1
|
Dalia TN, Machouri M, Lacrouts C, Fauconnet Y, Guerois R, Andreani J, Radicella JP, Dalia AB. DprA recruits ComM to facilitate recombination during natural transformation in Gram-negative bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619469. [PMID: 39484419 PMCID: PMC11526882 DOI: 10.1101/2024.10.21.619469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Natural transformation (NT) represents one of the major modes of horizontal gene transfer in bacterial species. During NT, cells can take up free DNA from the environment and integrate it into their genome by homologous recombination. While NT has been studied for >90 years, the molecular details underlying this recombination remain poorly understood. Recent work has demonstrated that ComM is an NT-specific hexameric helicase that promotes recombinational branch migration in Gram-negative bacteria. How ComM is loaded onto the post-synaptic recombination intermediate during NT, however, remains unclear. Another NT-specific recombination mediator protein that is ubiquitously conserved in both Gram-positive and Gram-negative bacteria is DprA. Here, we uncover that DprA homologs in Gram-negative species contain a C-terminal winged helix domain that is predicted to interact with ComM by AlphaFold. Using Helicobacter pylori and Vibrio cholerae as model systems, we demonstrate that ComM directly interacts with the DprA winged-helix domain, and that this interaction is critical for DprA to recruit ComM to the recombination site to promote branch migration during NT. These results advance our molecular understanding of recombination during this conserved mode of horizontal gene transfer. Furthermore, they demonstrate how structural modeling can help uncover unexpected interactions between well-studied proteins to provide deep mechanistic insight into the molecular coordination required for their activity. SIGNIFICANCE STATEMENT Bacteria can acquire novel traits like antibiotic resistance and virulence through horizontal gene transfer by natural transformation. During this process, cells take up free DNA from the environment and integrate it into their genome by homologous recombination. Many of the molecular details underlying this process, however, remain incompletely understood. In this study, we identify a new protein-protein interaction between ComM and DprA, two factors that promote homologous recombination during natural transformation in Gram-negative species. Through a combination of bioinformatics, structural modeling, cell biological assays, and complementary genetic approaches, we demonstrate that this interaction is required for DprA to recruit ComM to the site of homologous recombination.
Collapse
|
2
|
Dalia TN, Dalia AB. SbcB facilitates natural transformation in Vibrio cholerae in an exonuclease-independent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615017. [PMID: 39386473 PMCID: PMC11463445 DOI: 10.1101/2024.09.25.615017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Natural transformation (NT) is a conserved mechanism of horizontal gene transfer in bacterial species. During this process, DNA is taken up into the cytoplasm where it can be integrated into the host genome by homologous recombination. We have previously shown that some cytoplasmic exonucleases can inhibit NT by degrading ingested DNA prior to its successful recombination. Here, however, we demonstrate that the exonuclease SbcB counterintuitively promotes NT in Vibrio cholerae . Through a systematic analysis of the distinct steps of NT, we show that SbcB acts downstream of DNA uptake into the cytoplasm, but upstream of recombinational branch migration. Through mutational analysis, we show that the SbcB promotes NT in a manner that does not rely on its exonuclease activity. Finally, we provide genetic evidence that SbcB directly interacts with the primary bacterial recombinase, RecA. Together, these data advance our molecular understanding of horizontal gene transfer in V. cholerae , and reveal that SbcB promotes homologous recombination during NT in a manner that does not rely on its canonical exonuclease activity. IMPORTANCE Horizontal gene transfer by natural transformation contributes to the spread of antibiotic resistance and virulence factors in bacterial species. Here, we study how one protein, SbcB, helps facilitate this process in the facultative bacterial pathogen Vibrio cholerae . SbcB is a well-known for its exonuclease activity ( i.e ., the ability to degrade the ends of linear DNA). Through this study we uncover that while SbcB is important for natural transformation, it does not facilitate this process using its exonuclease activity. Thus, this work helps further our understanding of the molecular events required for this conserved evolutionary process, and uncovers a function for SbcB beyond its canonical exonuclease activity.
Collapse
|
3
|
Prudhomme M, Johnston CHG, Soulet AL, Boyeldieu A, De Lemos D, Campo N, Polard P. Pneumococcal competence is a populational health sensor driving multilevel heterogeneity in response to antibiotics. Nat Commun 2024; 15:5625. [PMID: 38987237 PMCID: PMC11237056 DOI: 10.1038/s41467-024-49853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Competence for natural transformation is a central driver of genetic diversity in bacteria. In the human pathogen Streptococcus pneumoniae, competence exhibits a populational character mediated by the stress-induced ComABCDE quorum-sensing (QS) system. Here, we explore how this cell-to-cell communication mechanism proceeds and the functional properties acquired by competent cells grown under lethal stress. We show that populational competence development depends on self-induced cells stochastically emerging in response to stresses, including antibiotics. Competence then propagates through the population from a low threshold density of self-induced cells, defining a biphasic Self-Induction and Propagation (SI&P) QS mechanism. We also reveal that a competent population displays either increased sensitivity or improved tolerance to lethal doses of antibiotics, dependent in the latter case on the competence-induced ComM division inhibitor. Remarkably, these surviving competent cells also display an altered transformation potential. Thus, the unveiled SI&P QS mechanism shapes pneumococcal competence as a health sensor of the clonal population, promoting a bet-hedging strategy that both responds to and drives cells towards heterogeneity.
Collapse
Affiliation(s)
- Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Calum H G Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne Boyeldieu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.
- Université Paul Sabatier (Toulouse III), Toulouse, France.
| |
Collapse
|
4
|
Liljegren MM, Gama JA, Johnsen PJ, Harms K. The recombination initiation functions DprA and RecFOR suppress microindel mutations in Acinetobacter baylyi ADP1. Mol Microbiol 2024; 122:1-10. [PMID: 38760330 DOI: 10.1111/mmi.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Short-Patch Double Illegitimate Recombination (SPDIR) has been recently identified as a rare mutation mechanism. During SPDIR, ectopic DNA single-strands anneal with genomic DNA at microhomologies and get integrated during DNA replication, presumably acting as primers for Okazaki fragments. The resulting microindel mutations are highly variable in size and sequence. In the soil bacterium Acinetobacter baylyi, SPDIR is tightly controlled by genome maintenance functions including RecA. It is thought that RecA scavenges DNA single-strands and renders them unable to anneal. To further elucidate the role of RecA in this process, we investigate the roles of the upstream functions DprA, RecFOR, and RecBCD, all of which load DNA single-strands with RecA. Here we show that all three functions suppress SPDIR mutations in the wildtype to levels below the detection limit. While SPDIR mutations are slightly elevated in the absence of DprA, they are strongly increased in the absence of both DprA and RecA. This SPDIR-avoiding function of DprA is not related to its role in natural transformation. These results suggest a function for DprA in combination with RecA to avoid potentially harmful microindel mutations, and offer an explanation for the ubiquity of dprA in the genomes of naturally non-transformable bacteria.
Collapse
Affiliation(s)
- Mikkel M Liljegren
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - João A Gama
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Dekaj E, Gjini E. Pneumococcus and the stress-gradient hypothesis: A trade-off links R 0 and susceptibility to co-colonization across countries. Theor Popul Biol 2024; 156:77-92. [PMID: 38331222 DOI: 10.1016/j.tpb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization μ=1/(R0-1)k. From the mathematical model's behavior, such conservation suggests preservation of 'stability-diversity-complexity' regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.
Collapse
Affiliation(s)
- Ermanda Dekaj
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
6
|
Sharma DK, Soni I, Misra HS, Rajpurohit YS. Natural transformation-specific DprA coordinate DNA double-strand break repair pathways in heavily irradiated D. radiodurans. Appl Environ Microbiol 2024; 90:e0194823. [PMID: 38193676 PMCID: PMC10880594 DOI: 10.1128/aem.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
7
|
Maziero M, Lane D, Polard P, Bergé M. Fever-like temperature bursts promote competence development via an HtrA-dependent pathway in Streptococcus pneumoniae. PLoS Genet 2023; 19:e1010946. [PMID: 37699047 PMCID: PMC10516426 DOI: 10.1371/journal.pgen.1010946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is well known for its ability to develop competence for natural DNA transformation. Competence development is regulated by an autocatalytic loop driven by variations in the basal level of transcription of the comCDE and comAB operons. These genes are part of the early gene regulon that controls expression of the late competence genes known to encode the apparatus of transformation. Several stressful conditions are known to promote competence development, although the induction pathways are remain poorly understood. Here we demonstrate that transient temperature elevation induces an immediate increase in the basal expression level of the comCDE operon and early genes that, in turn, stimulates its full induction, including that of the late competence regulon. This thermal regulation depends on the HtrA chaperone/protease and its proteolytic activity. We find that other competence induction stimulus, like norfloxacin, is not conveyed by the HtrA-dependent pathway. This finding strongly suggests that competence can be induced by at least two independent pathways and thus reinforces the view that competence is a general stress response system in the pneumococcus.
Collapse
Affiliation(s)
- Mickaël Maziero
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David Lane
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Mathieu Bergé
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| |
Collapse
|
8
|
Ryan ME, Damke PP, Bryant C, Sheedlo MJ, Shaffer CL. Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550604. [PMID: 37546756 PMCID: PMC10402047 DOI: 10.1101/2023.07.25.550604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Caitlynn Bryant
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
9
|
Ryan ME, Damke PP, Shaffer CL. DNA Transport through the Dynamic Type IV Secretion System. Infect Immun 2023; 91:e0043622. [PMID: 37338415 PMCID: PMC10353360 DOI: 10.1128/iai.00436-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Vesel N, Iseli C, Guex N, Lemopoulos A, Blokesch M. DNA modifications impact natural transformation of Acinetobacter baumannii. Nucleic Acids Res 2023; 51:5661-5677. [PMID: 37178001 PMCID: PMC10287943 DOI: 10.1093/nar/gkad377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Acinetobacter baumannii is a dangerous nosocomial pathogen, especially due to its ability to rapidly acquire new genetic traits, including antibiotic resistance genes (ARG). In A. baumannii, natural competence for transformation, one of the primary modes of horizontal gene transfer (HGT), is thought to contribute to ARG acquisition and has therefore been intensively studied. However, knowledge regarding the potential role of epigenetic DNA modification(s) on this process remains lacking. Here, we demonstrate that the methylome pattern of diverse A. baumannii strains differs substantially and that these epigenetic marks influence the fate of transforming DNA. Specifically, we describe a methylome-dependent phenomenon that impacts intra- and inter-species DNA exchange by the competent A. baumannii strain A118. We go on to identify and characterize an A118-specific restriction-modification (RM) system that impairs transformation when the incoming DNA lacks a specific methylation signature. Collectively, our work contributes towards a more holistic understanding of HGT in this organism and may also aid future endeavors towards tackling the spread of novel ARGs. In particular, our results suggest that DNA exchanges between bacteria that share similar epigenomes are favored and could therefore guide future research into identifying the reservoir(s) of dangerous genetic traits for this multi-drug resistant pathogen.
Collapse
Affiliation(s)
- Nina Vesel
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Zhang Y, Zhang J, Xiao J, Wang H, Yang R, Guo X, Zheng Y, Yin Y, Zhang X. comCDE (Competence) Operon Is Regulated by CcpA in Streptococcus pneumoniae D39. Microbiol Spectr 2023; 11:e0001223. [PMID: 37036382 PMCID: PMC10269683 DOI: 10.1128/spectrum.00012-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Natural transformation plays an important role in the formation of drug-resistant bacteria. Exploring the regulatory mechanism of natural transformation can aid the discovery of new antibacterial targets and reduce the emergence of drug-resistant bacteria. Competence is a prerequisite of natural transformation in Streptococcus pneumoniae, in which comCDE operon is the core regulator of competence. To date, only ComE has been shown to directly regulate comCDE transcription. In this study, a transcriptional regulator, the catabolite control protein A (CcpA), was identified that directly regulated comCDE transcription. We confirmed that CcpA binds to the cis-acting catabolite response elements (cre) in the comCDE promoter region to regulate comCDE transcription and transformation. Moreover, CcpA can coregulate comCDE transcription with phosphorylated and dephosphorylated ComE. Regulation of comCDE transcription and transformation by CcpA was also affected by carbon source signals. Together, these insights demonstrate the versatility of CcpA and provide a theoretical basis for reducing the emergence of drug-resistant bacteria. IMPORTANCE Streptococcus pneumoniae is a major cause of bacterial infections in humans, such as pneumonia, bacteremia, meningitis, otitis media, and sinusitis. Like most streptococci, S. pneumoniae is naturally competent and employs this ability to augment its adaptive evolution. The current study illustrates CcpA, a carbon catabolite regulator, can participate in the competence process by regulating comCDE transcription, and this process is regulated by different carbon source signals. These hidden abilities are likely critical for adaptation and colonization in the environment.
Collapse
Affiliation(s)
- Yapeng Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | | | - Jiangming Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hanyi Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinlin Guo
- Department of Medicine Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqiang Zheng
- Department of Medicine Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Stokar-Avihail A, Fedorenko T, Hör J, Garb J, Leavitt A, Millman A, Shulman G, Wojtania N, Melamed S, Amitai G, Sorek R. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 2023; 186:1863-1876.e16. [PMID: 37030292 DOI: 10.1016/j.cell.2023.02.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 04/10/2023]
Abstract
Over the past few years, numerous anti-phage defense systems have been discovered in bacteria. Although the mechanism of defense for some of these systems is understood, a major unanswered question is how these systems sense phage infection. To systematically address this question, we isolated 177 phage mutants that escape 15 different defense systems. In many cases, these escaper phages were mutated in the gene sensed by the defense system, enabling us to map the phage determinants that confer sensitivity to bacterial immunity. Our data identify specificity determinants of diverse retron systems and reveal phage-encoded triggers for multiple abortive infection systems. We find general themes in phage sensing and demonstrate that mechanistically diverse systems have converged to sense either the core replication machinery of the phage, phage structural components, or host takeover mechanisms. Combining our data with previous findings, we formulate key principles on how bacterial immune systems sense phage invaders.
Collapse
Affiliation(s)
- Avigail Stokar-Avihail
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Taya Fedorenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jens Hör
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gabriela Shulman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicole Wojtania
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
13
|
Biochemical Properties and Roles of DprA Protein in Bacterial Natural Transformation, Virulence, and Pilin Variation. J Bacteriol 2023; 205:e0046522. [PMID: 36695594 PMCID: PMC9945497 DOI: 10.1128/jb.00465-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Natural transformation enables bacteria to acquire DNA from the environment and contributes to genetic diversity, DNA repair, and nutritional requirements. DNA processing protein A (DprA) receives incoming single-stranded DNA and assists RecA loading for homology-directed natural chromosomal transformation and DNA strand annealing during plasmid transformation. The dprA gene occurs in the genomes of all known bacteria, irrespective of their natural transformation status. The DprA protein has been characterized by its molecular, cellular, biochemical, and biophysical properties in several bacteria. This review summarizes different aspects of DprA biology, collectively describing its biochemical properties, molecular interaction with DNA, and function interaction with bacterial RecA during natural transformation. Furthermore, the roles of DprA in natural transformation, bacterial virulence, and pilin variation are discussed.
Collapse
|
14
|
Characterization of DNA Processing Protein A (DprA) of the Radiation-Resistant Bacterium Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0347022. [PMID: 36453941 PMCID: PMC9769556 DOI: 10.1128/spectrum.03470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Environmental DNA uptake by certain bacteria and its integration into their genome create genetic diversity and new phenotypes. DNA processing protein A (DprA) is part of a multiprotein complex and facilitates the natural transformation (NT) phenotype in most bacteria. Deinococcus radiodurans, an extremely radioresistant bacterium, is efficient in NT, and its genome encodes nearly all of the components of the natural competence complex. Here, we have characterized the DprA protein of this bacterium (DrDprA) for the known characteristics of DprA proteins of other bacteria and the mechanisms underlying the DNA-RecA interaction. DrDprA has three domains. In vitro studies showed that purified recombinant DrDprA binds to both single-strand DNA (ssDNA) and double-strand DNA (dsDNA) and is able to protect ssDNA from nucleolytic degradation. DrDprA showed a strong interaction with DrRecA and facilitated RecA-catalyzed functions in vivo. Mutational studies identified DrDprA amino acid residues crucial for oligomerization, the interaction with DrRecA, and DNA binding. Furthermore, we showed that both oligomerization and DNA binding properties of DrDprA are integral to its support of the DrRecA-catalyzed strand exchange reaction (SER) in vitro. Together, these data suggested that DrDprA is largely structurally conserved with other DprA homologs but shows some unique structure-function features like the existence of an additional C-terminal Drosophila melanogaster Miasto-like protein 1 (DML1) domain, equal affinities for ssDNA and dsDNA, and the collective roles of oligomerization and DNA binding properties in supporting DrRecA functions. IMPORTANCE Bacteria can take up extracellular DNA (eDNA) by natural transformation (NT). Many bacteria, including Deinococcus radiodurans, have constitutive competence systems and can take up eDNA throughout their growth phase. DprA (DNA processing protein A) is a transformation-specific recombination mediator protein (RMP) that plays a role in bacterial NT, and the absence of this gene significantly reduces the transformation efficiencies of both chromosomal and plasmid DNA. NT helps bacteria survive under adverse conditions and contributes to genetic diversity in bacteria. The present work describes the characterization of DprA from D. radiodurans and will add to the existing knowledge of DprA biology.
Collapse
|
15
|
Millman A, Melamed S, Leavitt A, Doron S, Bernheim A, Hör J, Garb J, Bechon N, Brandis A, Lopatina A, Ofir G, Hochhauser D, Stokar-Avihail A, Tal N, Sharir S, Voichek M, Erez Z, Ferrer JLM, Dar D, Kacen A, Amitai G, Sorek R. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022; 30:1556-1569.e5. [DOI: 10.1016/j.chom.2022.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023]
|
16
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Kurushima J, Tomita H. Advances of genetic engineering in Streptococci and Enterococci. Microbiol Immunol 2022; 66:411-417. [PMID: 35703039 DOI: 10.1111/1348-0421.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
In the post-genome era, reverse genetic engineering is an indispensable methodology for experimental molecular biology to provide a deeper understanding of the principal relationship between genomic features and biological phenotypes. Technically, genetic engineering is carried out through allele replacement of a target genomic locus with a designed nucleotide sequence, so called site-directed mutagenesis. To artificially manipulate allele replacement through homologous recombination, researchers have improved various methodologies that are optimized to the bacterial species of interest. Here, we review widely used genetic engineering technologies, particularly for streptococci and enterococci, and recent advances that enable more effective and flexible manipulation. The development of genetic engineering has been promoted by synthetic biology approaches based on basic biology knowledge of horizontal gene transfer systems, such as natural conjugative transfer, natural transformation, and the CRISPR/Cas system. Therefore, this review also describes basic insights into molecular biology that underlie improvements in genetic engineering technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan.,Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| |
Collapse
|
18
|
Rousset F, Depardieu F, Miele S, Dowding J, Laval AL, Lieberman E, Garry D, Rocha EPC, Bernheim A, Bikard D. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022; 30:740-753.e5. [PMID: 35316646 PMCID: PMC9122126 DOI: 10.1016/j.chom.2022.02.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Bacteria carry diverse genetic systems to defend against viral infection, some of which are found within prophages where they inhibit competing viruses. Phage satellites pose additional pressures on phages by hijacking key viral elements to their own benefit. Here, we show that E. coli P2-like phages and their parasitic P4-like satellites carry hotspots of genetic variation containing reservoirs of anti-phage systems. We validate the activity of diverse systems and describe PARIS, an abortive infection system triggered by a phage-encoded anti-restriction protein. Antiviral hotspots participate in inter-viral competition and shape dynamics between the bacterial host, P2-like phages, and P4-like satellites. Notably, the anti-phage activity of satellites can benefit the helper phage during competition with virulent phages, turning a parasitic relationship into a mutualistic one. Anti-phage hotspots are present across distant species and constitute a substantial source of systems that participate in the competition between mobile genetic elements.
Collapse
Affiliation(s)
- François Rousset
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.
| | - Florence Depardieu
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Solange Miele
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Julien Dowding
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Anne-Laure Laval
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | | | | | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS UMR 3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - Aude Bernheim
- Université de Paris, INSERM, IAME, 75006 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
19
|
ComFC mediates transport and handling of single-stranded DNA during natural transformation. Nat Commun 2022; 13:1961. [PMID: 35414142 PMCID: PMC9005727 DOI: 10.1038/s41467-022-29494-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
The ComFC protein is essential for natural transformation, a process that plays a major role in the spread of antibiotic resistance genes and virulence factors across bacteria. However, its role remains largely unknown. Here, we show that Helicobacter pylori ComFC is involved in DNA transport through the cell membrane, and is required for the handling of the single-stranded DNA once it is delivered into the cytoplasm. The crystal structure of ComFC includes a zinc-finger motif and a putative phosphoribosyl transferase domain, both necessary for the protein's in vivo activity. Furthermore, we show that ComFC is a membrane-associated protein with affinity for single-stranded DNA. Our results suggest that ComFC provides the link between the transport of the transforming DNA into the cytoplasm and its handling by the recombination machinery.
Collapse
|
20
|
The molecular basis of FimT-mediated DNA uptake during bacterial natural transformation. Nat Commun 2022; 13:1065. [PMID: 35246533 PMCID: PMC8897410 DOI: 10.1038/s41467-022-28690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Naturally competent bacteria encode sophisticated protein machinery for the uptake and translocation of exogenous DNA into the cell. If this DNA is integrated into the bacterial genome, the bacterium is said to be naturally transformed. Most competent bacterial species utilise type IV pili for the initial DNA uptake step. These proteinaceous cell-surface structures are composed of thousands of pilus subunits (pilins), designated as major or minor according to their relative abundance in the pilus. Here, we show that the minor pilin FimT plays an important role in the natural transformation of Legionella pneumophila. We use NMR spectroscopy, in vitro DNA binding assays and in vivo transformation assays to understand the molecular basis of FimT's role in this process. FimT binds to DNA via an electropositive patch, rich in arginines, several of which are well-conserved and located in a conformationally flexible C-terminal tail. FimT orthologues from other Gammaproteobacteria share the ability to bind to DNA. Our results suggest that FimT plays an important role in DNA uptake in a wide range of competent species.
Collapse
|
21
|
Hu Y, Zheng J, Zhang J. Natural Transformation in Acinetobacter baumannii W068: A Genetic Analysis Reveals the Involvements of the CRP, XcpV, XcpW, TsaP, and TonB2. Front Microbiol 2022; 12:738034. [PMID: 35126321 PMCID: PMC8811193 DOI: 10.3389/fmicb.2021.738034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023] Open
Abstract
Acinetobacter baumannii is a serious threat to public health, and there is increasing attention to the development of antibiotic resistance in this bacterium. Natural transformation is a major horizontal gene transfer mechanism that can lead to antibiotic resistance. To better understand the mechanism of natural transformation in A. baumannii, we selected a clinical isolate that was transformable but had no visible extracellular type IV pili (T4P) filaments and then examined the effects of multiple single-gene knockouts on natural plasmid transformation. Among 33 candidate genes, 28 knockout mutants had severely or completely impaired transformability. Some of these genes had established roles in T4P biogenesis; DNA transfer across the outer membrane, periplasm, or inner membrane; and protection of intracellular single-stranded DNA (ssDNA). Other genes had no previously reported roles in natural transformation of A. baumannii, including competence activator cAMP receptor protein (CRP), a periplasmic protein that may function in T4P assembly (TonB2), a T4P secretin-associated protein (TsaP), and two type II secretion system (T2SS) minor pseudopilus assembly prime complex competent proteins (XcpV and XcpW). The deletion of the T2SS assembly platform protein X had no effect on transformation, and the minor pseudopilins were capable of initiating major pilin assembly. Thus, we speculate that XcpV and XcpW may function in DNA uptake with major pilin assembly, a non-T2SS-dependent mechanism and that a competence pseudopilus similar to T4P constituted the central part of the DNA uptake complex. These results may help guide future research on the alarming increase of antibiotic resistance in this pathogen.
Collapse
Affiliation(s)
- Yuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junjie Zheng
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Jianzhong Zhang,
| |
Collapse
|
22
|
Di Giacomo S, Toussaint F, Ledesma-García L, Knoops A, Vande Capelle F, Fremaux C, Horvath P, Ladrière JM, Ait-Abderrahim H, Hols P, Mignolet J. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6543703. [PMID: 35254446 PMCID: PMC9300618 DOI: 10.1093/femsre/fuac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Nowadays, the growing human population exacerbates the need for sustainable resources. Inspiration and achievements in nutrient production or human/animal health might emanate from microorganisms and their adaptive strategies. Here, we exemplify the benefits of lactic acid bacteria (LAB) for numerous biotechnological applications and showcase their natural transformability as a fast and robust method to hereditarily influence their phenotype/traits in fundamental and applied research contexts. We described the biogenesis of the transformation machinery and we analyzed the genome of hundreds of LAB strains exploitable for human needs to predict their transformation capabilities. Finally, we provide a stepwise rational path to stimulate and optimize natural transformation with standard and synthetic biology techniques. A comprehensive understanding of the molecular mechanisms driving natural transformation will facilitate and accelerate the improvement of bacteria with properties that serve broad societal interests.
Collapse
Affiliation(s)
- Stefano Di Giacomo
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Frédéric Toussaint
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Adrien Knoops
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Florence Vande Capelle
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Christophe Fremaux
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Philippe Horvath
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Jean-Marc Ladrière
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | | | - Pascal Hols
- Corresponding author: Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5 (box L7.07.06), B-1348 Louvain-La-Neuve, Belgium. Tel: +3210478896; Fax: +3210472825; E-mail:
| | | |
Collapse
|
23
|
Motor-independent retraction of type IV pili is governed by an inherent property of the pilus filament. Proc Natl Acad Sci U S A 2021; 118:2102780118. [PMID: 34789573 DOI: 10.1073/pnas.2102780118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
Type IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor, and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants likely diminish pilin-pilin interactions within the filament to produce less-stable pili. One mutation adds a bulky residue to α1C, a universally conserved feature of T4P. We found that inserting a bulky residue into α1C of the retraction motor-dependent Acinetobacter baylyi competence T4P enhances motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor-independent, V. cholerae toxin-coregulated T4P stabilizes the filament and diminishes pilus retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor-independent T4P, gram-positive Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor-dependent T4P. Together, our data demonstrate that motor-independent retraction relies, in part, on the inherent instability of the pilus filament, which may be a conserved feature of diverse T4Fs. This provides evidence for a long-standing yet previously untested model in which pili retract in the absence of a motor by spontaneous depolymerization.
Collapse
|
24
|
Huang L, Liu M, Ammanath AV, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Götz F, Wang M, Cheng A. Identification of the Natural Transformation Genes in Riemerella anatipestifer by Random Transposon Mutagenesis. Front Microbiol 2021; 12:712198. [PMID: 34566918 PMCID: PMC8459023 DOI: 10.3389/fmicb.2021.712198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
In our previous study, it was shown that Riemerella anatipestifer, a Gram-negative bacterium, is naturally competent, but the genes involved in the process of natural transformation remain largely unknown. In this study, a random transposon mutant library was constructed using the R. anatipestifer ATCC11845 strain to screen for the genes involved in natural transformation. Among the 3000 insertion mutants, nine mutants had completely lost the ability of natural transformation, and 14 mutants showed a significant decrease in natural transformation frequency. We found that the genes RA0C_RS04920, RA0C_RS04915, RA0C_RS02645, RA0C_RS04895, RA0C_RS05130, RA0C_RS05105, RA0C_RS09020, and RA0C_RS04870 are essential for the occurrence of natural transformation in R. anatipestifer ATCC11845. In particular, RA0C_RS04895, RA0C_RS05130, RA0C_RS05105, and RA0C_RS04870 were putatively annotated as ComEC, DprA, ComF, and RecA proteins, respectively, in the NCBI database. However, RA0C_RS02645, RA0C_RS04920, RA0C_RS04915, and RA0C_RS09020 were annotated as proteins with unknown function, with no homology to any well-characterized natural transformation machinery proteins. The homologs of these proteins are mainly distributed in the members of Flavobacteriaceae. Taken together, our results suggest that R. anatipestifer encodes a unique natural transformation machinery.
Collapse
Affiliation(s)
- Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Aparna Viswanathan Ammanath
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
25
|
Chen Z, Shen M, Mao C, Wang C, Yuan P, Wang T, Sun D. A Type I Restriction Modification System Influences Genomic Evolution Driven by Horizontal Gene Transfer in Paenibacillus polymyxa. Front Microbiol 2021; 12:709571. [PMID: 34413842 PMCID: PMC8370563 DOI: 10.3389/fmicb.2021.709571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Considered a “Generally Recognized As Safe” (GRAS) bacterium, the plant growth–promoting rhizobacterium Paenibacillus polymyxa has been widely applied in agriculture and animal husbandry. It also produces valuable compounds that are used in medicine and industry. Our previous work showed the presence of restriction modification (RM) system in P. polymyxa ATCC 842. Here, we further analyzed its genome and methylome by using SMRT sequencing, which revealed the presence of a larger number of genes, as well as a plasmid documented as a genomic region in a previous report. A number of mobile genetic elements (MGEs), including 78 insertion sequences, six genomic islands, and six prophages, were identified in the genome. A putative lysozyme-encoding gene from prophage P6 was shown to express lysin which caused cell lysis. Analysis of the methylome and genome uncovered a pair of reverse-complementary DNA methylation motifs which were widespread in the genome, as well as genes potentially encoding their cognate type I restriction-modification system PpoAI. Further genetic analysis confirmed the function of PpoAI as a RM system in modifying and restricting DNA. The average frequency of the DNA methylation motifs in MGEs was lower than that in the genome, implicating a role of PpoAI in restricting MGEs during genomic evolution of P. polymyxa. Finally, comparative analysis of R, M, and S subunits of PpoAI showed that homologs of the PpoAI system were widely distributed in species belonging to other classes of Firmicute, implicating a role of the ancestor of PpoAI in the genomic evolution of species beyond Paenibacillus.
Collapse
Affiliation(s)
- Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Minjia Shen
- UMR 9198 Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Chengyao Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chenyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics, Hangzhou, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
27
|
Khemici V, Prudhomme M, Polard P. Tight Interplay between Replication Stress and Competence Induction in Streptococcus pneumoniae. Cells 2021; 10:cells10081938. [PMID: 34440707 PMCID: PMC8394987 DOI: 10.3390/cells10081938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Cells respond to genome damage by inducing restorative programs, typified by the SOS response of Escherichia coli. Streptococcus pneumoniae (the pneumococcus), with no equivalent to the SOS system, induces the genetic program of competence in response to many types of stress, including genotoxic drugs. The pneumococcal competence regulon is controlled by the origin-proximal, auto-inducible comCDE operon. It was previously proposed that replication stress induces competence through continued initiation of replication in cells with arrested forks, thereby increasing the relative comCDE gene dosage and expression and accelerating the onset of competence. We have further investigated competence induction by genome stress. We find that absence of RecA recombinase stimulates competence induction, in contrast to SOS response, and that double-strand break repair (RexB) and gap repair (RecO, RecR) initiation effectors confer a similar effect, implying that recombinational repair removes competence induction signals. Failure of replication forks provoked by titrating PolC polymerase with the base analogue HPUra, over-supplying DnaA initiator, or under-supplying DnaE polymerase or DnaC helicase stimulated competence induction. This induction was not correlated with concurrent changes in origin-proximal gene dosage. Our results point to arrested and unrepaired replication forks, rather than increased comCDE dosage, as a basic trigger of pneumococcal competence.
Collapse
Affiliation(s)
- Vanessa Khemici
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Integrative (CBI), Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France; (V.K.); (M.P.)
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Integrative (CBI), Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France; (V.K.); (M.P.)
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Integrative (CBI), Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France; (V.K.); (M.P.)
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
- Correspondence:
| |
Collapse
|
28
|
Baião GC, Janice J, Galinou M, Klasson L. Comparative Genomics Reveals Factors Associated with Phenotypic Expression of Wolbachia. Genome Biol Evol 2021; 13:6277727. [PMID: 34003269 DOI: 10.1093/gbe/evab111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases. However, our understanding of CI is complicated by the complexity of the phenotype, whose expression depends on both symbiont and host factors. In the present study, we perform a comparative analysis of nine complete Wolbachia genomes with known CI properties in the same genetic host background, Drosophila simulans STC. We describe genetic differences between closely related strains and uncover evidence that phages and other mobile elements contribute to the rapid evolution of both genomes and phenotypes of Wolbachia. Additionally, we identify both known and novel genes associated with the modification and rescue functions of CI. We combine our observations with published phenotypic information and discuss how variability in cif genes, novel CI-associated genes, and Wolbachia titer might contribute to poorly understood aspects of CI such as strength and bidirectional incompatibility. We speculate that high titer CI strains could be better at invading new hosts already infected with a CI Wolbachia, due to a higher rescue potential, and suggest that titer might thus be a relevant parameter to consider for future strategies using CI Wolbachia in biological control.
Collapse
Affiliation(s)
- Guilherme Costa Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessin Janice
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Galinou
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Transposon Insertion Sequencing in a Clinical Isolate of Legionella pneumophila Identifies Essential Genes and Determinants of Natural Transformation. J Bacteriol 2021; 203:JB.00548-20. [PMID: 33168636 PMCID: PMC7811196 DOI: 10.1128/jb.00548-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is the etiologic agent of a severe form of nosocomial and community-acquired pneumonia in humans. The environmental life traits of L. pneumophila are essential to its ability to accidentally infect humans. Legionella pneumophila is a Gram-negative bacterium ubiquitous in freshwater environments which, if inhaled, can cause a severe pneumonia in humans. The emergence of L. pneumophila is linked to several traits selected in the environment, the acquisition of some of which involved intra- and interkingdom horizontal gene transfer events. Transposon insertion sequencing (TIS) is a powerful method to identify the genetic basis of selectable traits as well as to identify fitness determinants and essential genes, which are possible antibiotic targets. TIS has not yet been used to its full power in L. pneumophila, possibly because of the difficulty of obtaining a high-saturation transposon insertion library. Indeed, we found that isolates of sequence type 1 (ST1), which includes the commonly used laboratory strains, are poorly permissive to saturating mutagenesis by conjugation-mediated transposon delivery. In contrast, we obtained high-saturation libraries in non-ST1 clinical isolates, offering the prospect of using TIS on unaltered L. pneumophila strains. Focusing on one of them, we then used TIS to identify essential genes in L. pneumophila. We also revealed that TIS could be used to identify genes controlling vertical transmission of mobile genetic elements. We then applied TIS to identify all the genes required for L. pneumophila to develop competence and undergo natural transformation, defining the set of major and minor type IV pilins that are engaged in DNA uptake. This work paves the way for the functional exploration of the L. pneumophila genome by TIS and the identification of the genetic basis of other life traits of this species. IMPORTANCELegionella pneumophila is the etiologic agent of a severe form of nosocomial and community-acquired pneumonia in humans. The environmental life traits of L. pneumophila are essential to its ability to accidentally infect humans. A comprehensive identification of their genetic basis could be obtained through the use of transposon insertion sequencing. However, this powerful approach had not been fully implemented in L. pneumophila. Here, we describe the successful implementation of the transposon-sequencing approach in a clinical isolate of L. pneumophila. We identify essential genes, potential drug targets, and genes required for horizontal gene transfer by natural transformation. This work represents an important step toward identifying the genetic basis of the many life traits of this environmental and pathogenic species.
Collapse
|
30
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
31
|
Kloos J, Johnsen PJ, Harms K. Tn 1 transposition in the course of natural transformation enables horizontal antibiotic resistance spread in Acinetobacter baylyi. MICROBIOLOGY-SGM 2020; 167. [PMID: 33270000 PMCID: PMC8116780 DOI: 10.1099/mic.0.001003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transposons are genetic elements that change their intracellular genomic position by transposition and are spread horizontally between bacteria when located on plasmids. It was recently discovered that transposition from fully heterologous DNA also occurs in the course of natural transformation. Here, we characterize the molecular details and constraints of this process using the replicative transposon Tn1 and the naturally competent bacterium Acinetobacter baylyi. We find that chromosomal insertion of Tn1 by transposition occurs at low but detectable frequencies and preferably around the A. baylyi terminus of replication. We show that Tn1 transposition is facilitated by transient expression of the transposase and resolvase encoded by the donor DNA. RecA protein is essential for the formation of a circular, double-stranded cytoplasmic intermediate from incoming donor DNA, and RecO is beneficial but not essential in this process. Absence of the recipient RecBCD nuclease stabilizes the double-stranded intermediate. Based on these results, we suggest a mechanistic model for transposition during natural transformation.
Collapse
Affiliation(s)
- Julia Kloos
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
32
|
Johnston CH, Soulet AL, Bergé M, Prudhomme M, De Lemos D, Polard P. The alternative sigma factor σ X mediates competence shut-off at the cell pole in Streptococcus pneumoniae. eLife 2020; 9:62907. [PMID: 33135635 PMCID: PMC7665891 DOI: 10.7554/elife.62907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Competence is a widespread bacterial differentiation program driving antibiotic resistance and virulence in many pathogens. Here, we studied the spatiotemporal localization dynamics of the key regulators that master the two intertwined and transient transcription waves defining competence in Streptococcus pneumoniae. The first wave relies on the stress-inducible phosphorelay between ComD and ComE proteins, and the second on the alternative sigma factor σX, which directs the expression of the DprA protein that turns off competence through interaction with phosphorylated ComE. We found that ComD, σX and DprA stably co-localize at one pole in competent cells, with σX physically conveying DprA next to ComD. Through this polar DprA targeting function, σX mediates the timely shut-off of the pneumococcal competence cycle, preserving cell fitness. Altogether, this study unveils an unprecedented role for a transcription σ factor in spatially coordinating the negative feedback loop of its own genetic circuit.
Collapse
Affiliation(s)
- Calum Hg Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Matthieu Bergé
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France.,Dept. Microbiology and Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| |
Collapse
|
33
|
Liu M, Huang M, Wang M, Zhu D, Jia R, Chen S, Zhang L, Pan L, Cheng A. The Clustered Regularly Interspaced Short Palindromic Repeat System and Argonaute: An Emerging Bacterial Immunity System for Defense Against Natural Transformation? Front Microbiol 2020; 11:593301. [PMID: 33193265 PMCID: PMC7642515 DOI: 10.3389/fmicb.2020.593301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) systems and prokaryotic Argonaute proteins (Agos) have been shown to defend bacterial and archaeal cells against invading nucleic acids. Indeed, they are important elements for inhibiting horizontal gene transfer between bacterial and archaeal cells. The CRISPR system employs an RNA-guide complex to target invading DNA or RNA, while Agos target DNA using single stranded DNA or RNA as guides. Thus, the CRISPR and Agos systems defend against exogenous nucleic acids by different mechanisms. It is not fully understood how antagonization of these systems occurs during natural transformation, wherein exogenous DNA enters a host cell as single stranded DNA and is then integrated into the host genome. In this review, we discuss the functions and mechanisms of the CRISPR system and Agos in cellular defense against natural transformation.
Collapse
Affiliation(s)
- Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
35
|
Kurushima J, Campo N, van Raaphorst R, Cerckel G, Polard P, Veening JW. Unbiased homeologous recombination during pneumococcal transformation allows for multiple chromosomal integration events. eLife 2020; 9:e58771. [PMID: 32965219 PMCID: PMC7567608 DOI: 10.7554/elife.58771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
The spread of antimicrobial resistance and vaccine escape in the human pathogen Streptococcus pneumoniae can be largely attributed to competence-induced transformation. Here, we studied this process at the single-cell level. We show that within isogenic populations, all cells become naturally competent and bind exogenous DNA. We find that transformation is highly efficient and that the chromosomal location of the integration site or whether the transformed gene is encoded on the leading or lagging strand has limited influence on recombination efficiency. Indeed, we have observed multiple recombination events in single recipients in real-time. However, because of saturation and because a single-stranded donor DNA replaces the original allele, transformation efficiency has an upper threshold of approximately 50% of the population. The fixed mechanism of transformation results in a fail-safe strategy for the population as half of the population generally keeps an intact copy of the original genome.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Guillaume Cerckel
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| |
Collapse
|
36
|
Ithurbide S, Coste G, Lisboa J, Eugénie N, Bentchikou E, Bouthier de la Tour C, Liger D, Confalonieri F, Sommer S, Quevillon-Cheruel S, Servant P. Natural Transformation in Deinococcus radiodurans: A Genetic Analysis Reveals the Major Roles of DprA, DdrB, RecA, RecF, and RecO Proteins. Front Microbiol 2020; 11:1253. [PMID: 32625182 PMCID: PMC7314969 DOI: 10.3389/fmicb.2020.01253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/18/2020] [Indexed: 11/14/2022] Open
Abstract
Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Geneviève Coste
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Johnny Lisboa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Eugénie
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Esma Bentchikou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dominique Liger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Suzanne Sommer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
37
|
Dalia AB, Dalia TN. Spatiotemporal Analysis of DNA Integration during Natural Transformation Reveals a Mode of Nongenetic Inheritance in Bacteria. Cell 2020; 179:1499-1511.e10. [PMID: 31835029 DOI: 10.1016/j.cell.2019.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/19/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
Natural transformation (NT) is a major mechanism of horizontal gene transfer in microbial species that promotes the spread of antibiotic-resistance determinants and virulence factors. Here, we develop a cell biological approach to characterize the spatiotemporal dynamics of homologous recombination during NT in Vibrio cholerae. Our results directly demonstrate (1) that transforming DNA efficiently integrates into the genome as single-stranded DNA, (2) that the resulting heteroduplexes are resolved by chromosome replication and segregation, and (3) that integrated DNA is rapidly expressed prior to cell division. We show that the combination of these properties results in the nongenetic transfer of gene products within transformed populations, which can support phenotypic inheritance of antibiotic resistance in both V. cholerae and Streptococcus pneumoniae. Thus, beyond the genetic acquisition of novel DNA sequences, NT can also promote the nongenetic inheritance of traits during this conserved mechanism of horizontal gene transfer.
Collapse
Affiliation(s)
- Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
38
|
Ka D, Oh H, Park E, Kim JH, Bae E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD + degradation. Nat Commun 2020; 11:2816. [PMID: 32499527 PMCID: PMC7272460 DOI: 10.1038/s41467-020-16703-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
The intense arms race between bacteria and phages has led to the development of diverse antiphage defense systems in bacteria. Unlike well-known restriction-modification and CRISPR-Cas systems, recently discovered systems are poorly characterized. One such system is the Thoeris defense system, which consists of two genes, thsA and thsB. Here, we report structural and functional analyses of ThsA and ThsB. ThsA exhibits robust NAD+ cleavage activity and a two-domain architecture containing sirtuin-like and SLOG-like domains. Mutation analysis suggests that NAD+ cleavage is linked to the antiphage function of Thoeris. ThsB exhibits a structural resemblance to TIR domain proteins such as nucleotide hydrolases and Toll-like receptors, but no enzymatic activity is detected in our in vitro assays. These results further our understanding of the molecular mechanism underlying the Thoeris defense system, highlighting a unique strategy for bacterial antiphage resistance via NAD+ degradation. The Thoeris defense system is a recently discovered bacterial defense system that protects bacteria against phage infection and consists of the two genes thsA and thsB. Here, the authors present the crystal structures of Bacillus cereus ThsA and ThsB and show that ThsA is a NAD+ cleaving enzyme.
Collapse
Affiliation(s)
- Donghyun Ka
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.,Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Eunyoung Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
39
|
The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun 2020; 11:1688. [PMID: 32245943 PMCID: PMC7125226 DOI: 10.1038/s41467-020-15384-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/05/2020] [Indexed: 11/15/2022] Open
Abstract
The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms. It is naturally competent for transformation—that is, it takes up DNA from the environment, but the underlying mechanisms are unclear. Here, we use a genome-wide screen to identify genes required for natural transformation in S. elongatus, including genes encoding a conserved Type IV pilus, genes known to be associated with competence in other bacteria, and others. Pilus biogenesis occurs daily in the morning, while natural transformation is maximal when the onset of darkness coincides with the dusk circadian peak. Thus, the competence state in cyanobacteria is regulated by the circadian clock and can adapt to seasonal changes of day length. The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms, and is naturally competent for transformation. Here, Taton et al. identify genes required for natural transformation in this organism, and show that the coincidence of circadian dusk and darkness regulates the competence state in different day lengths.
Collapse
|
40
|
Li S, Lu G, Fang X, Ramelot TA, Kennedy MA, Zhou X, Gong P, Zhang X, Liu M, Zhu J, Yang Y. Structural insight into the length-dependent binding of ssDNA by SP_0782 from Streptococcus pneumoniae, reveals a divergence in the DNA-binding interface of PC4-like proteins. Nucleic Acids Res 2020; 48:432-444. [PMID: 31713614 PMCID: PMC7145681 DOI: 10.1093/nar/gkz1045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/30/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
SP_0782 from Streptococcus pneumoniae is a dimeric protein that potentially binds with single-stranded DNA (ssDNA) in a manner similar to human PC4, the prototype of PC4-like proteins, which plays roles in transcription and maintenance of genome stability. In a previous NMR study, SP_0782 exhibited an ssDNA-binding property different from YdbC, a prokaryotic PC4-like protein from Lactococcus lactis, but the underlying mechanism remains unclear. Here, we show that although SP_0782 adopts an overall fold similar to those of PC4 and YdbC, the ssDNA length occupied by SP_0782 is shorter than those occupied by PC4 and YdbC. SP_0782 exhibits varied binding patterns for different lengths of ssDNA, and tends to form large complexes with ssDNA in a potential high-density binding manner. The structures of SP_0782 complexed with different ssDNAs reveal that the varied binding patterns are associated with distinct capture of nucleotides in two major DNA-binding regions of SP_0782. Moreover, a comparison of known structures of PC4-like proteins complexed with ssDNA reveals a divergence in the binding interface between prokaryotic and eukaryotic PC4-like proteins. This study provides insights into the ssDNA-binding mechanism of PC4-like proteins, and benefits further study regarding the biological function of SP_0782, probably in DNA protection and natural transformation.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Humans
- Kinetics
- Lactococcus lactis/genetics
- Lactococcus lactis/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Folding
- Protein Interaction Domains and Motifs
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
- Thermodynamics
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Lu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Fang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH 45056, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH 45056, USA
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| |
Collapse
|
41
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
42
|
Gardette M, Le Hello S, Mariani-Kurkdjian P, Fabre L, Gravey F, Garrivier A, Loukiadis E, Jubelin G. Identification and prevalence of in vivo-induced genes in enterohaemorrhagic Escherichia coli. Virulence 2019; 10:180-193. [PMID: 30806162 PMCID: PMC6550539 DOI: 10.1080/21505594.2019.1582976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are food-borne pathogens responsible for bloody diarrhoea and renal failure in humans. While Shiga toxin (Stx) is the cardinal virulence factor of EHEC, its production by E. coli is not sufficient to cause disease and many Shiga-toxin producing E. coli (STEC) strains have never been implicated in human infection. So far, the pathophysiology of EHEC infection is not fully understood and more knowledge is needed to characterize the "auxiliary" factors that enable a STEC strain to cause disease in humans. In this study, we applied a recombinase-based in vivo expression technology (RIVET) to the EHEC reference strain EDL933 in order to identify genes specifically induced during the infectious process, using mouse as an infection model. We identified 31 in vivo-induced (ivi) genes having functions related to metabolism, stress adaptive response and bacterial virulence or fitness. Eight of the 31 ivi genes were found to be heterogeneously distributed in EHEC strains circulating in France these last years. In addition, they are more prevalent in strains from the TOP seven priority serotypes and particularly strains carrying significant virulence determinants such as Stx2 and intimin adhesin. This work sheds further light on bacterial determinants over-expressed in vivo during infection that may contribute to the potential of STEC strains to cause disease in humans.
Collapse
Affiliation(s)
- Marion Gardette
- UCA, INRA, UMR454 MEDIS, Clermont-Ferrand, France
- Laboratoire d’écologie microbienne de Lyon, Université de Lyon, CNRS, INRA, UCBL, VetAgro Sup, Marcy l’Etoile, France
| | - Simon Le Hello
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
- Université de Normandie, EA 2656 GRAM 2.0, UNICAEN, Caen, France
| | - Patricia Mariani-Kurkdjian
- Service de Microbiologie, Centre National de Référence associé Escherichia coli, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Laetitia Fabre
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - François Gravey
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
- Université de Normandie, EA 2656 GRAM 2.0, UNICAEN, Caen, France
| | | | - Estelle Loukiadis
- Laboratoire d’écologie microbienne de Lyon, Université de Lyon, CNRS, INRA, UCBL, VetAgro Sup, Marcy l’Etoile, France
- Laboratoire national de référence des E. coli, Université de Lyon, VetAgro Sup, Marcy l’Etoile, France
| | | |
Collapse
|
43
|
DprA-Dependent Exit from the Competent State Regulates Multifaceted Streptococcus pneumoniae Virulence. Infect Immun 2019; 87:IAI.00349-19. [PMID: 31451619 DOI: 10.1128/iai.00349-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/18/2019] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) causes multiple infectious diseases. The pneumococcal competence system facilitates genetic transformation, spreads antibiotic resistance, and contributes to virulence. DNA-processing protein A (DprA) regulates the exit of pneumococcus from the competent state. Previously, we have shown that DprA is important in both bacteremia and pneumonia infections. Here, we examined the mechanisms of virulence attenuation in a ΔdprA mutant. Compared to the parental wild-type D39, the ΔdprA mutant enters the competent state when exposed to lower concentrations of the competence-stimulating peptide CSP1. The ΔdprA mutant overexpresses ComM, which delays cell separation after division. Additionally, the ΔdprA mutant overexpresses allolytic factors LytA, CbpD, and CibAB and is more susceptible to detergent-triggered lysis. Disabling of the competent-state-specific induction of ComM and allolytic factors compensated for the virulence loss in the ΔdprA mutant, suggesting that overexpression of these factors contributes to virulence attenuation. Finally, the ΔdprA mutant fails to downregulate the expression of multiple competence-regulated genes, leading to the excessive energy consumption. Collectively, these results indicate that an inability to properly exit the competent state disrupts multiple cellular processes that cause virulence attenuation in the ΔdprA mutant.
Collapse
|
44
|
The Lonely Guy (LOG) Homologue SiRe_0427 from the Thermophilic Archaeon Sulfolobus islandicus REY15A Is a Phosphoribohydrolase Representing a Novel Group. Appl Environ Microbiol 2019; 85:AEM.01739-19. [PMID: 31420341 DOI: 10.1128/aem.01739-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 11/20/2022] Open
Abstract
Lonely Guy (LOG) proteins are important enzymes in cellular organisms, which catalyze the final step in the production of biologically active cytokinins via dephosphoribosylation. LOG proteins are vital enzymes in plants for the activation of cytokinin precursors, which is crucial for plant growth and development. In fungi and bacteria, LOGs are implicated in pathogenic or nonpathogenic interactions with their plant hosts. However, LOGs have also been identified in the human pathogen Mycobacterium tuberculosis, and the accumulation of cytokinin-degraded products, aldehydes, within bacterial cells is lethal to the bacterium in the presence of nitric oxide, suggesting diverse roles of LOGs in various species. In this study, we conducted biochemical and genetic analysis of a LOG homologue, SiRe_0427, from the hyperthermophilic archaeon Sulfolobus islandicus REY15A. The protein possessed the LOG motif GGGxGTxxE and exhibited phosphoribohydrolase activity on adenosine-5-monophosphate (AMP), similar to LOGs from eukaryotes and bacteria. Alanine mutants at either catalytic residues or substrate binding sites lost their activity, resembling other known LOGs. SiRe_0427 is probably a homotetramer, as revealed by size exclusion chromatography and chemical cross-linking. We found that the gene encoding SiRe_0427 could be knocked out; however, the Δsire_0427 strain exhibited no apparent difference in growth compared to the wild type, nor did it show any difference in sensitivity to UV irradiation under our laboratory growth conditions. Overall, these findings indicate that archaeal LOG homologue is active as a phosphoribohydrolase.IMPORTANCE Lonely Guy (LOG) is an essential enzyme for the final biosynthesis of cytokinins, which regulate almost every aspect of growth and development in plants. LOG protein was originally discovered 12 years ago in a strain of Oryza sativa with a distinct floral phenotype of a single stamen. Recently, the presence of LOG homologues has been reported in Mycobacterium tuberculosis, an obligate human pathogen. To date, active LOG proteins have been reported in plants, pathogenic and nonpathogenic fungi, and bacteria, but there have been no experimental reports of LOG protein from archaea. In the current work, we report the identification of a LOG homologue active on AMP from Sulfolobus islandicus REY15A, a thermophilic archaeon. The protein likely forms a tetramer in solution and represents a novel evolutionary lineage. The results presented here expand our knowledge regarding proteins with phosphoribohydrolase activities and open an avenue for studying signal transduction networks of archaea and potential applications of LOG enzymes in agriculture and industry.
Collapse
|
45
|
Matthey N, Stutzmann S, Stoudmann C, Guex N, Iseli C, Blokesch M. Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae. eLife 2019; 8:e48212. [PMID: 31478834 PMCID: PMC6783263 DOI: 10.7554/elife.48212] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023] Open
Abstract
Natural competence for transformation is a primary mode of horizontal gene transfer. Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. However, the prevalence of non-degraded DNA with sufficient coding capacity is not well understood. In this context, we previously showed that naturally competent Vibrio cholerae use their type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors. Here, we explored the conditions of the DNA released through T6SS-mediated killing versus passive cell lysis and the extent of the transfers that occur due to these conditions. We show that competent V. cholerae acquire DNA fragments with a length exceeding 150 kbp in a T6SS-dependent manner. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters the exchange of genetic material with sufficient coding capacity to significantly accelerate bacterial evolution.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Nicolas Guex
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| |
Collapse
|
46
|
Liu Y, Zeng Y, Huang Y, Gu L, Wang S, Li C, Morrison DA, Deng H, Zhang JR. HtrA-mediated selective degradation of DNA uptake apparatus accelerates termination of pneumococcal transformation. Mol Microbiol 2019; 112:1308-1325. [PMID: 31396996 DOI: 10.1111/mmi.14364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Natural transformation mediates horizontal gene transfer, and thereby promotes exchange of antibiotic resistance and virulence traits among bacteria. Streptococcus pneumoniae, the first known transformable bacterium, rapidly activates and then terminates the transformation state, but it is unclear how the bacterium accomplishes this rapid turn-around at the protein level. This work determined the transcriptomic and proteomic dynamics during the window of pneumococcal transformation. RNA sequencing revealed a nearly uniform temporal pattern of rapid transcriptional activation and subsequent shutdown for the genes encoding transformation proteins. In contrast, mass spectrometry analysis showed that the majority of transformation proteins were substantially preserved beyond the window of transformation. However, ComEA and ComEC, major components of the DNA uptake apparatus for transformation, were completely degraded at the end of transformation. Further mutagenesis screening revealed that the membrane-associated serine protease HtrA mediates selective degradation of ComEA and ComEC, strongly suggesting that breakdown of the DNA uptake apparatus by HtrA is an important mechanism for termination of pneumococcal transformation. Finally, our mutagenesis analysis showed that HtrA inhibits natural transformation of Streptococcus mitis and Streptococcus gordonii. Together, this work has revealed that HtrA regulates the level and duration of natural transformation in multiple streptococcal species.
Collapse
Affiliation(s)
- Yanni Liu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yuna Zeng
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Lixiao Gu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
47
|
Abstract
Natural transformation is a major mechanism of horizontal gene transfer. Although the genes required for natural transformation are nearly ubiquitous in bacteria, it is commonly reported that some isolates of transformable species fail to transform. In Legionella pneumophila, we show that the inability of multiple clinical isolates to transform is caused by a conjugative element that shuts down expression of genes required for transformation. Diverse conjugative elements in the Legionella genus have adopted the same inhibition strategy. We propose that inhibition of natural transformation by episomal and integrated conjugative elements can explain the lack of transformability of isolates and also the apparent lack of natural transformation in some species. Natural transformation (i.e., the uptake of DNA and its stable integration in the chromosome) is a major mechanism of horizontal gene transfer in bacteria. Although the vast majority of bacterial genomes carry the genes involved in natural transformation, close relatives of naturally transformable species often appear not competent for natural transformation. In addition, unexplained extensive variations in the natural transformation phenotype have been reported in several species. Here, we addressed this phenomenon by conducting a genome-wide association study (GWAS) on a panel of isolates of the opportunistic pathogen Legionella pneumophila. GWAS revealed that the absence of the transformation phenotype is associated with the conjugative plasmid pLPL. The plasmid inhibits transformation by simultaneously silencing the genes required for DNA uptake and recombination. We identified a small RNA (sRNA), RocRp, as the sole plasmid-encoded factor responsible for the silencing of natural transformation. RocRp is homologous to the highly conserved and chromosome-encoded sRNA RocR which controls the transient expression of the DNA uptake system. Assisted by the ProQ/FinO-domain RNA chaperone RocC, RocRp acts as a substitute of RocR, ensuring that the bacterial host of the conjugative plasmid does not become naturally transformable. Distinct homologs of this plasmid-encoded sRNA are found in diverse conjugative elements in other Legionella species. Their low to high prevalence may result in the lack of transformability of some isolates up to the apparent absence of natural transformation in the species. Generally, our work suggests that conjugative elements obscure the widespread occurrence of natural transformability in bacteria.
Collapse
|
48
|
Recombination of the Phase-Variable spnIII Locus Is Independent of All Known Pneumococcal Site-Specific Recombinases. J Bacteriol 2019; 201:JB.00233-19. [PMID: 31085693 PMCID: PMC6620402 DOI: 10.1128/jb.00233-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination. Streptococcus pneumoniae is one of the world’s leading bacterial pathogens, causing pneumonia, septicemia, and meningitis. In recent years, it has been shown that genetic rearrangements in a type I restriction-modification system (SpnIII) can impact colony morphology and gene expression. By generating a large panel of mutant strains, we have confirmed a previously reported result that the CreX (also known as IvrR and PsrA) recombinase found within the locus is not essential for hsdS inversions. In addition, mutants of homologous recombination pathways also undergo hsdS inversions. In this work, we have shown that these genetic rearrangements, which result in different patterns of genome methylation, occur across a wide variety of serotypes and sequence types, including two strains (a 19F and a 6B strain) naturally lacking CreX. Our gene expression analysis, by transcriptome sequencing (RNAseq), confirms that the level of creX expression is impacted by these genomic rearrangements. In addition, we have shown that the frequency of hsdS recombination is temperature dependent. Most importantly, we have demonstrated that the other known pneumococcal site-specific recombinases XerD, XerS, and SPD_0921 are not involved in spnIII recombination, suggesting that a currently unknown mechanism is responsible for the recombination of these phase-variable type I systems. IMPORTANCEStreptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination.
Collapse
|
49
|
Wang Y, Xu G, Wang L, Hua Y. Distinct roles of Deinococcus radiodurans RecFOR and RecA in DNA transformation. Biochem Biophys Res Commun 2019; 513:740-745. [PMID: 30992133 DOI: 10.1016/j.bbrc.2019.04.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
RecFOR and RecA are key recombination factors in Deinococcus radiodurans, a bacterium that possesses robust DNA repair capability and is also naturally transformable. While RecFOR functioning as a RecA loader during DNA repair has been established, their relative roles in transformation need further exploration. Here, we constructed recFOR and recA deletion mutants of D. radiodurans, and investigated the effect of these mutations on DNA transformation. recA deletion causes defects in both plasmid and chromosomal transformation. However, it was found that recFOR is not involved in chromosomal transformation, and that only recO and recR mutations compromise plasmid transformation. How recO, recR and recA mutations influence plasmid transformation was further examined by complementation plasmids. Interestingly, the transformation process remains defective in the recA mutant, but gets restored in the recO and recR mutants. This indicates that unlike RecA, RecOR may not be essential for DNA uptake. Therefore, we provide evidence that RecFOR is dispensable for RecA to protect incoming exogenous DNA and to catalyze recombination during transformation. Instead, RecO and RecR are likely to promote later steps in plasmid transformation.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Guangzhi Xu
- Agriculture and Food Science School, Zhejiang Agriculture and Forestry University, Zhejiang, Lin'an, 311300, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China.
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
50
|
Huang L, Tian X, Liu M, Wang M, Biville F, Cheng A, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Tian B, Yu Y, Liu Y, Zhang L, Pan L, Rehman MU, Chen X. DprA Is Essential for Natural Competence in Riemerella anatipestifer and Has a Conserved Evolutionary Mechanism. Front Genet 2019; 10:429. [PMID: 31156696 PMCID: PMC6533540 DOI: 10.3389/fgene.2019.00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/18/2019] [Indexed: 02/05/2023] Open
Abstract
Riemerella anatipestifer ATCC11845 (RA ATCC11845) is naturally competent. However, the genes involved in natural transformation in this species remain largely unknown. Bioinformatic analysis predicts that DprA of RA (DprARa) has three domains: a sterile alpha motif (SAM), a Rossmann fold (RF) domain and a Z-DNA-binding domain (Zα). Inactivation of dprA abrogated natural transformation in RA ATCC11845, and this effect was restored by the expression of dprA in trans. The dprA with SAM and RF domains of Streptococcus pneumoniae and the dprA with RF and Zα domains of Helicobacter pylori was able to restore natural transformation in the RA ATCC11845 dprA mutant. An Arg123 mutation in the RF domain of R. anatipestifer was not able to restore natural transformation of the RA ATCC11845 dprA mutant. Furthermore, DprAR123E abolished its ability to bind DNA, suggesting that the RF domain is essential for the function of DprA. Finally, the dprA of Fusobacterium naviforme which has not been reported to be natural competent currently was partially able to restore natural transformation in RA ATCC11845 dprA mutant. These results collectively suggest that DprA has a conserved evolutionary mechanism.
Collapse
Affiliation(s)
- Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiu Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|