1
|
Jing S, Zhao L, Zhao L, Gao Y, He T. TRIP13: A promising cancer immunotherapy target. CANCER INNOVATION 2024; 3:e147. [PMID: 39398261 PMCID: PMC11467489 DOI: 10.1002/cai2.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/21/2024] [Accepted: 05/12/2024] [Indexed: 10/15/2024]
Abstract
The tumor microenvironment (TME) facilitates tumor development through intricate intercellular signaling, thereby supporting tumor growth and suppressing the immune response. Thyroid hormone receptor interactor 13 (TRIP13), an AAA+ ATPase, modulates the conformation of client macromolecules, consequently influencing cellular signaling pathways. TRIP13 has been implicated in processes such as proliferation, invasion, migration, and metastasis during tumor progression. Recent studies have revealed that TRIP13 also plays a role in immune response suppression within the TME. Thus, inhibiting these functions of TRIP13 could potentially enhance immune responses and improve the efficacy of immune checkpoint inhibition. This review summarizes the recent research progress of TRIP13 and discusses the potential of targeting TRIP13 to improve immune-based therapies for patients with cancer.
Collapse
Affiliation(s)
- Shengnan Jing
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Liya Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Liwen Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| |
Collapse
|
2
|
Karbon G, Schuler F, Braun VZ, Eichin F, Haschka M, Drach M, Sotillo R, Geley S, Spierings DC, Tijhuis AE, Foijer F, Villunger A. Chronic spindle assembly checkpoint activation causes myelosuppression and gastrointestinal atrophy. EMBO Rep 2024; 25:2743-2772. [PMID: 38806674 PMCID: PMC11169569 DOI: 10.1038/s44319-024-00160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.
Collapse
Affiliation(s)
- Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Vincent Z Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Haschka
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mathias Drach
- Dermatology, General Hospital, University Hospital Vienna, Vienna, Austria
| | - Rocio Sotillo
- German Cancer Research Center (DKFZ), Division of Molecular Thoracic Oncology, Heidelberg, Germany
| | - Stephan Geley
- Institute for Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana Cj Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Andrea E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Chen Q, Li Y, Shen T, Wang R, Su M, Luo Q, Shi H, Lu G, Wang Z, Hardwick KG, Wang M. Phosphorylation of Mad1 at serine 18 by Mps1 is required for the full virulence of rice blast fungus, Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13456. [PMID: 38619864 PMCID: PMC11018248 DOI: 10.1111/mpp.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/14/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
The spindle assembly checkpoint (SAC) proteins are conserved among eukaryotes safeguarding chromosome segregation fidelity during mitosis. However, their biological functions in plant-pathogenic fungi remain largely unknown. In this study, we found that the SAC protein MoMad1 in rice blast fungus (Magnaporthe oryzae) localizes on the nuclear envelope and is dispensable for M. oryzae vegetative growth and tolerance to microtubule depolymerizing agent treatment. MoMad1 plays an important role in M. oryzae infection-related development and pathogenicity. The monopolar spindle 1 homologue in M. oryzae (MoMps1) interacts with MoMad1 through its N-terminal domain and phosphorylates MoMad1 at Ser-18, which is conserved within the extended N termini of Mad1s from fungal plant pathogens. This phosphorylation is required for maintaining MoMad1 protein abundance and M. oryzae full virulence. Similar to the deletion of MoMad1, treatment with Mps1-IN-1 (an Mps1 inhibitor) caused compromised appressorium formation and decreased M. oryzae virulence, and these defects were dependent on its attenuating MoMad1 Ser-18 phosphorylation. Therefore, our study indicates the function of Mad1 in rice blast fungal pathogenicity and sheds light on the potential of blocking Mad1 phosphorylation by Mps1 to control crop fungal diseases.
Collapse
Affiliation(s)
- Qiushi Chen
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| | - Ya Li
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tianjiao Shen
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rong Wang
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meiling Su
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| | - Hua Shi
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| | - Guodong Lu
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Kevin G. Hardwick
- Institute of Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Mo Wang
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
4
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
5
|
Jain S, Sekhar A. Transient excited states of the metamorphic protein Mad2 and their implications for function. Proteins 2024. [PMID: 38221646 PMCID: PMC7616478 DOI: 10.1002/prot.26667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
The spindle checkpoint complex is a key surveillance mechanism in cell division that prevents premature separation of sister chromatids. Mad2 is an integral component of this spindle checkpoint complex that recognizes cognate substrates such as Mad1 and Cdc20 in its closed (C-Mad2) conformation by fastening a "seatbelt" around short peptide regions that bind to the substrate recognition site. Mad2 is also a metamorphic protein that adopts not only the fold found in C-Mad2, but also a structurally distinct open conformation (O-Mad2) which is incapable of binding substrates. Here, we show using chemical exchange saturation transfer (CEST) and relaxation dispersion (CPMG) NMR experiments that Mad2 transiently populates three other higher free energy states with millisecond lifetimes, two in equilibrium with C-Mad2 (E1 and E2) and one with O-Mad2 (E3). E1 is a mimic of substrate-bound C-Mad2 in which the N-terminus of one C-Mad2 molecule inserts into the seatbelt region of a second molecule of C-Mad2, providing a potential pathway for autoinhibition of C-Mad2. E2 is the "unbuckled" conformation of C-Mad2 that facilitates the triage of molecules along competing fold-switching and substrate binding pathways. The E3 conformation that coexists with O-Mad2 shows fluctuations at a hydrophobic lock that is required for stabilizing the O-Mad2 fold and we hypothesize that E3 represents an early intermediate on-pathway towards conversion to C-Mad2. Collectively, the NMR data highlight the rugged free energy landscape of Mad2 with multiple low-lying intermediates that interlink substrate-binding and fold-switching, and also emphasize the role of molecular dynamics in its function.
Collapse
Affiliation(s)
- Shefali Jain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Noda NN. Structural view on autophagosome formation. FEBS Lett 2024; 598:84-106. [PMID: 37758522 DOI: 10.1002/1873-3468.14742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Autophagy is a conserved intracellular degradation system in eukaryotes, involving the sequestration of degradation targets into autophagosomes, which are subsequently delivered to lysosomes (or vacuoles in yeasts and plants) for degradation. In budding yeast, starvation-induced autophagosome formation relies on approximately 20 core Atg proteins, grouped into six functional categories: the Atg1/ULK complex, the phosphatidylinositol-3 kinase complex, the Atg9 transmembrane protein, the Atg2-Atg18/WIPI complex, the Atg8 lipidation system, and the Atg12-Atg5 conjugation system. Additionally, selective autophagy requires cargo receptors and other factors, including a fission factor, for specific sequestration. This review covers the 30-year history of structural studies on core Atg proteins and factors involved in selective autophagy, examining X-ray crystallography, NMR, and cryo-EM techniques. The molecular mechanisms of autophagy are explored based on protein structures, and future directions in the structural biology of autophagy are discussed, considering the advancements in the era of AlphaFold.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
7
|
Nguyen A, Faesen AC. The role of the HORMA domain proteins ATG13 and ATG101 in initiating autophagosome biogenesis. FEBS Lett 2024; 598:114-126. [PMID: 37567770 DOI: 10.1002/1873-3468.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Autophagy is a process of regulated degradation. It eliminates damaged and unnecessary cellular components by engulfing them with a de novo-generated organelle: the double-membrane autophagosome. The past three decades have provided us with a detailed parts list of the autophagy initiation machinery, have developed important insights into how these processes function and have identified regulatory proteins. It is now clear that autophagosome biogenesis requires the timely assembly of a complex machinery. However, it is unclear how a putative stable machine is assembled and disassembled and how the different parts cooperate to perform its overall function. Although they have long been somewhat enigmatic in their precise role, HORMA domain proteins (first identified in Hop1p, Rev7p and MAD2 proteins) autophagy-related protein 13 (ATG13) and ATG101 of the ULK-kinase complex have emerged as important coordinators of the autophagy-initiating subcomplexes. Here, we will particularly focus on ATG13 and ATG101 and the role of their unusual metamorphosis in initiating autophagosome biogenesis. We will also explore how this metamorphosis could potentially be purposefully rate-limiting and speculate on how it could regulate the spontaneous self-assembly of the autophagy-initiating machinery.
Collapse
Affiliation(s)
- Anh Nguyen
- Laboratory of Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alex C Faesen
- Laboratory of Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
8
|
Wang H, Xie R, Niu F, Yang Q, An L, Wu C, Liu X, Yang X. Structural and biochemical insights into the interaction mechanism underlying HORMAD1 and its partner proteins. Structure 2023; 31:1578-1588.e3. [PMID: 37794593 DOI: 10.1016/j.str.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
The mammalian HORMA domain-containing protein 1 (HORMAD1) regulates DNA mismatch repair and homologous recombination (HR) repair in many cancers. Here, we show that the structure of human HORMAD1 adopts a self-closed conformation and displays an intra-molecular HORMA domain-closure motif interaction mode. Structural and biochemical data suggest that the interaction modes of the peptide motifs from HORMAD2 and MCM9 with HORMAD1 are highly similar to that of HORMAD1 own closure motif. The peptide motifs from diverse binding partners of HORMAD1 share a conserved Ser-Glu-Pro sequence. Additionally, structural comparison unveiled the HORMA-peptide motif interaction mode diversity among HORMA-containing proteins. Finally, cell-based assays revealed that this HORMA-closure motif interaction pattern contributes to DNA mismatch repair and is required for HORMAD1-dependent HR repair. Together, our results provide structural and biochemical insights into the common theme and functional plasticity of the HORMA domain-containing protein family, and also reveal a universal regulation mechanism for HORMAD1.
Collapse
Affiliation(s)
- Hong Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Rong Xie
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Science, Hainan Medical College, Haikou, Hainan 571199, China
| | - Fumin Niu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qian Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Lina An
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Xiuhua Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Xiaoyun Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
9
|
Porter LL, Chakravarty D, Schafer JW, Chen EA. ColabFold predicts alternative protein structures from single sequences, coevolution unnecessary for AF-cluster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567977. [PMID: 38076792 PMCID: PMC10705582 DOI: 10.1101/2023.11.21.567977] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Though typically associated with a single folded state, globular proteins are dynamic and often assume alternative or transient structures important for their functions1,2. Wayment-Steele, et al. steered ColabFold3 to predict alternative structures of several proteins using a method they call AF-cluster4. They propose that AF-cluster "enables ColabFold to sample alternate states of known metamorphic proteins with high confidence" by first clustering multiple sequence alignments (MSAs) in a way that "deconvolves" coevolutionary information specific to different conformations and then using these clusters as input for ColabFold. Contrary to this Coevolution Assumption, clustered MSAs are not needed to make these predictions. Rather, these alternative structures can be predicted from single sequences and/or sequence similarity, indicating that coevolutionary information is unnecessary for predictive success and may not be used at all. These results suggest that AF-cluster's predictive scope is likely limited to sequences with distinct-yet-homologous structures within ColabFold's training set.
Collapse
Affiliation(s)
- Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Joseph W. Schafer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Ethan A. Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
10
|
Zhao L, Ye S, Jing S, Gao YJ, He T. Targeting TRIP13 for overcoming anticancer drug resistance (Review). Oncol Rep 2023; 50:202. [PMID: 37800638 PMCID: PMC10565899 DOI: 10.3892/or.2023.8639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer is one of the greatest dangers to human wellbeing and survival. A key barrier to effective cancer therapy is development of resistance to anti‑cancer medications. In cancer cells, the AAA+ ATPase family member thyroid hormone receptor interactor 13 (TRIP13) is key in promoting treatment resistance. Nonetheless, knowledge of the molecular processes underlying TRIP13‑based resistance to anticancer therapies is lacking. The present study evaluated the function of TRIP13 expression in anticancer drug resistance and potential methods to overcome this resistance. Additionally, the underlying mechanisms by which TRIP13 promotes resistance to anticancer drugs were explored, including induction of mitotic checkpoint complex surveillance system malfunction, promotion of DNA repair, the enhancement of autophagy and the prevention of immunological clearance. The effects of combination treatment, which include a TRIP13 inhibitor in addition to other inhibitors, were discussed. The present study evaluated the literature on TRIP13 as a possible target and its association with anticancer drug resistance, which may facilitate improvements in current anticancer therapeutic options.
Collapse
Affiliation(s)
- Liwen Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Siyu Ye
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Shengnan Jing
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
11
|
Koban F, Freissmuth M. The cell cycle protein MAD2 facilitates endocytosis of the serotonin transporter in the neuronal soma. EMBO Rep 2023; 24:e53408. [PMID: 37530743 PMCID: PMC10561363 DOI: 10.15252/embr.202153408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
Monoamine transporters retrieve serotonin (SERT), dopamine (DAT), and norepinephrine (NET) from the synaptic cleft. Transporter internalization contributes to the regulation of their surface expression. Clathrin-mediated endocytosis of plasma membrane proteins requires adaptor protein-2 (AP2), which recruits cargo to the nascent clathrin cage. However, the intracellular portions of monoamine transporters are devoid of a conventional AP2-binding site. Here, we identify a MAD2 (mitotic arrest deficient-2) interaction motif in the C-terminus of SERT, which binds the closed conformation of MAD2 and allows for the recruitment of two additional mitotic spindle assembly checkpoint (SAC) proteins, BubR1 and p31comet , and of AP2. We visualize MAD2, BubR1, and p31comet in dorsal raphe neurons, and depletion of MAD2 in primary serotonergic rat neurons decreases SERT endocytosis in the soma. Our findings do not only provide mechanistic insights into transporter internalization but also allow for rationalizing why SAC proteins are present in post-mitotic neurons.
Collapse
Affiliation(s)
- Florian Koban
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
12
|
Chuah YH, Tay EXY, Grinchuk OV, Yoon J, Feng J, Kannan S, Robert M, Jakhar R, Liang Y, Lee BWL, Wang LC, Lim YT, Zhao T, Sobota RM, Lu G, Low BC, Crasta KC, Verma CS, Lin Z, Ong DST. CAMK2D serves as a molecular scaffold for RNF8-MAD2 complex to induce mitotic checkpoint in glioma. Cell Death Differ 2023; 30:1973-1987. [PMID: 37468549 PMCID: PMC10406836 DOI: 10.1038/s41418-023-01192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
MAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal. Specifically, RNF8 competes with a small pool of p31comet for binding to the closed conformer of MAD2 via its RING domain, while CAMK2D serves as a molecular scaffold to concentrate the RNF8-MAD2 complex via transient/weak interactions between its p-Thr287 and RNF8's FHA domain. Accordingly, RNF8 overexpression impairs glioma stem cell (GSC) mitotic progression in a FHA- and RING-dependent manner. Importantly, low RNF8 expression correlates with inferior glioma outcome and RNF8 overexpression impedes GSC tumorigenicity. Last, we identify PLK1 inhibitor that mimics RNF8 overexpression using a chemical biology approach, and demonstrate a PLK1/HSP90 inhibitor combination that synergistically reduces GSC proliferation and stemness. Thus, our study has unveiled a previously unrecognized CAMK2D-RNF8-MAD2 complex in regulating mitotic checkpoint with relevance to gliomas, which is therapeutically targetable.
Collapse
Affiliation(s)
- You Heng Chuah
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oleg V Grinchuk
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jeehyun Yoon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Feng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matius Robert
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Bernice Woon Li Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tianyun Zhao
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Boon Chuan Low
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- University Scholars Programme, 18 College Avenue East, Singapore, 138593, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhewang Lin
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
13
|
Nguyen A, Lugarini F, David C, Hosnani P, Alagöz Ç, Friedrich A, Schlütermann D, Knotkova B, Patel A, Parfentev I, Urlaub H, Meinecke M, Stork B, Faesen AC. Metamorphic proteins at the basis of human autophagy initiation and lipid transfer. Mol Cell 2023:S1097-2765(23)00321-0. [PMID: 37209685 DOI: 10.1016/j.molcel.2023.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.
Collapse
Affiliation(s)
- Anh Nguyen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Francesca Lugarini
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Pouya Hosnani
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Çağla Alagöz
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Barbora Knotkova
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Anoshi Patel
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Iwan Parfentev
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany
| | - Henning Urlaub
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany; University Medical Centre Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
| | - Michael Meinecke
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alex C Faesen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany.
| |
Collapse
|
14
|
Susvirkar V, Faesen AC. Shieldin complex assembly kinetics and DNA binding by SHLD3. Commun Biol 2023; 6:384. [PMID: 37031298 PMCID: PMC10082759 DOI: 10.1038/s42003-023-04757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
The Shieldin complex represses end resection at DNA double-strand breaks (DSBs) and thereby serves as a pro-non homologous end joining (NHEJ) factor. The molecular details of the assembly of Shieldin and its recruitment to DSBs are unclear. Shieldin contains two REV7 molecules, which have the rare ability to slowly switch between multiple distinct native states and thereby could dynamically control the assembly of Shieldin. Here, we report the identification of a promiscuous DNA binding domain in SHLD3. At the N-terminus, SHLD3 interacts with a dimer of REV7 molecules. We show that the interaction between SHLD3 and the first REV7 is remarkably slow, while in contrast the interaction between SHLD3 and SHLD2 with a second REV7 molecule is fast and does not require structural remodeling. Overall, these results provide insights into the rate-limiting step of the molecular assembly of the Shieldin complex and its recruitment at DNA DSBs.
Collapse
Affiliation(s)
- Vivek Susvirkar
- Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alex C Faesen
- Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
15
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Chen C, Piano V, Alex A, Han SJY, Huis In 't Veld PJ, Roy B, Fergle D, Musacchio A, Joglekar AP. The structural flexibility of MAD1 facilitates the assembly of the Mitotic Checkpoint Complex. Nat Commun 2023; 14:1529. [PMID: 36934097 PMCID: PMC10024682 DOI: 10.1038/s41467-023-37235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
The spindle assembly checkpoint (SAC) safeguards the genome during cell division by generating an effector molecule known as the Mitotic Checkpoint Complex (MCC). The MCC comprises two subcomplexes: BUBR1:BUB3 and CDC20:MAD2, and the formation of CDC20:MAD2 is the rate-limiting step during MCC assembly. Recent studies show that the rate of CDC20:MAD2 formation is significantly accelerated by the cooperative binding of CDC20 to the SAC proteins MAD1 and BUB1. However, the molecular basis for this acceleration is not fully understood. Here, we demonstrate that the structural flexibility of MAD1 at a conserved hinge near the C-terminus is essential for catalytic MCC assembly. This MAD1 hinge enables the MAD1:MAD2 complex to assume a folded conformation in vivo. Importantly, truncating the hinge reduces the rate of MCC assembly in vitro and SAC signaling in vivo. Conversely, mutations that preserve hinge flexibility retain SAC signaling, indicating that the structural flexibility of the hinge, rather than a specific amino acid sequence, is important for SAC signaling. We summarize these observations as the 'knitting model' that explains how the folded conformation of MAD1:MAD2 promotes CDC20:MAD2 assembly.
Collapse
Affiliation(s)
- Chu Chen
- Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Valentina Piano
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany
- Institute of Human Genetics, University Hospital Cologne, Cologne, 50931, Germany
| | - Amal Alex
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany
| | - Simon J Y Han
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany
| | - Babhrubahan Roy
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Daniel Fergle
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, 45141, Germany
| | - Ajit P Joglekar
- Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
18
|
Fischer ES, Yu CWH, Hevler JF, McLaughlin SH, Maslen SL, Heck AJR, Freund SMV, Barford D. Juxtaposition of Bub1 and Cdc20 on phosphorylated Mad1 during catalytic mitotic checkpoint complex assembly. Nat Commun 2022; 13:6381. [PMID: 36289199 PMCID: PMC9605988 DOI: 10.1038/s41467-022-34058-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
In response to improper kinetochore-microtubule attachments in mitosis, the spindle assembly checkpoint (SAC) assembles the mitotic checkpoint complex (MCC) to inhibit the anaphase-promoting complex/cyclosome, thereby delaying entry into anaphase. The MCC comprises Mad2:Cdc20:BubR1:Bub3. Its assembly is catalysed by unattached kinetochores on a Mad1:Mad2 platform. Mad1-bound closed-Mad2 (C-Mad2) recruits open-Mad2 (O-Mad2) through self-dimerization. This interaction, combined with Mps1 kinase-mediated phosphorylation of Bub1 and Mad1, accelerates MCC assembly, in a process that requires O-Mad2 to C-Mad2 conversion and concomitant binding of Cdc20. How Mad1 phosphorylation catalyses MCC assembly is poorly understood. Here, we characterized Mps1 phosphorylation of Mad1 and obtained structural insights into a phosphorylation-specific Mad1:Cdc20 interaction. This interaction, together with the Mps1-phosphorylation dependent association of Bub1 and Mad1, generates a tripartite assembly of Bub1 and Cdc20 onto the C-terminal domain of Mad1 (Mad1CTD). We additionally identify flexibility of Mad1:Mad2 that suggests how the Cdc20:Mad1CTD interaction brings the Mad2-interacting motif (MIM) of Cdc20 near O-Mad2. Thus, Mps1-dependent formation of the MCC-assembly scaffold functions to position and orient Cdc20 MIM near O-Mad2, thereby catalysing formation of C-Mad2:Cdc20.
Collapse
Affiliation(s)
- Elyse S Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
19
|
Esposito E, Weidemann DE, Rogers JM, Morton CM, Baybay EK, Chen J, Hauf S. Mitotic checkpoint gene expression is tuned by codon usage bias. EMBO J 2022; 41:e107896. [PMID: 35811551 PMCID: PMC9340482 DOI: 10.15252/embj.2021107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half-lives and long protein half-lives supports stable SAC protein levels. For the SAC genes mad2+ and mad3+ , their short mRNA half-lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1+ mRNA has a short half-life despite a higher frequency of optimal codons, and despite the lack of known RNA-destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co-translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine-tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.
Collapse
Affiliation(s)
- Eric Esposito
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Douglas E Weidemann
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jessie M Rogers
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Claire M Morton
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Erod Keaton Baybay
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Jing Chen
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| | - Silke Hauf
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVAUSA
| |
Collapse
|
20
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Liu S, Yuan X, Gui P, Liu R, Durojaye O, Hill DL, Fu C, Yao X, Dou Z, Liu X. Mad2 promotes Cyclin B2 recruitment to the kinetochore for guiding accurate mitotic checkpoint. EMBO Rep 2022; 23:e54171. [PMID: 35384228 PMCID: PMC9171689 DOI: 10.15252/embr.202154171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate mitotic progression relies on the dynamic phosphorylation of multiple substrates by key mitotic kinases. Cyclin-dependent kinase 1 is a master kinase that coordinates mitotic progression and requires its regulatory subunit Cyclin B to ensure full kinase activity and substrate specificity. The function of Cyclin B2, which is a closely related family member of Cyclin B1, remains largely elusive. Here, we show that Mad2 promotes the kinetochore localization of Cyclin B2 and that their interaction at the kinetochores guides accurate chromosome segregation. Our biochemical analyses have characterized the Mad2-Cyclin B2 interaction and delineated a novel Mad2-interacting motif (MIM) on Cyclin B2. The functional importance of the Cyclin B2-Mad2 interaction was demonstrated by real-time imaging in which MIM-deficient mutant Cyclin B2 failed to rescue the chromosomal segregation defects. Taken together, we have delineated a previously undefined function of Cyclin B2 at the kinetochore and have established, in human cells, a mechanism of action by which Mad2 contributes to the spindle checkpoint.
Collapse
Affiliation(s)
- Sikai Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ran Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Olanrewaju Durojaye
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Chakravarty D, Porter LL. AlphaFold2
fails to predict protein fold switching. Protein Sci 2022; 31:e4353. [DOI: 10.1002/pro.4353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Devlina Chakravarty
- National Library of Medicine, National Center for Biotechnology Information National Institutes of Health Bethesda Maryland USA
| | - Lauren L. Porter
- National Library of Medicine, National Center for Biotechnology Information National Institutes of Health Bethesda Maryland USA
- National Heart, Lung, and Blood Institute, Biochemistry and Biophysics Center National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
23
|
Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Front Cell Dev Biol 2022; 10:870745. [PMID: 35646932 PMCID: PMC9136299 DOI: 10.3389/fcell.2022.870745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.
Collapse
Affiliation(s)
- Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Fang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| |
Collapse
|
24
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
25
|
Prince JP, Martinez-Perez E. Functions and Regulation of Meiotic HORMA-Domain Proteins. Genes (Basel) 2022; 13:777. [PMID: 35627161 PMCID: PMC9141381 DOI: 10.3390/genes13050777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
During meiosis, homologous chromosomes must recognize, pair, and recombine with one another to ensure the formation of inter-homologue crossover events, which, together with sister chromatid cohesion, promote correct chromosome orientation on the first meiotic spindle. Crossover formation requires the assembly of axial elements, proteinaceous structures that assemble along the length of each chromosome during early meiosis, as well as checkpoint mechanisms that control meiotic progression by monitoring pairing and recombination intermediates. A conserved family of proteins defined by the presence of a HORMA (HOp1, Rev7, MAd2) domain, referred to as HORMADs, associate with axial elements to control key events of meiotic prophase. The highly conserved HORMA domain comprises a flexible safety belt sequence, enabling it to adopt at least two of the following protein conformations: one closed, where the safety belt encircles a small peptide motif present within an interacting protein, causing its topological entrapment, and the other open, where the safety belt is reorganized and no interactor is trapped. Although functional studies in multiple organisms have revealed that HORMADs are crucial regulators of meiosis, the mechanisms by which HORMADs implement key meiotic events remain poorly understood. In this review, we summarize protein complexes formed by HORMADs, discuss their roles during meiosis in different organisms, draw comparisons to better characterize non-meiotic HORMADs (MAD2 and REV7), and highlight possible areas for future research.
Collapse
Affiliation(s)
- Josh P. Prince
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
| | - Enrique Martinez-Perez
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
26
|
Ghosh C, Jana B. Curious Case of MAD2 Protein: Diverse Folding Intermediates Leading to Alternate Native States. J Phys Chem B 2022; 126:1904-1916. [PMID: 35230837 DOI: 10.1021/acs.jpcb.2c00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anfinsen's dogma postulates that for one sequence there will be only one unique structure that is necessary for the functioning of the protein. However, over the years there have been a number of departures from this postulate. As far as function is considered, there are growing examples of proteins that "moonlight", perform multiple unrelated functions. With the discovery of intrinsically disordered proteins, morpheeins, chameleonic sequences, and metamorphic proteins that can switch folds, we have acquired a more nuanced understanding of protein folding and dynamics. Appearing to apparently contradict the classical folding paradigm, metamorphic proteins are considered exotic species. In this work, we have explored the free energy landscape and folding pathways of the metamorphic protein MAD2 which is an important component of the spindle checkpoint. It coexists in two alternate states: the inactive open state and the active closed state. Using a dual-basin structure-based model approach we have shown that a variety of intermediates and multiple pathways are available to MAD2 to fold into its alternate forms. This approach involves performing molecular dynamics simulations of coarse-grained models of MAD2 where the structural information regarding both of its native conformations is explicitly included in terms of their native contacts in the force field used. Detailed analyses have indicated that some of the contacts within the protein play a key role in determining which folding pathway will be selected and point to a probable long-range communication between the N and the C termini of the protein that seems to control its folding. Finally, our work also provides a rationale for the experimentally observed preference of the ΔC10 variant of MAD2 to exist in the open state.
Collapse
Affiliation(s)
- Catherine Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
27
|
Alberstein RG, Guo AB, Kortemme T. Design principles of protein switches. Curr Opin Struct Biol 2022; 72:71-78. [PMID: 34537489 PMCID: PMC8860883 DOI: 10.1016/j.sbi.2021.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023]
Abstract
Protein switches perform essential roles in many biological processes and are exciting targets for de novo protein design, which aims to produce proteins of arbitrary shape and functionality. However, the biophysical requirements for switch function - multiple conformational states, fine-tuned energetics, and stimuli-responsiveness - pose a formidable challenge for design by computation (or intuition). A variety of methods have been developed toward tackling this challenge, usually taking inspiration from the wealth of sequence and structural information available for naturally occurring protein switches. More recently, modular switches have been designed computationally, and new methods have emerged for sampling unexplored structure space, providing promising new avenues toward the generation of purpose-built switches and de novo signaling systems for cellular engineering.
Collapse
Affiliation(s)
- Robert G Alberstein
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy B Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
DeLuca KF, Mick JE, Ide AH, Lima WC, Sherman L, Schaller KL, Anderson SM, Zhao N, Stasevich TJ, Varma D, Nilsson J, DeLuca JG. Generation and diversification of recombinant monoclonal antibodies. eLife 2021; 10:72093. [PMID: 34970967 PMCID: PMC8763395 DOI: 10.7554/elife.72093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.
Collapse
Affiliation(s)
- Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Jeanne E Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Amy Hodges Ide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Wanessa C Lima
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lori Sherman
- CU Cancer Center Cell Technologies Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kristin L Schaller
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Steven M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Dileep Varma
- Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Germany
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| |
Collapse
|
30
|
Chen L, Tu L, Yang G, Banfield DK. Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 2021; 37:110120. [PMID: 34965437 DOI: 10.1016/j.celrep.2021.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 01/15/2023] Open
Abstract
Newly synthesized glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive remodeling prior to transport to the plasma membrane. GPI-AP remodeling events serve as quality assurance signatures, and complete remodeling of the anchor functions as a transport warrant. Using a genetic approach in yeast cells, we establish that one remodeling event, the removal of ethanolamine-phosphate from mannose 2 via Ted1p (yPGAP5), is essential for cell viability in the absence of the Golgi-localized putative phosphodiesterase Dcr2p. While GPI-APs in which mannose 2 has not been remodeled in dcr2 ted1-deficient cells can still be delivered to the plasma membrane, their presence elicits a unique stress response. Stress is sensed by Mid2p, a constituent of the cell wall integrity pathway, whereupon signal promulgation culminates in activation of the spindle assembly checkpoint. Our results are consistent with a model in which cellular stress response and chromosome segregation checkpoint pathways are functionally interconnected.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
31
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Fischer ES, Yu CWH, Bellini D, McLaughlin SH, Orr CM, Wagner A, Freund SMV, Barford D. Molecular mechanism of Mad1 kinetochore targeting by phosphorylated Bub1. EMBO Rep 2021; 22:e52242. [PMID: 34013668 PMCID: PMC8391104 DOI: 10.15252/embr.202052242] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD ) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.
Collapse
Affiliation(s)
| | | | - Dom Bellini
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | | | | | | | |
Collapse
|
33
|
The RAS GTPase RIT1 compromises mitotic fidelity through spindle assembly checkpoint suppression. Curr Biol 2021; 31:3915-3924.e9. [PMID: 34237269 DOI: 10.1016/j.cub.2021.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The spindle assembly checkpoint (SAC) functions as a sensor of unattached kinetochores that delays mitotic progression into anaphase until proper chromosome segregation is guaranteed.1,2 Disruptions to this safety mechanism lead to genomic instability and aneuploidy, which serve as the genetic cause of embryonic demise, congenital birth defects, intellectual disability, and cancer.3,4 However, despite the understanding of the fundamental mechanisms that control the SAC, it remains unknown how signaling pathways directly interact with and regulate the mitotic checkpoint activity. In response to extracellular stimuli, a diverse network of signaling pathways involved in cell growth, survival, and differentiation are activated, and this process is prominently regulated by the Ras family of small guanosine triphosphatases (GTPases).5 Here we show that RIT1, a Ras-related GTPase that regulates cell survival and stress response,6 is essential for timely progression through mitosis and proper chromosome segregation. RIT1 dissociates from the plasma membrane (PM) during mitosis and interacts directly with SAC proteins MAD2 and p31comet in a process that is regulated by cyclin-dependent kinase 1 (CDK1) activity. Furthermore, pathogenic levels of RIT1 silence the SAC and accelerate transit through mitosis by sequestering MAD2 from the mitotic checkpoint complex (MCC). Moreover, SAC suppression by pathogenic RIT1 promotes chromosome segregation errors and aneuploidy. Our results highlight a unique function of RIT1 compared to other Ras GTPases and elucidate a direct link between a signaling pathway and the SAC through a novel regulatory mechanism.
Collapse
|
34
|
Maiato H. Mitosis under the macroscope. Semin Cell Dev Biol 2021; 117:1-5. [PMID: 34172396 DOI: 10.1016/j.semcdb.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
35
|
Koliopoulos MG, Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J 2021; 289:5100-5120. [PMID: 34143558 DOI: 10.1111/febs.16082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| |
Collapse
|
36
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
37
|
Cardoso da Silva R, Vader G. Getting there: understanding the chromosomal recruitment of the AAA+ ATPase Pch2/TRIP13 during meiosis. Curr Genet 2021; 67:553-565. [PMID: 33712914 PMCID: PMC8254700 DOI: 10.1007/s00294-021-01166-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
The generally conserved AAA+ ATPase Pch2/TRIP13 is involved in diverse aspects of meiosis, such as prophase checkpoint function, DNA break regulation, and meiotic recombination. The controlled recruitment of Pch2 to meiotic chromosomes allows it to use its ATPase activity to influence HORMA protein-dependent signaling. Because of the connection between Pch2 chromosomal recruitment and its functional roles in meiosis, it is important to reveal the molecular details that govern Pch2 localization. Here, we review the current understanding of the different factors that control the recruitment of Pch2 to meiotic chromosomes, with a focus on research performed in budding yeast. During meiosis in this organism, Pch2 is enriched within the nucleolus, where it likely associates with the specialized chromatin of the ribosomal (r)DNA. Pch2 is also found on non-rDNA euchromatin, where its recruitment is contingent on Zip1, a component of the synaptonemal complex (SC) that assembles between homologous chromosomes. We discuss recent findings connecting the recruitment of Pch2 with its association with the Origin Recognition Complex (ORC) and reliance on RNA Polymerase II-dependent transcription. In total, we provide a comprehensive overview of the pathways that control the chromosomal association of an important meiotic regulator.
Collapse
Affiliation(s)
- Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany. .,Department of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany. .,Department of Clinical Genetics, Section of Oncogenetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Xie W, Wang S, Wang J, de la Cruz MJ, Xu G, Scaltriti M, Patel DJ. Molecular mechanisms of assembly and TRIP13-mediated remodeling of the human Shieldin complex. Proc Natl Acad Sci U S A 2021; 118:e2024512118. [PMID: 33597306 PMCID: PMC7923543 DOI: 10.1073/pnas.2024512118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Shieldin complex, composed of REV7, SHLD1, SHLD2, and SHLD3, protects DNA double-strand breaks (DSBs) to promote nonhomologous end joining. The AAA+ ATPase TRIP13 remodels Shieldin to regulate DNA repair pathway choice. Here we report crystal structures of human SHLD3-REV7 binary and fused SHLD2-SHLD3-REV7 ternary complexes, revealing that assembly of Shieldin requires fused SHLD2-SHLD3 induced conformational heterodimerization of open (O-REV7) and closed (C-REV7) forms of REV7. We also report the cryogenic electron microscopy (cryo-EM) structures of the ATPγS-bound fused SHLD2-SHLD3-REV7-TRIP13 complexes, uncovering the principles underlying the TRIP13-mediated disassembly mechanism of the Shieldin complex. We demonstrate that the N terminus of REV7 inserts into the central channel of TRIP13, setting the stage for pulling the unfolded N-terminal peptide of C-REV7 through the central TRIP13 hexameric channel. The primary interface involves contacts between the safety-belt segment of C-REV7 and a conserved and negatively charged loop of TRIP13. This process is mediated by ATP hydrolysis-triggered rotatory motions of the TRIP13 ATPase, thereby resulting in the disassembly of the Shieldin complex.
Collapse
Affiliation(s)
- Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Shengliu Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Guotai Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
39
|
Lara-Gonzalez P, Kim T, Oegema K, Corbett K, Desai A. A tripartite mechanism catalyzes Mad2-Cdc20 assembly at unattached kinetochores. Science 2021; 371:64-67. [PMID: 33384372 DOI: 10.1126/science.abc1424] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
During cell division, kinetochores couple chromosomes to spindle microtubules. To protect against chromosome gain or loss, kinetochores lacking microtubule attachment locally catalyze association of the checkpoint proteins Cdc20 and Mad2, which is the key event in the formation of a diffusible checkpoint complex that prevents mitotic exit. We elucidated the mechanism of kinetochore-catalyzed Mad2-Cdc20 assembly with a probe that specifically monitors this assembly reaction at kinetochores in living cells. We found that catalysis occurs through a tripartite mechanism that includes localized delivery of Mad2 and Cdc20 substrates and two phosphorylation-dependent interactions that geometrically constrain their positions and prime Cdc20 for interaction with Mad2. These results reveal how unattached kinetochores create a signal that ensures genome integrity during cell division.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Taekyung Kim
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Karen Oegema
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Kevin Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Arshad Desai
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
40
|
Piano V, Alex A, Stege P, Maffini S, Stoppiello GA, Huis In 't Veld PJ, Vetter IR, Musacchio A. CDC20 assists its catalytic incorporation in the mitotic checkpoint complex. Science 2021; 371:67-71. [PMID: 33384373 DOI: 10.1126/science.abc1152] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Open (O) and closed (C) topologies of HORMA-domain proteins are respectively associated with inactive and active states of fundamental cellular pathways. The HORMA protein O-MAD2 converts to C-MAD2 upon binding CDC20. This is rate limiting for assembly of the mitotic checkpoint complex (MCC), the effector of a checkpoint required for mitotic fidelity. A catalyst assembled at kinetochores accelerates MAD2:CDC20 association through a poorly understood mechanism. Using a reconstituted SAC system, we discovered that CDC20 is an impervious substrate for which access to MAD2 requires simultaneous docking on several sites of the catalytic complex. Our analysis indicates that the checkpoint catalyst is substrate assisted and promotes MCC assembly through spatially and temporally coordinated conformational changes in both MAD2 and CDC20. This may define a paradigm for other HORMA-controlled systems.
Collapse
Affiliation(s)
- Valentina Piano
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| | - Amal Alex
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Patricia Stege
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Gerardo A Stoppiello
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. .,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
41
|
Abstract
The cell cycle is the sequence of events through which a cell duplicates its genome, grows, and divides. Key cell cycle transitions are driven by oscillators comprising of protein kinases and their regulators. Different cell cycle oscillators are inextricably linked to ensure orderly activation of oscillators. A recurring theme in their regulation is the abundance of autoamplifying loops that ensure switch-like and unidirectional cell cycle transitions. The periodicity of many cell cycle oscillators is choreographed by inherent mechanisms that promote automatic inactivation, often involving dephosphorylation and ubiquitin-mediated protein degradation. These inhibitory signals are subsequently suppressed to enable the next cell cycle to occur. Although the activation and inactivation of cell cycle oscillators are in essence autonomous during the unperturbed cell cycle, a number of checkpoint mechanisms are able to halt the cell cycle until preconditions or defects are addressed. Together, these mechanisms orchestrate orderly progression of the cell cycle to produce more cells and to safeguard genome stability.
Collapse
|
42
|
Balboni M, Yang C, Komaki S, Brun J, Schnittger A. COMET Functions as a PCH2 Cofactor in Regulating the HORMA Domain Protein ASY1. Curr Biol 2020; 30:4113-4127.e6. [DOI: 10.1016/j.cub.2020.07.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
|
43
|
Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Nat Struct Mol Biol 2020; 27:913-924. [PMID: 32807989 PMCID: PMC7554088 DOI: 10.1038/s41594-020-0476-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023]
Abstract
DNA polymerase ζ (Polζ) belongs to the same B-family as high-fidelity replicative polymerases, yet is specialized for the extension reaction in translesion DNA synthesis (TLS). Despite its importance in TLS, the structure of Polζ is unknown. We present cryo-EM structures of the Saccharomyces cerevisiae Polζ holoenzyme in the act of DNA synthesis (3.1 Å) and without DNA (4.1 Å). Polζ displays a pentameric ring-like architecture, with catalytic Rev3, accessory Pol31' Pol32 and two Rev7 subunits forming an uninterrupted daisy chain of protein-protein interactions. We also uncover the features that impose high fidelity during the nucleotide-incorporation step and those that accommodate mismatches and lesions during the extension reaction. Collectively, we decrypt the molecular underpinnings of Polζ's role in TLS and provide a framework for new cancer therapeutics.
Collapse
|
44
|
Raina VB, Vader G. Homeostatic Control of Meiotic Prophase Checkpoint Function by Pch2 and Hop1. Curr Biol 2020; 30:4413-4424.e5. [PMID: 32916108 DOI: 10.1016/j.cub.2020.08.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023]
Abstract
Checkpoint cascades link cell cycle progression with essential chromosomal processes. During meiotic prophase, recombination and chromosome synapsis are monitored by what are considered distinct checkpoints. In budding yeast, cells that lack the AAA+ ATPase Pch2 show an impaired cell cycle arrest in response to synapsis defects. However, unperturbed pch2Δ cells are delayed in meiotic prophase, suggesting paradoxical roles for Pch2 in cell cycle progression. Here, we provide insight into the checkpoint roles of Pch2 and its connection to Hop1, a HORMA domain-containing client protein. Contrary to current understanding, we find that Pch2 (together with Hop1) is crucial for checkpoint function in response to both recombination and synapsis defects, thus revealing a shared meiotic checkpoint cascade. Meiotic checkpoint responses are transduced by DNA break-dependent phosphorylation of Hop1. Based on our data and on the described effect of Pch2 on HORMA topology, we propose that Pch2 promotes checkpoint proficiency by catalyzing the availability of signaling-competent Hop1. Conversely, we demonstrate that Pch2 can act as a checkpoint silencer, also in the face of persistent DNA repair defects. We establish a framework in which Pch2 and Hop1 form a homeostatic module that governs general meiotic checkpoint function. We show that this module can-depending on the cellular context-fuel or extinguish meiotic checkpoint function, which explains the contradictory roles of Pch2 in cell cycle control. Within the meiotic prophase checkpoint, the Pch2-Hop1 module thus operates analogous to the Pch2/TRIP13-Mad2 module in the spindle assembly checkpoint that monitors chromosome segregation.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany.
| |
Collapse
|
45
|
Sequence-Based Prediction of Metamorphic Behavior in Proteins. Biophys J 2020; 119:1380-1390. [PMID: 32937108 PMCID: PMC7567988 DOI: 10.1016/j.bpj.2020.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
An increasing number of proteins have been demonstrated in recent years to adopt multiple three-dimensional folds with different functions. These metamorphic proteins are characterized by having two or more folds with significant differences in their secondary structure, in which each fold is stabilized by a distinct local environment. So far, ∼90 metamorphic proteins have been identified in the Protein Databank, but we and others hypothesize that a far greater number of metamorphic proteins remain undiscovered. In this work, we introduce a computational model to predict metamorphic behavior in proteins using only knowledge of the sequence. In this model, secondary structure prediction programs are used to calculate diversity indices, which are measures of uncertainty in predicted secondary structure at each position in the sequence; these are then used to assign protein sequences as likely to be metamorphic versus monomorphic (i.e., having just one fold). We constructed a reference data set to train our classification method, which includes a novel compilation of 136 likely monomorphic proteins and a set of 201 metamorphic protein structures taken from the literature. Our model is able to classify proteins as metamorphic versus monomorphic with a Matthews correlation coefficient of ∼0.36 and true positive/true negative rates of ∼65%/80%, suggesting that it is possible to predict metamorphic behavior in proteins using only sequence information.
Collapse
|
46
|
Khatua P, Ray AJ, Hansmann UHE. Bifurcated Hydrogen Bonds and the Fold Switching of Lymphotactin. J Phys Chem B 2020; 124:6555-6564. [PMID: 32609521 PMCID: PMC7429337 DOI: 10.1021/acs.jpcb.0c04565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lymphotactin (Ltn) exists under physiological conditions in an equilibrium between two interconverting structures with distinct biological functions. Using replica-exchange-with-tunneling, we study the conversion between the 2-folds. Unlike previously proposed, we find that the fold switching does not require unfolding of lymphotactin but proceeds through a series of intermediates that remain partially structured. This process relies on two bifurcated hydrogen bonds that connect the β2 and β3 strands and ease the transition between the hydrogen bond pattern by which the central three-stranded β-sheet in the two forms differs.
Collapse
Affiliation(s)
- Prabir Khatua
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Alan J Ray
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
47
|
Abstract
In the past decade, the study of the major DNA double strand break (DSB) repair pathways, homologous recombination (HR) and classical non-homologous end joining (C-NHEJ), has revealed a vast and intricate network of regulation. The choice between HR and C-NHEJ is largely controlled at the step of DNA end-resection. A pro-C-NHEJ cascade commencing with 53BP1 and culminating in the newly discovered REV7-Shieldin complex impedes end resection and therefore HR. Importantly, loss of any component of this pathway confers PARP inhibitor resistance in BRCA1-deficient cells; hence, their study is of great clinical importance. The newest entrant on the scene of end resection regulation is the ATPase TRIP13 that disables the pro-C-NHEJ cascade by promoting a novel conformational change of the HORMA protein REV7. Here, we tie these new findings and factors with previous research on the regulation of DSB repair and HORMA proteins, and suggest testable hypotheses for how TRIP13 could specifically inactivate REV7-Shieldin to promote HR. We also discuss these biological questions in the context of clinical therapeutics.
Collapse
Affiliation(s)
- Prabha Sarangi
- Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute , Boston, MA, USA
| |
Collapse
|
48
|
Molecular basis for assembly of the shieldin complex and its implications for NHEJ. Nat Commun 2020; 11:1972. [PMID: 32332881 PMCID: PMC7181697 DOI: 10.1038/s41467-020-15879-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/27/2020] [Indexed: 02/01/2023] Open
Abstract
Shieldin, including SHLD1, SHLD2, SHLD3 and REV7, functions as a bridge linking 53BP1-RIF1 and single-strand DNA to suppress the DNA termini nucleolytic resection during non-homologous end joining (NHEJ). However, the mechanism of shieldin assembly remains unclear. Here we present the crystal structure of the SHLD3-REV7-SHLD2 ternary complex and reveal an unexpected C (closed)-REV7-O (open)-REV7 conformational dimer mediated by SHLD3. We show that SHLD2 interacts with O-REV7 and the N-terminus of SHLD3 by forming β sheet sandwich. Disruption of the REV7 conformational dimer abolishes the assembly of shieldin and impairs NHEJ efficiency. The conserved FXPWFP motif of SHLD3 binds to C-REV7 and blocks its binding to REV1, which excludes shieldin from the REV1/Pol ζ translesion synthesis (TLS) complex. Our study reveals the molecular architecture of shieldin assembly, elucidates the structural basis of the REV7 conformational dimer, and provides mechanistic insight into orchestration between TLS and NHEJ. Shieldin, including SHLD1, SHLD2, SHLD3 and REV7, functions to suppress the DNA termini nucleolytic resection during non-homologous end joining (NHEJ). Here the authors present the crystal structure of the SHLD3-REV7-SHLD2 ternary complex revealing insights into the mechanism of the complex.
Collapse
|
49
|
Barford D. Structural interconversions of the anaphase-promoting complex/cyclosome (APC/C) regulate cell cycle transitions. Curr Opin Struct Biol 2020; 61:86-97. [PMID: 31864160 DOI: 10.1016/j.sbi.2019.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit complex that functions as a RING domain E3 ubiquitin ligase to regulate transitions through the cell cycle, achieved by controlling the defined ubiquitin-dependent degradation of specific cell cycle regulators. APC/C activity and substrate selection are controlled at various levels to ensure that specific cell cycle events occur in the correct order and time. Structural and mechanistic studies over the past two decades have complemented functional studies to provide comprehensive insights that explain APC/C molecular mechanisms. This review discusses how modifications of the core APC/C are responsible for the APC/C's interconversion between different structural and functional states that govern its capacity to control transitions between specific cell cycle phases. A unifying theme is that these structural interconversions involve competition between short linear sequence motifs (SLIMs), shared between substrates, coactivators, inhibitors and E2s, for their common binding sites on the APC/C.
Collapse
Affiliation(s)
- David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
50
|
HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Mol Cell 2020; 77:709-722.e7. [PMID: 31932165 DOI: 10.1016/j.molcel.2019.12.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/03/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage λ through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase.
Collapse
|