1
|
Ismael AT, Abdulhameed RA, Hamdi BA, Tawfeeq RD, Ommar A. C-Kit Immunohistochemical Expression as a Complementary Method to Assess Mast Cell Density in Helicobacter pylori-Mediated Gastritis. Digestion 2024:1-7. [PMID: 39278202 DOI: 10.1159/000541387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Chronic gastritis is a group of conditions commonly characterized by stomach lining inflammation. The study aimed to investigate the clinical and pathological aspects that play a role in its development. Additionally, the study examines the use of CD117 as an immunohistochemistry marker in evaluating mast cell density (MCD). METHODS This retrospective, cross-sectional study was conducted in Iraqi Kurdistan with a sample size of 380 patients. Patient data included gastritis type, neutrophil infiltration severity, mononuclear cell infiltration within the lamina propria, intestinal metaplasia, and glandular atrophy, which were categorized and given a score. The CD117 level was identified using an anti-human rabbit polyclonal antibody. RESULTS A statistically significant association was revealed between Helicobacter pylori-mediated gastritis and non-specific gastritis with age, activity, H. pylori and MCD, dysplasia, and malignancy. Meanwhile, no association was found with gender, inflammatory infiltrate, intestinal metaplasia, and glandular atrophy. C-Kit exhibited a marked increase in MCD in patients with H. pylori-mediated gastritis, intestinal metaplasia, atrophy, and gastric carcinoma. However, a significant decrease in MCD was observed on repeating endoscopy evaluations for patients after treatment. CONCLUSION Regions that exhibit severe inflammation, metaplasia, atrophy, and carcinoma demonstrated an increase in MCD with H. pylori-mediated gastritis. A detailed investigation in clinical practice to screen early diagnosis and treatment needs to be performed in high H. pylori prevalence.
Collapse
Affiliation(s)
- Ava T Ismael
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Rafal A Abdulhameed
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Bushra A Hamdi
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Rawaz D Tawfeeq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Aram Ommar
- Department of Clinical Pharmacy, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
2
|
Hida T, Idogawa M, Ishikawa A, Okura M, Sasaki S, Tokino T, Uhara H. A case of familial progressive hyperpigmentation with or without hypopigmentation presenting with hypopigmented striae along the lines of Blaschko. J Dermatol 2024. [PMID: 39269165 DOI: 10.1111/1346-8138.17459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Familial progressive hyperpigmentation with or without hypopigmentation (FPHH) is an autosomal dominant disorder characterized by widespread skin hyperpigmentation, café-au-lait spots, and hypopigmented circular macules, resulting from KITLG variants. KITLG, expressed by keratinocytes, binds to KIT on melanocytes, stimulating melanogenesis. Disturbances in the KITLG-KIT interaction result in diffuse hyperpigmentation in FPHH. However, the mechanisms behind hypopigmented macule formation remain unclear. This report presents a unique FPHH case in a patient with a novel KITLG mutation (Ser78Leu). Notably, the patient showed multiple hypopigmented macules and striae along the lines of Blaschko. Digital polymerase chain reaction analysis of the DNA from skin and blood tissues indicated a copy-neutral loss of heterozygosity at the KITLG locus, only in the hypopigmented macule. These findings suggest that the hypopigmented macules might result from revertant mosaicism. Conversely, café-au-lait spots do not follow the lines of Blaschko and can superimpose on the hypopigmented striae, indicating a distinct pathogenesis. This case contributes to the understanding of the genetic mechanisms in FPHH.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Aki Ishikawa
- Department of Medical Genetics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoru Sasaki
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Tani H, Hifumi T, Ito K, Kuramoto T, Miyoshi N, Fujiki M, Nakayama T. A case report of feline mast cell tumour with intertumoral heterogeneity: Identification of secondary mutations c.998G>C and c.2383G>C in KIT after resistance to toceranib. Vet Med Sci 2024; 10:e70003. [PMID: 39177283 PMCID: PMC11342349 DOI: 10.1002/vms3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
A 12-year-old male domestic cat with multiple subcutaneous mast cell tumours (MCTs) presented with a 2-week history of pruritus and raw/bleeding skin from self-trauma at Kagoshima University Veterinary Teaching Hospital. Polymerase chain reaction (PCR) and histopathological analyses revealed intertumoral heterogeneity among tumour locations based on the mutation status of KIT. In addition, the expression pattern of KIT was characterized. After failed treatment with vinblastine (2.0-2.2 mg/m2, intravenous administration, two doses in total) or nimustine (25 mg/m2, intravenous administration, two doses in total), toceranib (2.2-2.6 mg/kg, orally administered, every other day) was administered to treat recurrent MCTs harbouring the KIT exon eight internal tandem duplication mutation, achieving a complete response. However, toceranib resistance developed 2 months after treatment initiation. Subsequent PCR analysis was conducted to identify the mutational status of KIT in each MCT and to detect the presence of secondary mutations associated with the acquisition of toceranib resistance. Secondary KIT mutations (c.998G>C and c.2383G>C), which were not initially detected in tumour cells at diagnosis, were identified after the development of resistance to toceranib. This indicates that the tumour cells in feline MCTs in the same case have diverse characteristics. Our findings encourage further investigation into the development of therapeutic strategies for feline MCTs, particularly focusing on the heterogeneous nature of KIT/KIT and overcoming acquired resistance to toceranib.
Collapse
Affiliation(s)
- Hiroyuki Tani
- Laboratory of Veterinary RadiologyDepartment of Veterinary MedicineCollege of Bioresource SciencesNihon UniversityFujisawaKanagawaJapan
| | - Tatsuro Hifumi
- Laboratory of Veterinary HistopathologyJoint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
| | | | - Tomohide Kuramoto
- Kagoshima University Veterinary Teaching HospitalJoint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
| | - Noriaki Miyoshi
- Laboratory of Veterinary HistopathologyJoint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
| | - Makoto Fujiki
- Kagoshima University Veterinary Teaching HospitalJoint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
- Laboratory of Veterinary SurgeryJoint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
| | - Tomohiro Nakayama
- Laboratory of Veterinary RadiologyDepartment of Veterinary MedicineCollege of Bioresource SciencesNihon UniversityFujisawaKanagawaJapan
| |
Collapse
|
4
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024. [PMID: 39158477 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Wang H, Hu W, Xiang F, Lei Z, Zhang X, Zhang J, Ding Y, Kang X. Differentiation of cultured hair follicle neural crest stem cells into functional melanocytes. Heliyon 2024; 10:e35295. [PMID: 39170163 PMCID: PMC11336637 DOI: 10.1016/j.heliyon.2024.e35295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Many autologous melanocytes are required for surgical treatment of depigmentation diseases such as vitiligo. However, primary cultured melanocytes have a limited number of in vitro passages. The production of functional epidermal melanocytes from stem cells provides an unprecedented source of cell therapy for vitiligo. This study explores the clinical application of melanocytes induced by hair follicle neural crest stem cells (HFNCSCs). This study established an in vitro differentiation model of HFNCSCs into melanocytes. Results demonstrate that most differentiated melanocytes expressed the proteins C-KIT, MITF, S-100B, TYRP1, TYRP2, and tyrosinase. The HFNCSC-derived melanocytes were successfully transplanted onto the dorsal skin of mice and survived in the local tissues, expressing marker protein of melanocytes. In conclusion, HFNCSCs in mice can be induced to differentiate into melanocytes under specific conditions. These induced melanocytes exhibit the potential to facilitate repigmentation in the lesion areas of vitiligo-affected mice, suggesting a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| |
Collapse
|
6
|
Zhang C, Xu M, Yang M, Liao A, Lv P, Liu X, Chen Y, Liu H, He Z. Efficient generation of cloned cats with altered coat colour by editing of the KIT gene. Theriogenology 2024; 222:54-65. [PMID: 38621344 DOI: 10.1016/j.theriogenology.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
Coat colour largely determines the market demand for several cat breeds. The KIT proto-oncogene (KIT) gene is a key gene controlling melanoblast differentiation and melanogenesis. KIT mutations usually cause varied changes in coat colour in mammalian species. In this study, we used a pair of single-guide RNAs (sgRNAs) to delete exon 17 of KIT in somatic cells isolated from two different Chinese Li Hua feline foetuses. Edited cells were used as donor nuclei for somatic cell nuclear transfer (SCNT) to generate cloned embryos presenting an average cleavage rate exceeding 85%, and an average blastocyst formation rate exceeding 9.5%. 131 cloned embryos were transplanted into four surrogates, and all surrogates carried their pregnancies to term, and delivered 4.58% (6/131) alive cloned kittens, with 1.53% (2/131) being KIT-edited heterozygotes (KITD17/+). The KITD17/+ cats presented an obvious darkness reduction in the mackerel tabby coat. Immunohistochemical analysis (IHC) of skin tissues indicated impaired proliferation and differentiation of melanoblasts caused by the lack of exon17 in feline KIT. To our knowledge, this is the first report on coat colour modification of cats through gene editing. The findings could facilitate further understanding of the regulatory role of KIT on feline coat colour and provide a basis for the breeding of cats with commercially desired coat colour.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meina Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Min Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Alian Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Peiru Lv
- Henan Liosio Biotechnology Co., Ltd, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hongbo Liu
- Henan Liosio Biotechnology Co., Ltd, PR China.
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
7
|
Shankar SS, Banarjee R, Jathar SM, Rajesh S, Ramasamy S, Kulkarni MJ. De novo structure prediction of meteorin and meteorin-like protein for identification of domains, functional receptor binding regions, and their high-risk missense variants. J Biomol Struct Dyn 2024; 42:4522-4536. [PMID: 37288801 DOI: 10.1080/07391102.2023.2220804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Meteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed de novo structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region. We have identified the receptor binding regions of Metrn and Metrnl using the machine-learning tools ScanNet and Masif. These were further validated by docking Metrnl with its reported KIT receptor, thus establishing the role of each domain in the receptor interaction. Also, we have studied the effect of non-synonymous SNPs on the structure and function of these proteins using an array of bioinformatics tools and selected 16 missense variants in Metrn and 10 in Metrnl that can affect the protein stability. This is the first study to comprehensively characterize the functional domains of Metrn and Metrnl at their structural level and identify the functional domains, and protein binding regions. This study also highlights the interaction mechanism of the KIT receptor and Metrnl. The predicted deleterious SNPs will allow further understanding of the role of these variants in modulating the plasma levels of these proteins in disease conditions such as diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Shiva Shankar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Swaraj M Jathar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Rajesh
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Sureshkumar Ramasamy
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Zhang Y, Gao H, Zhang L, Zhao Y, Qiu C, Liu X. Novel Germline KIT Variants in Families With Severe Piebaldism: Case Series and Literature Review. J Clin Lab Anal 2024; 38:e25073. [PMID: 38887855 PMCID: PMC11252829 DOI: 10.1002/jcla.25073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Piebaldism is a rare autosomal dominant disorder characterized by congenital white forelock and depigmented patches, which is most commonly caused by deleterious variants in the KIT gene. METHODS Four KIT variants were identified in a piebaldism case series by whole-exome sequencing. Functional experiments, including in vitro minigene reporter assay and enzyme-linked immunosorbent assay, were carried out to elucidate the pathogenicity of the variants. The genotype-phenotype correlation was summarized through extensive literature reviewing. RESULTS All the four cases had severe piebaldism presented with typical white forelock and diffuse depigmentation on the ventral trunk and limbs. Four germline variants at the tyrosine kinase (TK) domains of the KIT gene were identified: two novel variants c.1990+1G>A (p.Pro627_Gly664delinsArg) and c.2716T>C (p.Cys906Arg), and two known variants c.1879+1G>A (p.Gly592_Pro627delinsAla) and c.1747G>A (p.Glu583Lys). Both splicing variants caused exon skipping and inframe deletions in the TK1 domain. The missense variants resided at the TK1 and TK2 domains respectively impairing PI3K/AKT and MAPK/ERK signaling pathways, the downstream of KIT. All severe cases were associated with variants in the TK domains, eliciting a major dominant-negative mechanism of the disease. CONCLUSION Our data expand the mutation spectrum of KIT, emphasized by a dominant-negative effect of variants in the critical TK domains in severe cases. We also share the experience of prenatal diagnosis and informed reproductive choices for the affected families.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| | - Haiming Gao
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| | - Lu Zhang
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| | - Yunjing Zhao
- Department of Developmental PediatricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Chuang Qiu
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaoliang Liu
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
9
|
de Villenfagne L, Sablon A, Demoulin JB. PDGFRA K385 mutants in myxoid glioneuronal tumors promote receptor dimerization and oncogenic signaling. Sci Rep 2024; 14:7204. [PMID: 38532028 DOI: 10.1038/s41598-024-57859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Myxoid glioneuronal tumors (MGNT) are low-grade glioneuronal neoplasms composed of oligodendrocyte-like cells in a mucin-rich stroma. These tumors feature a unique dinucleotide change at codon 385 in the platelet-derived growth factor receptor α (encoded by the PDGFRA gene), resulting in the substitution of lysine 385 into leucine or isoleucine. The functional consequences of these mutations remain largely unexplored. Here, we demonstrated their oncogenic potential in fibroblast and Ba/F3 transformation assays. We showed that the K385I and K385L mutants activate STAT and AKT signaling in the absence of ligand. Co-immunoprecipitations and BRET experiments suggested that the mutations stabilized the active dimeric conformation of the receptor, pointing to a new mechanism of oncogenic PDGF receptor activation. Furthermore, we evaluated the sensitivity of these mutants to three FDA-approved tyrosine kinase inhibitors: imatinib, dasatinib, and avapritinib, which effectively suppressed the constitutive activity of the mutant receptors. Finally, K385 substitution into another hydrophobic amino acid also activated the receptor. Interestingly, K385M was reported in a few cases of brain tumors but not in MGNT. Our results provide valuable insights into the molecular mechanism underlying the activation of PDGFRα by the K385I/L mutations, highlighting their potential as actionable targets in the treatment of myxoid glioneuronal tumors.
Collapse
Affiliation(s)
- Laurence de Villenfagne
- De Duve Institute, University of Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Ariane Sablon
- De Duve Institute, University of Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- De Duve Institute, University of Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium.
| |
Collapse
|
10
|
Chakraborty MP, Das D, Mondal P, Kaul P, Bhattacharyya S, Kumar Das P, Das R. Molecular basis of VEGFR1 autoinhibition at the plasma membrane. Nat Commun 2024; 15:1346. [PMID: 38355851 PMCID: PMC10866885 DOI: 10.1038/s41467-024-45499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Ligand-independent activation of VEGFRs is a hallmark of diabetes and several cancers. Like EGFR, VEGFR2 is activated spontaneously at high receptor concentrations. VEGFR1, on the other hand, remains constitutively inactive in the unligated state, making it an exception among VEGFRs. Ligand stimulation transiently phosphorylates VEGFR1 and induces weak kinase activation in endothelial cells. Recent studies, however, suggest that VEGFR1 signaling is indispensable in regulating various physiological or pathological events. The reason why VEGFR1 is regulated differently from other VEGFRs remains unknown. Here, we elucidate a mechanism of juxtamembrane inhibition that shifts the equilibrium of VEGFR1 towards the inactive state, rendering it an inefficient kinase. The juxtamembrane inhibition of VEGFR1 suppresses its basal phosphorylation even at high receptor concentrations and transiently stabilizes tyrosine phosphorylation after ligand stimulation. We conclude that a subtle imbalance in phosphatase activation or removing juxtamembrane inhibition is sufficient to induce ligand-independent activation of VEGFR1 and sustain tyrosine phosphorylation.
Collapse
Affiliation(s)
- Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Diptatanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Purav Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Pragya Kaul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Soumi Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Prosad Kumar Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India.
| |
Collapse
|
11
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
12
|
Tashi T, Deininger MW. Management of Advanced Systemic Mastocytosis and Associated Myeloid Neoplasms. Immunol Allergy Clin North Am 2023; 43:723-741. [PMID: 37758409 DOI: 10.1016/j.iac.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Advanced systemic mastocytosis (AdvSM) is a heterogeneous group of disorders characterized by neoplastic mast cell-related organ damage and frequently associated with a myeloid neoplasm. The 3 clinical entities that comprise AdvSM are aggressive SM (ASM), SM-associated hematologic neoplasm, and mast cell leukemia. A gain-of-function KIT D816 V mutation is the primary oncogenic driver found in about 90% of all patients with AdvSM. Midostaurin, an oral multikinase inhibitor with activity against KIT D816V, and avapritinib, an oral selective KIT D816V inhibitor are approved for AdvSM.
Collapse
Affiliation(s)
- Tsewang Tashi
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, 2000, Circle of Hope, Salt Lake City, UT 84112, USA.
| | - Michael W Deininger
- Division of Hematology and Oncology, Medical College of Wisconsin, Versiti Blood Research Institute, 8727 West Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Rajan V, Prykhozhij SV, Pandey A, Cohen AM, Rainey JK, Berman JN. KIT D816V is dimerization-independent and activates downstream pathways frequently perturbed in mastocytosis. Br J Haematol 2023; 202:960-970. [PMID: 35245395 DOI: 10.1111/bjh.18116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
KIT, a type III tyrosine kinase receptor, plays a crucial role in haematopoietic development. The KIT receptor forms a dimer after ligand binding; this activates tyrosine kinase activity leading to downstream signal transduction. The D816V KIT mutation is extensively implicated in haematological malignancies, including mastocytosis and leukaemia. KIT D816V is constitutively active, but the molecular nuances that lead to constitutive tyrosine kinase activity are unclear. For the first time, we present experimental evidence that the KIT D816V mutant does not dimerize like KIT wild type. We further show evidence of decreased stabilization of the tyrosine kinase domain in the KIT D816V mutant, a phenomenon that might contribute to its constitutive activity. Since the mechanism of KIT D816V activation varies from that of the wild type, we explored downstream signal transduction events and found that even though KIT D816V targets similar signalling moieties, the signalling is amplified in the mutant compared to stem cell factor-activated wild type receptor. Uniquely, KIT D816V induces infection-related pathways and the spliceosome pathway, providing alternate options for selective as well as combinatorial therapeutic targeting.
Collapse
Affiliation(s)
- Vinothkumar Rajan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sergey V Prykhozhij
- Children's Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, ON, Canada
| | - Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Alejandro M Cohen
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Jason N Berman
- Children's Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Tieniber AD, Rossi F, Hanna AN, Liu M, Etherington MS, Loo JK, Param N, Zeng S, Do K, Wang L, DeMatteo RP. Multiple intratumoral sources of kit ligand promote gastrointestinal stromal tumor. Oncogene 2023; 42:2578-2588. [PMID: 37468679 DOI: 10.1038/s41388-023-02777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and is typically driven by a single mutation in the Kit or PDGFRA receptor. While highly effective, tyrosine kinase inhibitors (TKIs) are not curative. The natural ligand for the Kit receptor is Kit ligand (KitL), which exists in both soluble and membrane-bound forms. While KitL is known to stimulate human GIST cell lines in vitro, we used a genetically engineered mouse model of GIST containing a common human KIT mutation to investigate the intratumoral sources of KitL, importance of KitL during GIST oncogenesis, and contribution of soluble KitL to tumor growth in vivo. We discovered that in addition to tumor cells, endothelia and smooth muscle cells produced KitL in KitV558Δ/+ tumors, even after imatinib therapy. Genetic reduction of total KitL in tumor cells of KitV558Δ/+ mice impaired tumor growth in vivo. Similarly, genetic reduction of tumor cell soluble KitL in KitV558Δ/+ mice decreased tumor size. By RNA sequencing, quantitative PCR, and immunohistochemistry, KitL expression was heterogeneous in human GIST specimens. In particular, PDGFRA-mutant tumors had much higher KitL expression than Kit-mutant tumors, suggesting the benefit of Kit activation in the absence of mutant KIT. Serum KitL was higher in GIST patients with tumors resistant to imatinib and in those with tumors expressing more KitL RNA. Overall, KitL supports the growth of GIST at baseline and after imatinib therapy and remains a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Andrew D Tieniber
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ferdinando Rossi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew N Hanna
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marion Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Etherington
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer K Loo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nesteene Param
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shan Zeng
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Do
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald P DeMatteo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
16
|
Wedi B. Inhibition of KIT for chronic urticaria: a status update on drugs in early clinical development. Expert Opin Investig Drugs 2023; 32:1043-1054. [PMID: 37897679 DOI: 10.1080/13543784.2023.2277385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Chronic urticaria (CU), including chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CIndU), is a prevalent, enduring, mast-cell driven condition that presents challenges in its management. There is a clear need for additional approved treatment options beyond H1 receptor antagonists and the anti-IgE monoclonal antibody (mAb), omalizumab. One of the latest therapeutic strategies targets KIT, which is considered the primary master regulator for mast cell-related disorders. AREAS COVERED This review provides a status update on KIT inhibiting drugs in early clinical development for CU. EXPERT OPINION Whereas multi-targeted tyrosine kinase KIT inhibitors carry the risk of off-target toxicities, initial data from anti-KIT mAbs indicate significant potential in CSU and CIndU. The prolonged depletion of mast cells over several weeks by barzolvolimab could effectively control urticarial symptoms. Regarding safety, based on theoretical considerations and the available preliminary results, it is already evident that there may be more side effects compared to omalizumab. However, long-term safety data beyond 12 weeks are still lacking. The outcome of ongoing or planned clinical trials with several anti-KIT mAbs will need to demonstrate benefits compared to anti-IgE in CU or whether one approach is better suited for specific urticaria endotypes.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Li Y, Liang ZY, Wang HL. N6-methyl-2'-deoxyadenosine promotes self-renewal of BFU-E progenitor in erythropoiesis. iScience 2023; 26:106924. [PMID: 37283807 PMCID: PMC10239700 DOI: 10.1016/j.isci.2023.106924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Red blood cells supply the oxygen required for all human cells and are in demand for emerging blood-loss therapy. Here we identified N6-methyl-2'-deoxyadenosine (6mdA) as an agonist that promotes the hyperproliferation of burst-forming unit erythroid (BFU-E) progenitor cells. In addition, 6mdA represses the apoptosis of erythroid progenitor cells (EPCs). Combined use of with SCF and EPO enabled cultures of isolated BFU-E to be expanded up to 5,000-fold. Transcriptome analysis showed that 6mdA upregulates the expression of the EPC-associated factors c-Kit, Myb, and Gata2 and downregulates that of the erythroid maturation-related transcription factors Gata1, Spi1, and Klf1. Mechanistic studies suggested that 6mdA enhances and prolongs the activation of erythropoiesis-associated master gene c-Kit and its downstream signaling, leading to expansion and accumulation of EPCs. Collectively, we demonstrate that 6mdA can efficiently stimulate the EPC hyperproliferation and provide a new regenerative medicine recipe to improve ex vivo generation of red blood cells.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
18
|
Hu K, Zhang H, Shu M, Wang X. Efficacy of post-first-line agents for advanced gastrointestinal stromal tumors following imatinib failure: A network meta-analysis. Cancer Med 2023. [PMID: 37084005 DOI: 10.1002/cam4.5912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Imatinib is the standard first-line treatment for advanced gastrointestinal stromal tumors (GISTs); however, most patients eventually develop imatinib resistance, leading to considerable clinical challenges. Few direct comparisons have been made between different post-first-line therapies on clinical efficacy in advanced GIST following imatinib failure. METHODS Databases including PubMed, Embase, Scopus, Google Scholars, and Cochrane Library from inception to February 2023 were retrieved for randomized controlled trials evaluating the clinical efficacy of different post-first-line agents for advanced GIST following imatinib failure. Network and conventional meta-analysis were carried out using Stata/MP 16.0. RESULTS Ripretinib showed significant improvement in progression-free survival (PFS) rates from the 2nd to the 12th month compared to placebo, while there was virtually no evidence that the rest active agents had a significant benefit at the 12th month. Masitinib, ripretinib, sunitinib, regorafenib, and pimitespib exhibited significantly longer median PFS than placebo, and pairwise comparisons indicated there were no significant differences among masitinib, ripretinib, and sunitinib. These post-first-line agents decreased the risk of disease progression or death by 65% (HR = 0.35, 95% CI: 0.26-0.47) compared to placebo. Ripretinib and sunitinib came into effect earlier and exhibited more consistent overall survival (OS) rate improvements than masitinib and pimitespib, while pairwise comparisons revealed no significant differences in these four active agents concerning the improvement in OS rate. These post-first-line agents decreased the risk of death by 39% (HR = 0.61, 95% CI: 0.44-0.83) over placebo for advanced GIST following imatinib failure. CONCLUSION The active agents in our analysis as post-first-line therapies are able to provide superior clinical efficacy, with improved PFS rate and OS rate at certain time points, as well as absolute values of PFS and OS for advanced GIST. Ripretinib might be the optimal recommendation as a post-first-line treatment for advanced GIST following imatinib failure.
Collapse
Affiliation(s)
- Kehan Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, Institution of Inflammation and Immunity, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, Institution of Inflammation and Immunity, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Shu
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyue Wang
- Department of Graduate Medical Education, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Choi YJ, Yoo JS, Jung K, Rice L, Kim D, Zlojutro V, Frimel M, Madden E, Choi UY, Foo SS, Choi Y, Jiang Z, Johnson H, Kwak MJ, Kang S, Hong B, Seo GJ, Kim S, Lee SA, Amini-Bavil-Olyaee S, Maazi H, Akbari O, Asosingh K, Jung JU. Lung-specific MCEMP1 functions as an adaptor for KIT to promote SCF-mediated mast cell proliferation. Nat Commun 2023; 14:2045. [PMID: 37041174 PMCID: PMC10090139 DOI: 10.1038/s41467-023-37873-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023] Open
Abstract
Lung mast cells are important in host defense, and excessive proliferation or activation of these cells can cause chronic inflammatory disorders like asthma. Two parallel pathways induced by KIT-stem cell factor (SCF) and FcεRI-immunoglobulin E interactions are critical for the proliferation and activation of mast cells, respectively. Here, we report that mast cell-expressed membrane protein1 (MCEMP1), a lung-specific surface protein, functions as an adaptor for KIT, which promotes SCF-mediated mast cell proliferation. MCEMP1 elicits intracellular signaling through its cytoplasmic immunoreceptor tyrosine-based activation motif and forms a complex with KIT to enhance its autophosphorylation and activation. Consequently, MCEMP1 deficiency impairs SCF-induced peritoneal mast cell proliferation in vitro and lung mast cell expansion in vivo. Mcemp1-deficient mice exhibit reduced airway inflammation and lung impairment in chronic asthma mouse models. This study shows lung-specific MCEMP1 as an adaptor for KIT to facilitate SCF-mediated mast cell proliferation.
Collapse
Affiliation(s)
- Youn Jung Choi
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ji-Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyle Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Logan Rice
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dokyun Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Violetta Zlojutro
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Evan Madden
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Un Yung Choi
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Suan-Sin Foo
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Younho Choi
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, 34987, USA
| | - Zhongyi Jiang
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Holly Johnson
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mi-Jeong Kwak
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Seokmin Kang
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Brian Hong
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gil Ju Seo
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stephanie Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Samad Amini-Bavil-Olyaee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Biosafety Development Group, Cellular Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, 34987, USA.
| |
Collapse
|
20
|
Catalano F, Cremante M, Dalmasso B, Pirrone C, Lagodin D’Amato A, Grassi M, Comandini D. Molecular Tailored Therapeutic Options for Advanced Gastrointestinal Stromal Tumors (GISTs): Current Practice and Future Perspectives. Cancers (Basel) 2023; 15:cancers15072074. [PMID: 37046734 PMCID: PMC10093725 DOI: 10.3390/cancers15072074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are one of the most common mesenchymal tumors characterized by different molecular alterations that lead to specific clinical presentations and behaviors. In the last twenty years, thanks to the discovery of these mutations, several new treatment options have emerged. This review provides an extensive overview of GISTs’ molecular pathways and their respective tailored therapeutic strategies. Furthermore, current treatment strategies under investigation and future perspectives are analyzed and discussed.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Chiara Pirrone
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Massimiliano Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Danila Comandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
21
|
Krimmer SG, Bertoletti N, Suzuki Y, Katic L, Mohanty J, Shu S, Lee S, Lax I, Mi W, Schlessinger J. Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proc Natl Acad Sci U S A 2023; 120:e2300054120. [PMID: 36943885 PMCID: PMC10068818 DOI: 10.1073/pnas.2300054120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The receptor tyrosine kinase KIT and its ligand stem cell factor (SCF) are required for the development of hematopoietic stem cells, germ cells, and other cells. A variety of human cancers, such as acute myeloid leukemia, gastrointestinal stromal tumor, and mast cell leukemia, are driven by somatic gain-of-function KIT mutations. Here, we report cryo electron microscopy (cryo-EM) structural analyses of full-length wild-type and two oncogenic KIT mutants, which show that the overall symmetric arrangement of the extracellular domain of ligand-occupied KIT dimers contains asymmetric D5 homotypic contacts juxtaposing the plasma membrane. Mutational analysis of KIT reveals in D5 region an "Achilles heel" for therapeutic intervention. A ligand-sensitized oncogenic KIT mutant exhibits a more comprehensive and stable D5 asymmetric conformation. A constitutively active ligand-independent oncogenic KIT mutant adopts a V-shaped conformation solely held by D5-mediated contacts. Binding of SCF to this mutant fully restores the conformation of wild-type KIT dimers, including the formation of salt bridges responsible for D4 homotypic contacts and other hallmarks of SCF-induced KIT dimerization. These experiments reveal an unexpected structural plasticity of oncogenic KIT mutants and a therapeutic target in D5.
Collapse
Affiliation(s)
- Stefan G. Krimmer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Yoshihisa Suzuki
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Luka Katic
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Jyotidarsini Mohanty
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sheng Shu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Wei Mi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
22
|
Zhou Y, Stevis PE, Cao J, Saotome K, Wu J, Glatman Zaretsky A, Haxhinasto S, Yancopoulos GD, Murphy AJ, Sleeman MW, Olson WC, Franklin MC. Structural insights into the assembly of gp130 family cytokine signaling complexes. SCIENCE ADVANCES 2023; 9:eade4395. [PMID: 36930708 PMCID: PMC10022904 DOI: 10.1126/sciadv.ade4395] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The interleukin-6 (IL-6) family cytokines signal through gp130 receptor homodimerization or heterodimerization with a second signaling receptor and play crucial roles in various cellular processes. We determined cryo-electron microscopy structures of five signaling complexes of this family, containing full receptor ectodomains bound to their respective ligands ciliary neurotrophic factor, cardiotrophin-like cytokine factor 1 (CLCF1), leukemia inhibitory factor, IL-27, and IL-6. Our structures collectively reveal similarities and differences in the assembly of these complexes. The acute bends at both signaling receptors in all complexes bring the membrane-proximal domains to a ~30 angstrom range but with distinct distances and orientations. We also reveal how CLCF1 engages its secretion chaperone cytokine receptor-like factor 1. Our data provide valuable insights for therapeutically targeting gp130-mediated signaling.
Collapse
Affiliation(s)
- Yi Zhou
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Jing Cao
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Jiaxi Wu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
24
|
Katagiri S, Chi S, Minami Y, Fukushima K, Shibayama H, Hosono N, Yamauchi T, Morishita T, Kondo T, Yanada M, Yamamoto K, Kuroda J, Usuki K, Akahane D, Gotoh A. Mutated KIT Tyrosine Kinase as a Novel Molecular Target in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23094694. [PMID: 35563085 PMCID: PMC9103326 DOI: 10.3390/ijms23094694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells. Since KIT is activated by overexpression or mutation and plays an important role in the development of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling via next-generation sequencing has shown that several genes that are mutated in patients with AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treatment using genomic data will improve treatment outcomes for AML patients. This paper presents (1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT mutations from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is becoming more common, KIT mutations are attractive novel molecular targets in AML.
Collapse
Affiliation(s)
- Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Naoko Hosono
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takanobu Morishita
- Division of Hematology, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya-shi, Aichi 453-8511, Japan;
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, 2-1 S4 W25 Chuo-ku, Sapporo, Hokkaido 064-0804, Japan;
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Kazuhito Yamamoto
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan;
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| |
Collapse
|
25
|
Vincenzi B, Napolitano A, Fiocco M, Mir O, Rutkowski P, Blay JY, Reichardt P, Joensuu H, Fumagalli E, Gennatas S, Hindi N, Nannini M, Spalato Ceruso M, Italiano A, Grignani G, Brunello A, Gasperoni S, De Pas T, Badalamenti G, Pantaleo MA, van Houdt WJ, IJzerman NS, Steeghs N, Gelderblom H, Desar IM, Falkenhorst J, Silletta M, Sbaraglia M, Tonini G, Martin-Broto J, Hohenberger P, Le Cesne A, Jones RL, Dei Tos AP, Gronchi A, Bauer S, Casali PG. Adjuvant Imatinib in Patients with GIST Harboring Exon 9 KIT Mutations: Results from a Multi-institutional European Retrospective Study. Clin Cancer Res 2022; 28:1672-1679. [PMID: 34615721 PMCID: PMC9365355 DOI: 10.1158/1078-0432.ccr-21-1665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE The effect of high-dose imatinib (800 mg/day) on survival in the adjuvant treatment of patients with resected KIT exon 9-mutated gastrointestinal stromal tumors (GIST) is not established. Here, the association of dose and other clinicopathologic variables with survival was evaluated in a large multi-institutional European cohort. EXPERIMENTAL DESIGN Data from 185 patients were retrospectively collected in 23 European GIST reference centers. Propensity score matching (PSM) and inverse-probability of treatment weighting (IPTW) were used to account for confounders. Univariate and multivariate unweighted and weighted Cox proportional hazard regression models were estimated for relapse-free survival (RFS), modified-RFS (mRFS) and imatinib failure-free survival (IFFS). Univariate Cox models were estimated for overall survival. RESULTS Of the 185 patients, 131 (70.8%) received a starting dose of 400 mg/d and the remaining 54 (29.2%) a dose of 800 mg/d. Baseline characteristics were partially unbalanced, suggesting a potential selection bias. PSM and IPTW analyses showed no advantage of imatinib 800 mg/d. In the weighted multivariate Cox models, high-dose imatinib was not associated with the survival outcomes [RFS: hazard ratio (HR), 1.24; 95% confidence interval (CI), 0.79-1.94; mRFS: HR, 1.69; 95% CI, 0.92-3.10; IFFS: HR, 1.35; 95% CI, 0.79-2.28]. The variables consistently associated with worse survival outcomes were high mitotic index and nongastric tumor location. CONCLUSIONS In this retrospective series of patients with KIT exon 9-mutated GIST treated with adjuvant imatinib, a daily dose of 800 mg versus 400 mg did not show better results in terms of survival outcomes. Prospective evaluation of the more appropriate adjuvant treatment in this setting is warranted.
Collapse
Affiliation(s)
- Bruno Vincenzi
- Medical Oncology, Università Campus Bio-Medico, Rome, Italy.,Corresponding Author: Bruno Vincenzi, Medical Oncology, Università Campus Bio-Medico, Via Álvaro del Portillo 200, Rome 00128, Italy. Phone: 3906-22541-1227; E-mail:
| | - Andrea Napolitano
- Medical Oncology, Università Campus Bio-Medico, Rome, Italy.,Sarcoma Unit, Royal Marsden Hospital NHS Trust, London, United Kingdom
| | - Marta Fiocco
- Biomedical Statistics and Data Science, Mathematical Institute Leiden University, Leiden, the Netherlands
| | - Olivier Mir
- Sarcoma Group, Gustave Roussy, Villejuif, France
| | - Piotr Rutkowski
- Department of Bone/Soft Tissue Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | | | - Heikki Joensuu
- Oncology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Elena Fumagalli
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Spyridon Gennatas
- Sarcoma Unit, Royal Marsden Hospital NHS Trust, London, United Kingdom
| | - Nadia Hindi
- Biomedicine Institute of Seville/Virgen del Rocío University Hospital, Sevilla, Spain
| | | | | | - Antoine Italiano
- Sarcoma Unit, Institut Bergonié, Bordeaux, France.,Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | - Giovanni Grignani
- Medical Oncology, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| | - Antonella Brunello
- Division of Medical Oncology, Istituto Oncologico Veneto- IRCCS, Padova, Italy
| | - Silvia Gasperoni
- Translational Oncology Unit, University Hospital Careggi, Firenze, Italy
| | - Tommaso De Pas
- Medical Oncology for Melanoma & Sarcoma, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Winan J. van Houdt
- Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nikki S. IJzerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Neeltje Steeghs
- Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ingrid M.E. Desar
- Medical Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | | - Marta Sbaraglia
- Pathological Anatomy, Azienda Ospedaliera di Padova, Padua, Italy
| | | | - Javier Martin-Broto
- Biomedicine Institute of Seville/Virgen del Rocío University Hospital, Sevilla, Spain
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Robin L. Jones
- Sarcoma Unit, Royal Marsden Hospital NHS Trust, London, United Kingdom.,Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | | | - Alessandro Gronchi
- Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Paolo G. Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Paolini C, Agarbati S, Benfaremo D, Mozzicafreddo M, Svegliati S, Moroncini G. PDGF/PDGFR: A Possible Molecular Target in Scleroderma Fibrosis. Int J Mol Sci 2022; 23:ijms23073904. [PMID: 35409263 PMCID: PMC8999630 DOI: 10.3390/ijms23073904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic sclerosis (SSc) is a clinically heterogeneous disorder of the connective tissue characterized by vascular alterations, immune/inflammatory manifestations, and organ fibrosis. SSc pathogenesis is complex and still poorly understood. Therefore, effective therapies are lacking and remain nonspecific and limited to disease symptoms. In the last few years, many molecular and cellular mediators of SSc fibrosis have been described, providing new potential options for targeted therapies. In this review: (i) we focused on the PDGF/PDGFR pathway as key signaling molecules in the development of tissue fibrosis; (ii) we highlighted the possible role of stimulatory anti-PDGFRα autoantibodies in the pathogenesis of SSc; (iii) we reported the most promising PDGF/PDGFR targeting therapies.
Collapse
Affiliation(s)
- Chiara Paolini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Devis Benfaremo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy
- Correspondence:
| |
Collapse
|
27
|
Alvarado D, Maurer M, Gedrich R, Seibel SB, Murphy MB, Crew L, Goldstein J, Crocker A, Vitale LA, Morani PA, Thomas LJ, Hawthorne TR, Keler T, Young D, Crowley E, Kankam M, Heath‐Chiozzi M. Anti-KIT monoclonal antibody CDX-0159 induces profound and durable mast cell suppression in a healthy volunteer study. Allergy 2022; 77:2393-2403. [PMID: 35184297 PMCID: PMC9544977 DOI: 10.1111/all.15262] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Background Mast cells (MC) are powerful inflammatory immune sentinel cells that drive numerous allergic, inflammatory, and pruritic disorders when activated. MC‐targeted therapies are approved in several disorders, yet many patients have limited benefit suggesting the need for approaches that more broadly inhibit MC activity. MCs require the KIT receptor and its ligand stem cell factor (SCF) for differentiation, maturation, and survival. Here we describe CDX‐0159, an anti‐KIT monoclonal antibody that potently suppresses MCs in human healthy volunteers. Methods CDX‐0159‐mediated KIT inhibition was tested in vitro using KIT‐expressing immortalized cells and primary human mast cells. CDX‐0159 safety and pharmacokinetics were evaluated in a 13‐week good laboratory practice (GLP)‐compliant cynomolgus macaque study. A single ascending dose (0.3, 1, 3, and 9 mg/kg), double‐blinded placebo‐controlled phase 1a human healthy volunteer study (n = 32) was conducted to evaluate the safety, pharmacokinetics, and pharmacodynamics of CDX‐0159. Results CDX‐0159 inhibits SCF‐dependent KIT activation in vitro. Fc modifications in CDX‐0159 led to elimination of effector function and reduced serum clearance. In cynomolgus macaques, multiple high doses were safely administered without a significant impact on hematology, a potential concern for KIT inhibitors. A single dose of CDX‐0159 in healthy human subjects was generally well tolerated and demonstrated long antibody exposure. Importantly, CDX‐0159 led to dose‐dependent, profound suppression of plasma tryptase, a MC‐specific protease associated with tissue MC burden, indicative of systemic MC suppression or ablation. Conclusion CDX‐0159 administration leads to systemic mast cell ablation and may represent a safe and novel approach to treat mast cell‐driven disorders.
Collapse
Affiliation(s)
| | - Marcus Maurer
- Dermatological Allergology Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité ‐ Universtätsmedizin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | | | | | | | - Linda Crew
- Celldex Therapeutics Hampton New Jersey USA
| | | | | | | | | | | | | | | | | | | | - Martin Kankam
- Altasciences Clinical Kansas Overland Park Kansas USA
| | | |
Collapse
|
28
|
Kim KH, Kim JO, Park JY, Seo MD, Park SG. Antibody-Drug Conjugate Targeting c-Kit for the Treatment of Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23042264. [PMID: 35216379 PMCID: PMC8875948 DOI: 10.3390/ijms23042264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Small cell lung cancer (SCLC) accounts for 15–25% of all lung cancers. It exhibits a rapid doubling time and a high degree of invasiveness. Additionally, overexpression of c-Kit occurs in 70% of SCLC patients. In this study, we evaluated an antibody-drug conjugate (ADC) that targets c-Kit, which is a potential therapeutic agent for SCLC. First, we generated and characterized 4C9, a fully human antibody that targets c-Kit and specifically binds to SCLC cells expressing c-Kit with a binding affinity of KD = 5.5 × 10−9 M. Then, we developed an ADC using DM1, a microtubule inhibitor, as a payload. 4C9-DM1 efficiently induced apoptosis in SCLC with an IC50 ranging from 158 pM to 4 nM. An in vivo assay using a xenograft mouse model revealed a tumor growth inhibition (TGI) rate of 45% (3 mg/kg) and 59% (5 mg/kg) for 4C9-DM1 alone. Combination treatment with 4C9-DM1 plus carboplatin/etoposide or lurbinectedin resulted in a TGI rate greater than 90% compared with the vehicle control. Taken together, these results indicate that 4C9-DM1 is a potential therapeutic agent for SCLC treatment.
Collapse
Affiliation(s)
- Kwang-Hyeok Kim
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Jin-Ock Kim
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Jeong-Yang Park
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Min-Duk Seo
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
- Novelty Nobility, 227 Unjung-ro, Seongnam-si 13477, Korea
- Correspondence: ; Tel.: +82-31-219-3491
| |
Collapse
|
29
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
30
|
Peil J, Bock F, Kiefer F, Schmidt R, Heindl LM, Cursiefen C, Schlereth SL. New Therapeutic Approaches for Conjunctival Melanoma-What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. Int J Mol Sci 2022; 23:1478. [PMID: 35163401 PMCID: PMC8835854 DOI: 10.3390/ijms23031478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Conjunctival melanoma (CM) accounts for 5% of all ocular melanomas and arises from malignantly transformed melanocytes in the conjunctival epithelium. Current therapies using surgical excision in combination with chemo- or cryotherapy still have high rates for recurrences and metastatic disease. Lately, novel signal transduction-targeted and immune checkpoint inhibitors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, programmed cell death protein-1 (PD-1) receptor inhibitors, BRAF- or MEK-inhibitors for systemic treatment of melanoma have improved the outcome even for unresectable cutaneous melanoma, improving patient survival dramatically. The use of these therapies is now also recommended for CM; however, the immunological background of CM is barely known, underlining the need for research to better understand the immunological basics when treating CM patients with immunomodulatory therapies. Immune checkpoint inhibitors activate tumor defense by interrupting inhibitory interactions between tumor cells and T lymphocytes at the so-called checkpoints. The tumor cells exploit these inhibitory targets on T-cells that are usually used by dendritic cells (DCs). DCs are antigen-presenting cells at the forefront of immune response induction. They contribute to immune tolerance and immune defense but in the case of tumor development, immune tolerance is often prevalent. Enhancing the immune response via DCs, interfering with the lymphatic pathways during immune cell migration and tumor development and specifically targeting tumor cells is a major therapeutic opportunity for many tumor entities including CM. This review summarizes the current knowledge on the function of lymphatic vessels in tumor growth and immune cell transport and continues to compare DC subsets in CM with related melanomas, such as cutaneous melanoma and mucosal melanoma.
Collapse
Affiliation(s)
- Jennifer Peil
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany;
| | - Rebecca Schmidt
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Simona L. Schlereth
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
31
|
Napolitano A, Thway K, Smith MJ, Huang PH, Jones RL. KIT Exon 9-Mutated Gastrointestinal Stromal Tumours: Biology and Treatment. Chemotherapy 2022; 67:81-90. [PMID: 34983047 DOI: 10.1159/000521751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The majority of gastroinstestinal stromal tumours (GISTs) harbour oncogenic mutations in the gene encoding for the tyrosine kinase KIT. The most common mutations are found in exon 11, followed by mutations in exon 9. The latter mutations are associated more frequently with GISTs in extra-gastric locations and with a more aggressive clinical behaviour. SUMMARY Here, we review the unique and often poorly recognised molecular, biological and clinical characteristics that differentiate KIT exon 9-mutant GISTs from other GIST subtypes. In particular, KIT exon 9 mutations are associated to KIT mutants with retained sensitivity to stimulation by stem cell factor and localisation to the cell membrane. Moreover, KIT exon 9-mutant GISTs display significant activation of KIT-independent oncogenic pathways. These characteristics may explain the limited activity of the tyrosine kinase inhibitor imatinib in the adjuvant setting in KIT exon 9-mutant GISTs, as well as their lower sensitivity to standard dose imatinib in the advanced setting. In contranst, the multi-tyrosine kinase inhibitor sunitinib displays better activity in KIT-exon 9 mutant GISTs compared to others. Key Messages. KIT exon 9-mutant GISTs represent a subtype of GIST disctinct from others GISTs, including the more common KIT exon 11-mutant GISTs. A better understanding of the molecular biology and clinical behaviour of KIT exon 9-mutant GISTs may help identify more improved treatment options.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Khin Thway
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Myles J Smith
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Paul H Huang
- The Institute of Cancer Research, London, United Kingdom
| | - Robin L Jones
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
32
|
Gorenjak M, Fijačko N, Bogomir Marko P, Živanović M, Potočnik U. De novo mutation in KITLG gene causes a variant of Familial Progressive Hyper- and Hypo-pigmentation (FPHH). Mol Genet Genomic Med 2021; 9:e1841. [PMID: 34716665 PMCID: PMC8683634 DOI: 10.1002/mgg3.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/09/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022] Open
Abstract
Familial Progressive Hyper‐ and Hypopigmentation is a pigmentary disorder characterized by a mix of hypo‐ and hyperpigmented lesions, café‐au‐lait spots and hypopigmented ash‐leaf macules. The disorder was previously linked to KITLG and various mutations have been reported to segregate in different families. Furthermore, association between KITLG mutations and malignancies was also suggested. Exome and SANGER sequencing were performed for identification of KITLG mutations. Functional in silico analyses were additionally performed to assess the findings. We identified a de novo mutation in exon 4 of KITLG gene causing NM_000899.4:c.[329A>T] (chr12:88912508A>T) leading to NP_000890.1:p.(Asp110Val) substitution in the 3rd alpha helix. It was predicted as pathogenic, located in a conserved region and causing an increase in hydrophobicity in the KITLG protein. Our findings clearly confirm an additional hot spot of KITLG mutations in the 3rd alpha helix, which very likely increases the risk of malignancies. To our knowledge the present study provides the strongest evidence of association of the KITLG mutation with both Familial Progressive Hyper‐ and Hypopigmentation and malignancy due to its’ location on somatic cancer mutation locus. Additionally we also address difficulties with classification of the unique phenotype and propose a subtype within broader diagnosis.
Collapse
Affiliation(s)
- Mario Gorenjak
- Faculty of Medicine, Centre for Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia
| | - Nino Fijačko
- Faculty of Health Sciences, Department of Nursing, Maribor, Slovenia
| | - Pij Bogomir Marko
- Department of Dermatology and Venereal Diseases, University Clinical Centre Maribor, Maribor, Slovenia
| | - Milanka Živanović
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Uroš Potočnik
- Faculty of Medicine, Centre for Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia.,Faculty of Chemistry and Chemical Engineering, Laboratory of Biochemistry, Molecular Biology and Genomics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
33
|
Signaling Pathways That Regulate Normal and Aberrant Red Blood Cell Development. Genes (Basel) 2021; 12:genes12101646. [PMID: 34681039 PMCID: PMC8536016 DOI: 10.3390/genes12101646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Blood cell development is regulated through intrinsic gene regulation and local factors including the microenvironment and cytokines. The differentiation of hematopoietic stem and progenitor cells (HSPCs) into mature erythrocytes is dependent on these cytokines binding to and stimulating their cognate receptors and the signaling cascades they initiate. Many of these pathways include kinases that can diversify signals by phosphorylating multiple substrates and amplify signals by phosphorylating multiple copies of each substrate. Indeed, synthesis of many of these cytokines is regulated by a number of signaling pathways including phosphoinositide 3-kinase (PI3K)-, extracellular signal related kinases (ERK)-, and p38 kinase-dependent pathways. Therefore, kinases act both upstream and downstream of the erythropoiesis-regulating cytokines. While many of the cytokines are well characterized, the nuanced members of the network of kinases responsible for appropriate induction of, and response to, these cytokines remains poorly defined. Here, we will examine the kinase signaling cascades required for erythropoiesis and emphasize the importance, complexity, enormous amount remaining to be characterized, and therapeutic potential that will accompany our comprehensive understanding of the erythroid kinome in both healthy and diseased states.
Collapse
|
34
|
Hapln1b, a central organizer of the extracellular matrix, modulates kit signalling to control developmental haematopoiesis. Blood Adv 2021; 5:4935-4948. [PMID: 34543380 PMCID: PMC9152995 DOI: 10.1182/bloodadvances.2020001524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
During early vertebrate development, hematopoietic stem and progenitor cells (HSPCs) are produced from hemogenic endothelium located in the dorsal aorta, before they migrate to a transient niche where they expand, the fetal liver and the caudal hematopoietic tissue (CHT), in mammals and zebrafish, respectively. In zebrafish, previous studies have shown that the extracellular matrix (ECM) around the aorta needs to be degraded to allow HSPCs to leave the aortic floor and reach blood circulation. However, the role of the ECM components in HSPC specification has never been addressed. We show here that hapln1b, a key component of the ECM is specifically expressed in hematopoietic sites in the zebrafish embryo. Gain- and loss-of-function experiments all resulted in the absence of HSPCs in the early embryo, showing that hapln1b is required, at the correct level, to specify HSPCs in the hemogenic endothelium. Furthermore, we show that the expression of hapln1b is necessary to maintain the integrity of the ECM through its link domain. By combining functional analyses and computer modelling, we show that kitlgb interacts with the ECM to specify HSPCs. We demonstrate that the ECM is an integral component of the microenvironment and mediates cytokine signalling that is required for HSPC specification.
Collapse
|
35
|
Wagner AJ, Severson PL, Shields AF, Patnaik A, Chugh R, Tinoco G, Wu G, Nespi M, Lin J, Zhang Y, Ewing T, Habets G, Burton EA, Matusow B, Tsai J, Tsang G, Shellooe R, Carias H, Chan K, Rezaei H, Sanftner L, Marimuthu A, Spevak W, Ibrahim PN, Inokuchi K, Alcantar O, Michelson G, Tsiatis AC, Zhang C, Bollag G, Trent JC, Tap WD. Association of Combination of Conformation-Specific KIT Inhibitors With Clinical Benefit in Patients With Refractory Gastrointestinal Stromal Tumors: A Phase 1b/2a Nonrandomized Clinical Trial. JAMA Oncol 2021; 7:1343-1350. [PMID: 34236401 PMCID: PMC8267845 DOI: 10.1001/jamaoncol.2021.2086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Many cancer subtypes, including KIT-mutant gastrointestinal stromal tumors (GISTs), are driven by activating mutations in tyrosine kinases and may initially respond to kinase inhibitors but frequently relapse owing to outgrowth of heterogeneous subclones with resistance mutations. KIT inhibitors commonly used to treat GIST (eg, imatinib and sunitinib) are inactive-state (type II) inhibitors. OBJECTIVE To assess whether combining a type II KIT inhibitor with a conformation-complementary, active-state (type I) KIT inhibitor is associated with broad mutation coverage and global disease control. DESIGN, SETTING, AND PARTICIPANTS A highly selective type I inhibitor of KIT, PLX9486, was tested in a 2-part phase 1b/2a trial. Part 1 (dose escalation) evaluated PLX9486 monotherapy in patients with solid tumors. Part 2e (extension) evaluated PLX9486-sunitinib combination in patients with GIST. Patients were enrolled from March 2015 through February 2019; data analysis was performed from May 2020 through July 2020. INTERVENTIONS Participants received 250, 350, 500, and 1000 mg of PLX9486 alone (part 1) or 500 and 1000 mg of PLX9486 together with 25 or 37.5 mg of sunitinib (part 2e) continuously in 28-day dosing cycles until disease progression, treatment discontinuation, or withdrawal. MAIN OUTCOMES AND MEASURES Pharmacokinetics, safety, and tumor responses were assessed. Clinical efficacy end points (progression-free survival and clinical benefit rate) were supplemented with longitudinal monitoring of KIT mutations in circulating tumor DNA. RESULTS A total of 39 PLX9486-naive patients (median age, 57 years [range, 39-79 years]; 22 men [56.4%]; 35 [89.7%] with refractory GIST) were enrolled in the dose escalation and extension parts. The recommended phase 2 dose of PLX9486 was 1000 mg daily. At this dose, PLX9486 could be safely combined with 25 or 37.5 mg daily of sunitinib continuously. Patients with GIST who received PLX9486 at a dose of 500 mg or less, at the recommended phase 2 dose, and with sunitinib had median (95% CI) progression-free survivals of 1.74 (1.54-1.84), 5.75 (0.99-11.0), and 12.1 (1.34-NA) months and clinical benefit rates (95% CI) of 14% (0%-58%), 50% (21%-79%), and 80% (52%-96%), respectively. CONCLUSIONS AND RELEVANCE In this phase 1b/2a nonrandomized clinical trial, type I and type II KIT inhibitors PLX9486 and sunitinib were safely coadministered at the recommended dose of both single agents in patients with refractory GIST. Results suggest that cotargeting 2 complementary conformational states of the same kinase was associated with clinical benefit with an acceptable safety profile. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02401815.
Collapse
Affiliation(s)
- Andrew J. Wagner
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | | | - Amita Patnaik
- South Texas Accelerated Research Therapeutics, San Antonio
| | | | - Gabriel Tinoco
- The Ohio State University Comprehensive Cancer Center, Columbus
| | | | | | - Jack Lin
- Plexxikon Inc, Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jonathan C. Trent
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - William D. Tap
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| |
Collapse
|
36
|
Rational design of heterodimeric receptors capable of activating target signaling molecules. Sci Rep 2021; 11:16809. [PMID: 34413422 PMCID: PMC8376883 DOI: 10.1038/s41598-021-96396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022] Open
Abstract
Intracellular signal transduction is regulated by a variety of transmembrane receptors. Many researchers have aimed to arbitrarily regulate the intracellular signaling and subsequent cell fate with artificial receptors, of which the ligand recognition and signaling properties could be artificially designed. Although several architectures of homodimeric artificial receptors have been reported, engineering of heterodimeric receptors, which are abundant among natural receptors, have yet to be thoroughly investigated. In this study, we rationally design artificial heterodimeric receptors for activating target signaling molecules. We locate a tyrosine motif on an engineered tyrosine kinase domain, which is further connected to a small molecule-responsive heterodimeric module, attaining a pair of heterodimeric receptors with different tyrosine motifs within the pair. The resultant heterodimeric receptors successfully activate target signaling molecules and even control cell proliferation levels according to the properties of tyrosine motifs connected. Thus, our heterodimeric receptors may open a new era of tailor-made designer receptors, which could be useful for cell therapy against intractable diseases.
Collapse
|
37
|
Pan X, Liu JH. Identification of four key biomarkers and small molecule drugs in nasopharyngeal carcinoma by weighted gene co-expression network analysis. Bioengineered 2021; 12:3647-3661. [PMID: 34261404 PMCID: PMC8806459 DOI: 10.1080/21655979.2021.1949844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a heterogeneous carcinoma whose underlying molecular mechanisms involved in tumor initiation, progression, and migration are largely unclear. The aim of the present study was to identify key biomarkers and small-molecule drugs for screening, diagnosing, and treating NPC via gene expression profile analysis. Raw microarray data was used to identify 430 differentially expressed genes (DEGs) in the Gene Expression Omnibus (GEO) database. The key modules associated with histological grade and tumor stage were identified using weighted gene co-expression network analysis. qRT-PCR was used to verify the differential expression of hub genes. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the connectivity map database were used to identify potential mechanisms and screen small-molecule drugs targeting hub genes. Functional enrichment analysis showed that genes in the green module were enriched in the regulation of cell cycle, p53 signaling pathway, and cell part morphogenesis. Four DEG-related hub genes (CRIP1, KITLG, MARK1, and PGAP1) in the green module, which were considered potential diagnostic biomarkers, were taken as the final hub genes. The expression levels of these four hub genes were verified via qRT-PCR, and the results were consistent with findings from the GEO analysis. Screening was also conducted to identify small-molecule drugs with potential therapeutic effects against NPC. In conclusion, four potential prognostic biomarkers and several candidate small-molecule drugs, which may provide new insights for NPC therapy, were identified.
Collapse
Affiliation(s)
- Xi Pan
- Department of Oncology, Xiangya Third Hospital, Central South University, Changsha, China
| | - Jian-Hao Liu
- School of Pharmaceutical Sciences of Central South University, Changsha, 410078, China
| |
Collapse
|
38
|
Kadir SR, Lilja A, Gunn N, Strong C, Hughes RT, Bailey BJ, Rae J, Parton RG, McGhee J. Nanoscape, a data-driven 3D real-time interactive virtual cell environment. eLife 2021; 10:64047. [PMID: 34191720 PMCID: PMC8245131 DOI: 10.7554/elife.64047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Our understanding of cellular and structural biology has reached unprecedented levels of detail, and computer visualisation techniques can be used to create three-dimensional (3D) representations of cells and their environment that are useful in both teaching and research. However, extracting and integrating the relevant scientific data, and then presenting them in an effective way, can pose substantial computational and aesthetic challenges. Here we report how computer artists, experts in computer graphics and cell biologists have collaborated to produce a tool called Nanoscape that allows users to explore and interact with 3D representations of cells and their environment that are both scientifically accurate and visually appealing. We believe that using Nanoscape as an immersive learning application will lead to an improved understanding of the complexities of cellular scales, densities and interactions compared with traditional learning modalities.
Collapse
Affiliation(s)
- Shereen R Kadir
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Andrew Lilja
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Nick Gunn
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Campbell Strong
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Rowan T Hughes
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Benjamin J Bailey
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - James Rae
- Institute for Molecular Bioscience, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - John McGhee
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Maurer M, Khan DA, Elieh Ali Komi D, Kaplan AP. Biologics for the Use in Chronic Spontaneous Urticaria: When and Which. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1067-1078. [PMID: 33685605 DOI: 10.1016/j.jaip.2020.11.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Guidelines for the treatment of chronic spontaneous urticaria (CSU) recommend the use of the IgE-targeted biologic omalizumab in patients with antihistamine-refractory disease. The rationale for this is supported by the key role of IgE and its high-affinity receptor, FcεRI, in the degranulation of skin mast cells that drives the development of the signs and symptoms of CSU, itchy wheals, and angioedema. Here, we review the current understanding of the pathogenesis of CSU and its autoimmune endotypes. We describe the mechanisms of action of omalizumab, the only biologic currently approved for CSU, its efficacy and ways to improve it, biomarkers for treatment response, and strategies for its discontinuation. We provide information on the effects of the off-label use, in CSU, of biologics licensed for the treatment of other diseases, including dupilumab, benralizumab, mepolizumab, reslizumab, and secukinumab. Finally, we discuss targets for novel biologics and where we stand with their clinical development. These include IgE/ligelizumab, IgE/GI-310, thymic stromal lymphopoietin/tezepelumab, C5a receptor/avdoralimab, sialic acid-binding Ig-like lectin 8/lirentelimab, CD200R/LY3454738, and KIT/CDX-0159. Our aim is to provide updated information and guidance on the use of biologics in the treatment of patients with CSU, now and in the near future.
Collapse
Affiliation(s)
- Marcus Maurer
- Department of Dermatology and Allergy, Dermatological Allergology, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - David A Khan
- Division of Allergy and Immunology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Daniel Elieh Ali Komi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Allen P Kaplan
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
40
|
Pannecoucke E, Raes L, Savvides SN. Engineering and crystal structure of a monomeric FLT3 ligand variant. Acta Crystallogr F Struct Biol Commun 2021; 77:121-127. [PMID: 33830077 PMCID: PMC8034431 DOI: 10.1107/s2053230x21003289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/27/2021] [Indexed: 12/02/2022] Open
Abstract
The overarching paradigm for the activation of class III and V receptor tyrosine kinases (RTKs) prescribes cytokine-mediated dimerization of the receptor ectodomains and homotypic receptor-receptor interactions. However, structural studies have shown that the hematopoietic receptor FLT3, a class III RTK, does not appear to engage in such receptor-receptor contacts, despite its efficient dimerization by dimeric FLT3 ligand (FL). As part of efforts to better understand the intricacies of FLT3 activation, we sought to engineer a monomeric FL. It was found that a Leu27Asp substitution at the dimer interface of the cytokine led to a stable monomeric cytokine (FLL27D) without abrogation of receptor binding. The crystal structure of FLL27D at 1.65 Å resolution revealed that the introduced point mutation led to shielding of the hydrophobic footprint of the dimerization interface in wild-type FL without affecting the conformation of the FLT3 binding site. Thus, FLL27D can serve as a monomeric FL variant to further interrogate the assembly mechanism of extracellular complexes of FLT3 in physiology and disease.
Collapse
Affiliation(s)
- Erwin Pannecoucke
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
| | - Laurens Raes
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Savvas N. Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
| |
Collapse
|
41
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
42
|
Abstract
Gastrointestinal stromal tumours (GIST) have an incidence of ~1.2 per 105 individuals per year in most countries. Around 80% of GIST have varying molecular changes, predominantly mutually exclusive activating KIT or PDGFRA mutations, but other, rare subtypes also exist. Localized GIST are curable, and surgery is their standard treatment. Risk factors for relapse are tumour size, mitotic index, non-gastric site and tumour rupture. Patients with GIST with KIT or PDGFRA mutations sensitive to the tyrosine kinase inhibitor (TKI) imatinib that are at high risk of relapse have improved survival with adjuvant imatinib treatment. In advanced disease, median overall survival has improved from 18 months to >70 months since the introduction of TKIs. The role of surgery in the advanced setting remains unclear. Resistance to TKIs arise mainly from subclonal selection of cells with resistance mutations in KIT or PDGFRA when they are the primary drivers. Advanced resistant GIST respond to second-line sunitinib and third-line regorafenib, as well as to the new broad-spectrum TKI ripretinib. Rare molecular forms of GIST with alterations involving NF1, SDH genes, BRAF or NTRK genes generally show primary resistance to standard TKIs, but some respond to specific inhibitors of the activated genes. Despite major advances, many questions in both advanced and localized disease remain unanswered.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France.
| | - Yoon-Koo Kang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Toshiroo Nishida
- Surgery Department, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
43
|
Pilco-Janeta DF, García-Valverde A, Gomez-Peregrina D, Serrano C. Emerging drugs for the treatment of gastrointestinal stromal tumors. Expert Opin Emerg Drugs 2021; 26:53-62. [PMID: 33645383 DOI: 10.1080/14728214.2021.1896704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the crucial event in gastrointestinal stromal tumor (GIST) biology. Seminal works during the past two decades have underscored, first, the continuous relevance of KIT/PDGFRA oncogenic signaling after progression to targeted inhibition; second, the heterogeneity of KIT/PDGFRA acquired mutations, that cannot be efficiently suppressed by any given tyrosine kinase inhibitor (TKI); and third, the presence of specific mutants highly resistant to all approved therapies. AREAS COVERED This review discusses treatment options in advanced/metastatic GIST, including a detailed dissection of ripretinib and avapritinib, the two novel small molecule inhibitors approved by the Food and Drug Administration in 2020. EXPERT OPINION The three only therapeutic options since 2012 for metastatic GIST patients were imatinib, sunitinib, and regorafenib. Although imatinib was highly effective in treatment-naïve GIST, the benefit of second- and third-line sunitinib and regorafenib was modest, thus emphasizing the medical need for new treatment options. Ripretinib, a switch control inhibitor with broad anti-KIT/PDGFRA activity, has been approved as ≥4th line in GIST after progression to all standard therapies. Avapritinib, a type I TKI highly specific against the multi-resistant PDGFRA D842V mutation, is approved in this specific subset of GIST patients.
Collapse
Affiliation(s)
- Daniel F Pilco-Janeta
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - David Gomez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
44
|
Gómez-Peregrina D, García-Valverde A, Pilco-Janeta D, Serrano C. Liquid Biopsy in Gastrointestinal Stromal Tumors: Ready for Prime Time? Curr Treat Options Oncol 2021; 22:32. [PMID: 33641024 DOI: 10.1007/s11864-021-00832-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumor (GIST) constitutes a paradigm for clinically effective targeted inhibition of oncogenic driver mutations. Therefore, GIST has emerged as a compelling clinical and biological model to study oncogene addiction and to validate preclinical concepts for drug response and drug resistance. Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the essential drivers of GIST progression throughout all stages of the disease. Interestingly, KIT/PDGFRA genotype predicts the response to first-line imatinib and to all tyrosine kinase inhibitors (TKIs) approved or in investigation after imatinib failure. Considering that TKIs are effective only against a subset of KIT or PDGFRA resistance mutations, close monitoring of tumor dynamics with non-invasive methods such as liquid biopsy emerges as a necessary step forward in the field. Liquid biopsy, in contrast to solid tumor biopsy, aims to characterize tumors irrespective of heterogeneity. Although there are several components in the peripheral blood, most recent studies have been focused on circulating tumor (ct)DNA, due to the technological feasibility, the stability of DNA itself and DNA alterations, and the therapeutic development in precision oncology largely based on the identification of genetic driver mutations. In the present review, we systematically dissect the current wealth of data of ctDNA in GIST. To do so, a critical understanding of the promises and limitations of the current technologies will be followed by an exposition of the knowledge gathered with such studies in GIST. Collectively, our goal is to establish clear premises that can be used as the foundations to build future studies towards the clinical implementation of ctDNA evaluation in GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - Daniel Pilco-Janeta
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain. .,Department of Medical Oncology, Vall d'Hebron University Hospital, P/Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
45
|
Russkamp NF, Myburgh R, Kiefer JD, Neri D, Manz MG. Anti-CD117 immunotherapy to eliminate hematopoietic and leukemia stem cells. Exp Hematol 2021; 95:31-45. [PMID: 33484750 DOI: 10.1016/j.exphem.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Precise replacement of diseased or dysfunctional organs is the goal of regenerative medicine and has appeared to be a distant goal for a long time. In the field of hematopoietic stem cell transplantation, this goal is now becoming tangible as gene-editing technologies and novel conditioning agents are entering the clinical arena. Targeted immunologic depletion of hematopoietic stem cells (HSCs), which are at the very root of the hematopoietic system, will enable more selective and potentially more effective hematopoietic stem cell transplantation in patients with hematological diseases. In contrast to current conditioning regimes based on ionizing radiation and chemotherapy, immunologic conditioning will spare mature hematopoietic cells and cause substantially less inflammation and unspecific collateral damage to other organs. Biological agents that target the stem cell antigen CD117 are the frontrunners for this purpose and have exhibited preclinical activity in depletion of healthy HSCs. The value of anti-CD117 antibodies as conditioning agents is currently being evaluated in early clinical trials. Whereas mild, antibody-based immunologic conditioning concepts might be appropriate for benign hematological disorders in which incomplete replacement of diseased cells is sufficient, higher efficacy will be required for treatment and elimination of hematologic stem cell malignancies such as acute myeloid leukemia and myelodysplastic syndrome. Antibody-drug conjugates, bispecific T-cell engaging and activating antibodies (TEAs), or chimeric antigen receptor (CAR) T cells might offer increased efficacy compared with naked antibodies and yet higher tolerability and safety compared with current genotoxic conditioning approaches. Here, we summarize the current state regarding immunologic conditioning concepts for the treatment of HSC disorders and outline potential future developments.
Collapse
Affiliation(s)
- Norman F Russkamp
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Jonathan D Kiefer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
46
|
Bai C, Xu Y, Qiu C. A new monoclonal antibody that blocks dimerisation and inhibits c-kit mutation-driven tumour growth. J Cancer Res Clin Oncol 2021; 147:1065-1075. [PMID: 33389076 PMCID: PMC7954730 DOI: 10.1007/s00432-020-03490-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Imatinib, a small-molecule tyrosine kinase inhibitor, has shown good clinical activity by inhibiting adenosine triphosphate (ATP) binding to the receptor. Unfortunately, majority of patients eventually develop drug resistance, which limits the long-term benefits of the tyrosine kinase inhibitors and poses a significant challenge in the clinical management of GIST. The aim of our study was to explore the feasibility of blocking KIT dimerisation upstream of the phosphorylation in imatinib-resistant GIST. METHOD KITMAb was prepared using hybridoma technique. The biological function of KITMAb was examined in KIT-dimer-expressing cells constructed by transfecting with liposomes using enzyme linked immunosorbent assay (ELISA), immunohistochemistry, western blot, MTT, Annexin V/FITC, and flow cytometry assay, respectively. RESULTS KIT-dimer was expressed in 293 cells transfected with c-kit mutated-type pcDNA3.1. Treatment of KIT-dimer-expressing cells with the KITMAb significantly decreased the expression of both KIT-dimer and other phosphorylated proteins of KIT downstream signalling pathway. Furthermore, KITMAb slowed down cell growth and reduced the proportion of cells in the proliferative phase (S + G2-M). Finally, we also found that KITMAb treatment accelerated cell apoptosis. These results indicate that KITMAb strongly inhibits KIT receptor dimerisation-mediated signalling pathway and cell growth responses in vitro. CONCLUSIONS We demonstrate c-kit mutation-driven KIT auto-dimerisation prior to tyrosine kinase phosphorylation as same as the procedure in ligand-dependent signalling pathway and describe a monoclonal antibody, KITMAb, with strong affinity to the dimerisation domain of KIT that blocks the important step in both the KIT signalling pathways. Further, the results suggest that treatment with KITMAb may be potentially therapeutic in imatinib-resistant GIST.
Collapse
Affiliation(s)
- Chenguang Bai
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yi Xu
- Department of Pathology, Yueyang Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Qiu
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Number 639 Zhizaoju Rd., Shanghai, 200001, China.
| |
Collapse
|
47
|
Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer 2020; 1875:188495. [PMID: 33346130 DOI: 10.1016/j.bbcan.2020.188495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Receptor Tyrosine Kinases (RTK) are an important family involved in numerous signaling pathways essential for proliferation, cell survival, transcription or cell-cycle regulation. Their role and involvement in cancer cell survival have been widely described in the literature, and are generally associated with overexpression and/or excessive activity in the cancer pathology. Because of these characteristics, RTKs are relevant targets in the fight against cancer. In the last decade, increasingly numerous works describe the role of RTK signaling in the modulation of DNA repair, thus providing evidence of the relationship between RTKs and the protein actors in the repair pathways. In this review, we propose a summary of RTKs described as potential modulators of double-stranded DNA repair pathways in order to put forward new lines of research aimed at the implementation of new therapeutic strategies targeting both DNA repair pathways and RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Thomas Chabot
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Yvonnick Cheraud
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
48
|
Structural studies of full-length receptor tyrosine kinases and their implications for drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:311-336. [PMID: 33632469 DOI: 10.1016/bs.apcsb.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Receptor tyrosine kinases (RTKs) are important drug targets for cancer and immunological disorders. Crystal structures of individual RTK domains have contributed greatly to the structure-based drug design of clinically used drugs. Low-resolution structures from electron microscopy are now available for the RTKs, EGFR, PDGFR, and Kit. However, there are still no high-resolution structures of full-length RTKs due to the technical challenges of working with these complex, membrane proteins. Here, we review what has been learned from structural studies of these three RTKs regarding their mechanisms of ligand binding, activation, oligomerization, and inhibition. We discuss the implications for drug design. More structural data on full-length RTKs may facilitate the discovery of druggable sites and drugs with improved specificity and effectiveness against resistant mutants.
Collapse
|
49
|
Engineering Stem Cell Factor Ligands with Different c-Kit Agonistic Potencies. Molecules 2020; 25:molecules25204850. [PMID: 33096693 PMCID: PMC7588011 DOI: 10.3390/molecules25204850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure–function dynamics of ligands and RTKs.
Collapse
|
50
|
Bahat Y, Alter J, Dessau M. Crystal structure of tomato spotted wilt virus G N reveals a dimer complex formation and evolutionary link to animal-infecting viruses. Proc Natl Acad Sci U S A 2020; 117:26237-26244. [PMID: 33020295 PMCID: PMC7584872 DOI: 10.1073/pnas.2004657117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tospoviridae is a family of enveloped RNA plant viruses that infect many field crops, inflicting a heavy global economic burden. These tripartite, single-stranded, negative-sense RNA viruses are transmitted from plant to plant by thrips as the insect vector. The medium (M) segment of the viral genome encodes two envelope glycoproteins, GN and GC, which together form the envelope spikes. GC is considered the virus fusogen, while the accompanying GN protein serves as an attachment protein that binds to a yet unknown receptor, mediating the virus acquisition by the thrips carrier. Here we present the crystal structure of glycoprotein N (GN) from the tomato spotted wilt virus (TSWV), a representative member of the Tospoviridae family. The structure suggests that GN is organized as dimers on TSWV's outer shell. Our structural data also suggest that this dimerization is required for maintaining GN structural integrity. Although the structure of the TSWV GN is different from other bunyavirus GN proteins, they all share similar domain connectivity that resembles glycoproteins from unrelated animal-infecting viruses, suggesting a common ancestor for these accompanying proteins.
Collapse
Affiliation(s)
- Yoav Bahat
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed , Israel 1311502
| | - Joel Alter
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed , Israel 1311502
| | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed , Israel 1311502
| |
Collapse
|