigators at the University of Pennsylvania, School of Veterinary Medicine, has played a pivotal role in characterizing several of these animal models, documenting the natural history of their diseases, developing gene therapies, and conducting proof-of-concept studies. Additionally, we have assessed the potential toxicity of these therapies for human clinical trials, contributing to the regulatory approval of voretigene neparvovec-rzyl (Luxturna®) by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of patients with confirmed biallelic mutation-associated retinal dystrophy. In this review, we aim to summarize the clinical features of a subset of these diseases and reflect on the challenges encountered in integrating canine models into the translational pipeline.
Collapse
Affiliation(s)
- Valérie L Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Damodar K, Dubois G, Guillou L, Mamaeva D, Pequignot M, Erkilic N, Sanjurjo-Soriano C, Boukhaddaoui H, Bernex F, Bocquet B, Vialaret J, Arsenijevic Y, Redmond TM, Hirtz C, Meunier I, Brabet P, Kalatzis V. Dual CRALBP isoforms unveiled: iPSC-derived retinal modeling and AAV2/5-RLBP1 gene transfer raise considerations for effective therapy. Mol Ther 2024; 32:4319-4336. [PMID: 39385467 PMCID: PMC11638835 DOI: 10.1016/j.ymthe.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Inherited retinal diseases (IRDs) are characterized by progressive vision loss. There are over 270 causative IRD genes, and variants within the same gene can cause clinically distinct disorders. One example is RLBP1, which encodes CRALBP. CRALBP is an essential protein in the rod and cone visual cycles that take place primarily in the retinal pigment epithelium (RPE) but also in Müller cells of the neuroretina. RLBP1 variants lead to three clinical subtypes: Bothnia dystrophy, retinitis punctata albescens, and Newfoundland rod-cone dystrophy. We modeled RLBP1-IRD subtypes using patient-specific induced pluripotent stem cell (iPSC)-derived RPE and identified pathophysiological markers that served as pertinent therapeutic read-outs. We developed an AAV2/5-mediated gene-supplementation strategy and performed a proof-of-concept study in the human models, which was validated in vivo in an Rlbp1-/- murine model. Most importantly, we identified a previously unsuspected smaller CRALBP isoform that is naturally and differentially expressed both in the human and murine retina. This previously unidentified isoform is produced from an alternative methionine initiation site. This work provides further insights into CRALBP expression and RLBP1-associated pathophysiology and raises important considerations for successful gene-supplementation therapy.
Collapse
Affiliation(s)
- Krishna Damodar
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Gregor Dubois
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Laurent Guillou
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Daria Mamaeva
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Marie Pequignot
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France; National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, 34090 Montpellier, France
| | - Carla Sanjurjo-Soriano
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Florence Bernex
- RHEM, Réseau d'Histologie Expérimentale de Montpellier, University of Montpellier, Biocampus, CNRS, Inserm, 34298 Montpellier, France
| | - Béatrice Bocquet
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France; National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, 34090 Montpellier, France
| | - Jérôme Vialaret
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France; IRMB-PPC, INM, Montpellier University Hospital, Inserm, CNRS, University of Montpellier, 34295 Montpellier, France
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Hirtz
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France; IRMB-PPC, INM, Montpellier University Hospital, Inserm, CNRS, University of Montpellier, 34295 Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France; National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, 34090 Montpellier, France
| | - Philippe Brabet
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France; National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, 34090 Montpellier, France.
| |
Collapse
|
3
|
Appelbaum T, Santana E, Smith DA, Beltran WA, Aguirre GD. Glial Cell Responses and Gene Expression Dynamics in Retinas of Treated and Untreated RPE65 Mutant Dogs. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 39392441 PMCID: PMC11472885 DOI: 10.1167/iovs.65.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose The long-term evaluation of RPE65 gene augmentation initiated in middle-aged RPE65 mutant dogs previously uncovered notable inter-animal and intra-retinal variations in treatment efficacy. The study aims to gain deeper insights into the status of mutant retinas and assess the treatment impact. Methods Immunohistochemistry utilizing cell-specific markers and reverse transcription-quantitative PCR (RT-qPCR) analysis were conducted on archival retinal sections from normal and RPE65 mutant dogs. Results Untreated middle-aged mutant retinas exhibited marked downregulation in the majority of 20 examined genes associated with key retinal pathways. These changes were accompanied by a moderate increase in microglia numbers, altered expression patterns of glial-neuronal transmitter recycling proteins, and gliotic responses in Müller glia. Analysis of advanced-aged mutant dogs revealed mild outer nuclear layer loss in the treated eye compared to moderate loss in the corresponding retinal regions of the untreated control eye. However, persistent Müller glial stress response along with photoreceptor synapse loss were evident in both treated and untreated eyes. Photoreceptor synaptic remodeling, infrequent in treated regions, was observed in all untreated advanced-aged retinas, accompanied by a progressive increase in microglial cells indicative of ongoing inflammation. Interestingly, about half of the examined genes showed similar expression levels between treated and untreated advanced-aged mutant retinas, with some reaching normal levels. Conclusions Gene expression data suggest a shift from pro-degenerative mechanisms in middle-aged mutant retinas to more compensatory mechanisms in preserved retinal regions at advanced stages, despite ongoing degeneration. Such shift, potentially attributed to a number of surviving resilient cells, may influence disease patterns and treatment outcomes.
Collapse
Affiliation(s)
- Tatyana Appelbaum
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Evelyn Santana
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David A. Smith
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Amato A, Tschetter W, Everett L, Bailey ST, Lauer AK, Yang P, Pennesi ME. Partial rescue of the full-field electroretinogram in patients with RPE65-related retinal dystrophy following gene augmentation therapy with voretigene neparvovec-rzyl. Doc Ophthalmol 2024; 149:63-75. [PMID: 39141279 DOI: 10.1007/s10633-024-09987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE To present a series of patients with RPE65-related retinal dystrophy showing a partial rescue of the full-field electroretinogram (ERG) following gene replacement therapy with voretigene neparovec-rzyl (Luxturna®). METHODS This retrospective chart review examined 17 patients treated with voretigene neparovec-rzyl (VN) at the Casey Eye Institute (2018-2022). The last pre-operative ERG and all available post-operative ERGs were analyzed to identify subjects with functional rescue. Measurements of amplitudes and implicit times were compared to data from age-matched controls and the attenuation relative to the lower limit of normal (LLN) was calculated. For comparison with other functional exams, the last pre-operative and all post-treatment best-corrected visual acuity (BCVA) data, visual field (VF) tests and full-field threshold stimulus tests (FST) were also described. RESULTS Of patients who underwent ERGs, most had unrecordable ERGs that did not change after treatment. However, we identified three patients, treated bilaterally, who demonstrated partial rescue of the full-field ERG in both eyes which was sustained during the course of the study. CONCLUSIONS This is the largest series of patients treated with VN showing a partial rescue of the ERG. This is also the first report of bilateral ERG rescue, as well as the first description of ERG recovery occurring in non-pediatric subjects. Full-field ERG could be used in combination with other psychophysical tests and imaging modalities to detect and deepen our understanding of the response to this gene therapy approach.
Collapse
Affiliation(s)
- A Amato
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - W Tschetter
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - L Everett
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - S T Bailey
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - A K Lauer
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - P Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - M E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- Retina Foundation of the Southwest, 9600 N Central Pkwy, Dallas, TX, 75231, USA.
| |
Collapse
|
5
|
Lee M, Leskova W, Eshaq RS, Amezquita Z, Harris NR. Mechanisms of retinal photoreceptor loss in spontaneously hypertensive rats. Exp Eye Res 2024; 247:110065. [PMID: 39222765 PMCID: PMC11412233 DOI: 10.1016/j.exer.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Retinal neurodegenerative diseases, including hypertensive retinopathy, involve progressive damage to retinal neurons, leading to visual impairment. In this study, we investigated the pathological mechanisms underlying retinal neurodegeneration in spontaneously hypertensive rats (SHR), using Wistar Kyoto (WKY) rats as normotensive controls. We observed that SHR exhibited significantly higher blood pressure and decreased retinal thickness, indicating retinal neurodegeneration. Molecular tests including quantitative real-time polymerase chain reaction, immunoblot, and immunofluorescent staining showed elevated levels of the pro-inflammatory cytokine tumor necrosis factor-α, apoptotic markers (Fas, FasL, caspase-8, active caspase-3, and cleaved poly (ADP-ribose) polymerase), and necroptotic markers (receptor-interacting protein kinase-1 and -3) in SHR retinas. Additionally, we found elevated transforming growth factor-β (TGF-β) levels in the retinal pigment epithelium (RPE) of SHR, with a decrease in lecithin retinol acyltransferase (LRAT), which regulates retinoid metabolism and photoreceptor health. In human RPE cells (ARPE-19), TGF-β administration suppressed mRNA and protein levels of LRAT; and vactosertib, a selective inhibitor of TGF-β receptor kinase type 1, reversed the effect of TGF-β. These findings suggest that hypertension-induced retinal neurodegeneration involves inflammation, apoptosis, necroptosis, and disrupted retinoid metabolism, providing potential therapeutic targets for hypertensive retinopathy.
Collapse
Affiliation(s)
- Minsup Lee
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Wendy Leskova
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Randa S Eshaq
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Zithlaly Amezquita
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA.
| |
Collapse
|
6
|
Tam BM, Burns P, Chiu CN, Moritz OL. Synchronized Photoactivation of T4K Rhodopsin Causes a Chromophore-Dependent Retinal Degeneration That Is Moderated by Interaction with Phototransduction Cascade Components. J Neurosci 2024; 44:e0453242024. [PMID: 39089885 PMCID: PMC11376340 DOI: 10.1523/jneurosci.0453-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Multiple mutations in the Rhodopsin gene cause sector retinitis pigmentosa in humans and a corresponding light-exacerbated retinal degeneration (RD) in animal models. Previously we have shown that T4K rhodopsin requires photoactivation to exert its toxic effect. Here we further investigated the mechanisms involved in rod cell death caused by T4K rhodopsin in mixed male and female Xenopus laevis In this model, RD was prevented by rearing animals in constant darkness but surprisingly also in constant light. RD was maximized by light cycles containing at least 1 h of darkness and 20 min of light exposure, light intensities >750 lux, and by a sudden light onset. Under conditions of frequent light cycling, RD occurred rapidly and synchronously, with massive shedding of ROS fragments into the RPE initiated within hours and subsequent death and phagocytosis of rod cell bodies. RD was minimized by reduced light levels, pretreatment with constant light, and gradual light onset. RD was prevented by genetic ablation of the retinal isomerohydrolase RPE65 and exacerbated by ablation of phototransduction components GNAT1, SAG, and GRK1. Our results indicate that photoactivated T4K rhodopsin is toxic, that cell death requires synchronized photoactivation of T4K rhodopsin, and that toxicity is mitigated by interaction with other rod outer segment proteins regardless of whether they participate in activation or shutoff of phototransduction. In contrast, RD caused by P23H rhodopsin does not require photoactivation of the mutant protein, as it was exacerbated by RPE65 ablation, suggesting that these phenotypically similar disorders may require different treatment strategies.
Collapse
Affiliation(s)
- Beatrice M Tam
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Paloma Burns
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Colette N Chiu
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| |
Collapse
|
7
|
Yamamoto H, Okada M, Sawaguchi Y, Yamada T. Expression of opsin and visual cycle-related enzymes in fetal rat skin keratinocytes and cellular response to blue light. Biochem Biophys Rep 2024; 39:101789. [PMID: 39104840 PMCID: PMC11298612 DOI: 10.1016/j.bbrep.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The mechanism by which the skin, a non-visual tissue, responds to light remains unknown. To date, opsin expression has been demonstrated in keratinocytes, melanocytes, and fibroblasts, all of which are skin-derived cells. In this study, we examined whether the visual cycle, by which opsin activity is maintained, is present in skin keratinocytes. We also identified the wavelengths of light to which opsin in keratinocytes responds and explored their effects on skin keratinocytes. The fetal rat skin keratinocytes used in this study expressed OPN2, 3, and 5 in addition to enzymes involved in the visual cycle, and all-trans-retinal, which is produced by exposure to light, was reconverted to 11-cis-retinal, resulting in opsin activation. Using the production of all-trans-retinal after light exposure as an indicator, we discovered that keratinocytes responded to light at 450 nm. Furthermore, actin alpha cardiac muscle 1 expression in keratinocytes was enhanced and cell migration was suppressed by exposure to light at these wavelengths. These results indicate that keratinocytes express various opsins and have a visual cycle that keeps opsin active. Moreover, keratinocytes were shown to respond to the blue/UV region of the light spectrum, suggesting that opsin plays a role in the light response of the skin.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Health and Nutritional Sciences, Faculty of Food and Health Sciences, Aichi Shukutoku University, Nagakute City, Aichi, 480-1197, Japan
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Momo Okada
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Yoshikazu Sawaguchi
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Toshiyuki Yamada
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| |
Collapse
|
8
|
Li S, Jin M. Ablation of Fatty Acid Transport Protein-4 Enhances Cone Survival, M-cone Vision, and Synthesis of Cone-Tropic 9- cis-Retinal in rd12 Mouse Model of Leber Congenital Amaurosis. J Neurosci 2024; 44:e1994232024. [PMID: 38811164 PMCID: PMC11223470 DOI: 10.1523/jneurosci.1994-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a "cone-tropic" chromophore supporting cone survival and function in the retinas with defective RPE65.
Collapse
Affiliation(s)
- Songhua Li
- Neuroscience Center, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
| | - Minghao Jin
- Neuroscience Center, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
- Department of Ophthalmology, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|
9
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
10
|
Ashtari M, Cook P, Lipin M, Yu Y, Ying GS, Maguire A, Bennett J, Gee J, Zhang H. Dynamic structural remodeling of the human visual system prompted by bilateral retinal gene therapy. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100089. [PMID: 37397812 PMCID: PMC10313860 DOI: 10.1016/j.crneur.2023.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/03/2023] [Accepted: 05/01/2023] [Indexed: 07/04/2023] Open
Abstract
The impact of changes in visual input on neuronal circuitry is complex and much of our knowledge on human brain plasticity of the visual systems comes from animal studies. Reinstating vision in a group of patients with low vision through retinal gene therapy creates a unique opportunity to dynamically study the underlying process responsible for brain plasticity. Historically, increases in the axonal myelination of the visual pathway has been the biomarker for brain plasticity. Here, we demonstrate that to reach the long-term effects of myelination increase, the human brain may undergo demyelination as part of a plasticity process. The maximum change in dendritic arborization of the primary visual cortex and the neurite density along the geniculostriate tracks occurred at three months (3MO) post intervention, in line with timing for the peak changes in postnatal synaptogenesis within the visual cortex reported in animal studies. The maximum change at 3MO for both the gray and white matter significantly correlated with patients' clinical responses to light stimulations called full field sensitivity threshold (FST). Our results shed a new light on the underlying process of brain plasticity by challenging the concept of increase myelination being the hallmark of brain plasticity and instead reinforcing the idea of signal speed optimization as a dynamic process for brain plasticity.
Collapse
Affiliation(s)
- Manzar Ashtari
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Philip Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Mikhail Lipin
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yinxi Yu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Gui-Shuang Ying
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Albert Maguire
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - James Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Hui Zhang
- Centre for Medical Image Computing, University College London, London, United Kingdom
| |
Collapse
|
11
|
Dörschmann P, Thalenhorst T, Seeba C, Tischhöfer MT, Neupane S, Roider J, Alban S, Klettner A. Comparison of Fucoidans from Saccharina latissima Regarding Age-Related Macular Degeneration Relevant Pathomechanisms in Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:7939. [PMID: 37175646 PMCID: PMC10178501 DOI: 10.3390/ijms24097939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Fucoidans from brown algae are described as anti-inflammatory, antioxidative, and antiangiogenic. We tested two Saccharina latissima fucoidans (SL-FRO and SL-NOR) regarding their potential biological effects against age-related macular degeneration (AMD). Primary porcine retinal pigment epithelium (RPE), human RPE cell line ARPE-19, and human uveal melanoma cell line OMM-1 were used. Cell survival was assessed in tetrazolium assay (MTT). Oxidative stress assays were induced with erastin or H2O2. Supernatants were harvested to assess secreted vascular endothelial growth factor A (VEGF-A) in ELISA. Barrier function was assessed by measurement of trans-epithelial electrical resistance (TEER). Protectin (CD59) and retinal pigment epithelium-specific 65 kDa protein (RPE65) were evaluated in western blot. Polymorphonuclear elastase and complement inhibition assays were performed. Phagocytosis of photoreceptor outer segments was tested in a fluorescence assay. Secretion and expression of proinflammatory cytokines were assessed with ELISA and real-time PCR. Fucoidans were chemically analyzed. Neither toxic nor antioxidative effects were detected in ARPE-19 or OMM-1. Interleukin 8 gene expression was slightly reduced by SL-NOR but induced by SL-FRO in RPE. VEGF secretion was reduced in ARPE-19 by SL-FRO and in RPE by both fucoidans. Polyinosinic:polycytidylic acid induced interleukin 6 and interleukin 8 secretion was reduced by both fucoidans in RPE. CD59 expression was positively influenced by fucoidans, and they exhibited a complement and elastase inhibitory effect in cell-free assay. RPE65 expression was reduced by SL-NOR in RPE. Barrier function of RPE was transiently reduced. Phagocytosis ability was slightly reduced by both fucoidans in primary RPE but not in ARPE-19. Fucoidans from Saccharina latissima, especially SL-FRO, are promising agents against AMD, as they reduce angiogenic cytokines and show anti-inflammatory and complement inhibiting properties; however, potential effects on gene expression and RPE functions need to be considered for further research.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Tabea Thalenhorst
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Charlotte Seeba
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | | | - Sandesh Neupane
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
12
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
14
|
Hara M, Wu W, Malechka VV, Takahashi Y, Ma JX, Moiseyev G. PNPLA2 mobilizes retinyl esters from retinosomes and promotes the generation of 11-cis-retinal in the visual cycle. Cell Rep 2023; 42:112091. [PMID: 36763501 PMCID: PMC10406976 DOI: 10.1016/j.celrep.2023.112091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Retinosomes are intracellular lipid bodies found in the retinal pigment epithelium (RPE). They contain retinyl esters (REs) and are thought to be involved in visual chromophore regeneration during dark adaptation and in case of chromophore depletion. However, key enzymes in chromophore regeneration, retinoid isomerase (RPE65), and lecithin:retinol acyltransferase (LRAT) are located in the endoplasmic reticulum (ER). The mechanism and the enzyme responsible for mobilizing REs from retinosomes remained unknown. Our study demonstrates that patatin-like phospholipase domain containing 2 (PNPLA2) mobilizes all-trans-REs from retinosomes. The absence of PNPLA2 in mouse eyes leads to a significant accumulation of lipid droplets in RPE cells, declined electroretinography (ERG) response, and delayed dark adaptation compared with those of WT control mouse. Our work suggests a function of PNPLA2 as an RE hydrolase in the RPE, mobilizing REs from lipid bodies and functioning as an essential component of the visual cycle.
Collapse
Affiliation(s)
- Miwa Hara
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Wenjing Wu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Volha V Malechka
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
15
|
Uppal S, Poliakov E, Gentleman S, Redmond TM. The Amphipathic Helix in Visual Cycle Proteins: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:533-537. [PMID: 37440083 PMCID: PMC11299856 DOI: 10.1007/978-3-031-27681-1_78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The visual cycle is a complex biological process that involves the sequential action of proteins in the retinal pigment epithelial (RPE) cells and photoreceptors to modify and shuttle visual retinoids. A majority of the visual cycle proteins are membrane proteins, either integral or peripheral membrane proteins. Despite significant progress in understanding their physiological function, very limited structural information is available for the visual cycle proteins. Moreover, the mechanism of membrane interaction is not yet clear in all cases. Here, we demonstrate the presence of an amphipathic helix in selected RPE visual cycle proteins, using in silico tools, and highlight their role in membrane association and function.
Collapse
Affiliation(s)
- Sheetal Uppal
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Gentleman
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Ashtari M, Lipin M, Duong M, Ying GS, Yu Y, Maguire A, Bennett J. Neuroplasticity of the Lateral Geniculate Nucleus in Response to Retinal Gene Therapy in a Group of Patients with RPE65 Mutations. Eye Brain 2022; 14:137-147. [PMID: 36531433 PMCID: PMC9749418 DOI: 10.2147/eb.s377275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Previous works on experience-dependent brain plasticity have been limited to the cortical structures, overlooking subcortical visual structures such as the lateral geniculate nucleus (LGN). Animal studies have shown substantial experience dependent plasticity and using fMRI, human studies have demonstrated similar properties in patients with cataract surgery. However, in neither animal nor human studies LGN has not been directly assessed, mainly due to its small size, tissue heterogeneity, low contrast/noise ratio, and low spatial resolution. Methods Utilizing a new algorithm that markedly improves the LGN visibility, LGN was evaluated in a group of low vision patients before and after retinal intervention to reinstate vision and normal sighted matched controls. Results Between and within groups comparisons showed that patients had significantly smaller left (p< 0.0001) and right (p < 0.00002) LGN volumes at baseline as compared to the one-year follow-up volumes. The same baseline and one year comparison in controls was not significant. Significant positive correlations were observed between the incremental volume increase after gene therapy of the left LGN and the incremental increase in the right (r = 0.71, p < 0.02) and left (r = 0.72, p = 0.018) visual fields. Incremental volume increase of the right LGN also showed a similar positive slope but did not reach significance. Discussion These results show that despite significantly less volume at baseline, retinal gene therapy promotes robust expansion and increase in LGN volume. Reinstating vision may have facilitated the establishment of new connections between the retina and the LGN and/or unmasking of the dormant connections. The exact trajectory of the structural changes taking place in LGN is unclear but our data shows that even after years of low vision, the LGN in RPE65 patients has the potential for plasticity and expansion to a nearly normal volume one year after gene therapy administration.
Collapse
|
17
|
Ng ESY, Kady N, Hu J, Dave A, Jiang Z, Pei J, Gorin MB, Matynia A, Radu RA. Membrane Attack Complex Mediates Retinal Pigment Epithelium Cell Death in Stargardt Macular Degeneration. Cells 2022; 11:3462. [PMID: 36359858 PMCID: PMC9655712 DOI: 10.3390/cells11213462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 08/22/2023] Open
Abstract
Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with the level of CD46, an early negative regulator of the complement cascade. Persistent complement dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease in transepithelial resistance, and subsequent cell death. These findings are strong evidence of complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by reduced CD46 regulatory protein.
Collapse
Affiliation(s)
- Eunice Sze Yin Ng
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
- Molecular Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Nermin Kady
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Jane Hu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Arpita Dave
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Jacqueline Pei
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Michael B. Gorin
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Anna Matynia
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Roxana A. Radu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Uppal S, Liu T, Galvan E, Gomez F, Tittley T, Poliakov E, Gentleman S, Redmond TM. An inducible amphipathic α-helix mediates subcellular targeting and membrane binding of RPE65. Life Sci Alliance 2022; 6:6/1/e202201546. [PMID: 36265895 PMCID: PMC9585964 DOI: 10.26508/lsa.202201546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
RPE65 retinol isomerase is an indispensable player in the visual cycle between the vertebrate retina and RPE. Although membrane association is critical for RPE65 function, its mechanism is not clear. Residues 107-125 are believed to interact with membranes but are unresolved in all RPE65 crystal structures, whereas palmitoylation at C112 also plays a role. We report the mechanism of membrane recognition and binding by RPE65. Binding of aa107-125 synthetic peptide with membrane-mimicking micellar surfaces induces transition from unstructured loop to amphipathic α-helical (AH) structure but this transition is automatic in the C112-palmitoylated peptide. We demonstrate that the AH significantly affects palmitoylation level, membrane association, and isomerization activity of RPE65. Furthermore, aa107-125 functions as a membrane sensor and the AH as a membrane-targeting motif. Molecular dynamic simulations clearly show AH-membrane insertion, supporting our experimental findings. Collectively, these studies allow us to propose a working model for RPE65-membrane binding, and to provide a novel role for cysteine palmitoylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
The novel visual cycle inhibitor (±)-RPE65-61 protects retinal photoreceptors from light-induced degeneration. PLoS One 2022; 17:e0269437. [PMID: 36227868 PMCID: PMC9560169 DOI: 10.1371/journal.pone.0269437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
The visual cycle refers to a series of biochemical reactions of retinoids in ocular tissues and supports the vision in vertebrates. The visual cycle regenerates visual pigments chromophore, 11-cis-retinal, and eliminates its toxic byproducts from the retina, supporting visual function and retinal neuron survival. Unfortunately, during the visual cycle, when 11-cis-retinal is being regenerated in the retina, toxic byproducts, such as all-trans-retinal and bis-retinoid is N-retinylidene-N-retinylethanolamine (A2E), are produced, which are proposed to contribute to the pathogenesis of the dry form of age-related macular degeneration (AMD). The primary biochemical defect in Stargardt disease (STGD1) is the accelerated synthesis of cytotoxic lipofuscin bisretinoids, such as A2E, in the retinal pigment epithelium (RPE) due to mutations in the ABCA4 gene. To prevent all-trans-retinal-and bisretinoid-mediated retinal degeneration, slowing down the retinoid flow by modulating the visual cycle with a small molecule has been proposed as a therapeutic strategy. The present study describes RPE65-61, a novel, non-retinoid compound, as an inhibitor of RPE65 (a key enzyme in the visual cycle), intended to modulate the excessive activity of the visual cycle to protect the retina from harm degenerative diseases. Our data demonstrated that (±)-RPE65-61 selectively inhibited retinoid isomerase activity of RPE65, with an IC50 of 80 nM. Furthermore, (±)-RPE65-61 inhibited RPE65 via an uncompetitive mechanism. Systemic administration of (±)-RPE65-61 in mice resulted in slower chromophore regeneration after light bleach, confirming in vivo target engagement and visual cycle modulation. Concomitant protection of the mouse retina from high-intensity light damage was also observed. Furthermore, RPE65-61 down-regulated the cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING) pathway, decreased the inflammatory factor, and attenuated retinal apoptosis caused by light-induced retinal damage (LIRD), which led to the preservation of the retinal function. Taken together, (±)-RPE65-61 is a potent visual cycle modulator that may provide a neuroprotective therapeutic benefit for patients with STGD and AMD.
Collapse
|
20
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Widjaja-Adhi MAK, Kolesnikov AV, Vasudevan S, Park PSH, Kefalov VJ, Golczak M. Acyl-CoA:wax alcohol acyltransferase 2 modulates the cone visual cycle in mouse retina. FASEB J 2022; 36:e22390. [PMID: 35665537 DOI: 10.1096/fj.202101855rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
The daylight and color vision of diurnal vertebrates depends on cone photoreceptors. The capability of cones to operate and respond to changes in light brightness even under high illumination is attributed to their fast rate of recovery to the ground photosensitive state. This process requires the rapid replenishing of photoisomerized visual chromophore (11-cis-retinal) to regenerate cone visual pigments. Recently, several gene candidates have been proposed to contribute to the cone-specific retinoid metabolism, including acyl-CoA wax alcohol acyltransferase 2 (AWAT2, aka MFAT). Here, we evaluated the role of AWAT2 in the regeneration of visual chromophore by the phenotypic characterization of Awat2-/- mice. The global absence of AWAT2 enzymatic activity did not affect gross retinal morphology or the rate of visual chromophore regeneration by the canonical RPE65-dependent visual cycle. Analysis of Awat2 expression indicated the presence of the enzyme throughout the murine retina, including the retinal pigment epithelium (RPE) and Müller cells. Electrophysiological recordings revealed reduced maximal rod and cone dark-adapted responses in AWAT2-deficient mice compared to control mice. While rod dark adaptation was not affected by the lack of AWAT2, M-cone dark adaptation both in isolated retina and in vivo was significantly suppressed. Altogether, these results indicate that while AWAT2 is not required for the normal operation of the canonical visual cycle, it is a functional component of the cone-specific visual chromophore regenerative pathway.
Collapse
Affiliation(s)
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA
| | - Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA.,Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA.,Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Pan W, Zhou YL, Wang J, Dai HE, Wang X, Liu L. Structural and Functional Analysis of Nonheme Iron Enzymes BCMO-1 and BCMO-2 from Caenorhabditis elegans. Front Mol Biosci 2022; 9:844453. [PMID: 35223999 PMCID: PMC8866865 DOI: 10.3389/fmolb.2022.844453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Carotenoid metabolism is critical for diverse physiological processes. The nematode Caenorhabditis elegans has two genes that are annotated as β-carotene 15,15′-monooxygenase (BCMO) and are 17 centimorgan apart on chromosome II, but the function of BCMO-1 and BCMO-2 remains uncharacterized. Sequence homology indicates that the two enzymes belong to the carotenoid cleavage dioxygenase family that share a seven-bladed β-propeller fold with a nonheme iron center. Here we determined crystal structures of BCMO-1 and BCMO-2 at resolutions of 1.8 and 1.9 Å, respectively. Structural analysis reveals that BCMO-1 and BCMO-2 are strikingly similar to each other. We also characterized their β-carotene cleavage activity, but the results suggest that they may not act as β-carotene 15,15′-oxygenases.
Collapse
Affiliation(s)
- Weimin Pan
- School of Life Sciences, Anhui University, Hefei, China
| | | | - Jian Wang
- School of Life Sciences, Anhui University, Hefei, China
| | - Huai-En Dai
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
- *Correspondence: Lin Liu,
| |
Collapse
|
23
|
De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022; 806:145929. [PMID: 34461150 DOI: 10.1016/j.gene.2021.145929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
The body color of Neocaridina denticulate sinensis is a compelling phenotypic trait, in which a cascade of carotenoid metabolic processes plays an important role. The study was conducted to compare the transcriptome of cephalothoraxes among three pigmentation phenotypes (red, blue, and chocolate) of N. denticulate sinensis. The purpose of this study was to explore the candidate genes associated with different colors of N. denticulate sinensis. Nine cDNA libraries in three groups were constructed from the cephalothoraxes of shrimps. After assembly, 75022 unigenes were obtained in total with an average length of 1026 bp and N50 length of 1876 bp. There were 45977, 25284, 23605, 21913 unigenes annotated in the Nr, Swissprot, KOG, and KEGG databases, respectively. Differential expression analysis revealed that there were 829, 554, and 3194 differentially expressed genes (DEGs) in RD vs BL, RD vs CH, and BL vs CH, respectively. These DEGs may play roles in the absorption, transport, and metabolism of carotenoids. We also emphasized that electron transfer across the inner mitochondrial membrane (IMM) was a key process in pigment metabolism. In addition, a total of 6328 simple sequence repeats (SSRs) were also detected in N. denticulate sinensis. The results laid a solid foundation for further research on the molecular mechanism of integument pigmentation in the crustacean and contributed to developing more attractive aquatic animals.
Collapse
|
24
|
Chen L, Cao D, Messinger JD, Ach T, Ferrara D, Freund KB, Curcio CA. Histology and clinical imaging lifecycle of black pigment in fibrosis secondary to neovascular age-related macular degeneration. Exp Eye Res 2022; 214:108882. [PMID: 34890604 PMCID: PMC8809488 DOI: 10.1016/j.exer.2021.108882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Melanotic cells with large spherical melanosomes, thought to originate from retinal pigment epithelium (RPE), are found in eyes with neovascular age-related macular degeneration (nvAMD). To generate hypotheses about RPE participation in fibrosis, we correlate histology to clinical imaging in an eye with prominent black pigment in fibrotic scar secondary to nvAMD. METHODS Macular findings in a white woman with untreated inactive subretinal fibrosis due to nvAMD in her right eye were documented over 9 years with color fundus photography (CFP), fundus autofluorescence (FAF) imaging, and optical coherence tomography (OCT). After death (age 90 years), this index eye was prepared for light and electron microscopy to analyze 7 discrete zones of pigmentation in the fibrotic scar. In additional donor eyes with nvAMD, we determined the frequency of black pigment (n = 36 eyes) and immuno-labeled for retinoid, immunologic, and microglial markers (RPE65, CD68, Iba1, TMEM119; n = 3 eyes). RESULTS During follow-up of the index eye, black pigment appeared and expanded within a hypoautofluorescent fibrotic scar. The blackest areas correlated to melanotic cells (containing large spherical melanosomes), some in multiple layers. Pale areas had sparse pigmented cells. Gray areas correlated to cells with RPE organelles entombed in the scar and multinucleate cells containing sparse large spherical melanosomes. In 94% of nvAMD donor eyes, hyperpigmentation was visible. Certain melanotic cells expressed some RPE65 and mostly CD68. Iba1 and TMEM119 immunoreactivity, found both in retina and scar, did not co-localize with melanotic cells. CONCLUSION Hyperpigmentation in CFP results from both organelle content and optical superimposition effects. Black fundus pigment in nvAMD is common and corresponds to cells containing numerous large spherical melanosomes and superimposition of cells containing sparse large melanosomes, respectively. Melanotic cells are molecularly distinct from RPE, consistent with a process of transdifferentiation. The subcellular source of spherical melanosomes remains to be determined. Detailed histology of nvAMD eyes will inform future studies using technologies for spatially resolved molecular discovery to generate new therapies for fibrosis. The potential of black pigment as a biomarker for fibrosis can be investigated in clinical multimodal imaging datasets.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | | | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA,Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA,Corresponding author. Department of Ophthalmology and Visual Sciences; EyeSight Foundation of Alabama Vision Research Laboratories, 1670 University Boulevard Room 360; University of Alabama School of Medicine, Birmingham, AL, 35294-0099, USA. (C.A. Curcio)
| |
Collapse
|
25
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
26
|
Sethna S, Zein WM, Riaz S, Giese AP, Schultz JM, Duncan T, Hufnagel RB, Brewer CC, Griffith AJ, Redmond TM, Riazuddin S, Friedman TB, Ahmed ZM. Proposed therapy, developed in a Pcdh15-deficient mouse, for progressive loss of vision in human Usher syndrome. eLife 2021; 10:67361. [PMID: 34751129 PMCID: PMC8577840 DOI: 10.7554/elife.67361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Usher syndrome type I (USH1) is characterized by deafness, vestibular areflexia, and progressive retinal degeneration. The protein-truncating p.Arg245* founder variant of PCDH15 (USH1F) has an ~2% carrier frequency amongst Ashkenazi Jews accounts for ~60% of their USH1 cases. Here, longitudinal phenotyping in 13 USH1F individuals revealed progressive retinal degeneration, leading to severe vision loss with macular atrophy by the sixth decade. Half of the affected individuals were legally blind by their mid-50s. The mouse Pcdh15R250X variant is equivalent to human p.Arg245*. Homozygous Pcdh15R250X mice also have visual deficits and aberrant light-dependent translocation of the phototransduction cascade proteins, arrestin, and transducin. Retinal pigment epithelium (RPE)-specific retinoid cycle proteins, RPE65 and CRALBP, were also reduced in Pcdh15R250X mice, indicating a dual role for protocadherin-15 in photoreceptors and RPE. Exogenous 9-cis retinal improved ERG amplitudes in Pcdh15R250X mice, suggesting a basis for a clinical trial of FDA-approved retinoids to preserve vision in USH1F patients.
Collapse
Affiliation(s)
- Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Sehar Riaz
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.,National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Arnaud Pj Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Julie M Schultz
- Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, Bethesda, United States
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, Bethesda, United States
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.,Departments of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, United States.,Departments of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
27
|
Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog Retin Eye Res 2021; 88:101013. [PMID: 34607013 PMCID: PMC8975950 DOI: 10.1016/j.preteyeres.2021.101013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate vision critically depends on an 11-cis-retinoid renewal system known as the visual cycle. At the heart of this metabolic pathway is an enzyme known as retinal pigment epithelium 65 kDa protein (RPE65), which catalyzes an unusual, possibly biochemically unique, reaction consisting of a coupled all-trans-retinyl ester hydrolysis and alkene geometric isomerization to produce 11-cis-retinol. Early work on this isomerohydrolase demonstrated its membership to the carotenoid cleavage dioxygenase superfamily and its essentiality for 11-cis-retinal production in the vertebrate retina. Three independent studies published in 2005 established RPE65 as the actual isomerohydrolase instead of a retinoid-binding protein as previously believed. Since the last devoted review of RPE65 enzymology appeared in this journal, major advances have been made in a number of areas including our understanding of the mechanistic details of RPE65 isomerohydrolase activity, its phylogenetic origins, the relationship of its membrane binding affinity to its catalytic activity, its role in visual chromophore production for rods and cones, its modulation by macromolecules and small molecules, and the involvement of RPE65 mutations in the development of retinal diseases. In this article, I will review these areas of progress with the goal of integrating results from the varied experimental approaches to provide a comprehensive picture of RPE65 biochemistry. Key outstanding questions that may prove to be fruitful future research pursuits will also be highlighted.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA; Department of Ophthalmology and Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|
28
|
Dinculescu A, Link BA, Saperstein DA. Retinal Gene Therapy for Usher Syndrome: Current Developments, Challenges, and Perspectives. Int Ophthalmol Clin 2021; 61:109-124. [PMID: 34584048 PMCID: PMC8478317 DOI: 10.1097/iio.0000000000000378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Taylor AW, Hsu S, Ng TF. The Role of Retinal Pigment Epithelial Cells in Regulation of Macrophages/Microglial Cells in Retinal Immunobiology. Front Immunol 2021; 12:724601. [PMID: 34484232 PMCID: PMC8414138 DOI: 10.3389/fimmu.2021.724601] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022] Open
Abstract
The ocular tissue microenvironment is immune privileged and uses several mechanisms of immunosuppression to prevent the induction of inflammation. Besides being a blood-barrier and source of photoreceptor nutrients, the retinal pigment epithelial cells (RPE) regulate the activity of immune cells within the retina. These mechanisms involve the expression of immunomodulating molecules that make macrophages and microglial cells suppress inflammation and promote immune tolerance. The RPE have an important role in ocular immune privilege to regulate the behavior of immune cells within the retina. Reviewed is the current understanding of how RPE mediate this regulation and the changes seen under pathological conditions.
Collapse
Affiliation(s)
- Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Samuel Hsu
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Tat Fong Ng
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
30
|
Kim YJ, Park S, Ha T, Kim S, Lim S, You H, Kim JW. Retinoid Metabolism in the Degeneration of Pten-Deficient Mouse Retinal Pigment Epithelium. Mol Cells 2021; 44:613-622. [PMID: 34376625 PMCID: PMC8424139 DOI: 10.14348/molcells.2021.0138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022] Open
Abstract
In vertebrate eyes, the retinal pigment epithelium (RPE) provides structural and functional homeostasis to the retina. The RPE takes up retinol (ROL) to be dehydrogenated and isomerized to 11-cis-retinaldehyde (11-cis-RAL), which is a functional photopigment in mammalian photoreceptors. As excessive ROL is toxic, the RPE must also establish mechanisms to protect against ROL toxicity. Here, we found that the levels of retinol dehydrogenases (RDHs) are commonly decreased in phosphatase tensin homolog (Pten)-deficient mouse RPE, which degenerates due to elevated ROL and that can be rescued by feeding a ROL-free diet. We also identified that RDH gene expression is regulated by forkhead box O (FOXO) transcription factors, which are inactivated by hyperactive Akt in the Pten-deficient mouse RPE. Together, our findings suggest that a homeostatic pathway comprising PTEN, FOXO, and RDH can protect the RPE from ROL toxicity.
Collapse
Affiliation(s)
- You-Joung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Taejeong Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungbeom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Soyeon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Han You
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
31
|
Zhu XY, Chen YH, Zhang T, Liu SJ, Bai XY, Huang XY, Jiang M, Sun XD. Improvement of human embryonic stem cell-derived retinal pigment epithelium cell adhesion, maturation, and function through coating with truncated recombinant human vitronectin. Int J Ophthalmol 2021; 14:1160-1167. [PMID: 34414078 DOI: 10.18240/ijo.2021.08.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore an xeno-free and defined coating substrate suitable for the culture of H9 human embryonic stem cell-derived retinal pigment epithelial (hES-RPE) cells in vitro, and compare the behaviors and functions of hES-RPE cells on two culture substrates, laminin521 (LN-521) and truncated recombinant human vitronectin (VTN-N). METHODS hES-RPE cells were used in the experiment. The abilities of LN-521 and VTN-N at different concentrations to adhere to hES-RPE cells were compared with a high-content imaging system. Quantitative real-time polymerase chain reaction was used to evaluate RPE-specific gene expression levels midway (day 10) and at the end (day 20) of the time course. Cell polarity was observed by immunofluorescent staining for apical and basal markers of the RPE. The phagocytic ability of hES-RPE cells was identified by flow cytometry and immunofluorescence. RESULTS The cell adhesion assay showed that the ability of LN-521 to adhere to hES-RPE cells was dose-dependent. With increasing coating concentration, an increasing number of cells attached to the surface of LN-521-coated wells. In contrast, VTN-N presented a strong adhesive ability even at a low concentration. The optimal concentration of LN-521 and VTN-N required to coat and adhesion to hES-RPE cells were 2 and 0.25 µg/cm2, respectively. Furthermore, both LN-521 and VTN-N could facilitate adoption of the desired cobblestone cellular morphology with tight junction and showed polarity by the hES-RPE cells. However, hES-RPE cells cultivated in VTN-N had a greater phagocytic ability, and it took less time for these hES-RPE cells to mature. CONCLUSION VTN-N is a more suitable coating substrate for cultivating hES-RPE cells.
Collapse
Affiliation(s)
- Xin-Yue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Su-Jun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xin-Yue Bai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xian-Yu Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
32
|
Boyer NP, Thompson DA, Koutalos Y. Relative Contributions of All-Trans and 11-Cis Retinal to Formation of Lipofuscin and A2E Accumulating in Mouse Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33523199 PMCID: PMC7862733 DOI: 10.1167/iovs.62.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Bis-retinoids are a major component of lipofuscin that accumulates in the retinal pigment epithelium (RPE) in aging and age-related macular degeneration (AMD). Although bis-retinoids are known to originate from retinaldehydes required for the light response of photoreceptor cells, the relative contributions of the chromophore, 11-cis retinal, and photoisomerization product, all-trans retinal, are unknown. In photoreceptor outer segments, all-trans retinal, but not 11-cis retinal, is reduced by retinol dehydrogenase 8 (RDH8). Using Rdh8−/− mice, we evaluated the contribution of increased all-trans retinal to the formation and stability of RPE lipofuscin. Methods Rdh8−/− mice were reared in cyclic-light or darkness for up to 6 months, with selected light-reared cohorts switched to dark-rearing for the final 1 to 8 weeks. The bis-retinoid A2E was measured from chloroform-methanol extracts of RPE-choroid using HPLC-UV/VIS spectroscopy. Lipofuscin fluorescence was measured from whole flattened eyecups (excitation, 488 nm; emission, 565–725 nm). Results Cyclic-light-reared Rdh8−/− mice accumulated A2E and RPE lipofuscin approximately 1.5 times and approximately 2 times faster, respectively, than dark-reared mice. Moving Rdh8−/− mice from cyclic-light to darkness resulted in A2E levels less than expected to have accumulated before the move. Conclusions Our findings establish that elevated levels of all-trans retinal present in cyclic-light-reared Rdh8−/− mice, which remain low in wild-type mice, contribute only modestly to RPE lipofuscin formation and accumulation. Furthermore, decreases in A2E levels occurring after moving cyclic-light-reared Rdh8−/− mice to darkness are consistent with processing of A2E within the RPE and the existence of a mechanism that could be a therapeutic target for controlling A2E cytotoxicity.
Collapse
Affiliation(s)
- Nicholas P Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Debra A Thompson
- Department of Ophthalmology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States.,Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
33
|
Zhang Y, Mao F, Mu H, Huang M, Bao Y, Wang L, Wong NK, Xiao S, Dai H, Xiang Z, Ma M, Xiong Y, Zhang Z, Zhang L, Song X, Wang F, Mu X, Li J, Ma H, Zhang Y, Zheng H, Simakov O, Yu Z. The genome of Nautilus pompilius illuminates eye evolution and biomineralization. Nat Ecol Evol 2021; 5:927-938. [PMID: 33972735 PMCID: PMC8257504 DOI: 10.1038/s41559-021-01448-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Nautilus is the sole surviving externally shelled cephalopod from the Palaeozoic. It is unique within cephalopod genealogy and critical to understanding the evolutionary novelties of cephalopods. Here, we present a complete Nautilus pompilius genome as a fundamental genomic reference on cephalopod innovations, such as the pinhole eye and biomineralization. Nautilus shows a compact, minimalist genome with few encoding genes and slow evolutionary rates in both non-coding and coding regions among known cephalopods. Importantly, multiple genomic innovations including gene losses, independent contraction and expansion of specific gene families and their associated regulatory networks likely moulded the evolution of the nautilus pinhole eye. The conserved molluscan biomineralization toolkit and lineage-specific repetitive low-complexity domains are essential to the construction of the nautilus shell. The nautilus genome constitutes a valuable resource for reconstructing the evolutionary scenarios and genomic innovations that shape the extant cephalopods.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Huawei Mu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Minwei Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Nai-Kei Wong
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Mingli Ma
- Biomarker Technologies Corporation, Beijing, China
| | - Yuanyan Xiong
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Zhang
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lvping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaoyuan Song
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fan Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xiyu Mu
- Biomarker Technologies Corporation, Beijing, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | | | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
34
|
Choi EH, Daruwalla A, Suh S, Leinonen H, Palczewski K. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor. J Lipid Res 2021; 62:100040. [PMID: 32493732 PMCID: PMC7910522 DOI: 10.1194/jlr.tr120000850] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Driven by the energy of a photon, the visual pigments in rod and cone photoreceptor cells isomerize 11-cis-retinal to the all-trans configuration. This photochemical reaction initiates the signal transduction pathway that eventually leads to the transmission of a visual signal to the brain and leaves the opsins insensitive to further light stimulation. For the eye to restore light sensitivity, opsins require recharging with 11-cis-retinal. This trans-cis back conversion is achieved through a series of enzymatic reactions composing the retinoid (visual) cycle. Although it is evident that the classical retinoid cycle is critical for vision, the existence of an adjunct pathway for 11-cis-retinal regeneration has been debated for many years. Retinal pigment epithelium (RPE)-retinal G protein-coupled receptor (RGR) has been identified previously as a mammalian retinaldehyde photoisomerase homologous to retinochrome found in invertebrates. Using pharmacological, genetic, and biochemical approaches, researchers have now established the physiological relevance of the RGR in 11-cis-retinal regeneration. The photoisomerase activity of RGR in the RPE and Müller glia explains how the eye can remain responsive in daylight. In this review, we will focus on retinoid metabolism in the eye and visual chromophore regeneration mediated by RGR.
Collapse
Affiliation(s)
- Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, University of California, Irvine, CA, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| | - Anahita Daruwalla
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Departments of Physiology and Biophysics, and Chemistry, University of California, Irvine, CA, USA
| | - Susie Suh
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, University of California, Irvine, CA, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Henri Leinonen
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, University of California, Irvine, CA, USA; Departments of Physiology and Biophysics, and Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
35
|
Pappalardo J, Heath Jeffery RC, Thompson JA, Chelva E, Pham Q, Constable IJ, McLaren TL, Lamey TM, De Roach JN, Chen FK. A novel phenotype in a family with autosomal dominant retinal dystrophy due to c.1430A > G in retinoid isomerohydrolase (RPE65) and c.37C > T in bestrophin 1 (BEST1). Doc Ophthalmol 2021; 143:61-73. [PMID: 33512609 DOI: 10.1007/s10633-021-09819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The c.1430A > G (Asp477Gly) variant in RPE65 has been reported in Irish and Scottish families with either an autosomal dominant retinal dystrophy (adRD) that resembles choroideremia, a vitelliform macular dystrophy or an isolated macular atrophy. We report novel features on multimodal imaging and the natural history of a family harbouring this variant in combination with the BEST1 c.37C > T (Arg13Cys) variant. METHODS Members of a family with an adRD were examined clinically to ascertain phenotype and underwent genetic testing. Multimodal imaging included widefield colour fundus photography, quantitative autofluorescence (qAF) and spectral domain optical coherence tomography. Electrophysiology and microperimetry were also performed. RESULTS Vision loss was attributed to foveal atrophy in the proband and choroidal neovascularisation and a vitello-eruptive lesion in one affected son. Peripheral retinal white dots corresponding to subretinal deposits were seen in three patients. The median qAF8 values in the proband (I:1) were low (40 and 101 in OD and OS) at age 79. Similarly, the qAF8 values for the middle son (II:2) were also low (100 and 87 in ODS and OS) at age 60. Electrophysiology showed disproportionate reduction in Arden ratio prior to the gradual loss of full-field responses. Microperimetry demonstrated an enlarging scotoma in the proband. CONCLUSIONS The coexistence of the pathogenic BEST1 c.37C > T variant may modify clinical features observed in RPE65 adRD. This study expands our understanding of RPE65 adRD as a retinoid cycle disorder supported by the reduced qAF, fine white retinal dots and corresponding subretinal deposits on OCT in affected members.
Collapse
Affiliation(s)
- Juanita Pappalardo
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Enid Chelva
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Quang Pham
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia
| | - Ian J Constable
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia. .,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia. .,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia. .,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
36
|
Annear MJ, Mowat FM, Occelli LM, Smith AJ, Curran PG, Bainbridge JW, Ali RR, Petersen-Jones SM. A Comprehensive Study of the Retinal Phenotype of Rpe65-Deficient Dogs. Cells 2021; 10:cells10010115. [PMID: 33435495 PMCID: PMC7827248 DOI: 10.3390/cells10010115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/09/2023] Open
Abstract
The Rpe65-deficient dog has been important for development of translational therapies of Leber congenital amaurosis type 2 (LCA2). The purpose of this study was to provide a comprehensive report of the natural history of retinal changes in this dog model. Rpe65-deficient dogs from 2 months to 10 years of age were assessed by fundus imaging, electroretinography (ERG) and vision testing (VT). Changes in retinal layer thickness were assessed by optical coherence tomography and on plastic retinal sections. ERG showed marked loss of retinal sensitivity, with amplitudes declining with age. Retinal thinning initially developed in the area centralis, with a slower thinning of the outer retina in other areas starting with the inferior retina. VT showed that dogs of all ages performed well in bright light, while at lower light levels they were blind. Retinal pigment epithelial (RPE) inclusions developed and in younger dogs and increased in size with age. The loss of photoreceptors was mirrored by a decline in ERG amplitudes. The slow degeneration meant that sufficient photoreceptors, albeit very desensitized, remained to allow for residual bright light vision in older dogs. This study shows the natural history of the Rpe65-deficient dog model of LCA2.
Collapse
Affiliation(s)
- Matthew J Annear
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
| | - Freya M Mowat
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
| | - Alexander J Smith
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (A.J.S.); (J.W.B.); (R.R.A.)
| | - Paul G Curran
- Center for Statistical Consulting, Michigan State University, East Lansing, MI 48824, USA;
| | - James W Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (A.J.S.); (J.W.B.); (R.R.A.)
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (A.J.S.); (J.W.B.); (R.R.A.)
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
- Correspondence:
| |
Collapse
|
37
|
Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc Natl Acad Sci U S A 2020; 117:32114-32123. [PMID: 33257550 DOI: 10.1073/pnas.2012623117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty acid transport protein 4 (FATP4), a transmembrane protein in the endoplasmic reticulum (ER), is a recently identified negative regulator of the ER-associated retinal pigment epithelium (RPE)65 isomerase necessary for recycling 11-cis-retinal, the light-sensitive chromophore of both rod and cone opsin visual pigments. The role of FATP4 in the disease progression of retinal dystrophies associated with RPE65 mutations is completely unknown. Here we show that FATP4-deficiency in the RPE results in 2.8-fold and 1.7-fold increase of 11-cis- and 9-cis-retinals, respectively, improving dark-adaptation rates as well as survival and function of rods in the Rpe65 R91W knockin (KI) mouse model of Leber congenital amaurosis (LCA). Degradation of S-opsin in the proteasomes, but not in the lysosomes, was remarkably reduced in the KI mouse retinas lacking FATP4. FATP4-deficiency also significantly rescued S-opsin trafficking and M-opsin solubility in the KI retinas. The number of S-cones in the inferior retinas of 4- or 6-mo-old KI;Fatp4 -/- mice was 7.6- or 13.5-fold greater than those in age-matched KI mice. Degeneration rates of S- and M-cones are negatively correlated with expression levels of FATP4 in the RPE of the KI, KI;Fatp4 +/- , and KI;Fatp4 -/- mice. Moreover, the visual function of S- and M-cones is markedly preserved in the KI;Fatp4 -/- mice, displaying an inverse correlation with the FATP4 expression levels in the RPE of the three mutant lines. These findings establish FATP4 as a promising therapeutic target to improve the visual cycle, as well as survival and function of cones and rods in patients with RPE65 mutations.
Collapse
|
38
|
Properties and Therapeutic Implications of an Enigmatic D477G RPE65 Variant Associated with Autosomal Dominant Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11121420. [PMID: 33261050 PMCID: PMC7760593 DOI: 10.3390/genes11121420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
RPE65 isomerase, expressed in the retinal pigmented epithelium (RPE), is an enzymatic component of the retinoid cycle, converting all-trans retinyl ester into 11-cis retinol, and it is essential for vision, because it replenishes the photon capturing 11-cis retinal. To date, almost 200 loss-of-function mutations have been identified within the RPE65 gene causing inherited retinal dystrophies, most notably Leber congenital amaurosis (LCA) and autosomal recessive retinitis pigmentosa (arRP), which are both severe and early onset disease entities. We previously reported a mutation, D477G, co-segregating with the disease in a late-onset form of autosomal dominant RP (adRP) with choroidal involvement; uniquely, it is the only RPE65 variant to be described with a dominant component. Families or individuals with this variant have been encountered in five countries, and a number of subsequent studies have been reported in which the molecular biological and physiological properties of the variant have been studied in further detail, including observations of possible novel functions in addition to reduced RPE65 enzymatic activity. With regard to the latter, a human phase 1b proof-of-concept study has recently been reported in which aspects of remaining vision were improved for up to one year in four of five patients with advanced disease receiving a single one-week oral dose of 9-cis retinaldehyde, which is the first report showing efficacy and safety of an oral therapy for a dominant form of RP. Here, we review data accrued from published studies investigating molecular mechanisms of this unique variant and include hitherto unpublished material on the clinical spectrum of disease encountered in patients with the D477G variant, which, in many cases bears striking similarities to choroideremia.
Collapse
|
39
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
40
|
Abstract
Taurine is a sulfur-containing amino acid that is not incorporated into protein but is abundant in retina. Schiff base adducts that form nonenzymatically and reversibly from reactions between taurine and vitamin A aldehyde (A1T) are increased under conditions in which the visual chromophore 11-cis-retinal is more abundant. These settings include black versus albino mice, dark-adapted versus light-adapted mice, and mice expressing the Rpe65-Leu450 versus Rpe65-Met450 variant. Conversely, A1T is less abundant in mouse models deficient in 11-cis-retinal. As an amphiphile, protonated A1T may serve to facilitate retinoid trafficking and could constitute a small-molecule reserve of mobilizable 11-cis-retinal in photoreceptor cells. Visual pigment consists of opsin covalently linked to the vitamin A-derived chromophore, 11-cis-retinaldehyde. Photon absorption causes the chromophore to isomerize from the 11-cis- to all-trans-retinal configuration. Continued light sensitivity necessitates the regeneration of 11-cis-retinal via a series of enzyme-catalyzed steps within the visual cycle. During this process, vitamin A aldehyde is shepherded within photoreceptors and retinal pigment epithelial cells to facilitate retinoid trafficking, to prevent nonspecific reactivity, and to conserve the 11-cis configuration. Here we show that redundancy in this system is provided by a protonated Schiff base adduct of retinaldehyde and taurine (A1-taurine, A1T) that forms reversibly by nonenzymatic reaction. A1T was present as 9-cis, 11-cis, 13-cis, and all-trans isomers, and the total levels were higher in neural retina than in retinal pigment epithelium (RPE). A1T was also more abundant under conditions in which 11-cis-retinaldehyde was higher; this included black versus albino mice, dark-adapted versus light-adapted mice, and mice carrying the Rpe65-Leu450 versus Rpe65-450Met variant. Taurine levels paralleled these differences in A1T. Moreover, A1T was substantially reduced in mice deficient in the Rpe65 isomerase and in mice deficient in cellular retinaldehyde-binding protein; in these models the production of 11-cis-retinal is compromised. A1T is an amphiphilic small molecule that may represent a mechanism for escorting retinaldehyde. The transient Schiff base conjugate that the primary amine of taurine forms with retinaldehyde would readily hydrolyze to release the retinoid and thus may embody a pool of 11-cis-retinal that can be marshalled in photoreceptor cells.
Collapse
|
41
|
Abstract
The visual phototransduction cascade begins with a cis-trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
Collapse
|
42
|
Wang X, Shan X, Gregory-Evans K, Gregory-Evans CY. RNA-based therapies in animal models of Leber congenital amaurosis causing blindness. PRECISION CLINICAL MEDICINE 2020; 3:113-126. [PMID: 35692607 PMCID: PMC8985810 DOI: 10.1093/pcmedi/pbaa009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Leber congenital amaurosis (LCA) is a severe, genetically heterogeneous recessive eye disease in which ~ 35% of gene mutations are in-frame nonsense mutations coding for loss-of-function premature termination codons (PTCs) in mRNA. Nonsense suppression therapy allows read-through of PTCs leading to production of full-length protein. A limitation of nonsense suppression is that nonsense-mediated decay (NMD) degrades PTC-containing RNA transcripts. The purpose of this study was to determine whether inhibition of NMD could improve nonsense suppression efficacy in vivo. Using a high-throughput approach in the recessive cep290 zebrafish model of LCA (cep290;Q1223X), we first tested the NMD inhibitor Amlexanox in combination with the nonsense suppression drug Ataluren. We observed reduced retinal cell death and improved visual function. With these positive data, we next investigated whether this strategy was also applicable across species in two mammalian models: Rd12 (rpe65;R44X) and Rd3 (rd3;R107X) mouse models of LCA. In the Rd12 model, cell death was reduced, RPE65 protein was produced, and in vivo visual function testing was improved. We establish for the first time that the mechanism of action of Amlexanox in Rd12 retina was through reduced UPF1 phosphorylation. In the Rd3 model, however, no beneficial effect was observed with Ataluren alone or in combination with Amlexanox. This variation in response establishes that some forms of nonsense mutation LCA can be targeted by RNA therapies, but that this needs to be verified for each genotype. The implementation of precision medicine by identifying better responders to specific drugs is essential for development of validated retinal therapies.
Collapse
Affiliation(s)
- Xia Wang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Xianghong Shan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| |
Collapse
|
43
|
Udry F, Decembrini S, Gamm DM, Déglon N, Kostic C, Arsenijevic Y. Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Sci Rep 2020; 10:8890. [PMID: 32483256 PMCID: PMC7264209 DOI: 10.1038/s41598-020-65657-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of cobblestone-like epithelial cells that accomplishes critical functions for the retina. Several protocols have been published to differentiate pluripotent stem cells into RPE cells suitable for disease modelling and therapy development. In our study, the RPE identity of human induced pluripotent stem cell (hiPSC)-derived RPE (iRPE) was extensively characterized, and then used to test a lentiviral-mediated RPE65 gene augmentation therapy. A dose study of the lentiviral vector revealed a dose-dependent effect of the vector on RPE65 mRNA levels. A marked increase of the RPE65 mRNA was also observed in the iRPE (100-fold) as well as in an experimental set with RPE derived from another hiPSC source and from foetal human RPE. Although iRPE displayed features close to bona fide RPE, no or a modest increase of the RPE65 protein level was observed depending on the protein detection method. Similar results were observed with the two other cell lines. The mechanism of RPE65 protein regulation remains to be elucidated, but the current work suggests that high vector expression will not produce an excess of the normal RPE65 protein level.
Collapse
Affiliation(s)
- Florian Udry
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Sarah Decembrini
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr. 20, 4031, Basel, Switzerland
| | - David M Gamm
- McPherson Eye Research Institute, Waisman Center and Department of Ophthalmology and Visual Sciences, and University of Wisconsin-Madison, Madison, USA
| | - Nicole Déglon
- Neuroscience Research Center, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Kostic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland.
| |
Collapse
|
44
|
Mowad TG, Willett AE, Mahmoudian M, Lipin M, Heinecke A, Maguire AM, Bennett J, Ashtari M. Compensatory Cross-Modal Plasticity Persists After Sight Restoration. Front Neurosci 2020; 14:291. [PMID: 32477041 PMCID: PMC7235304 DOI: 10.3389/fnins.2020.00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/13/2020] [Indexed: 11/30/2022] Open
Abstract
Sensory deprivation prompts extensive structural and functional reorganizations of the cortex resulting in the occupation of space for the lost sense by the intact sensory systems. This process, known as cross-modal plasticity, has been widely studied in individuals with vision or hearing loss. However, little is known on the neuroplastic changes in restoring the deprived sense. Some reports consider the cross-modal functionality maladaptive to the return of the original sense, and others view this as a critical process in maintaining the neurons of the deprived sense active and operational. These controversial views have been challenged in both auditory and vision restoration reports for decades. Recently with the approval of Luxturna as the first retinal gene therapy (GT) drug to reverse blindness, there is a renewed interest for the crucial role of cross-modal plasticity on sight restoration. Employing a battery of task and resting state functional magnetic resonance imaging (rsfMRI), in comparison to a group of sighted controls, we tracked the functional changes in response to auditory and visual stimuli and at rest, in a group of patients with biallelic mutations in the RPE65 gene (“RPE65 patients”) before and 3 years after GT. While the sighted controls did not present any evidence for auditory cross-modal plasticity, robust responses to the auditory stimuli were found in occipital cortex of the RPE65 patients overlapping visual responses and significantly elevated 3 years after GT. The rsfMRI results showed significant connectivity between the auditory and visual areas for both groups albeit attenuated in patients at baseline but enhanced 3 years after GT. Taken together, these findings demonstrate that (1) RPE65 patients present with an auditory cross-modal component; (2) visual and non-visual responses of the visual cortex are considerably enhanced after vision restoration; and (3) auditory cross-modal functions did not adversely affect the success of vision restitution. We hypothesize that following GT, to meet the demand for the newly established retinal signals, remaining or dormant visual neurons are revived or unmasked for greater participation. These neurons or a subset of these neurons respond to both the visual and non-visual demands and further strengthen connectivity between the auditory and visual cortices.
Collapse
Affiliation(s)
- Theresa G Mowad
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Aimee E Willett
- The Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | | | - Mikhail Lipin
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Armin Heinecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Albert M Maguire
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jean Bennett
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Manzar Ashtari
- Department of Ophthalmology, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States.,Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
45
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Uppal S, Rogozin IB, Redmond T, Poliakov E. Palmitoylation of Metazoan Carotenoid Oxygenases. Molecules 2020; 25:E1942. [PMID: 32331396 PMCID: PMC7221588 DOI: 10.3390/molecules25081942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Abundant in nature, carotenoids are a class of fat-soluble pigments with a polyene tetraterpenoid structure. They possess antioxidant properties and their consumption leads to certain health benefits in humans. Carotenoid cleavage oxygenases (CCOs) are a superfamily of enzymes which oxidatively cleave carotenoids and they are present in all kingdoms of life. Complexity of CCO evolution is high. For example, in this study we serendipitously found a new family of eukaryotic CCOs, the apocarotenoid oxygenase-like (ACOL) family. This family has several members in animal genomes and lacks the animal-specific amino acid motif PDPCK. This motif is likely to be associated with palmitoylation of some animal CCOs. We recently demonstrated that two mammalian members of the carotenoid oxygenase family retinal pigment epithelial-specific 65 kDa protein (RPE65) and beta-carotene oxygenase 2 (BCO2) are palmitoylated proteins. Here we used the acyl-resin-assisted capture (acyl-RAC) method to demonstrate protein palmitoylation and immunochemistry to localize mouse BCO2 (mBCO2) in COS7 cell line in the absence and presence of its substrate β-carotene. We demonstrate that mBCO2 palmitoylation depends on the evolutionarily conserved motif PDPCK and that metazoan family members lacking the motif (Lancelet beta-carotene oxygenase-like protein (BCOL) and Acropora ACOL) are not palmitoylated. Additionally, we observed that the palmitoylation status of mBCO2 and its membrane association depend on the presence of its substrate β-carotene. Based on our results we conclude that most metazoan carotenoid oxygenases retain the evolutionarily conserved palmitoylation PDPCK motif to target proteins to internal membranes depending on substrate status. Exceptions are in the secreted BCOL subfamily and the strictly cytosolic ancient ACOL subfamily of carotenoid oxygenases.
Collapse
Affiliation(s)
- Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.U.); (T.M.R.)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA;
| | - T.Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.U.); (T.M.R.)
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.U.); (T.M.R.)
| |
Collapse
|
47
|
Yu C, Roubeix C, Sennlaub F, Saban DR. Microglia versus Monocytes: Distinct Roles in Degenerative Diseases of the Retina. Trends Neurosci 2020; 43:433-449. [PMID: 32459994 DOI: 10.1016/j.tins.2020.03.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 01/22/2023]
Abstract
Unlike in the healthy mammalian retina, macrophages in retinal degenerative states are not solely comprised of microglia but may include monocyte-derived recruits. Recent studies have applied transgenics, lineage-tracing, and transcriptomics to help decipher the distinct roles of these two cell types in the diseasesettings of inherited retinal degenerations and age-related macular degeneration.Literature discussed here focuses on the ectopic presence of both macrophage types in the extracellular site surrounding the outer aspect ofphotoreceptor cells (i.e.,the subretinal space), which is crucially involved in the pathobiology. From these studies we propose a working model in which perturbed photoreceptor states cause microglial dominant migration to the subretinal space as a protective response, whereas the abundant presence ofmonocyte-derived cells there instead drives and accelerates pathology. The latter, we propose, is underpinned by specific genetic and nongenetic determinants that lead to a maladaptive macrophage state.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - Christophe Roubeix
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Daniel R Saban
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University,Durham, NC 27710, USA.
| |
Collapse
|
48
|
Lima de Carvalho JR, Kim HJ, Ueda K, Zhao J, Owji AP, Yang T, Tsang SH, Sparrow JR. Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice. J Biol Chem 2020; 295:6767-6780. [PMID: 32188692 PMCID: PMC7212638 DOI: 10.1074/jbc.ra120.012695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency.
Collapse
Affiliation(s)
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Keiko Ueda
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Aaron P Owji
- Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10032
| | - Tingting Yang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032 .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
49
|
Ma L, Ng M, van der Weele CM, Yoshizawa M, Jeffery WR. Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:438-449. [PMID: 31930686 DOI: 10.1002/jez.b.22923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023]
Abstract
Astyanax mexicanus consists of two forms, a sighted surface dwelling form (surface fish) and a blind cave-dwelling form (cavefish). Embryonic eyes are initially formed in cavefish but they are subsequently arrested in growth and degenerate during larval development. Previous lens transplantation studies have shown that the lens plays a central role in cavefish eye loss. However, several lines of evidence suggest that additional factors, such as the retinal pigment epithelium (RPE), which is morphologically altered in cavefish, could also be involved in the eye regression process. To explore the role of the RPE in cavefish eye degeneration, we generated an albino eyed (AE) strain by artificial selection for hybrid individuals with large eyes and a depigmented RPE. The AE strain exhibited an RPE lacking pigment granules and showed reduced expression of the RPE specific enzyme retinol isomerase, allowing eye development to be studied by lens ablation in an RPE background resembling cavefish. We found that lens ablation in the AE strain had stronger negative effects on eye growth than in surface fish, suggesting that an intact RPE is required for normal eye development. We also found that the AE strain develops a cartilaginous sclera lacking boney ossicles, a trait similar to cavefish. Extrapolation of the results to cavefish suggests that the RPE and lens have dual roles in eye degeneration, and that deficiencies in the RPE may be associated with evolutionary changes in scleral ossification.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, Maryland
| | - Mandy Ng
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, Maryland
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
50
|
Marazzi M, Gattuso H, Giussani A, Zhang H, Navarrete-Miguel M, Chipot C, Cai W, Roca-Sanjuán D, Dehez F, Monari A. Induced Night Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin. J Phys Chem Lett 2019; 10:7133-7140. [PMID: 31652065 DOI: 10.1021/acs.jpclett.9b02911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In humans, vision is limited to a small fraction of the whole electromagnetic spectrum. One possible strategy for enhancing vision in deep-red or poor-light conditions consists of recruiting chlorophyll derivatives in the rod photoreceptor cells of the eye, as suggested in the case of some deep-sea fish. Here, we employ all-atom molecular simulations and high-level quantum chemistry calculations to rationalize how chlorin e6 (Ce6), widely used in photodynamic therapy although accompanied by enhanced visual sensitivity, mediates vision in the dark, shining light on a fascinating but largely unknown molecular mechanism. First, we identify persistent interaction sites between Ce6 and the extracellular loops of rhodopsin, the transmembrane photoreceptor protein responsible for the first steps in vision. Triggered by Ce6 deep-red light absorption, the retinal within rhodopsin can be isomerized thus starting the visual phototransduction cascade. Our data largely exclude previously hypothesized energy-transfer mechanisms while clearly lending credence to a retinal isomerization indirectly triggered by singlet oxygen, proposing an alternative mechanism to rationalize photosensitizer-mediated night vision.
Collapse
Affiliation(s)
- Marco Marazzi
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , Universidad de Alcalá, Ctra , Madrid-Barcelona Km. 33,600 , E-28805 Alcalá de Henares ( Madrid ), Spain
- Chemical Research Institute "Andrés M. del Río" (IQAR) , Universidad de Alcalá , E-28871 Alcalá de Henares ( Madrid ), Spain
| | - Hugo Gattuso
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| | - Angelo Giussani
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - Hong Zhang
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | | | - Christophe Chipot
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - François Dehez
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
| | - Antonio Monari
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| |
Collapse
|